
Quantum Error Correction

Lecture notes of the Quantum Error Correction course by Prof. Kastoryano

at University of Cologne, Wintersemester 2018/2019.

Contents

1 Classical Error Correction 7
1.1 Physical error rate . 9
1.2 Linear codes . 10
1.3 Parity-check matrix . 12
1.4 Decoding . 13
1.5 Distance of a code . 15
1.6 Thresholds . 16

2 Quantum mechanics of one qubit 18
2.1 Classical information . 18
2.2 Quantum information with one qubit 19

3 The Shor code 25

4 Quantum error correction conditions 30

5 Physical noise 31

6 Continuous time errors 32

7 Stabilizer codes 33

8 Toric code 38
8.1 Connection to many-body theory (quantum statistical me-

chanics) . 42
8.2 Errors on the toric code . 43

8.2.1 Minimum weight perfect matching 46
8.2.2 Renormalisation . 46

8.3 Thresholds . 47

9 Lower bound on the threshold 48
9.1 Entropy and Energy . 48
9.2 Lower bound on the threshold 49
9.3 Estimating the optimal threshold 50

10 Topological order and QEC 52
10.1 Definition of topological order 54

10.1.1 Topological order I: Local indistinguishability 54
10.1.2 Topological order II: topological entanglement entropy 54
10.1.3 Topological order III 55

10.2 The Bravyi-Poulin-Terhal (BPT) bound 56

3

4

Introduction

At the beginning the theory of quantum error correction was a minor field in-
side quantum information and quantum computation. Physicists were mainly
interested in abstract ideas of entanglement and some connections to thermo-
dynamics. The development of quantum error correction was very slow and
it was a fringe topic until Schor came out with the factoring algorithm. The
factoring algorithm showed that a quantum computer can factor numbers in a
polynomial time, while a classical computer takes exponential time. However,
even with this result, physicists at that day did not believe that quantum
computation would ever be possible because coherent quantum states were
extremely fragile, and thus building a large scale, controllable, quantum sys-
tem with a small error rate was a chimera. At the beginning of 1995, there
were some proposals of codes that were able to correct quantum data. This
was one of the major development in the early days in quantum computation
and it was the starting point of convincing the physics community that quan-
tum computation was possible. The importance of quantum error correction
is easily understood by comparing classical and quantum error rates. In a
classical computer the average error rate is 10−18, while the best quantum
computers that exist nowadays have an error rate of 10−4. Actually, it is
almost inconceivable that they will go beyond 10−7. In other words, in quan-
tum computation we will not be able to perform any relevant computation
unless we can are able to perform error correction.

The first section of this lecture notes is about classical error correction. Con-
cepts such as physical and logical bits and error rates will be explained.
Then, we will focus on linear codes will and we will use the generator matrix
to represent them. Moreover, the parity-check matrix, which is an equiva-
lent representation for codes, will also be introduced. Afterwards, we will go
through the decoding process and we will review what the distance of a code
is. To finish the chapter, we will see a threshold that a code should fulfil in
order to be considered a good code.

The second section is another necessary review before delving into quan-
tum error correction (QEC). We go over the basics of classical and quantum
information. It starts characterising the state of a classical system and intro-
ducing the concept of a classical bit. We explain that there exists only one
single-bit operation, but that we can do computation with more than one
bit. In this context and to complete the review about classical information,
the concept of gate is introduced and some examples of gates and opera-
tions are given. The first element of quantum information that we introduce

5

is the qubit. We explain the possibility of representing it using the Bloch
sphere. Then, quantum operations are described with particular attention
to unitary operations and projective measurements. We introduce a useful
decomposition of quantum operations called Kraus decomposition. In quan-
tum information, the concepts of randomness and noise are different than
in classical information. We see them in detail in this chapter. Finally, the
potential issues that quantum information has to overcome are enumerated
and explained.

The third section of these notes is delved into the Shor code. We explain
how it can correct bit and phase errors and linear combinations of them. We
also comment why it is not used in practise.

The forth, fifth and sixth sections are shorter sections that delve into concrete
topics. We first review the Knill-Laflamme theorem, which gives conditions
for a subspace to be a code space. The physical noise is considered in the fifth
section, in particular under the assumption of independent and identically
distributed noise. Then, we study continuous time errors and see how they
can be discretised.

In section seven we explain the stabilizer formalism. The Pauli group is
defined as starting point and then its tensor product is considered to build
stabilizer codes. We explain several properties of them as well as we see them
in the concrete example of the Shor code on nine qubits.

The eighth section is devoted to the toric code. We explain this relevant code
introduced by Kitaev in 1998 presenting its stabilizers and logical operators.
The toric code has a connection with many-body physics, which is seen in
this section. Then, we consider errors in the toric code and three different
decoders. The corresponding thresholds are viewed at the end of the section.

6

1 Classical Error Correction

As the error rate in a classical computer is very small, it may seem that
classical error correction is not an important field. It is true that this field is
more fundamental in quantum error correction, but classical error correction
has nevertheless some interesting applications in fields such as wireless net-
works, deep space communication an optical storage1. In this chapter we will
see some basic concepts of the theory of error correction that will be useful
during all the lecture. We will first decompose an error correcting code in
four parts and study them. Then, the notion of physical and logical bits and
error rates will be defined as well as the Hamming distance and the distance
of a code. We will focus on linear codes and explain the generator matrix and
the parity-check matrix, which are two equivalent representations of linear
codes. We will close this chapter mentioning a threshold that every good
code satisfies.

Every error correcting code can be broken up into four steps (see Fig. 1):

1. Source
The source, which can also be called logical information, is the infor-
mation that we want to say or transmit.

2. Encode
We want to encode the information that we want to transmit in a larger
system in order to protect it.

3. Noise
The noise, which is sometimes also called channel, will corrupt our
information. The noise can be of all sorts of different natures.

4. Decode

In order to illustrate the decomposition of a code, let us consider the well-
known the repetition code as an example

Example 1.1. The four parts of the three-bit repetition code are (see Fig.
1):

1. Source
The simplest logical information consists of a single bit, {0, 1}.

1For example, most of the improvement of the capacity of a CD to the capacity of a
DVD is mainly due to the introduction of a better error code.

7

Figure 1: Every error correcting code can be broken up into four steps:
source, encode, noise and decode. The three-bit repetition code is the sim-
plest example of error correcting code.

2. Encode
The simplest encoding of one bit is to encode it into three bits, i.e.,
{0, 1} → {000, 111}. Note that a bit spans an entire space, C2, while
{000, 111} forms only a subspace.

3. Noise
We assume that the noise consists of a flip on the middle bit, i.e., it
corrupts our information and gives {010, 101}.

4. Decode
The decoding should map {010, 101} back to {000, 111}. In this case
we can do it by majority vote, i.e., 010 is interpreted as 000 because it
has more zeros than ones, and analogously for 101.

As we will see later on, this code is denoted as [3, 1].

One can naturally extend the three-bit repetition code to the n-bit repetition
code. We obtain a two-dimensional subspace spanned by

{0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

} ∈
(
C2
)⊗n

.

From these examples, we can see that the fundamental principle of error
correction is redundancy. Note that the concept of code, C refers to the sub-
space, i.e., in the example we have C = {000, 111}. Moreover, the strings
that span the code are called codewords.

Classical error correction is a broad field and the goal of this chapter is far
from being a complete review of classical error correction. In the following

8

sections we will only cover some elements of classical error correction that
will be useful for the chapters about quantum error correction, which is our
main focus.

1.1 Physical error rate

The theory of error correction analyses the errors at the level of samples,
i.e., individual codewords. In this section we will talk about specific type
of errors and codewords. However, we have to keep in mind that the error
process acts on the individual codeword in a certain probabilistic way. This
means that, when we want study global logical errors, the type of analysis
that we have to do is at the level of ensembles, instead of codewords.

Noise can occur in many different ways. For example, the errors caused by
the optical fibre through which the information is transmitted will not be
the same as the noise occurred while storing the information in a magnetic
device or a CD. In general, the noise will depend on the physical support
and the type of process we want to perform.

In classical computation there exists only the flip-error, i.e., the error that
exchanges 0 and 1. We will assume identically independent distributed (iid)
noise on each physical bit. In operational terms, this means that it each bit
can individually flip with probability p < 1

2
. Usually, the noise process is go-

ing to be a continuous process, but we will break it up into discrete chunks.
In every individual chunk, there is a certain probability that a bit is flipped.
Note, actually, that the probability p does not represent a single flip, but the
union of all odd number of flips because two flips in the same bit ends up in
no error.

Definition 1.1. A logical error is the probability that information is decoded
incorrectly.

Example 1.2. Consider again the 3-bit repetition code. If we have a proba-
bility p to flip every single bit, the probability to flip two bits of {000, 111} is
3p2. As soon as two bits are flipped, decoding by majority vote does not work
anymore because the state 000 with two errors (e.g., 110) will be mapped to
111, and vice-versa.

From the example above, we can see that, if there are too many flip-errors,
the decoding processes will be incorrect, i.e., it will give a global error. There-
fore, a logical error can be equivalently described as an error that happens

9

at the end of the process of Fig. 1. Note that the notion of logical error
completely depends on the description of the noise process and the choice of
decoder.

The numbers of logical and physical bits are denoted by k and n, respectively.
We will use the notation that a [n, k] code encodes k logical bits and in n
physical bits. For a code to be consider good, we would like to have k

n
→ cnt

when n→∞. In general, k will depend on n.

1.2 Linear codes

There exist different types of classical error codes, but the most useful codes
are inside the class of linear codes. In this section we will study this type of
codes and see a possible representation called generator matrix.

Consider an n-bit codeword of logical bits, {x1, x2, . . . , xn}2, where xj =
{0, 1} ∀ j. Our goal is to encode these logical bits, xj, into a code, i.e., we
want to map {x1, x2, . . . , xn} into a larger space. For this, we will typically
use the so-called generator matrix, G. The generator matrix is an isometry
that maps the logical information, xj, onto the representation of the logical
information in the physical space, yj, i.e., yj = Gxj.

Example 1.3. The generator matrix of the [3, 1] repetition code is

G =

1
...
1

n.

Therefore, when we encode the information of a bit using G, we get

G[0] =

0
...
0

n and G[1] =

1
...
1

n.

Note that the arithmetic is mod 2.

Example 1.4. Consider now the [6, 2] repetition code. The generator matrix
has two map the following elements

{00} → {000000},
2Note that {x1, x2, . . . , xn} is not the classical analogy of a vector in a Hilbert space,

but only a condensed representation of a specific codeword.

10

{01} → {000111},

{10} → {111000},

{11} → {111111}.

Therefore, we write G as

G =

1 0
1 0
1 0
0 1
0 1
0 1

in such a way that

G

[
0
0

]
=

0
0
0
0
0
0

 , G

[
0
1

]
=

0
0
0
1
1
1

 , G

[
1
0

]
=

1
1
1
0
0
0

 , G

[
1
1

]
=

1
1
1
1
1
1

 .

Note that the arithmetic is mod 2.

In general, the generator matrix has k columns and n rows, i.e.,

G =

︸ ︷︷ ︸

k

}
n. (1)

From the general form of the generator matrix (Eq. (1)), we can an interest-
ing property of the linear codes. If we have k logical bits, we can encode up
to 2k codewords. We may think that we would need nk bits that represents
the encoding, but the representation of linear codes are extremely efficient
because, instead of using nk bits to represent the codespace, we only use nk
bits. On top of that, the encoding procedure is efficient as it only consists
of matrix multiplication. Therefore, the generator matrix is extremely con-
venient to describe the encoding part of the process in Fig. 1. Nevertheless,
it does not tell anything about decoding. We will see later on that classical
linear codes have always a natural way of decoding3, but before we need to
introduce a different representation for linear codes.

3This will not be true for quantum codes

11

1.3 Parity-check matrix

We have seen in the previous section that linear codes can be represented
using the generator matrix. This is not the only possible representation. In
this section we will introduce the parity-check matrix, which is an equivalent
representation that can be more useful in certain situations.

The parity-check matrix, H, is representation for linear codes that consists
of a (n− k)× n matrix such that

Hy = 0 ∀ y ∈ C, (2)

where C is the codespace, i.e., the n-bit space. Therefore, the codespace is
the kernel of H according to Eq. (2). The rows of H are linearly indepen-
dent, while columns are linearly dependent.

Example 1.5. The parity-check matrix of the [n, 1] repetition code is

H =

1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

.

0 · · · 0 1 1 0
0 · · · 0 0 1 1

Consider that we initially have the codeword y0 = {0, . . . , 0} and it occurs an
error on the third bit, e = {0, 0, 1, 0, . . . , 0}. Then, the parity-check matrix
will detect the error as

Hy0 = 0

He =

0
1
1
0
...
0

Note that the capacity of H to detect errors relies on the fact that it is
completely insensitive to the codewords by definition. Thus, it only picks up
where the errors are.

There exists an equivalent representation of the parity-check matrix which
is called the Tanner graph (see Fig. 2). The Tanner graph consists on lines

12

of boxes where the upper line represents the bits and the lower line shows
the parity of two neighbouring bits. If there is an error on the upper line,
the boxes of the lower line connected to the box that contains the error will
be activated. These “activations” are called error syndromes. They give
information about where the errors are in the code (see Fig. 2), and thus
they are crucial for decoding.

Figure 2: Tanner graph of a) the n-bit codeword {0, . . . , 0}, and b) the five-
bit codeword {00000} with a flip error on the second bit.

1.4 Decoding

Once the information we want to transmit has been encoded and corrupted,
the work of decoding is to “remove errors” in an intelligent way using the
syndrome information of the corrupted codeword. In this section we will see
that linear codes have a natural way of decoding.

The first fact that it is important to note is that, if all zeros are flipped to
ones and all ones are flipped to zeros, we get exactly the same syndrome
information. The syndromes do not care about the original codeword. Thus,
the decoding procedure should not depend on the codeword, but only on the

13

error syndromes.

Consider that {0000000} is the initial codeword and that the information has
been corrupted and we have six syndrome bits (see Fig. 3). We have abso-
lutely no way of knowing whether to correct in one direction or the opposite
because there are two possible parents of errors. The first one corresponds
to the situation that three bits of the initial codeword have been flipped.
However, an equivalent parent of errors is the one that hit the conjugate
bits, and thus there have been four flip-errors. For these two situations, we
would get exactly the same syndrome information. The decoder has to make
a choice to correct into one direction or the other. The typical solution is to
choose the most likely outcome. It is most probable to have three errors than
to have four errors if a bit has on average an error with probability p < 1

2
.

Obviously, every once on a while the decoder will make a mistake, and thus
the information we will get is not the same information that was sent.

Figure 3: An error syndrome has two parents of errors. Given the initial
codeword {0000000}, a flip-error on the second, third and sixth bit gives the
same error syndrome than a flip-error on the first, forth, fifth and seventh
bit. However, the situation with only three errors is more likely.

Example 1.6. Consider the [3, 1] repetition code and an initial string {000}.
If the error probability of each individual bit is p < 1

2
, the probability of the

initial string, {000}, to become a different codeword is the follwoing

14

Codeword Probability
{000} (1− p)3

{001} (1− p)2p
{010} (1− p)2p
{100} (1− p)2p
{011} (1− p)p2

{110} (1− p)p2

{101} (1− p)p2

{111} p3

As p < 1
2
, the probability of {000} having no error is much bigger than the

probability of having three errors, and thus becoming {111}.

As we are assuming iid errors, the decoder will always make the choice of the
situation with the fewest number of errors. Note that this does not work if
the errors are correlated.

1.5 Distance of a code

An important characteristic of an error correcting code is its robustness to-
wards noise. In this section we define the distance of a code, which will give
an idea of how robust a code is. For that, we first need the definition of the
Hamming distance.

Definition 1.2 (Hamming distance). Given two codewords, y1 and y2, the
Hamming distance, d(y1, y2) is the minimum number of bits that must be
flipped to transform y1 into y2.

Example 1.7. The distance between y1 = {1100} and y2 = {1010} is d = 2.

Once we know what the Hamming distance is, we can define the distance of
a code.

Definition 1.3 (Distance of a code). The distance of a code C is the minimal
Hamming distance between to different codewords yi and yj, i.e.,

d(C) ≡ inf
yi,yj
yi 6=yj

d(yi, yj).

The distance of a code gives an idea of how resilient the code is. However,
in order to get the full idea, we should consider distributions and entropic
factors. It is also worth noting that any bd−1

2
c errors of a linear code can be

15

corrected. Actually, the distance of a code is such an important quantity that
codes are usually identified with [n, k, d], where d is the distance of the code
and, as mentioned before, n and k are the number of physical and logical
bits, respectively.

The goal of information theory is to understand the limits on the amount of
information that can be transmitted through a channel. Information theory
was developed in 1950, but the first codes that achieved maximal transmis-
sion of information through a channel were proposed only fifteen years ago.
These codes are called constant-rate codes and they fulfil that

k

n
−−−→
n→∞

cnt,

d

n
−−−→
n→∞

cnt.

The fact that both limits go to a constant means that, as n becomes higher
and higher, we need to waste fewer and fewer physical bits in order to robustly
encode an amount of information proportional to the amount of physical in-
formation. These codes exist in classical error correction, but not in quantum
error correction.

The parameters n, k and d of a code are not completely free, i.e., there exist
constraints on them such as4

• n ≥ k

• n ≥ d

• n− k ≥ d− 1

1.6 Thresholds

In the last section we have weekly suggested the idea that, if the distance of
the code is large, the code is robust. Here we will see that, on top of that, a
code is considered a good code if it fulfils the threshold.

4In the exercise class we will prove the last constraint and show some more.

16

[Thereshold for a good code] Given a code, C, with n physical bits and a
physical error rate p, it is considered a good code if there exists a probability
threshold, pth ≤ 1

2
, such that the logical error rate, Plog, satisfies

Plog(n, p) ≤ ce−αd ∀ p ≤ pth. (3)

Here it is assumed that d scales with n.

As this threshold is a strong statement, the exponential decay is sometimes
relaxed by only requiring that Plog(n, p) decays as a function f(n) such that
f(n)→ 0 when n→∞. On the contrary, the threshold error rate decays even
faster for some codes. For example, the [n, 1] repetition code has an error
correction threshold of pth = 1

2
, which is the highest possible5. Obviously,

this is not the general case.

Example 1.8 (The Hamming code). The Hamming codes are a family of
linear codes with [2r, 2r − r, 3], where r is an integer such that r ≥ 1. They
are perfect codes, that is, they achieve the highest possible rate k

n
for codes

with minimum distance of three. The party-check matrix of the Hamming
code with r = 3 is

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 1 1 0 1

 .

Note that the rows are linearly independent, but not the columns. In this
case, we have n = 7, k = 4 and d = 3, i.e., it is a [7, 4, 3] code. In figure
4 we can see the Tanner graph of the Hamming code with r = 3. From this
figure it is obvious that many errors will have the same error syndrome, and
thus it will be difficult to know where the error is.

Figure 4: Tanner graph of the codeword {0000000} of the Hamming code
with r = 3.

5We show that in the exercise class

17

2 Quantum mechanics of one qubit

Instead of directly delving into quantum error correction (QEC), in the pre-
vious section we have seen some elements of classical error correction. This
section is also devoted to concepts that are needed before studying QED.
Here we review the basics of classical and quantum information. We start
explaining the concept of a classical bit and describing the two types of
states of a classical system. Then, single-bit operation as well as gates are
considered. Some examples are also given. When we move to quantum infor-
mation, we introduce the qubit and emphasise its representation on the Bloch
sphere. Operations in quantum mechanics are described. In particular, we
pay attention to unitary operations and projective measurements. The Kraus
decomposition is also introduced due to its interpretation in terms of error
correction. We then differentiate between the two types of randomness that
exist in quantum information, which is an important difference to classical
information. After that, noise is characterised using the concept of quantum
operations. The last explanation of this section is about the potential issues
that we need to overcome in quantum information.

2.1 Classical information

In classical information, the fundamental unit of information is the bit, i.e.,
{0, 1} ∈ Z2. The physical state of the system can be:

• a certain state, i.e., |0〉〈0| or |1〉〈1|

• an uncertain state, i.e., q|0〉〈0| + (1 − q)|1〉〈1| where q ∈ R with 0 <
q ≤ 1. The system being in an uncertain state means that there exists
a probability q to find the system in state |0〉〈0| and a probability
(1 − q) that it is in state |1〉〈1|. Therfore, the uncertainty reflects our
knowledge of the system.

The only single-bit operation6 in classical information is the bit-flip, which
consists in

0 → 1
1 → 0

Noise in classical information will typically take the system from a certain
state to an uncertain state.

6When we talk about operations, we always think about their action on certain states.

18

Example 2.1. Consider a noise consisting of a flip with probability p < 1,
then the state of the system will undergo the following changes

|0〉〈0| → p|1〉〈1|+ (1− p)|0〉〈0|
|1〉〈1| → p|0〉〈0|+ (1− p)|1〉〈1|

Note that an operation can be interpreted as the limit case of a noise where
p = 1.

Computation is the process of taking several bits and mapping to them in
a certain way. In other words, computation consist of operations acting on
more than one bit. These operations are also known as gates

Example 2.2. An example of a two-bit gate in classical information is the
so-called NAND, which consists of

00 01
01 01
10 01
11 00

This gate is important in classical computation because it is a universal gate,
i.e, once we are able to perform it, we can perform any other gate.

It is worth mentioning that in the formulation of computation we always
represent operations going from a certain state to a certain state. However,
in practise, we will always have an uncertain state, which will be mapped to
another uncertain state.

2.2 Quantum information with one qubit

In this section, we introduce the basics of quantum information. The charac-
terisation of a quantum system is first explained as well as how to operate on
it. Then, we will explain the concepts of noise and randomness in quantum
information emphasising the difference to classical information. Finally, the
potential issues that have to be overcome to do quantum error correction are
enumerated.

State of the quantum system

In quantum information the state of the system is a quantum state, i.e., a
normalised vector of a two-dimensional Hilbert space, H2. Thus, we write

19

|ϕ〉 ∈ H2 such that 〈ϕ|ϕ〉 = 1.

The typical physical basis of quantum information is the so-called computa-
tional basis, which consists of {|0〉, |1〉}. We can always write the state of the
system as a linear combination of the physical basis such that

|ϕ〉 = α|0〉+ β|1〉, where α, β ∈ C with |α|2 + |β|2 = 1.

As a global phase is not relevant in physics, we can choose α to be real and
non-negative. This fact, together with |α|2 + |β|2 = 1, allows to write the
two-qubit state as

|ϕ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉,

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The parameter θ and φ can be inter-
preted as spherical coordinates giving rise to a unit sphere in R3 known as
Bloch sphere (see Fig. 5). Each point of the Bloch sphere, which can be
characterised by the unit vector ~n ≡ (sin θ cosφ, sin θ cosφ, cos θ), specifies a
two-qubit state. Note that two antipodal points of the Bloch sphere corre-
spond to two orthogonal states.

Figure 5: Bloch sphere

20

Mixed states can also be represented using the Bloch sphere. Any two-
dimensional density operator, ρ, can be written as

ρ =
1

2
(I + ~a · ~σ) ,

where I is the identity matrix, ~a = (ax, ay, az) ∈ R3 and ~σ ≡ (σx, σy, σz) is a
vector made of the Pauli matrices with

X ≡ σx =

(
0 1
1 0

)
, Y ≡ iσy = i

(
0 −i
i 0

)
, Z ≡ σz =

(
1 0
0 −1

)
. (4)

Due to normalisation of the density matrix, it is easily proven that |~a|2 ≤ 1
and |~a|2 = 1 if and only if the density matrix is a pure state7. In other
words, pure states lie on the surface of the Bloch sphere, while mixed state
correspond to point in the interior.

Quantum operations

A system can undergo many different physical transformations. They are
known as operations and represented by a map E : B(HA) → B(HB) with
the following properties. The map must be

(i) Linear, i.e., E [
∑

i piρi] =
∑

i piE(ρi),

(ii) Positive semidefinite, i.e., E(ρ) ≥ 0 ∀ρ ≥ 0,

(iii) Completely positive, i.e., (EA⊗IC) [ρAC] ≥ 0 ∀ρAC ≥ 0 and any Hilbert
space HC , where ρAC ∈ B(HA ⊗HC).8

Note that (iii) implies (iii). The first two properties guarantee that the out-
put of a quantum operation on a physical state is a physical state as well,
while the third one ensures the state will still be physical even if the quantum
operation applies only on a subsystem. In summary, a quantum operation
is a completely positive (CP) map that describes the transformation of a
physical system.

A particular class of quantum operations are unitary transformations. A
unitary transformation is a map, U , such that U |ϕ〉 = |ψ〉, where UU † = I.
It is easily proven that any unitary map U can be written as eiH with H an

7Recall the density matrix of a pure state, |ψ〉, is ρ = |ψ〉〈ψ|.
8In these notes we do not consider Hilbert spaces with infinite dimension.

21

hermitian operator, i.e., H = H†.

In quantum information, measurements are another important class of quan-
tum operations. Measurements are observables, which implies that they are
represented by hermitian operators. The simplest kind of measurements are
the so-called projective measurements. A projective measurement, M , can
be written as

M =
∑
k

νkPk,

where Pk are projectors, i.e., P 2
k = Pk and νk = ±1. Given an initial state

|ϕ〉, the probability of obtaining the result m after the measurement M on
|ϕ〉 is pm = 〈ϕ|Pm|ϕ〉. The state of the system after the measurement is

|ϕ′〉 =
Pm|ϕ〉√
〈ϕ|Pm|ϕ〉

Example 2.3. In order to measure if the qubit is in the state |0〉〈0| or in
|1〉〈1|, we use the operaation M = Z = |0〉〈0| − |1〉〈1| = P0 + (−1)P1.

Example 2.4. Consider the measurement

M = X = |+〉〈+| − |−〉〈−|, where |±〉 =
1√
2

(|0〉 ± |1〉) .

The probability of obtaining the result ± after measuring M = X on a state
|ϕ〉 is p± = |〈±|ϕ〉|2.

Any quantum operation can be written as

T (ρ) =
∑
k

EkρE
†
k,

where Ek are maps such that
∑

k E
†
kEk = I. This decomposition is known as

Kraus decomposition and the operators Ek are called Kraus operators. Due
to linearity of the trace, it is easy to see that the Kraus decomposition guar-
antees the preservation of the trace. The Kraus decomposition can be easily
interpreted in terms of error correction. Consider a state ρ = |ϕ〉〈ϕ|, then
error operator Ek occurs with probability pk = ||Ek|ϕ〉||2. For this reason,

22

Kraus operators are also known as noise operators.

Another useful representation of operations in H2 consists in writing an op-
eration, Ω, in the basis {I, X, Y, Z}, i.e.,

Ω = a1I + axX + ayY + azZ. (5)

Randomness in quantum information

One of the most important difference between quantum and classical me-
chanics is the origin of randomness. Randomness in classical physics has to
do with the ignorance about the system, while in quantum mechanics it has
two forms:

1. Uncertainty
When our knowledge of the system is limited, it is described by a
mixed state because we do not know exactly the state of the system.
For example, if the system is in the state

ρ = λ0|0〉〈0|+ (1− λ0)|1〉〈1|,

we know that it is in state |0〉〈0| with probability p = λ0 and in state
|1〉〈1| with probability q = 1 − λ0. This uncertainty introduces ran-
domness which has its origin in lack of information. It is the same
randomness that exists in classical information.

2. Intrinsic
In quantum mechanics, even if we know exactly the state of the system,
there is room for randomness. Consider a system in the state |ϕ〉 =
α|0〉 + β|1〉, where |α|2 + |β|2 = 1. As we have said before, if we
measure |ϕ〉, there is a certain probability that we get the outcome 0
and a certain probability for outcome 1. This introduces randomness
in the system which comes from intrinsic properties of its state.

Note that if the state of a system is mixed, both kind of randomness can
appear. Wdescarhen we perform a measurement, it is not always obvious to
know which kind of randomness we are facing.

23

Noise in quantum information

In quantum information, noise is a general operation (i.e., anything that is
physically allowed) between two quantum states. On qubits, this means an
operation, T , that takes the system from a density matrix, ρ, to another
density matrix, σ, i.e., T (ρ) = σ. In order T to be a physical operation, it
must fulfil the following properties. Given a density matrix X, T has to be

• trace-preserving, i.e.,
tr [T (X)] = tr(X)

• complete-positivity preserving in such a way that the state modified by
the noise remains as a physical state.

Example 2.5. Consider a noise, T , consisting of a flip with probability
p ≥ 0. In other words, with probability (1 − p) the initial state, ρ, remains
unchanged an with probability p one of its bits is flipped. The resulting state
is

T (ρ) = (1− p)ρ+ pXρX,

where X|0〉 = |1〉 and X|1〉 = |0〉.

Potential issues of quantum information

Recall that the simplest classical EC code is the three-qubit repetition code,
where the correction is done by majority vote (see Example 1.1). In quantum
mechanics, we would like to have an analogous code, but there exist some
potential issues that we have to overcome. We have to face with

• The no-cloning principle
It is well-known that in quantum mechanics there cannot exist a general
operation that realises |ϕ〉 → |ϕ〉|ϕ〉|ϕ〉.

• The collapse of the state
In order to correct the errors of a state, we need to measure each qubit.
In quantum mechanics, however, measurements collapse the state of
the system, and thus they may change it.

• Continuous errors
We have previously seen that in classical information there exist only
flip-bit errors. Nevertheless, in quantum mechanics there are more
types of errors. Some of these errors are continuous, i.e., they are

24

described by a continuous parameter. For example, a state could suffer
a small rotation such that

|ϕ〉 = α|0〉+ β|1〉 → |ϕ′〉 = α|0〉+ eiφβ|1〉,

where 0 ≤ φ ≤ 2π.

3 The Shor code

The Shor code is a quantum error correction code that is able to protect
against phase and bit errors. In this section, we first learn to correct bit
errors and phase errors independently, and then we concatenate both codes
to built the Shor code. Here, the Shor code is studied on nine qubits, but
its generalisation to n qubits is straightforward. The Shor code can be in-
terpreted as two classical repetition codes in two different levels. As we see
below, the first level acts on individual qubits and corrects against bit errors,
while the second l evel considers groups of three qubits in order to correct
against phase errors.

The logical qubits of the Shor code are

|0̄〉 =
1√
23

(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) , (6)

|1̄〉 =
1√
23

(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (7)

It is easy to see that the structure of the logical qubits is three chunks of
three qubits. If we focus on a single chunk, we can interpret it as a logical
± of the classical repetition code, i.e.,

|±̄〉 =
1√
2

(|000〉 ± |111〉) , (8)

where the states |000〉 and |111〉 play the role of the logical bits of a classical
repetition code. This allows to write the logical operators of the Shor code
as

|0̄〉 =
1√
23

(|000〉+ |111〉)⊗3 = |+̄(1)〉⊗3

|1̄〉 =
1√
23

(|000〉 − |111〉)⊗3 = |−̄(1)〉⊗3

Note now that |0̄〉 can be interpreted at the same time as logical operators
of another classical repetition code. In this second level of correction, we are

25

able to against phase flips9. Therfore, the Shor code is the simplest example
of a concatenated code where at the first level it protects against bit errors
and at the second level it protects against phase errors.

How do we protect against bit errors and phase errors?

As we have seen in the classical repetition code, the decoding process uses
the majority vote. Nevertheless, in quantum error codes we cannot decode
using this strategy because the action of measuring the qubits to see which
state predominates collapses the system in a post-measurement state. In-
stead of the majority vote, we quantun error correction decodes using parity
measurements because they do not affect the logical information. Classicaly
we have already seen the parity measures with the parity-check matrix (see
Section 1.3) and the Tanner graph (see Section 1.4). A parity measurement
measures if two consecutive qubits are in the state. If they are in the same
state, we associate to the result of the measurement a “+” sign and say that
we have “even parity”. On contrary, if the state of the qubits is different,
we associate to the result of the measurement a “-” sign and say that we
have “odd parity”.

In order to understand the decoding based on parity measurments, let us
first consider a bit error and we assume that it happens in the first qubit.
The parity measurements for bit errors are Z1Z2 and Z2Z3. We can write
Z1Z2 in terms of projectors such that

Z1Z2 = (|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|)
= P+ − P−,

where P+ ≡ |00〉〈00|+|11〉〈11| and P− ≡ |01〉〈01|+|10〉〈10| are the projectors
on the even-parity space and odd-parity space, respectively. Consider that
the initial state, |ψ〉, gets corrupted by X1, and thus we have

|ψX1〉 ≡ X1|ψ〉 =
1√
2
|100〉+ |011〉.

The outcomes of measuring Z1Z2 are

9Recall that
X|0〉 = |1〉
X|1〉 = |0〉 and

Z|+〉 = |−〉
Z|−〉 = |+〉.

This means that, in order to perform the equivalence of the repetition code for phases, we
have to do it in the basis made of {|±〉}.

26

• Even parity with probability 〈ψX1|P+|ψX1〉 = 0,

• Odd parity with probability 〈ψX1|P−|ψX1〉 = 1.

The state of the system after the parity measurement is

P−|ψX1〉
〈ψX1|P−|ψX1〉

= P−|ψX1〉 = |ψX1〉

Thus, we have measured Z1Z2 on qubits one and two, we have obtained with
certainty that they have odd parity and, in particular, the measurement
has not changed the state. The next step is to measure the other parity
measurement, Z2Z3. It is easy to check that in this case we obtain that
qubits two and three are in strict even parity. The combination of both
results allows to localise the error without changing the state. Now, we can
simply apply X1 to the corrupted state, |ψX1〉, and we recover the initial
state, i.e.,

X1|ψX1〉 = X1X1|ψ〉 = |ψ〉.

Doing the same procedure for all bit errors, we obtain the following recipe,
which links the results of the parity measurements with the operation that
we have to do to restore the corrupted state. The recipe for bit errors is

Result of Z1Z2 Result of Z2Z3 Restoring operation
+ + I
- + X1

+ - X3

- - X2

Note that this recipe is only valid if there is only one bit error.

In order to correct phase errors, we can use the same method as for bit errors,
but we have to work on the basis made of {|±〉}. Consider that the initial
state is |φ〉 = | + ++〉 and that it has been corrupted by Z2, i.e., we have
|φZ2〉 = Z2|φ〉 = |+−+〉. The parity measurements of phase errors are X1X2

and X2X3. The operator X1X2 can be written as

X1X2 = (|+ +〉〈+ + |+ | − −〉〈− − |)− (|+−〉〈+− |+ | −+〉〈−+ |)
= Q+ −Q−,

where Q+ = |+ +〉〈+ + |+ |−−〉〈−− | and Q− = |+−〉〈+−|+ |−+〉〈−+ |
are the projectors on the even-parity space and odd-parity space of the X
operator, respectively. The outcomes of measuring X1X2 are

27

• Even parity with probability 〈φZ2|Q+|φZ2〉 = 0.

• Odd parity with probability 〈φZ2|Q−|φZ2〉 = 1.

If we now measure X2X3, we get that the qubits are in strictly odd parity.
Thus, we have localised the phase error on the second bit and we can corrected
applying a Z2 on |ϕZ2〉. As for bit errors, we can proceed analogously for all
phase-flips and construct the following recipe

Result of X1X2 Result of X2X3 Restoring operation
+ + I
- + Z1

+ - Z3

- - Z2

We have seen that with three qubits we are able to correct against bit or phase
errors, but we cannot correct both at the same time because the restoring
operations do not commute. The Shor code, however, solves this problem by
using two levels of correction instead of one. For this purpose, it considers a
total of nine qubits and, when correcting phase errors, it considers groups of
three qubits instead of individual qubits. In other words, the Shor code uses
the states |±̄〉, i.e., logical qubits made of three qubits in such a way that
we work at the second level of correction. The parity measurements become,
then, (X1X2X3)(X4X5X6) and (X4X5X6)(X7X8X9). Note that X1X2X3,

X4X5X6 and X7X8X9 play respectively the role of X
(1)
1 , X

(1)
2 and X

(1)
3 at the

first level. Note further that (X1X2X3)(X4X5X6) and (X4X5X6)(X7X8X9)
have eigenvalues ±1, and thus they measure parity, but in the X basis of
groups of three qubits. In order to see that, consider an initial state |ϕ〉 = |0̄〉.
The state is corrupted with a bit-flip and a phase-flip on qubit one, i.e., we
have

|ϕ′〉 ≡ Z1X1|ϕ〉 = (−|100〉+ |011〉) |+̄〉|+̄〉.
After measuring Z1Z2 and Z2Z3 and using the recipe, we detect that the
corrupted state has a bit-flip on the first qubit and we apply X1 to correct
it. We obtain

X1|ϕ′〉 = X1Z1X1|ϕ〉 = −Z1|ϕ〉 = (−|000〉+ |111〉)|+̄〉|+̄〉.

Now, we measure the parity operatorsX1X2X3X4X5X6 andX4X5X6X7X8X9

and the results show that there is a phase-flip on the first logical qubit. We
can correct it by simply applying Z1, Z2 or Z3 on the state. We apply, for
example, Z1 and obtain

Z1(−Z1|ϕ〉) = −|ϕ〉.

28

As global phases have no physical meaning, we have been able to correct both,
a bit and a phase error. Note that this analysis also shows that errors given
by Y can also be corrected due to Y = iZX. It is easy to see that the process
is valid independently of which qubit the error acts on. In conclusion, any
single-qubit phase or bit error can be corrected, i.e., there exists a correction
operation that takes

XiZj|ϕ〉 → eiα|ϕ〉 ∀i, j ∈ [1, 9] and ∀|ϕ〉 ∈ C.

So far we have only considered pure errors, i.e., errors given by X, Y or Z.
We now want to show that the Shor code can also correct linear combinations
of {Xi, Yj, Zk}9

i,j,k=1. Consider an error operator, E, given by

E = exX1 + ezZ1,

where for simplicity we do not consider a Y operator. The initial state is
|ϕ〉 = |0̄〉, and thus the corrupted state is E|ϕ〉. If we measure10 Z1Z2, we
obtain “even parity” with probability

〈ϕ|E†P+E|ϕ〉 = 〈0̄|(e∗xX1 + e∗zZ1)P+(exX1 + ezZ1)|0̄〉
= |ex|2〈0̄|X1P+X1|0̄〉+ e∗xez〈0̄|X1P+Z1|0̄〉+

+exe
∗
z〈0̄|Z1P+X1|0̄〉+ |ez|2〈0̄|Z1P+Z1|0̄〉

= |ez|2.

The probability of “odd parity” is 〈ϕ|E†P−E|ϕ〉 = |ex|2. Assume without
loss of generality that the measurement yields “even parity”, then we know
that the post-measurement state is

1

|ez|
P+E|ϕ〉 =

ez
|ez|

Z1|0̄〉,

where ez
|ez | is a phase. Thus, the parity measurement has removed the bit

error and we are left with a clean phase flip on |0̄〉. Doing this analysis for
all the parity measurements, we see that that the post-measurement state
is always a state of the set {|ϕ〉, Xj|ϕ〉, Zj|ϕ〉, XjZj|ϕ〉}. Note that we know
how to correct all states of the set. Note further that the collapse of the state
after a measurement is crucial to be able to correct errors. In conclusion, if
the state has suffered an error which is a linear combination of errors that

10Here we know where the error is, and thus we only measure one parity measurement.
In practise, however, one must measure all and then use the recipe.

29

we know how to correct, we are able to correct it exactly.

We have just observed that the Shor code can correct against error given by
any linear combination of {I, X, Y, Z}. Moreover, in the previous chapter,
we have seen that any operator can be written in the basis {I, X, Y, Z} (Eq.
(5)). This implies that Shor code is able to correct against any arbitrary
single-qubit error.

As we have mentioned at the beginning of the chapter, the Shor code on
n2 qubits is a concatenation of two [n2, 1, n2] classical repetition codes. The
error correction threshold is the same as in the classical case, and thus it
becomes interesting when n is big (see Section 1.6). In practise, however, the
Shor code is not use when n is large because of the following reason. The
parity measurement at first level of the Shor code on n2 are11

Z1Z2, Z2Z3, . . . , Zn−1Zn,
Zn+1Zn+2, . . . , Z2n−1Z2n,

...
Zn2−n+1Zn2−n+2, . . . , Zn2−1Zn2 ,
X1 · · ·Xn, . . . , Xn · · ·X2n.

Note that the parity measurements for phase errors imply to measure n qubits
at the same time. This is a problem because nowadays we are able to apply
at most three-qubit operations. Beyond this, measurements are too noisy.
Therefore, the Shor code is not practical.

4 Quantum error correction conditions

Knill and Laflamme gave conditions for a subspace to be a code space. In
this section, we want to review them and analyse an important consequence.

Given a Hilbert space12, H, a quantum error correcting code is is a subspace,
Cn ∈ H⊗n2 , that protects against a quantum channel, E(ρ) =

∑
k EkρE

†
k. In

other words, if the error E happens on the system, there exists a recovery
channel, R, such that

R ◦ E(ρ) = ρ ∀ρ : C → C.
11We will see in following chapters these operators are known as stabiliser operators.
12For convenience, we consider that the Hilbert space, H, is embedded in a Hilbert space

that characterises n qubits, H2 ⊗ · · · ⊗ H2 = H⊗n
2 .

30

Theorem 4.1 (Knill-Laflame theorem). A subspace C is a quantum error
code against E(ρ) =

∑
k EkρE

†
k if and only if

PCE
†
iEjPC = αijPC,

where PC is the projector on the code space and αij are the matrix elements
of an hermitian matrix, i.e., α = α†.

Given a state |ϕ〉 ∈ C, the Knill-Laflame theorem says that an error might
take a state out of C, but then we are able to bring it back.

An important consequence of the Knill-Laflamme theorem is that any linear
combination of errors that can be corrected is also correctable. This can be
easily proven as follows. Suppose that we can correct against errors given by
X1 and Z1. Then, according to the Knill-Laflamme theorem, it is satisfied
that

PCX1Z1PC = α12PC.

If we now consider a linear combination such as E = αX1 + βZ1, it can be
corrected because

PCE
†EPC = PC(|α|2X1X1 + α∗βX1Z1 + αβ∗Z1X1 + |β|2Z1Z1)PC

= α11PC + α12PC + α21PC + α22PC

∝ PC.

5 Physical noise

In this section we want to consider cases where noise affects to more than one
qubit at the same time under the assumption of independent and identically
distributed (idd) noise. This assumption considers that noise acts individu-
ally on each bit, and thus there is no correlation between noise on individual
systems. This is not always a good assumption, but it is extensively used
because it is simple.

Generically, the noise on a single qubit can be modelled by E(ρ) =
∑

k EkρE
†
k.

Then, considering iid noise, the noise on n qubits is

E ⊗ · · · ⊗ E︸ ︷︷ ︸
n

(ρ).

Consider the Shor code on nine qubits and a single-qubit noise given by

E(ρ) = (1− p)ρ+
p

2
I = (1− p)ρ+

p

4
(ρ+XρX + Y ρY + ZρZ) ,

31

which does not change the state with probability 1 − p and erases any in-
formation with probability p. If the error happens on each qubit, the global
noise of the nine qubits is characterised by

E⊗9(ρ) = (1− p)9ρ+ (1− p)8p

3

(
9∑
i=1

∑
α=1,x,y,z

σαρσα

)
+O

(
(1− p)7p2

)
. (9)

The first term of Eq. (9) carries no error, and thus we do not need to correct
it. The second term of Eq. (9) contains single-qubit errors, which we have
seen in the previous chapter that the Shor code can correct. The rest of the
terms Eq. (9) correspond to errors on more than one qubit and we do not
know a general recovery map for them13. This means that the probability
with which we can protect against errors on every single-qubit is given by the
remaining terms (O ((1− p)7p2)) in Eq. (9). If we consider the Shor code on
n2, the term O ((1− p)7p2) is exponentially suppressed.

6 Continuous time errors

In this section we consider continuous time errors and we see that they can be
discretised. Continuous time errors can be modelled by quantum dynamical
semigroups. This means that we characterise the noise as a function of a
continuous variable, t, as

Et(ρ) = etL(ρ),

where L is generically given by

L(ρ) = i [H, ρ] +
∑
k

LkρL
†
k −

1

2

(
L†kLkρ+ L†kLkρ

)
,

with H a Hamiltonian and Lk jump operators.

Consider the situation of a bit error on the first qubit, X1, at rate γ. In this
case, the Hamiltonian is zero and there is only one jump operator such that

LX1(ρ) = X1ρX1 − ρ.
13The Shor code is able to correct against two-qubit errors such as X1Z2, but it fails for

errors of the form of X1X2.

32

We can expand the error operator as

Et(ρ) = etLX1 (ρ)

= ρ+ tLX1(ρ) +
t2

2!
L2
X1

(ρ) +
t3

3!
L3
X1

(ρ) + · · ·

= ρ+ t(X1ρX1 − ρ) +
t2

2!
LX1(X1ρX1 − ρ) +

t3

3!
L2
X1

(X1ρX1 − ρ) + · · ·

= ρ+ t(X1ρX1 − ρ) +
t2

2!
2(X1ρX1 − ρ) +

t3

3!
3(X1ρX1 − ρ) + · · ·

= ρ

(
1− t+ 2

t2

2!
− 3

t3

3
+ · · ·

)
+X1ρX1

(
t− 2t2

2!
+

3t3

3!
+ · · ·

)
= ρ

(
1− te−t

)
+X1ρX1te

−t.

Most errors on the physical world are continuous time errors, but they can
be discretised as follows. In a laboratory, the measurements are performed
at a certain speed. We can break the continuous time up into a bunch of
discrete steps (see Fig. 6), where each individual step is the time required to
apply all parity measurements. Then, in practise we can consider each step
as a discrete error processes, where the error occurs with probability

p = ∆te−∆t.

Figure 6: Discretisation of the time for continuous time errors.

7 Stabilizer codes

In the section devoted to the Shor code, we have seen that for a system of
three qubits we can detect bit errors using the parity measurements Z1Z2 and
Z2Z3. These two operators, Z1Z2 and Z2Z3, have the states |000〉 and |111〉 as
common eigenstates with eigenvalue +1 and they also satisfy {X1, Z1Z2} = 0
and [X1, Z2Z3] = 0. Actually, when we measure the parity measurements on
a code state, we are using these property since

Z1Z2X1|000〉 = −X1Z1Z2|000〉 = −X1|000〉.

33

In this section we want to make use of this properties to construct a more
general code on n qubits, the stabilizer code.

In order to develop the stabilizer formalism, we first need to define the Pauli
group.

Definition 7.1. The Pauli group, P1, is the group consisting of the 2 × 2
identity matrix, I, and the Pauli matrices together with the product of these
matrices with the factor −1, which are

P1 ≡ {±I,±X,±Y,±Z},

where X, Y and Z are defined in Eq. (4).

Note that the Pauli group has order eight, |P1| = 8, which means that the
group has eight elements. These elements are related by the commutation
properties of the Pauli matrices, i.e.,

[X, Y] = 2Z, [X,Z] = −2Y, [Y, Z] = 2X.

If we consider the n-fold tensor product of the Pauli group, the resulting set
of matrices is also a group. It is denoted by Pn and written as

Pn ≡ {±I,±X,±Y,±Z}⊗n

≡ {±G~α},

where for a compact notation we define G~α = σα1 ⊗ · · · ⊗ σαn with σα1 = I,
σα2 = X, σα3 = Y and σα4 = Z. Some interesting properties of the group
Pn are:

• It is a group of order |Pn| = 2 · 4n = 22n+1.

• Any element, G~α ∈ Pn, satisfies G2
~α = I and G†~αG~α = I.

• Given two different elements of the group, G~α, G~β ∈ Pn, they either
commute, [G~α, G~β] = 0, or anticommute, {G~α, G~β}. Note that, in the
case that the elements commute, they also share an eigenbasis.

Once we have seen the Pauli group and its generalisation to n qubits, we can
define the stabilizer code.

Definition 7.2. Let S be an abelian14 subgroup of Pn. Then, a stabilizer
code, C, is defined as C ≡ {|ψ〉 | S|ψ〉 = |ψ〉 ∀S ∈ S}.

14A group is abelian if all its elements commute, i.e., [S1, S2] = 0 ∀Si ∈ S.

34

We say that S is the stabilizer (group) of the code and that S ∈ S are sta-
bilizer operators of the code. The stabilizer group fully characterises the code.

Stabilizer operators are not linearly independent in general. Note that the
concept of linear independence is defined in a vector space, not in a group.
Here, when we talk about linear independence, we formally mean that we
map the elements of Pn to the vector space (Z2)2n using

ϕ :

(
Pn
Z2

; ·
)
−→ (Z2)2n

and, then, we consider the concept of linear independence in (Z2)2n. This
translates in a simple way to the elements of the group Pn, which is that
two elements of Pn are linear independent if their product is not in Pn. Note
that then any product of the elements are also in the group. For convenience,
we want to use the minimal number of elements that generate the stabilizer
group, which we call generators of the stabilizer group. In other words, the
generators of the stabilizer group are the operators {Sj}sj=1, where Sj ∈ S,
such that they are commuting and linearly independent. Then, there are
k = n− s logical qubits in the stabilizer code, i.e., C is 2k-dimensional.

Example 7.1. Consider the Shor code on nine qubits. Its stabilizer group
is generated by the eight operators, S =< {Sk}8

k=1 >, which can be written
as

S1 = Z1Z2, S2 = Z2Z3, S3 = Z4Z5,

S4 = Z5Z6, S5 = Z7Z8, S6 = Z8Z9, (10)

S7 = X1X2X3X4X5X6, S8 = X4X5X6X7X8X9.

We can easily find other stabilizer operators by multiplying any two generators
of the stabilizer group. For example,

S1S2|ϕ〉 = Z1Z3|ϕ〉
= Z1Z3(α|0̄〉+ β|1̄〉)
= Z1Z3(α|+ ++〉+ β| − −−〉)
= Z1(α| −++〉+ β|+−−〉)
= (α|+ ++〉+ β| − −−〉)
= |ϕ〉,

where |0̄〉, |1̄〉 and |±̄〉 are defined in Eq. (6), Eq. (7) and Eq. (8). Thus,
we have S1S2|ϕ〉 = |ϕ〉, which implies that S1S2 ∈ S.

35

Consider a state in the code space, |ϕ〉 ∈ C, and an operator T that commutes
with all stabilizer operators, i.e., [T, Sk] = 0 ∀ Sk ∈ S. Then, the state T |ϕ〉
is also in the code space because

T |ϕ〉 = TSk|ϕ〉 = SkT |ϕ〉 ⇒ SkT |ϕ〉 = T |ϕ〉 ⇒ T |ϕ〉 ∈ C.

Moreover, the operator T is called logical operator because it maps a state
in the code space, |ϕ〉 ∈ C, to another state in the code space, |ϕ′〉 ∈ C 15.
Note that this is not true in the case that T anticommutes with the stabilizer
operators.

Example 7.2. Consider the Shor code on nine qubits. Its logical operators
are

X̄ = X1 ·X9 =
9∏
j=1

Xj and Z̄ = Z1 · Z9 =
9∏
j=1

Zj, (11)

where [X̄, Z̄] = 2Ȳ . We are interested in the effect of these operators on the
logical qubits, which is

X̄|0̄〉 = |1̄〉 Z̄|0̄〉 = |0̄〉
X̄|1̄〉 = |0̄〉 Z̄|1̄〉 = −|1̄〉

where |0̄〉 and |1̄〉 are defined in Eq. (6) and Eq. (7). Thus, the operators X̄
and Z̄ are the logical Pauli operators X and Z.

Given |ϕ〉 ∈ C, any operator X̄Sk is also a logical operator since it maps
|ϕ〉 ∈ C to |ϕ′〉 ≡ X̄|ϕ〉 ∈ C, which we can easily see as follows

X̄Sk|ϕ〉 = X̄|ϕ〉 = |ϕ′〉 ∈ C.

This means that logical operators are not uniquely defined.

Example 7.3. Consider the Shor code on nine qubits. More logical operators
apart from X̄ and Z̄ (Eq. (11)) would be

X̄S8 = X1X2X3,

X̄S2 = X1Y2Y3X4X5X6X7X8X9,

X̄S82S8 = X1Y2Y3.

15Stabilizer operators are not logical operators because they map a state in the code,
|ϕ〉, to itself, not to another state.

36

It can be shown that the minimal length of all logical operators is the distance
of the code. This make sense because, as we have seen, a logical operator
maps a logical bit to another logical bit, and thus the minimal length of
the logical operator means the minimal number of qubit operations that are
necessary to map two different logical states. This is indeed the definition of
the distance of the code (see Section 1.5).

Consider a general error, E = exX + eyY + ezZ. As we have seen, we can
correct error X, Y , Z individually. If the error is in the group Pn, Eα ∈ Pn,
each error commutes or anticommutes with the stabilizer operators. Then,
if the error commutes, we have

SEα|ψ〉 = EαS|ψ〉 = Eα|ψ〉,

and, if the error anticommutes, we have

SEα|ψ〉 = −EαS|ψ〉 = −Eα|ψ〉.

In other words, given ψ ∈ C, the state Eα|ψ〉 is an eigenvector of the sta-
bilizer operators with eigevalue +1 if [Eα, S] = 0 and −1 if {Eα, S} = 0.
This means that the stabilizer can act as parity measurements to detect the
errors. Note that the stabilizer formalism is a generalisation of the parity
check matrices (see Section 1.3).

Let us remark that in the definition of the stabilizer code we have chosen
the subspace with +1 eigenvalue. Nevertheless, we could take another fixed
reference value (as it is done in the laboratory). For example, in the Shor
code we could have taken S2 = −Z2Z3, and then the logical state would have
been [

1√
2

(|001〉 ± |110〉)
]
|+〉|+〉.

Another way to represent the stabilizer codes consists in splitting the stabi-
lizers operators into two independent parity check matrices such thatHz 0

0 Hx

 (12)

Example 7.4. Consider the Schor code on nine qubits. The parity check

37

matrices are

Hz 0

0 Hx

 =

1 1 0

0 1 1

1 1 0 0
0 1 1

1 1 0

0 1 1

0 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1

General CSS code, which is a method to go from two classical error correction
codes to one quantum code, is another code that can be characterised with
parity check matrices of the form of Eq. (12).

The minimal number of physical qubits that a code must have in order to
be able to correct against single-qubit errors is five physical qubits. For this
optimal code, the stabilizers and the logical operators are

S1 = X1Z2Z3X4I5

S2 = I1X2Z3Z4X5 X̄ = X1 · · ·X5

S3 = X1I2X3Z4Z5 Z̄ = Z1 · · ·Z5

S4 = Z1X2I3Z4X5

8 Toric code

In this section we use the stabilizer formalism from the last section to explain
the toric code, Ctoric. The toric code was introduced by Alexei Kitaev in 1998
and its relevance relies on the fact that it will probably be the code used on
the first generation of quantum computers.

The name of the toric code comes from the fact that it is defined on a lattice
with periodic boundary conditions, which form a torus. (see Fig. 7).
As we have already mentioned, the toric code is a stabilizer code and its
stabilizers are

AX ≡ Xu ⊗Xd ⊗Xl ⊗Xr,

38

Figure 7: The topology considered for the toric code is a lattice with periodic
boundary conditions, i.e., a torus.

BZ ≡ Zu ⊗ Zd ⊗ Zl ⊗ Zr,

where u, d, l, r stand for “up, down, left and right”, respectively. The opera-
tors AX and BZ are defined on every single cross and plaquette of the lattice
(see Fig. 8). We often call the operators AX and BZ themselves as cross and
plaquette, respectively. Note that the stabilizers of the toric code are local,
in contrast to the stabilizers of the Shor code (Eq. (10)). This property
makes the toric code much more practical.For an L×L lattice, the toric code
has n = 2L2 physical qubits. There are L2 plaquettes and L2 crosses.

Figure 8: All plaquettes and crosses are stabilizers of the toric code. When
a plaquette and a cross overlap, they do it always on two qubits.

We can easily verify that the stabilizers of the toric code commute. The case
[AX , AX′] = 0 and [BZ , BZ′] = 0 are trivial because Z2 = X2 = I. The case
[AX , BZ] = 0 is also trivial if AZ and BZ do not overlap. In the case that
they overlap, the operators AZ and BZ coincide in two qubits, and thus the
phase produced by XZ = −ZX cancels out (see Fig. 8).

The multiplication of two plaquettes can be easily understood via illustra-

39

tions (see Fig. 9). Consider two plaquettes, BZ1 and BZ2 that overlap on the
right qubit of the first plaquette, which is the left qubit of the second plaque-
tte. On this qubit two operators Z are applied, one from the first plaquette
and one from the second. However, recall that Z2 = I, and thus the identity
is actually applied on this qubit. This leads to a plaquette made of six Z op-
erators (see Fig. 9), which is also a stibilizer. Note that the multiplication of
plaquettes will always give open strings. Here we will mainly talk about the
plaquettes operators, but the discussion with crosses can be done analogously.

Figure 9: The multiplication of two plaquettes, BZ and BZ′ , gives a bigger
plaquette, which is also a stibilizer of the toric code.

In the section about stabilizer formalism, we have seen that the stabilizer
generators must be linearly independent. We can easily check that crosses
and plaquettes, AX and BZ , are not linearly independent since∏

all crosses

AX = I and
∏

all plaquettes

BZ = I.

In order to have a set of independent stabilizers of the toric code, we sim-
ply need to remove one plaquette and one cross. Thus, the toric code has
s = 2L2 − 2 independent stabilizers. As we have also explained in the pre-
vious section, the number of encoded qubits (logical qubits) in a stabilizer
code is k = n− s. For the toric code, k = 2 logical qubits.

In order to complete the characterisation of the code space Ctoric, we need to
identify the logical operators. Recall that these operators must commute with
the stabilizers without being stabilizers themselves. The logical operators
can be either product of Z or product of X. We have seen that multiplying
plaquettes gives loops of different sizes, which are also stabilizers, but they
never are open strings. Consider a product of Z along a whole horizontal
string of the lattice, i.e., Z̄1 ≡ Z1⊗· · ·⊗ZL. It commutes with BZ and AX due
to the same reasons that have implied [AX , AX′] = [BZ , BZ′] = [AX , BZ] = 0
(see Fig. 10). Note that this is also true for a product of Z along a whole
vertical string, Z̄2, and for a product of X along a whole horizontal and
vertical string, X̄1 and X̄2 (see Fig. 10). Note further that {Z̄i, X̄i} = 0 and

40

[Z̄i, X̄j] = 0 for i 6= j and i, j = 1, 2. Defining {|0̄1〉, |1̄1〉} as the eigenvectors
of Z̄1, we can easily check that, as expected, the logical operators satisfy

X̄1|0̄1〉 = |1̄1〉, Z̄1|0̄1〉 = |0̄1〉,
X̄1|1̄1〉 = |0̄1〉 ,Z̄1|1̄1〉 = −|1̄1〉.

We find analogous equalities for X̄2 and Z̄2.

Figure 10: Logical operators of the toric code. When the logical operators
Z̄1 and Z̄2 (X̄1 and X̄2) overlap with a cross (plaquette), they do it on two
qubits.

Recall from the section 7 that logical operators do not have a unique rep-
resentation. Indeed, we can obtain a new logical operator multiplying any
operator X̄1, X̄2, Z̄1, Z̄2 by any stablizer operator, i.e., by any plaquette or
cross. In the toric code, this property translate to the fact that Z̄1, which
is a straight line, can be stretched several times and still represent the same
logical operator (see Fig. 11). Note that the same is true for X̄1, X̄2, Z̄1, Z̄2.
Therefore, the logical subspace is the subspace spanned by all strings with
“the same topology”.

The distance of a stabilizer code is the weight of the minimal representation
of logical operators, as we have seen in the previous section. For the toric
code we have dToric = L.

In summary, we can characterise the toric code as a [2L2, 2, L] code. Let us
remark that the toric code has a topologic flavour because its encoded infor-
mation is defined by objects that exists only on the topology of the space,

41

Figure 11: Multiplying a plaquette, BZ , by a logical operator, e.g. Z̄1, gives
new logical operator. Therefore any string around the torus is a logical
operator.

i.e., of the torus.

8.1 Connection to many-body theory (quantum statis-
tical mechanics)

In this section we see the connection between the toric code and the many-
body theory. In order to do that, let us define a Hamiltonian, H, such that

H = −
∑

crosses

AX −
∑

plaquettes

BZ .

Note that this Hamiltonian, H, is made of a sum of local terms on a lattice,
which are typical characteristics of Hamiltonians used in many-body theory.
Since AX and BZ can only have ±1 eigenvalues, the ground states of the
Hamiltonian, H, are the stabilizer states because they all have +1 eigen-
value. In other words, the ground state subspace is CToric and the ground
state energy is −2L2.

This connection is not a property only of the toric code, but of all topolog-
ical stabilizer codes. Topological stabilizer codes can always be defined as
the ground space of a local commuting Hamiltonian. The toric code is the
simplest example. This connects coding theory to many-body physics. In

42

particular, one of the most remarkable links is that error correction in the
code picture corresponds to topological order in the many-body picture.

8.2 Errors on the toric code

Errors on the toric code are detected and corrected using the stabilizer for-
malism. In this section we consider independent and identically distributed
(iid) noise produced by local Pauli matrices X and Z and explain how can
be corrected. As we have seen in section 7, we can identify the X-errors
with the Z stabilizers and the Z-errors with the X stabilizers and treat them
independently. For simplicity, here we do the error analysis only for Z er-
rors. Recall that the outcomes -1 of the stabilizer measurements are called
syndromes.

Consider an X-error on a qubit. In order to detect it, we measure all plaque-
tte stabilizers, and thus we obtain two syndromes on the plaquettes acting
on the corrupted qubit. If we now consider two or more X-errors on the
lattice forming a string, we see that we also get two syndromes and they are
at the ends of the string error (see Fig. 12).

Figure 12: Any string error gives always a pair of syndromes at the ends of
the string.

The relation between the error string and the syndrome is not unique, i.e.,

43

there exist differnt string errors with the same syndrome (see Fig. 13). Ac-
tually, whenever we have two syndromes, they can correspond to any string
connecting them and, when we perform the stabilizer measurements, we have
absolutely no way of knowing the correct string. As we have seen before, the
code space is the ground space of all trivial loops, i.e., all loops that do not
wrap around the torus. Therefore, even if we do not know the “real string”,
we simply need to assume that it is one of the shortest and correct it by
closing the loop. The only problem comes if we choose the correction that
extends the loop to a string around the torus since it creates a logical error
(see Fig. 14). In other words, if apply a recovery map, R, which closes the
string error creating a trivial loop, we recover the initial state as

RE|ψ〉 = |ψ〉.

However, if the recovery map applied, Rwrong, creates an string around the
torus, we will have

RwrongE|ψ〉 = Ological|ψ〉 6= |ψ〉,

where Ological is any logical operator, i.e., Ological ∈ {X̄1, Z̄1, X̄2, Z̄2}.

Figure 13: The correspondence between syndromes and string error is not
unique, i.e., two different string error can give the same syndromes.

The toric code allows to correct bd−1
2
c errors. We can see this as follows.

When we have more than bd−1
2
c errors along a line, which are the worst type

of errors, the natural choice for correction, i.e., the shortest path to close the
loop, gives a straight string. Thus, we get a logical error (see Fig. 15). In
a sense this is completely inefficient because on average we have p · n errors
for iid flip (phase) noise with qubit error rate p<1/2. Asymptotically, n ∼ L

44

Figure 14: The correction operation corresponds on closing the string error
to create a loop. Even if there exist several ways of closing the loop, we apply
the shortest for convenience.

and d ∼ L, thus even if we have asymptotically small p, but constant, we are
always going to have more than bd−1

2
c errors. Then, the decoding task is to

pair all syndromes such that we do not create a logical operator.

Consider the setting with iid noise with a fixed value of p<1/2. The proba-
bility to have n = 0, 1, 2, . . . errors is summarized in the following table

n 0 1 · · ·
probability (1− p)n np(1− p)n−2p2 · · ·

n d/2 d/2− 1 · · ·
probability (· · ·)(1− p)n−d/2pd/2 (· · ·)(1− p)n−d/2−1pd/2+1 · · ·

n n/2

probability ∼ cnt

n

where (· · ·) represent factors that are not relevant in this discussion. Let us
suppose that we have calculated all these probabilities and that we have a
computer that can calculate the minimal distance between two syndromes.
Then, it can be shown that there exists a function that gives the most prob-
able source of error for any given syndrome. Although this is the optimal
decoding process, it inefficient because we have to keep track of a factorial
number of iterations and calculate all the probabilities. Here efficient means

45

Figure 15: 7× 7 lattice. When the string error has more than bd−1
2
c, where

d = L for the toric code, the shortest way to close the loop creates a logical
error.

that the function that assigns a correction operator to each syndrome is a
efficient (i.e., linear or quadratic) function as a function of n; while opti-
mal means that the function never assigns a wrong correction operator. In
practise, we use non optimal, but efficient decoders.

8.2.1 Minimum weight perfect matching

The minimum weight perfect matching (MWPM), which is also called Ed-
monds algorithm, consists in pairing all syndromes. As we have seen, the
most likely source of errors gives syndromes which are close. Therefore, the
natural choice to bring syndromes together is minimising the total distance.
This decoding procedure runs in time n3.

8.2.2 Renormalisation

Consider a system with a certain number of syndromes and label them. The
renormalisation decoder is an iterative processes consists in the following.
For each error, we pair up all syndromes in a ball of radius r = r0 with
center in the error. If there was an even number of syndromes in the ball of
radius r0, there are none left; and, if there was an odd number, there is one
syndrome left. Now we have a system with less syndromes and, in particular,

46

we now that all syndromes are in a distance bigger than r0. We repeat the
pairing using r1>r0. After repeating the pairing enough times, we will end
up either with no syndromes or two syndromes very far apart, which cannot
be corrected. It can be shown, however, that the probability that the latter
situation happens is exponentially suppressed.

8.3 Thresholds

As the distance of the toric code is d = L, one would expect that increasing
the size of the lattice leads to a more robust code. Nevertheless, the number
of errors also increase with L for a idd noise model. This implies that we
have to find a trade off between these two phenomena, which is called the
threshold.

In section 1.6, we have seen that a code C with decoder R have threshold,
pth<1/2, if for p<pth the probability to have a logical error is exponentially
small, i.e.,

Plogical(n, p)<ce
−dξ.

If you have a small physical error, p, the probability that the decoder cre-
ates a logical error is exponentially small. However, if the physical error, p, is
above the threshold, then the decoder will often apply a “wrong correction”,
i.e., it will create a logical error. Only in the first case with small values of
physical error rates, increasing the size of the lattice will imply an exponen-
tial decay of the logical error rate.

Each decoder has a different error rate depending on the algorithm that
it uses. In the case of the toric code, the theoretical optimal threshold is
poptimal

th = 0, 113. For the decoders we have seen before, the thresholds are
pMWPM

th = 0, 11 and prenormalisation
th = 0, 88.

For real error correction, we are interested not just in the error correction
threshold, but also in fault tolerant threshold, which is when measurement
error are also taken into account. The theoretical fault tolerant threshold is
pth, FT ≈ 0, 02. In practise, one has to perform measurements on two qubits,
which requires that all gates are accurate to rates of 0,005 roughly. Once
the fault tolerance threshold is achieved, the rest is making larger and larger
codes, which is mainly an engineer problem.

47

9 Lower bound on the threshold

In this chapter, we show how to estimate the threshold of maximal threshold
of the Toric code by analyzing the decoding problem as a classical statistical
mechanics model: the random bond Ising model. This mapping was first
identified by Dennis et al [?].
Before going into the exact mapping, we will examine why the decoding
problem might be related to (classical) statistical mechanics.

9.1 Entropy and Energy

Consider a CSS code on n qubits. Since the X and Z sectors decouple, we
can restrict our attention to the Z sector where errors are bit flips (X). We
assume that each qubit is flipped with probability p. Then the logical failure
rate is given by

P̄ (p, n) =
∑
E∈F

π(E), (13)

where

π(E) = (1− p)n
(

p

1− p

)ω
.

is the probability that error configuration E occurs, ω the weight of error E,
i.e., |E| = ω, and F is the set of error configurations leading to a failure for
the optimal decoder. Clearly, the difficulty in estimating Eqn. (13) is that
the set F is difficult to characterise exactly.

To make the connection to statistical mechanics more obvious, define an
effectiv temperature

β ≡ log

(
1− p
p

)
>0 for 1>p>0,

and rewrite P̄ (p, n) as

P̄ (p, n) = (1− p)n
n∑

ω=d/2

Nfail(ω)e−βω,

where the sum on failing configurations has been reorganised into errors of
a given weight w. Note that the minimal failing error configuration has
weight d/2, determining the lower index in the sum. Nfail(ω) accounts for
the multiplicity of error configurations with a fixed weight w. Hence we have

48

shifted. The expression can now be reinterpreted as a statistical mechanics
model with

P̄ (p, n) = (1− p)n
n∑

ω=d/2

e−βF (ω),

where F (ω) = ω − Sfail(ω)
β

is a free energy with Sfail(ω) = log(Nfail(ω)) the
entropic contribution. The weight w of the error string can be understood
as an energy.

9.2 Lower bound on the threshold

We now turn our attention back to the Toric code. We will provide an upper
bound on the logical failure probability (and hence a lower bound on the
threshold), by upper bounding the number of error configurations in F .
Given two complementary errors, E and E ′, a loop can be represented by
L = EE ′ (multiplication of Pauli operators). Instead of the optimal decoder,
we consider a decoder that for any specific error E chooses a correction E ′.
Then to each error E we can associate a loop L (note however that this
converse is not true; each loop L is associated with many errors E). We get
the following upper bound:

P̄ (p, n) ≤ (1− p)n
∑
L

|L|∑
u=
|L|
2

n−|L|∑
v=0

(
|L|
u

)(
n− |L|
v

)(
p

1− p

)u+v

. (14)

The upper bound can be understood as follows. The first sum runs over all
possible non-contractible loops L wrapping around the torus. The second
sum, together with the first binomial factor, account for all the ways the
errors can be distributed alone L leading to a failure. Any error E along L
with |E| ≥ |L|/2 will lead to a failing correction. The final sum accounts for
all of the errors that are not on L, and do not lead to a non-trivial correction.
The binomial factor accounts for all of the ways of distribution up to n− |L|
flip errors on the rest of the lattice. Again we will group the first sum into
loops of a fixed length l ≥ d to get

P̄ (p, n) ≤ (1− p)n
n∑
l=d

Ncon(l)
l∑

u=l/2

n−l∑
v=0

(
l

u

)(
n− l
v

)(
p

1− p

)k+v

, (15)

where Ncon(l) counts the number of non-intersecting loops of length l. Recall
that (

b

a

)
=

a!

(a− b)!b!
,

49

and note the following identities

n−l∑
v=0

Cn−l
v

(
p

1− p

)v
= (1− p)l−n ,

l∑
n=l/2

C l
n

(
p

1− p

)n
≤ 2l

(
p

1− p

)l/2
.

Thus, the expression can be upper bounded as

P̄ (p, n) ≤
n∑
l=d

Ncon(l)2lpl/2(1− p)l/2. (16)

This expression over-counts, primarily by associating certain failing error
configurations to many different failing paths. Asymptotically, the number
of non self-intersection paths is given by Ncon(l) ≤ N0c

l, where c ≈ 2.64 is
an expansion coefficient, allowing us to obtain the bound

P̄ ≤
n∑
l=d

N0

(
2c
√
p(1− p)

)l
.

The series will be convergent, wheneer 2c
√
p(1− p) ≤ 1. Hence we can

associate identify a lower bound on the threshold to any value of p satisfying
this bound. The maximal such value gives us our best lower bound on the
threshold: pth ≈ .037.

9.3 Estimating the optimal threshold

In order to compute the actual threshold, we need to resort to a different
statistical mechanics mapping. The probability of an error configuration E
can be written as

P (E) =

[∏
l

(1− p)

][∏
l

(
p

1− p

)nE(l)
]
,

where the products are over all of the edges of the lattice, and the function

nE(l) =

{
0 if there is no error on l
1 if there is an error on l

.

For a fixed E, we now seek to describe the probability distribution of errors
E ′ that have the same boundary as E. We assume that the (optimal) de-
coder chooses the operation that maximises the likelihood of correcting to

50

the original homology class. If each path had the same entropic weight, the
maximum likelyhood would be given by the minimum weight configuration,
which is what the MWPM decoder is based on.
Any correction E ′ can be written as

E ′ = E + C,

where C is a loop (see Figure 16). We assume that the distribution of loops
C is given by the natural distribution of loops on the lattice post-selected on
the loops containing the boundary points of E. The edges l of C are given
with probability (

p

1− p

)nC(l)

,

when {
nC(l) = 1
nE(l) = 0

when l is occupied by E ′.

and with probability (
p

1− p

)nC(l)

,

when {
nc(l) = 1
nE(l) = 1

when l is not occupied by E ′.

Thus, the chain E ′ = E + C occurs with probability

P (E ′|E) ∝
∏
l

eJlul ,

where ul = 1− 2nC(l) ∈ {−1, 1} and

Jl =

p

1−p if l /∈ E

1−p
p

if l ∈ E

Let us remark that the one-chain {l|ul = −1} is a cycle with a cycle condition
that reads ∏

l3s

ul = 1,

where s is a point in the dual lattice (see Fig. 17). There exists also a cycle
condition for the dual lattice, which is∏

l∗∈P ∗
ul∗ = 1.

51

(

Figure 16: A loop C can be represented by two complentary errors, E and
E ′ such that C = EE ′.

It is easy to see that we can write this constraint as uij = σiσj. Thus, the
fluctuation of the error chains E ′ that share a bound with E is described by

Z(J, η) =
∑
{σj}

exp

[
J
∑
<ij>

ηijσiσj

]
,

with

e−2J =
p

1− p
and ηl =

{
1 if l /∈ E∗
−1 if l ∈ E∗ .

Another important observation is that, if E and E ′ are generated by sampling
the same probability distribution, then the values of η′l are chosen randomly
subject to

ηl =

{
1 with probability (1− p)
−1 with probability p

.

The interpretation of this choice is

10 Topological order and QEC

In section 8, we saw that the toric code had some topological features. For
instance, the logical operators of the Toric code can be represented as flexible
strings wrapping around one direction of the torus (see Fig. 10). This is a

52

Figure 17: A dual lattice (dashed lines) can be defined for the toric code.

very specific property of the toric code. In this section, we want to go to a
more general system and explain how we can characterise topological order
in a lattice system.

We will consider an extension of Stabilizer codes called commuting projector
codes, defined as follows.

Definition 10.1. Given projectors {Pj} such that [Pj, Pk] = 0 for all j, k, a
commuting projector code (CPC) is defined as

C = {|ψ〉 such that Pj|ψ〉 = |ψ〉}.

Note that this definition looks like the stabilizer code (see Definition 7.2),
but here Pj are not required to be products of Pauli matrices. There exist
plenty of commuting projector codes that are not stabilizer codes, but it is
not easy to write them down. If all projectors Pj are local, i.e., their support
is a ball of finite radius, the CPC is called local CPC. In this section we deal
with local CPCs.

A commuting projector code, C, is the ground subspace of the Hamiltonian

H =
∑
j

Qj, where Qj =
1

2
(I− Pj) .

Note that Qj are also projectors, and thus they satisfy Q2
j = Qj. We can

easily see that C is the subspace of H because the projectors Qj annihilate

53

the states in C, i.e., Qj|ψ〉 = 0 ∀j and ∀|ψ〉 ∈ C. Moreover, the Hamiltonian,
H, is also frustration free16. The projector on the code space, i.e., on the
subspace of H, can be written as

PC =
∏
j

Pj. (17)

10.1 Definition of topological order

Topology is a concept that comes up in different contexts and its definitions
is different depending on the subfield of physics. In quantum information,
there exists three definitions of topological order defined on large lattices.
We explain them in the subsequent sections.

10.1.1 Topological order I: Local indistinguishability

Consider two states of the codespace, |ψ1〉, |ψ2〉 ∈ C, such that 〈ψ1|ψ2〉 = 0.
The topological order known as local indistinguishability says that, for any
local operator O defined on the lattice, it is satisfied that 〈ψ1|O|ψ1〉 =
〈ψ2|O|ψ2〉. In other words, the states in the code space have global proper-
ties, and thus they cannot be distinguished using local operators. We have
already seen local indistinguishability in the toric code with the fact that
their logical operators must be completely non-local.

Let us mention that that local indistinguishability can be also stated as

PCOPC = c(O)PC with c(O) =
tr(PO)

trP
, (18)

where O is a local operator, PC is the projector on the code space C and c(O)
is a constant that depends on the local operator O 17. Note that Eq. (18)
reminds to the error correcting condition (Eq. (3)).

10.1.2 Topological order II: topological entanglement entropy

In order to define topological order as topological entanglement entropy, we
first need some definitions.

Definition 10.2. The entropy of a density matrix, ρ, is given by

S(ρ) ≡ −tr (ρ log ρ) .

16A Hamiltonian, H, is a frustration free Hamiltonian if all its terms annihilate the
ground subspace

17We will show Eq. (18) in the exercise class.

54

Definition 10.3. For a pure state, |ϕ〉, defined on a lattice, the entropy of
a region, A, of the lattice is

Sϕ(A) = −tr (ρA log ρA) ,

where ρA = trB(|ϕ〉〈ϕ|).

Definition 10.4. Given A, B and C disconnected regions of a lattice, Λ,
and a state, |ϕ〉, defined on the lattice, the conditional mutual information is

Iϕ(A : C|B) = Sϕ(AB) + Sϕ(BC)− Sϕ(B)− Sϕ(ABC),

where AB ≡ A ∪B.

After these definitions, we are able to define topological order in the sense of
entanglement entropy. Consider a lattice, Λ, and regions A, B and C such
that B shields A from C and A∪B ∪C = Λ (see Fig. 18a). The system has
topological entanglement entropy if Iρ(A : C|B) = 0 ∀ρ ∈ C. For the case
where the regions are defined as in Figure 18b, the topological entanglement
entropy exists if Iρ(A : C|B) = ctop ∀ρ ∈ C, where ctop is a topological
constant.

Figure 18: Lattice partitions used to define topological entanglement entropy.

10.1.3 Topological order III

The third and last notion of topological order needs the definition of local
unitary.

Definition 10.5. A unitary operator is called local unitary if it can be written
as

U = U1 · · ·Ul,

where l is a constant and each factor Uj is local.

55

Now, we can state the third definition of topological order as follows. Given
a state |ϕ〉, it has topological order if there exists no local unitary circuit, U ,
and no product state |0〉⊗Λ such that ϕ = U |0〉⊗Λ.

All three definitions of topological order can be stated allowing for small
errors. Even in this scenario, it is not known how to connect the different
definitions. Some partial implications have been found, but not more. In this
notes, we mainly use the first definition of topological order, i.e., the local
indistinguishability, because it is related to quantum error correction as we
will see.

10.2 The Bravyi-Poulin-Terhal (BPT) bound

In this section we derive a beautiful result by Bravyi, Poulin and Terhal,
showing that for a local commuting projector code in two dimensions, the
parameters of the code satisfy:

O(
n

kd2
) = 1 (19)

This immediately tells us that constant rate and constant distance local
topological CP codes do not exist. Recall that a constant rate code has
O(k/n) = 1 and a constant distance code has O(d/n) = 1.
Up to here we have used arbitrary Pauli matrices as error model. Now, we
change it and consider the erasure error model. Erasure noise is a process
that, at some discrete interval of time, some qubits are erased. Namely, the
noise channel that erases a single qubit is

Nj(ρ) = trj(ρ)⊗ 1

2
Ij =

1

4
(ρ+XjρXj + YjρYj + ZjρZj) ,

and the noise channel that erases a region A is

NA(ρ) = trA(ρ)⊗ 1

dA
IA, (20)

where dA = 2|A| is the dimension of the Hilbert space on region A. The
primary difference between an arbitrary error and an erasure error is that we
know where the erasure occurred.

It turns out that protection against arbitrary errors can be reduced to pro-
tection against erasure errors (and visa versa) via the following theorem:

Theorem 10.1. A quantum error correcting code, C, can protect against d
erasure errors if and only if it can also protect against d

2
arbitrary errors.

56

Proof. The idea of the proof is the following. The error correction condition
requires that PCEiEjPC = cPC, where PC is the projector on the code space
(Eq. (17)), while the error detection condition is PCEPC = cPC. The dif-
ference on these conditions comes from the fact that detection only requires
access to a single Kraus operator, but correction involves many of them.
Clearly, if we have d

2
errors and we can take any two-combination of the er-

rors, the E can be represented as having support on a maximum of d sites,
and viceversa.

Once we have restricted ourselves to erasure errors, we can naturally define
the notion of correctability for a region of the lattice:

Definition 10.6 (correctability). Assume the erasure channel (Eq. (20))
and consider a code space, C, defined on a lattice, Λ, and a region of the
lattice, A ⊂ Λ. The region A is recoverable (correctable) if there exists a
recovery map, R, such that

R(trAρ) = ρ ∀ρ ∈ C and ∀A ⊂ Λ.

We will also make use of a notion closely related to correctability by a local
channel; that certain subsystems on the lattice completely decouple:

Definition 10.7 (Decoupling). Given a lattice, Λ, and three regions, A, B
and C, such that B shields A from C and ABC = Λ (see Fig. 18a), then A
and C are decoupled on C if for any state ρ ∈ C,

trBρ = ρA ⊗ ρC .

Note that decoupling is a non-trivial property since, in general, regions A
and C are entangled.
In order to prove the statement in Eqn. (19), we need to collect some facts
about local commuting projector codes.

Lemma 10.1. Consider a local commuting projector code and two discon-
nected regions, A and B, i.e., they are separated by a distance bigger than
l∗, where l∗ is the radius of the support of any commuting projector (see Fig.
19)18. Then, it is satisfied that

ρA ⊗ ρB = ρAB ∀ρ ∈ C. (21)

18Note that the required separation in Lemma 10.1 can be stated in other words saying
that there exists no stabilizer operator that acts on both regions A and B.

57

Figure 19: Lemma 10.1 requires two disconnected regions, A and B, that are
separated by a distance bigger than l∗, where l∗ is the radius of the support
of any commuting projector.

Proof. Given a state ρ, the definition of the covariance between disconnected
regions A and B is

Cov(A : B) ≡ sup{ |tr [XA ⊗XB (ρAB − ρA ⊗ ρB)]|
such that ||XA|| = 1, ||XB|| = 1, XA = X†A, XB = X†B},

where the operator norm ||X|| equals to the largest eigenvalue of X. The
covariance can be related to the trace norm (|| · ||1 = tr(·)) as

1

min{dA, dB}
||ρAB − ρA ⊗ ρB||1 ≤ Cov(A,B) ≤ ||ρAB − ρA ⊗ ρB||1.

The upper bound is obvious since we only need to replace the supremum
over tensor operators by the supremum over operators that exist on AB.
The lower bound follows from the equivalence of finite dimensional Shatten
norms

1

dX
||X||1 ≤ ||X||∞ ≤ ||X||1, (22)

where dX is the dimension of the matrix X. We will prove Eq. (21) by
showing that the covariance between two regions of a local CPC code is zero.

Consider a state ρ ∈ C such that C is a local CPC and ρ = trR(|ψ〉〈ψ|), where

58

R is a purification system. Then, we can write

tr [(XAXB)ρAB] = 〈ψ|XAXB|ψ〉
= 〈ψ|PCXAXBPC|ψ〉
= 〈ψ|PCPAcXAXBPBcPC|ψ〉
= 〈ψ|PCXAPAcPBcXBPC|ψ〉
= 〈ψ|PCXAPCXBPC|ψ〉
= 〈ψ|PCXAPCPCXBPC|ψ〉
= c(XA)c(XB)

= tr [XAρA] tr [XBρB]

= tr [XA ⊗XB(ρA ⊗ ρB)],

where we have used that C is a local CPC, and thus we can split PC in
local terms; that for any projector, P , it is satisfied that P 2 = P ; and Eq.
(18) with c(X) = 〈ψ|X|ψ〉. This result implies that the convariance and its
bounds are zero. Therefore, we have obtained that ||ρAB − ρA ⊗ ρB||1 = 0,
which is only possible if Eq. (21) is satisfied.

Lemma 10.2 (Union lemma). Consider a local commuting projector code
and two disconnected regions, A and B, i.e., they are separated by a dis-
tance bigger than l∗, where l∗ is the radius of the support of any commuting
projector (see Fig. 19). If A and B are correctable, then A∪B is correctable.

Proof. This proof will be given in an exercise class.

Lemma 10.3 (Holographic lemma). Consider a local commuting projector
code, C, where l∗ is the radius of the support of any commuting projector.
Given A, B and C regions of C such that B shield A from C (see Fig.
20a) and the width of B is at least l∗, if A and B are correctable, A ∪ B is
correctable.

Proof. As regions A and B are correctable, by definition there exist recovery
maps RA and RB such that

RA [trA(ρ)] = ρ and RB [trB(ρ)] = ρ.

Given these maps, we want to show that there exists the map RAB that
corrects A ∪B, i.e., that satisfies

RAB [trAB(ρ)] = ρ.

59

In order to do this, we define the channel, TA, acting only on C such that
TA(ρC) = ρA ⊗ ρC . We can write

ρ = RB [trB(ρ)] = RB(ρAC) = RB (ρA ⊗ ρC) = RB [TA(ρ)] = RB ◦ TA(ρ),

where we have used that A and C are disconnected by assumption, and thus
ρA⊗ρC = ρAC according to Lemma 10.1. We have obtained the mapRB◦TA,
that acts on AB and recovers the state ρ.

By definition of distance, we are able to correct any error configuration as
long as it has at most d errors. However, it might exist specific error config-
urations that have many more errors and we are still able to correct them.
For example, in the case of the toric code, the critic situation is when er-
rors occur along a string, but, if they are distributed, it is not a problem.
As a follow-up of lemma 10.3, we can wonder about the size of the largest
correctable square. This is answered with the following fact.

Fact 10.1. Given a local commuting projector code, C, with distance d, the
largest correctable square region is d× d.

Proof. The idea of the proof consists in constructing the largest correctable
square. Let us start with a region A such that |A| = d, which implies that A
is correctable by definition of the distance. Now, we add a region B (see Fig.
20b) around A with |B| ≤ d. Lemma 10.3 says that AB is correctable. We
iterate this as many times as possible until we will reach a situation where
|B| saturates to d. Then, we cannot continue increasing B because it will not
be correctable anymore. Therefore, we conclude that squares of side length
proportional to d are the largest correctable squares.

Fact 10.2. Given a local commuting projector code, C, and a correctable
region A, it is satisfied that

Sρ(AA
c) + Sρ(A) = Sρ(A

c) ∀ρ ∈ C. (23)

Proof. Consider a state of the code space, ρAAc ∈ C, and its purification,
ΨAAcR = |ψ〉〈ψ|. We denote the erasure channel as

T [·] ≡ trA(·).

As A is correctable by assumption, there exists a correctable operation, R,
such that R ◦ T (ρAAc) = ρAAc . This can be easily transformed to the same
statement, but for the purification, i.e.,

R ◦ T (ΨAAcR) = ΨAAcR. (24)

60

Figure 20: The largest correctable square region is d × d. In order to prove
it, we apply Lemma 10.3 iteratively until B is no longer correctable, i.e.,
|B| ∼ d.

Recalling that entropy decreases under the action of any map and using Eq.
(24), we get the following two inequalities

S (ΨAAcR||ρAAc ⊗ ρR) ≥ S [T (ΨAAcR)||T (ρAAc ⊗ ρR)] = S (ρAcR||ρAc ⊗ ρR) ,

S (ΨAAcR||ρAAc ⊗ ρR) = S [R(ρAcR)||R(ρAc ⊗ ρR)] ≤ S (ρAcR||ρAc ⊗ ρR) .

Thus,
S (ΨAAcR||ρAAc ⊗ ρR) = S (ρAcR||ρAc ⊗ ρR) .

Introducing the definition of conditional entropy, we can write

−S(AAcR) + S(AAc) + S(R) = −S(AcR) + S(Ac) + S(R).

This implies Eq. (23) since ΨAAcR is a pure state, and thus S(AAcR) = 0
and S(AcR) = S(A).

At this point of the section, we have all ingredients to prove a theorem that
does not allow local commuting projector codes to be ideal, i.e., to satisfy
Eq. (??). The theorem is stated as follows.

Theorem 10.2. For a local commuting projector code [n, k, d] on a two-
dimensional lattice, it is satisfied that

kd2 ≤ αn, (25)

where α is a constant.

Proof. Consider the state ρ ∈ C such that

ρ =
IC

tr(IC)
=

IC
2k
,

61

where k = S(ABC). Consider also the partition of the lattice in Figure 10.2
with regions A and B taken as large as possible. Fact 10.1 says that |A| and
|B| can be at most proportional to d2, and thus R ∼ d. The union lemma
(Lemma 10.2) states that the union of all regions A is correctable as well as
the union of all regions B. Fact 10.2 says that Eq. (23) is fulfilled for regions
A and for regions B individually. Thus, we have

Sρ(ABC) + Sρ(A) = Sρ(BC),

Sρ(ABC) + Sρ(B) = Sρ(AC).

Using the subadditivity of the entropy, these equations can also be written
as

Sρ(ABC) = Sρ(BC)− Sρ(A) ≤ Sρ(B) + Sρ(C)− Sρ(A),

Sρ(ABC) = Sρ(AC)− Sρ(B) ≤ Sρ(A) + Sρ(C)− Sρ(B).

Adding both equations, we get

Sρ(ABC) ≤ Sρ(C) ≤ |C|.

Recall that k = S(ABC) ∝ |C|. Now, we want to relate the |C| with the
size of the lattice. It is easy to see that

|C| ∼
√
n

R

√
n

R
=

n

d2
≥ ck,

where c the constant of proportionality. This implies Eq. (25).

From Theorem 10.1, we conclude that, if we increase the code size, i.e., n,
the ratio kd2

n
is always upper bounded by a constant. In other word, the ideal

scenario cannot happen since kd2 = (cnt)n3 ≥ (cnt)n. Note that the toric
code (see Section 8) saturates the bound of Eq. (25). There exists similar
bounds for three-dimensional codes.

Theorem 10.1 not only give a bound, but also restricts the form of the logical
operators. It might not be straightforward, but logical operators must live
either in regions A or regions B and must go through regions C.

62

Figure 21: Partition of the lattice used to prove Theorem 10.1. Regions A
and B are taken as large as possible and radius of C is at least l∗

2
.

63

	Classical Error Correction
	Physical error rate
	Linear codes
	Parity-check matrix
	Decoding
	Distance of a code
	Thresholds

	Quantum mechanics of one qubit
	Classical information
	Quantum information with one qubit

	The Shor code
	Quantum error correction conditions
	Physical noise
	Continuous time errors
	Stabilizer codes
	Toric code
	Connection to many-body theory (quantum statistical mechanics)
	Errors on the toric code
	Minimum weight perfect matching
	Renormalisation

	Thresholds

	Lower bound on the threshold
	Entropy and Energy
	Lower bound on the threshold
	Estimating the optimal threshold

	Topological order and QEC
	Definition of topological order
	Topological order I: Local indistinguishability
	Topological order II: topological entanglement entropy
	Topological order III

	The Bravyi-Poulin-Terhal (BPT) bound

