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Setting

Finite state space: n × n complex matrices.

Markovian Dynamics

∂tρ = L∗(ρ) = i[H, ρ] +
∑

k

LkρL†k −
1
2
{L†k Lk , ρ}+

Typically, we will assume that Lk and H are bounded (there exists a K <∞ s.t.
||Lk || ≤ K for all k ) and geometrically local on a d-dimensional cubic lattice of side
length L.

We say that L is primitive if it has has a unique full-rank stationary state σ > 0.

We say L is reversible (detailed balance) if

L∗(
√
σg
√
σ)) =

√
σL(g)

√
σ.
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Mixing ⇔ Clustering

Mixing times:
There exist constant A, b > 0 such that:

‖etL∗
(ρ0)− σ‖1 ≤ Ae−bt .

Clustering of correlations:
There exist constants C, ξ > 0 such that for any subsets of the lattice A,B we get

Corrσ(A : B) ≤ C poly(|A|, |B|)e−d(A:B)/ξ,

where d(A : B) is the distance separating regions A,B.

The goal of this talk is to explain to what extent these two statements are equivalent.

Michael Kastoryano (Berlin) Mixing vs. Clustering Prien/Chiemsee, October 21, 2013 5 / 33



Mixing ⇔ Clustering

Mixing times:
There exist constant A, b > 0 such that:

‖etL∗
(ρ0)− σ‖1 ≤ Ae−bt .

Clustering of correlations:
There exist constants C, ξ > 0 such that for any subsets of the lattice A,B we get

Corrσ(A : B) ≤ C poly(|A|, |B|)e−d(A:B)/ξ,

where d(A : B) is the distance separating regions A,B.

The goal of this talk is to explain to what extent these two statements are equivalent.

Michael Kastoryano (Berlin) Mixing vs. Clustering Prien/Chiemsee, October 21, 2013 5 / 33



Mixing ⇔ Clustering

Mixing times:
There exist constant A, b > 0 such that:

‖etL∗
(ρ0)− σ‖1 ≤ Ae−bt .

Clustering of correlations:
There exist constants C, ξ > 0 such that for any subsets of the lattice A,B we get

Corrσ(A : B) ≤ C poly(|A|, |B|)e−d(A:B)/ξ,

where d(A : B) is the distance separating regions A,B.

The goal of this talk is to explain to what extent these two statements are equivalent.

Michael Kastoryano (Berlin) Mixing vs. Clustering Prien/Chiemsee, October 21, 2013 5 / 33



Table of Contents

1 Introduction
Setting
Motivation

2 Preliminaries
Rapid mixing bounds
Correlation Measures

3 Rapid mixing implies clustering
χ2 clustering
Log-Sobolev clustering and stability
Area Law

4 Clustering implies rapid mixing
The main theorem
Corollaries

5 Outlook

Michael Kastoryano (Berlin) Mixing vs. Clustering Prien/Chiemsee, October 21, 2013 6 / 33



Why are these bounds useful?

1 Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go
theorems (New J. Phys. 12 025013 (2010)).

2 Stability of Liouvillian dynamics (arXiv:1303.4744, arXiv:1303.6304).

3 Topology in open systems, or at non-zero temperature.

4 (Runtimes of dissipative algorithms and state preparation (Nature Phys. 5, 633
(2009) ). )

5 (Bounds on the thermalization times of quantum systems, i.e. efficient Gibbs
samplers?)
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Rapid mixing: χ2 bound

χ2 bound:
Let L be a primitive reversible Liouvillian with stationary state σ > 0, then

‖etL∗
(ρ0)− σ‖1 ≤

√
‖σ−1‖e−λt ,

for any initial state ρ0.

Proof sketch:
write ρt = etL∗

(ρ0), then

‖ρt − σ‖2
1 ≤ χ2(ρt , σ) ≤ χ2(ρ0, σ)e−2tλ,

where χ2(ρ, σ) = tr
[
(ρ− σ)σ1/2(ρ− σ)σ1/2

]
is the χ2 divergence, and it satisfies

χ2(ρ, σ) ≤ ‖σ−1‖.

Note that if L is reversible, then λ is just the spectral gap of L. For a system of N spins
(qubits) ‖σ−1‖ ≥ 2N .
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Ultra-rapid mixing: Log-Sobolev bound

Log-Sobolev bound:
Let L be a primitive reversible Liouvillian with stationary state σ > 0, then

‖etL(ρ0)− σ‖1 ≤
√

2 log (‖σ−1‖)e−2αt ,

for any initial state ρ0.

Same proof but with χ2(ρ, σ) replaced by S(ρ‖σ) = tr [ρ(log ρ− logσ)].

The Log-Sobolev constant α can only be obtained by a complicated variational
formula⇒ equivalent to Hypercontractivity of the semigroup.

The bound provides an exponentially improved pre-factor! Importantly, α ≤ λ
See J. Math. Phys. 54, 052202 (2013) for more details.
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Correlation measures

We consider a cubic lattice Λ and denote subsets of the lattice A ⊂ Λ.
Assume A ∩ B = ∅,

Correlation measures
The covariance correlation:

Cρ(A : B) := sup
‖f‖=‖g‖=1

|tr [(f ⊗ g)(ρAB − ρA ⊗ ρB)] |, (1)

where f is supported on region A, and g is supported on region B.

The trace norm correlation:

Tρ(A : B) := ‖ρAB − ρA ⊗ ρB‖1. (2)

The mutual information correlation:

Iρ(A : B) := S(ρAB‖ρA ⊗ ρB), (3)

where S(ρ‖σ) = tr [ρ(log ρ− logσ)] is the relative entropy.

Michael Kastoryano (Berlin) Mixing vs. Clustering Prien/Chiemsee, October 21, 2013 12 / 33



Correlation measures: Theorem

The different correlation measures can be easily related:

Theorem

Let ρ be a full rank state of the lattice Λ, and let A,B ⊂ Λ be non-overlapping subsets.
Let dAB be the dimension of the subsystem defined on AB, then the following
inequalities hold,

1
2d2

AB
Tρ(A : B) ≤ Cρ(A : B) ≤ Tρ(A : B),

1
2

T 2
ρ (A : B) ≤ Iρ(A : B) ≤ log(‖ρ−1

AB ‖)Tρ(A : B).

There is also an exponential separation between correlation measures. Is there a
connection to the exponential separation in rapid mixing regimes? YES
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χ2 clustering

Theorem
A,B ⊂ Λ are subsets of the D-dimensional cubic lattice Λ.

L =
∑

Z⊂Λ LZ is a local, bounded, reversible Liouvillian with stationary state σ

λ is the gap, v is the Lieb-Robinson velocity v

Then there exists a constant c > 0 such that

Cσ(A : B) ≤ c d(A : B)D−1e−
λd(A:B)

v+2λ .

Weak rapid mixing implies weak clustering
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χ2 clustering: Proof sketch

Define Cov(f , g) = tr [σfg]− tr [σf ] tr [σg], write ft := etL(f ) and consider

|Cov(f , g)| ≤ |Cov(ft , gt )|+ |Cov(ft , gt )− Cov(f , g)|

The first term is bounded using a mixing argument

|Cov(ft , gt )| ≤
√

Var(ft )Var(gt )

≤
√

Var(f )Var(g)e−tλ ≤ ‖f‖ ‖g‖e−tλ

The second term is bounded using quasi-locality of the dynamics

|Cov(ft , gt )− Cov(f , g)| ≤ |tr [σ((fg)t − ftgt ] |
≤ c ‖f‖ ‖g‖etv−d(A:B)/2

Finally, chose the t which minimizes the sum of both expressions.
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Removal of boundary terms
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Log-Sobolev clustering

Log-Sobolev clustering
A,B ⊂ Λ are subsets of the D-dimensional cubic lattice Λ.

L =
∑

Z⊂Λ LZ is a local, bounded, reversible Liouvillian with stationary state σ

α is the Log-Sobolev constant, v is the Lieb-Robinson velocity.

Then there exists a constant c > 0 such that

Iρ(A : B) ≤ c d(A : B)D−1(log(‖ρ−1‖))3/2e−
αd(A:B)
2(v+α) ,

Strong rapid mixing implies strong clustering
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Local perturbations perturb locally

Corollary: Local perturbations perturb locally
A,B ⊂ Λ are subsets of the D-dimensional cubic lattice Λ.

L =
∑

Z⊂Λ LZ is a local, bounded, reversible Liouvillian with stationary state ρ

QA is a local Liouvillian perturbation, acting trivially outside of A. Let σ be the
stationary state of L+QA.

α is the Log-Sobolev constant and v is the Lieb-Robinson velocity of L

Then,
‖ρB − σB‖1 ≤ c d(A : B)D−1(log(‖ρ−1‖))1/2e−

αd(A:B)
v+α ,
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Mutual information Area Law

Mutual information Area Law
Let L be a regular, reversible Liouvillian with stationary state ρ and Log-Sobolev
constant α. Let A ⊂ Λ, then for any ε > 0, there exist constants γ1, γ2 > 0 such that

Iρ(A,Ac) ≤ (γ1 + γ2 log log ‖ρ−1‖)|∂A|+ ε,

where |∂A| is the boundary of A.

Note: it is not know whether one can get rid of the log log ‖ρ−1‖ factor?
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The main theorem

The main theorem
Let H =

∑
j Hj be a bounded, local, commuting Hamiltonian (i.e. [Hj ,Hk ]).

Let ρ = e−βH/tr
[
e−βH] be the Gibbs state of H.

Suppose that there exist constants c, ξ > 0 such that for all observables f , g,

Covρ(f , g) ≤ c
√

Varρ(f )Varρ(g)e−d(Λf ,Λg )/ξ

Covρ(f , g) = tr
[√
ρf †
√
ρg
]
− tr [ρf ] tr [ρg], Varρ(f ) = Covρ(f , f ), and d(Λf ,Λg) is the

minimum distance separation the supports of f , g.

Then, there exists a local, bounded parent Liouvillian Lp such that ρ is its unique
stationary state, and the spectral gap of Lp is independent of the size of the lattice.
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The parent Liouvillian

The parent Liouvillian

Lp
Λ(f ) =

∑
j∈Λ

(Eρj (f )− f ),

where
Eρj (f ) = trj [γj fγ†j ]

and
γj = (trj [ρ])−1/2ρ1/2

Eρj should be interpreted as a conditional expectation value of ρ on site j which
minimally disturbs the sites around j .

Note: if H has locally commuting terms, then γi has support on a ball of radius r , where
r is the range of the Hamiltonian. Then Lp

Λ is local.
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Proof sketch I

We will show that the gap of a lattice Λ is approximately the same as the gap on half
the lattice size: λ(Λ) ≈ λ(Λ/2).

The variational expression of the gap. Let A ⊂ Λ,

λ(A) = sup
f =f†

EA(f )

VarA(f )

where EA(f ) = 〈f ,−LA(f )〉ρ and VarA(f ) = 〈f − EA(f ), f − EA(f )〉ρ, and
〈f , g〉ρ = tr

[√
ρf †
√
ρg
]

is an L2 inner product.

Decomposition of the conditional variance: If 〈EA(f ),EB(f )〉ρ ≤ ε, then for
A ∪ B = Λ and A ∩ B 6= ∅, then

VarΛ(f ) ≤ (1− 2ε)−1(VarA(f ) + VarB(f ))
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The variational expression of the gap. Let A ⊂ Λ,

λ(A) = sup
f =f†

EA(f )

VarA(f )

where EA(f ) = 〈f ,−LA(f )〉ρ and VarA(f ) = 〈f − EA(f ), f − EA(f )〉ρ, and
〈f , g〉ρ = tr

[√
ρf †
√
ρg
]

is an L2 inner product.

Decomposition of the conditional variance: If 〈EA(f ),EB(f )〉ρ ≤ ε, then for
A ∪ B = Λ and A ∩ B 6= ∅, then
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Proof sketch II

Let A∩B ≈
√

L×L (in 2D). If ρ is clustering, then 〈EA(f ),EB(f )〉ρ ≤ ce−
√

L/ξ. Then

VarΛ(f ) ≤ (1− ce−
√

L/ξ)−1(VarA(f ) + VarB(f ))

≤ (1− ce−
√

L/ξ)−1(
EA(f )

λ(A)
+
EB(f )

λ(B)
)

≤ (1− ce−
√

L/ξ)−1 max{ 1
λ(A)

,
1

λ(B)
}(EΛ(f ) + EA∩B(f ))

By an averaging trick over L1/3 different overlaps, we can upper bound the
following upper bound:

VarΛ(f ) ≤ (1− ce−
√

L/ξ)−1(1 +
1

L1/3 ) max{ 1
λ(A)

,
1

λ(B)
}EΛ(f )

≤ (1 +
1√
L

) max{ 1
λ(A)

,
1

λ(B)
}EΛ(f )

If L ≥ L0 for some L0 independent of the systems size.
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Important Corollary

Important Corollary
Let H =

∑
j Sj stabilizer Hamiltonian.

Let ρ = e−βH/tr
[
e−βH] be the Gibbs state of H.

Suppose that there exist constants c, ξ > 0 such that for all observables f , g,

Covρ(f , g) ≤ c
√

Varρ(f )Varρ(g)e−d(Λf ,Λg )/ξ

Then, there Davies generator LD has a spectral gap which is independent of the size of
the lattice.

Note: the Davies generator is obtained by a canonical weak system bath coupling,
where the bath is in a thermal state.
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A partial extension

1D non-commuting Hamiltonians

Let H =
∑

j Hj be a local bounded Hamiltonian in 1D.

Let ρ = e−βH/tr
[
e−βH] be the Gibbs state of H.

Then, there exists a local, bounded parent Liouvillian Lp such that ρ is its unique
stationary state, and the spectral gap of Lp is independent of the size of the lattice.
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Thank you for your attention!
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