
Classical Mechanics

David Gross, Johan Åberg, Markus Heinrich

Exercise sheet 8 Due: December, 29 at 12:00

1 Change of variable for a constrained particle

Imagine a particle that is constrained to move along a curve (x, y) where y = f (x)1. The particle
is otherwise not affected by any potentials.
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a) What is the Lagrangian of this system, in terms of the coordinate x? (1 points)

b) Derive the Euler-Lagrange equation. (2 points)

c) Find the general expression for the length `(x) of the curve, from the point
(
x0, f (x0)

)
to

(
x, f (x)

)
,

for some arbitrary but fixed x0.

Hint: The answer is an integral. Think of the interval [x, x + ∆x] for a small ∆x. What is
the approximate size of ∆y? What is the length of the line that connects the point (x, y) to
(x + ∆x, y + ∆y)? (2 points)

d) Make a change of variables to the new coordinate ` in the Lagrangian. What is the Euler-Lagrange
equation in this case? Find the general solution. (2 points)

Comment: This exercise illustrates that one can treat very general constraints with Lagrangian
mechanics. It also demonstrates that we sometimes can make the equations of motion very simple
by a suitable choice of coordinates. We will see more of this later.

2 Constraint forces: The ideal case
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gIn exercise 3 we will analyze constraint forces, but as a

preparation we here consider the ideal case. We consider a
bead of mass m that can slide without friction on a hoop that
is oriented vertically, so that the mass m is affected by the con-
stant gravitational acceleration g.

1 f is a nice and smooth function.
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a) Derive the Lagrangian in terms of the angle θ, and obtain the corresponding Euler-Lagrange equation.

(2 points)

b) Suppose that the bead at a given moment of time is at angle θ and has the angular speed θ̇. In
order to keep the bead at the constant radius R, the hoop must exert a normal force ~FN = FN r̂
on the bead, where r̂ is the unit radial vector. Show that

FN = mg cos θ −mRθ̇2. (1)

Hint: This is a bit of Newtonian mechanics again. The bead is affected by the gravitational
force and the normal force. In order to stay on the hoop, the bead must experience a centripetal
acceleration. This acceleration fixes the radial component of the total force acting on the bead.

(2 points)

Comment: In the lectures you have discussed ideal constraint forces. The purpose of this exercise
is to prepare for the next, where we take a closer look on how constraint forces come about.

3 Obtaining constraint forces
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In the previous exercise we took for granted that the bead stays at the fixed radius R of the hoop.
In other words, we assume that there are constraint forces that keep the bead precisely at the right
radius. One can realize that this is an idealization. The restoring force comes from the hoop pushing
the bead back, when the bead deviates slightly from the correct radius. Here we will analyze this
problem by replacing the perfect constraint with a potential. We will see that one can regain the
ideal constraint for very steep potentials.

Precisely as in problem 2 we consider a bead on a hoop, but we additionally allow the bead to
change its radial coordinate r. Hence, we now have two coordinates θ and r. However, we also
include a radial potential (in addition to the gravitational potential) V(r) = 1

2ε (r− R)2, where ε > 0.
Hence, this is a quadratic potential with minimum at r = R, and this potential becomes more and
more steep the smaller ε is.

The solutions θ and r to the Euler-Lagrange equations are functions of time, but also of the
parameter ε. Intuitively is seems likely that if ε is very small (and thus the potential very steep),
then r(ε, t) ≈ R, and we would regain the ideal case in exercise 2. In order to analyze this we are
going to apply a very common type of trick, namely a perturbation expansion.

a) Derive the Lagrangian of this system, and show that the Euler-Lagrange equations are

mr2θ̈ + 2mrṙθ̇ −mgr sin θ = 0,

mr̈−mrθ̇2 + mg cos θ +
1
ε
(r− R) = 0.

(2)
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(3 points)

b) Next we expand r and θ in power-series around ε = 0,

θ(ε, t) =θ0(t) + εθ1(t) + ε2θ2(t) + · · · ,

r(ε, t) =r0(t) + εr1(t) + ε2r2(t) + · · · .

Insert the above expansions into the equations (2). For each equation, collect terms of equal order in ε.
We only need the orders 1

ε and 1, so you can ignore ε, ε2, ε3, etc.

Hint: You will get one equation from the 1
ε -order, and two equations from the 1-order.

(3 points)

c) Simplify the equations that you obtained in b). How does the result relate to the Euler-Lagrange
equation in problem 2 a)? The radial potential yields the force F(t) = −V ′

(
r(t)

)
. For the approxi-

mation r(t) ≈ r0(t) + εr1(t), determine the force, and compare with (1). (3 points)

Remark: Here we only consider the lowest orders of perturbation. For estimating how the bead
deviates from the ideal evolution of the perfect constraints, one can include higher orders in the
expansion (such as θ1 and r2). Unfortunately, the resulting expressions are not very pleasant.

Comment: Apart from analyzing how constraint forces comes about, this exercise also introduces
the notion of perturbation theory, which is something that you will encounter many times in other
physics courses.
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