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TOPOLOGY AND DISSIPATION

State engineering

Dissipative engineering
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DISSIPATIVE SYSTEMS

i Master equation o) =diztel Y Lopl, — %{LIan,p}+
L Stationary States L(pss) =0 | |s the stationary state unique?
L Dark states Ln|Y) =0 Hlyp) = Alh) all m

Figenvalues of L have non- | Zero eigenvalue corresponds
positive real part. L to the stationary states

Spectral properties L

Relaxation rate is related to | Gap of L :minimum real part
} the inverse of the gap of L . l of an eigenvalue of L .
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MOTIVATING EXAMPLE
Cavity QED

set —V:5

Il
Hio = 5(A —v)o? + (gota+ Qo™ + h.c)

Sl 5 1 =
p=ilHjo,pl+7(0"po" — {0707, p}y)

Assume no cavity decay!

e (=)
if Q> g stationary state Is (Wl = e~ (¥/9) Z ( \/é_g) 0, 5) \coherent state

J=0

independent of (A,~,v). .
h Bound topological
always purel edge state
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THE MODEL

unit cell MM

o periodic bc’s
........ T
H:Zu A, m)(B,m| +vn|A,m+1)(B,m|+hc. ¢ . G is
el ) el , ¢ Qurrent: J:2ztr[Ep] v — ey

| 1
L(p) =ilH, p] + Y LmpLl, — S {Ll L, p}+

Lindblad (jJump)

operators:

Properties:

In general currents In open systems are ambiguous,
as there are usually no conservation laws

Ly, = /A, m)(B,m|

unique steady state

- can be extracted analytically

 pure (dark) steady state iff u=v

Steady state current:
0.5F
- N ~ even
— N ~ odd
N ~ o0

04F
03}
02F

0.1}

-0.1F
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THE CURRENT

untt cell 1M
A By,
—Q@— @@ e periodic bc's
........ T
Steady state current:
) Current
0.5; N ~ even
] — N ~odd
04 L4+1(¢,,2 2
| . s g e vy
G 8(u? — v2)(ul — vl G
02
0.1 .
: strictly zero for u>v
O‘.S i
-0.1 F
—0.25

transition is independent of

What is the origin of & | dissipative strength and on-site
energy!

this sharp transition?
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unit cell MM

B,
-9Q® & O

L ~

Translation invariance, steady state
s diagonal in the momentum basis

| Can this form be derived in general!

Steady state Is reached when
probability of entering and exiting
momentum k shell is equal.

Steady state can generally
be extracted from
momentum conserving
master equation!

THE CURRENT

Zoe periodic bc’s

/ | k independence of B site population

\A only depends on B population,
l therefore constant for all k.
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THE CURRENT

unit cell ™
A, B,
g8 e periodic bc's
........ T
replace Ly, = \/7|A, m)(B,m Reduced to solving a 2x2 matrix
e 7 \/ﬂA, k} <B, k\ L equation.
1 We obtain a solution for each
o T T
L(p) =i|H,p| + Z LygpLy, — §{LkLkv Pl+ L momentum k.
k
= 0 ck B A Steady state of original system is
Hy, = ( c. O ) Cp =UT eV the convex combination that are
equal B-site population.

Solution is generall
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unit cell 110
A uy B,
0 @ ® g periodic bc’s
....... A
i, 0 ¢ pk o l L 5+ 4|Zk|2 2ng,
¢, 0 a7 T 1
, : dHy,
Steady-state current: s = / dk tr[ﬁpss]

| Winding number! \
Discontinuity in the current e A
L is topological!
7 k What about the

pre-factor?
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CRITICALITY

unit cell 1M
A, B,
——@—0— — periodic bc's
........ At
. o . 27y d
Time to equilibrium: # of jJumps S = — dk Im[% log cy]

required to reach equilibrium times
the probability for a jump to occur.

Probability of a jJump = population

IOF@EELIF

L1/Z gives the probabllity for a jump / L at B stes.
2
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GENERALITY

t_l _______________ : t3

Negative winding number = current
L In opposite direction.,

B periodic bc’s

e d :
I V= /dk Im|— log cy| Ck = thezlk
dk z
1 v?
T=— [ dk (2
2’)/ ( 4’Ck ‘2 )

Is this really topology? T diverges quadratically at the
’ t transition.
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NEXT NEAREST NEIGHBOR

o = s SRR

0, ifu>v+w
v=<¢ -1, ifu<v+wandov>w,
i ifu<v+4+wand v <w

fl/]uQ — (v+w)?|, around u=v+w

\1/\@2—w2|, around v = w

1

topological sectors V
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PDGE S TATES

| Back to nearest neighbor chain

Boundary acts as a sink!

- Recall, in Tl system, stationary state
L dark iff u=v.

Stationary state must be

As particle crosses between the
P dark!

two sectors, it gets caught in a dark
state.

NO current

U > v v =10 u <<v 7 —dl

Wednesday, November 25, 15



PDGE S TATES

Assume:  [1gg) = me|A, m) H=> um|A,m)(B,m|+vm|A,m+ 1){(B,m|+h.c
m

H‘¢SS> =0 — P Um, —+ Pm+1Um — 0

U > v v =10 u <<v 7 —dl
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PDGE S TATES

Assume:  [1gg) = me|A, m) H=> um|A,m)(B,m|+vm|A,m+ 1){(B,m|+h.c

H‘¢SS> =) = P Um - Pm—+1Um

)m

U
v (_E)m General . (_g
phenomenon?, v

ST s

U > v v =10 u <<v 7 —dl
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- NEXT NEAREST NEIGHBOR

topological sectors V




NEXT NEAREST NEIGHBOR

e

—_— «—

.\

e 0 e 1

topological sectors V

vV

Each boundary can support
a pure edge state! y What are the general rules for the bulk

edge correspondence!?

~ But all currents have to How is it actually related to the
end in an edge! y topology?
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TRANSFER MATRIX

L
General model JEl— >1 >1 tilA,m)(B,m + 1| + h.c.
m [=—L
Assume dark stationary states wss Z Pm ‘A m
Recurrence relation Z t1 Pm+1 =0
Pm+L—1 Pm+L
Transfer Matrix T ==
Pm—L Pm—L+1

Physical states correspond to
eigenvectors with eigenvalues of
magnrtude less than one.
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® Left and right moving transfer

.~ matrices must be bounded from
KR any inrtial point!

o]

- SNSRI R

v -1 —> «— 1 2
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® Left and right moving transfer

.~ matrices must be bounded from
KR any inrtial point!

- SRR R

v -1 —> «— 1 2
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® Left and right moving transfer

.~ matrices must be bounded from
KR any inrtial point!

C SNSRI N 1

v -1 —> «— 1 R
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® Left and right moving transfer

.~ matrices must be bounded from
KR any inrtial point!

C S e, E e

1% —1 —— g “— il 9
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® Left and right moving transfer

.~ matrices must be bounded from
KR any inrtial point!

R

v -1 —> «— 1 2
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® Left and right moving transfer

.~ matrices must be bounded from
KR any inrtial point!

C N R

v -1 —> «— 1 2
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® o Leﬁ and right moving transfer
 matrices must be bounded from

K\ any inrtial point!

s

C N R

v -1 —> «— 1 2
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TRANSFER MATRIX

Physical states correspond to However not all eigenvalues In the
eigenvectors with eigenvalues of unrt circle correspond to legitimate
magnrtude less than one. edge states.

® ® ‘ Left and right moving transfer

matrices must be bounded from
0%

any inrtial point!

C N R

v -1 —> «— 1 2
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g SFER MATRIX

Physical states correspond to However not all eigenvalues In the
 eigenvectors with eigenvalues of unit circle correspond to legitimate
magnitude less than one. edge states.
° o Leﬁ and right moving transfer
matrices must be bounded from
K\ ’ any inrtial point!

e

C N R

v -1 —> «— 1 2 ——
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TRANSFER MATRIX

Physical states correspond t However not all eigenvalues In the
 eigenvectors with eigenvalueg of unit circle correspond to legitimate
magnrtude less than onég. edge states.
® Left and right moving transfer
matrices must be bounded from
Ka ’ any inrtial point!

C N R

v -1 —> «— 1 2 ——
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BULK EDGE CORRESPONDENCE

The eigenvalues of the transfer L L .
'matrix are equal to the roots of the Z L'ttt o c(k) = Z G
polynomial: o —

Only roots inside the unit circle are
| edge states = —
Winding number Is simply the
number of roots in the unit circle!

Number of edge states

. correspondls si.mply ©ine But we have to be careful with
difference of winding number at a l ordering of the regions!
boundary! f L5 '
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MOTIVATING EXAMPLE
Cavity QED

1) 'y
t set — =10
0)
0 1
Hjo = 5(A=v)o” +(g907a+ Qo™ + h.c)
| Discretize harmonic oscillator
Um =— V1N
Topological (dark) edge state Wy = W]
L around U = Upy, .
) u >> v

WY




SUMMARY

unit cell MM
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TAKE HOME MESSAGES

Dissipation can cause exotic behavior

- lopological transition in very simple system

New type of topological phenomenon!




