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Excercise 1

Let us first consider an arbitrary single qubit phase (Z) error. For a given single qubit phase error, we obtain
following syndrome outcomes:

S4 S5 S6

Z1 -1 1 1
Z2 1 -1 1
Z3 -1 -1 1
Z4 1 1 -1
Z5 -1 1 -1
Z6 1 -1 -1
Z7 -1 -1 -1

As the measurement outcomes are distinct, the syndrome measurements uniquely identify the location of
the error. Thus any single qubit phase error can be corrected by applying Z operator to the location that is
identified from the syndrome measurements. And syndromes are symmetric under the exchange between X
and Z, we can also correct an arbitrary X error as the same way.

Note The above argument implies Knil-Laflamme condition. Let E = {Xi, Zi} be the set of possible
single qubit errors and P is the projector into the codespace. Then the Knil-Laflamme condition is given
by PE†

iEjP = ci,jP where C = (ci,j) is a Hermitian matrix. As the above argument says that there

exists a stabilizer operator s ∈ S that commutes with Ej but not commutes with E†
i if i 6= j. Then

PE†
iEjP = PE†

iEjsP = PE†
i sEjP = −PsE†

iEjP = −PE†
iEjP . Thus PE†

iEjP = 0 and ci,j are nonzero
only when i = j so C is Hermitian.

Note 2 Recall the classical Hamming code that the syndrome measurements gives the position of the error
and see the table again. Can you find how it is related to the classical Hamming code?

Exercise 2

Solution to 2.1 Any two stabilizer generators si and sj share 3 common qubits as their supports. Among
operators that act on the same qubits, there are two anticommuting and one commuting operators. Thus
any two generators commute.

Solution to 2.1 It is easy to check that X = X1X2X3X4X5 commutes with S1 to S4. In addition, it is
impossible to generate an operator only has X by multiplying stabilizer generators. Thus X is not in S so
acts as a logical operator. Likewise Z = Z1Z2Z3Z4Z5 is also an logical operator. As S1X = Y2Y3X5 is also
an logical operator with weight 3, the distance of the code is at most 3. One may also obtain a logical qubit
from the stabilizers. First, observe that S5 := S1S2S3S4 = Z1Z2X3X5 completes the cyclic permutations of
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S1. Then any product of three stabilizer generators (S1 to S4) can be represented as a product of two cyclic
permutations of S1. Thus, the stabilizer group has 15 elements (1, S1 and its cyclic permutations, S1S2 and
its cyclic permutation, and S1S3 and its cyclic permutations). To obtain a +1 eigenstate of Z within the
code space, we may start with |00000〉 that is also +1 eigenstate of Z but not in the code space. Then a
(unormalized) logcial qubit can be obtained as

|0〉 =
∑
s∈S

s |000000〉 (1)

= |00000〉+ (S1 + cyclic perms) |00000〉+ (S1S2 + cyclic perms) |00000〉
+ (S1S3 + cyclic perms) |00000〉 (2)

= |00000〉+ (|10010〉+ cyclic perms)− (|11011〉+ cyclic perms)− (|00110〉+ cyclic perms) (3)

and the other eigenstate of Z is obtained by applying X to |0〉.

Solution to 1.3 Let E be a set of any single qubit error operators. To apply the Knil-Laflamme theorem, it
is sufficient to show that there is a stabilizer that anticommutes with E†

iEj for Ei, Ej ∈ E with i 6= j. This

is because for such s, we obatin PE†
iEjP = PE†

iEjsP = −PsE†
iEjP = −PE†

iEjP so PE†
iEjP = 0 where

P is the projector into the codespace. It is simple to check that any product of two X or Z operators and
XiZj operators have an anticommuting stabilizer (you may use the transnational symmetry of S).


