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MOTIVATION

Intriguing example

Crépeau et. al. (2005), quant-ph/0503139

@ No quantum code can correct more than n /4 m) Consequence of no-cloning theorem
arpitrary errors

@ Classical codes (Ex: repetition code) can correct
up to |n/2] arbitrary classical errors

Crépeau et. al. (2005) construct an approximate
| quantum code that can correct up to
H [n/2] arbitrary quantum errors!

—

Indication that
approximate codes can
outperform exact codes!
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MOTIVATION

What about topological codes! $%3%30% 0L
N T : 010101010100
O O 0 O O O O
0_’0.0.0.0.0.0‘
Codes often characterised by three numbers:
length 1 ; distance d ; encoded (qu-)bits k ;’...........‘
010101010100
O O 0 O O O O
01000100 ©®
Tradeoft bounds LRSS S G S
=) kd? < cn Commuting projector codesi3 e e
—> kd < cn Subsystem codes
=) kd'/? <cn Classical lattice systems

Bravyi, Poulin, Terhal; Yoshida

~ VWhere do approximate quanturﬁcodes SIt?



Lattice commuting projector codes
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—> C s the codespace —> @




Lattice commuting projector codes

{8;} [9;,5%]=0 8;=35; @

=][s c={w.mw) = B/
= C fs the codespace —> | Erasure er@

Lemma Let C be a commuting projector code, and ABC = A be decomposition of the latlice such
that the distance between A and C' is at least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (¢ 04 |@) = (1| O3 |+f).

(4) Decoupling: For any p € C we have I,(A: CR) = 0.

(292) Error correction: There exists a recovery map acting on AB such that RﬁB (pP€) = pABC for any
p € II.

iv) Disentangling unitary: For any p € C there erists a unitar: UB such that UB U8Bt = wABL R BaC
, giing Y Yyp Y ; £ £ ;

for some state w™B,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VP¢ such that Ul ;=
VBC
C



Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C is at least £ > w, the interaction range (c.g. as in Fig. 3.) Then the

follounng are equivalent:

i (z')l Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground states
) and ) give the same expectation value, (| O4 |@) = (1| O4 |25).

(4) Decoupling: For any p € C we have 1,(A: CR) = 0.

(#97) Error correction: There exists a recovery map acting on AB such that RﬁB(pBo) = pABC for any
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(iv) Disentangling unitary: For any p € C there exists a unitary U, such that U” pUBT = wABL g o€
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VBC l
C

@ (i) Topological order




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the latlice such
that the distance between A and C' is at least £ > w, the interaction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQ): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (| O4 |@) = (1| O ).

i)y Decoupling: For any p € C we have 1,(A : CR) = 0.

(#97) Error correction: There exists a recovery map acting on AB such that ’R.gB (pPC) = pABC for any
p e IL.

(iv) Disentangling unitary: For any p € C there exists a unitary U”, such that UPpUPT = wABL g p2C

for some state wAPr,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VPC such that U ;=
VBCI
C

@ (i) Topological order
@ (i) Decoupling I,(A:CR)=S(A)+ S(AB) — S(B)




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C is at least £ > w, the interaction range (c.g. as in Fig. 3.) Then the
follounng are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground states
) and |1} give the same expectation value, (| O4 |@) = (1| O2 |4).

i1) Decoupling: For any p € C we have 1,(A: CR) = 0.

Error correction: There exists a recovery map acting on AB such that RﬁB(pBo) = pABC for any
p e IL

(iv) Disentangling unitary: For any p € C there exists a unitary UP, such that UP pUPt = yABLg pP2C
for some state wAP1,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V3¢ such that U C=
VBC I
C

@ (i) Topological order
@ (i) Decoupling

@ (i) Error correction




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C is at least £ > w, the interaction range (c.g. as in Fig. 3.) Then the

follounng are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground states
) and |1} give the same expectation value, (| O4 |@) = (1| O2 |4).

(4) Decoupling: For any p € C we have 1,(A: CR) = 0.

(#97) Error correction: There exists a recovery map acting on AB such that RﬁB(pBo) = pABC for any
p e IL

(iv){ Disentangling unitary: For any p € C there exists a unitary UP, such that UP pUPt = uABL g pP2C
for some state wAP1,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V3¢ such that U C=
VBC I
C

(1) Topological order
(i) Decoupling
(i) Error correction

(iv) Disentangling unitary




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is at least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
follounng are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground states
) and |1} give the same expectation value, (| O4 |@) = (1| O2 |4).

(4) Decoupling: For any p € C we have 1,(A: CR) = 0.

(#97) Error correction: There exists a recovery map acting on AB such that T\’,ﬁB (pB€) = pABC for any
p e IL

(iv) Disentangling unitary: For any p € C there exists a unitary UP, such that UP pU Pt = wAPLg p2C,
for some state wAP1,

‘, (v){ Cleaning: For any unitary U preserving the code space, there exisls a unitary VBC such that U lc=
VBC |
C

(1) Topological order
(i) Decoupling
(i) Error correction

(iv) Disentangling unitary

(v) Cleaning



CLEANABILITY
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Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is al least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (¢ 04 |@) = (| O3 ).

(4) Decoupling: For any p € C we have I1,(A: CR) = 0.

(i4i) Error correction: There exists a recovery map acting on AB such that R2(pPC) = pABC for any
p € II.

(iv) Disentangling unitary: For any p € C there exists a unitary UP, such that UP pU Pt = yAPLg pPC

for some state wAP1,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VP such that U| ;=

BC

VWhich properties can be extended to approximate codes?

m) Focus on topological codes; tradeoff bounds



BP T BOUNDY?

Tradeoff bound

i kd? < cn Subspace or commuting projector codes
Bravyi, Poulin, Terhal

®) Toric code saturates the bound in 2D

Proof:
@ Expansion bound

@ Union bound

@ Counting degrees of freedom



BP T BOUND! b < en

Proof:
A correctable = pACD = w? ® ,OCD (Iv)
B correctable = RABC(,OACD) — ,OABCD (111)

Define a map FABC( C’D) RABC((,UA R ,OCD)

Show (jii)  FABC(pCD) = RABC (A g pCP) = RABC(,ACD) = ;ABCD



BP T BOUND! ki <o

Proof:

A correctable = RBIB(pA\B) = ph (V)

0
o (ii)

B correctable = RggB(pA\A)

ABOB

Clearly, Roxg’ (p*\4P) = pt

=p



Proof:

Construct the largest square correctible region
by adding ‘onion’ rings.

[
|

| m) | argest square region d?

Decompose the lattice as in Fig 2.

X and Y are correctable

I(X :R) = S(X) + S(R) — S(XR) =0 A
S(Y) + S(R) — S(YR) = 0

Sum the two and use subadditivity to get
S(R) < S(Z) Fig 2
Take identity state on code space

S(R) =klog(2) and S(Z)<en/d® = kd* <cn -



Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is al least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (¢ 04 |@) = (| O3 ).

(4) Decoupling: For any p € C we have I1,(A: CR) = 0.

(#4i) Error correction: There exists a recovery map acting on AB such that R4Z(pPC) = pABC for any
_pe 11

|

(iv) Disentangling unitary: For any p € C there exists a unitary UZ, such that UP pUPT = wABLg oP2C

for some state wAP1,

(v) Cleaning: For any unitary U preserving the code space, the'ﬁ: exists a unitary VPC such that U| o =

BC
¥ C

Which properties can be extended {o approximate codes!

m) Focus on topological codes; tradeoff bounds

\5\

—

>

Take as our basic definition




AQEC!

=) Buresdistance B(p,0)? =1 — F(p,0)
F(p,0) = trly/ Vapy/o]

= Stabilised distance; R is a copy of the logical
space.




AQEC!

m) state can be recovered without modifying C




FQUIVALENT FORMULATIONS

52(14) .= inf sup B((,UA R ,OCR,IOACR)

A
w pABC’R

m o BCR isin the code space

—> wA is some fixed state on A

m " BCR isin the code space




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is al least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (¢ 04 |@) = (| O3 ).

(41) Decoupling: For any p € C we have 1,(A: CR) = 0.

(492) Error correction: There exists a recovery map acting on AB such that ’R,AB(pBC) = pABC for any

v/pel'l

(iv). Disentangling unitary: For any p € C there exists a unitary UP, such that UP pU Pt = yAPLg plC
for some state wAP1,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V¢ such that U| ;=

BC

VWhich properties can be extended to approximate codes?

(i) <=> (iv)



FQUIVALENT FORMULATIONS




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is al least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (¢ 04 |@) = (| O3 ).

\(}VY Decoupling: For any p € C we have I1,(A: CR) = 0.

(492) Error correction: There exists a recovery map acting on AB such that ’R,AB(pBC) = pABC for any

v/pel'l

(iv), Disentangling unitary: For any p € C there exists a unitary U such that UPpUP = wABig
for some state w?Pr,

B,C

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VP such that U| ;=
VBC |
c

VWhich properties can be extended to approximate codes?

(i) <=> (iv)

(i) <=> (1) but with different error order



CLEANABILITY

Error correction => cleanability:

If A is locally correctable: B(R57 (pP¢%), pAPCH) < §

Then for any logical unitary U458, the pull-back VB¢ = (R48)*(UA5C)
satisfies

[(UAFE — VEOI| < 4V6

Error correction <= cleanability:

If for anyU 4P there exists a ||VBH <1 onB s.t. ||(UABC — VBC)HH <0

Then thete exists w” s.t. |pAP — w? ® pft||1 < 56
C
(4) ] |r R
B B




Lemma Let C be a commuting projector code, and ABC = A be decomposition of the lattice such
that the distance between A and C' is al least £ > w, the inleraction range (c.g. as in Fig. 3.) Then the
Jollowing are equivalent:

(i) Topological Quantum Order (TQQO): for any observable O 4 with support on A, any two ground slates
|9} and |1} give the same expectation value, (¢ 04 |@) = (| O3 ).

\(}VY Decoupling: For any p € C we have I1,(A: CR) = 0.

(i4i) Error correction: There exists a recovery map acting on AB such that Ra2(pPC) = pABC for any

‘v/pel'[.

{}} Disentangling unitary: For any p € C there exists a unitary U, such that UP pUPt = wAP1g pP2C

for some state wAP1,

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary VP¢ such that U| ;=
VBC |
c

Which properties can be extended to approximate codes!

(i) <=> (iv)
(iif) <=> (ii) but with different error order —>

(i) <=> (v) but with different error order
and different locality constraints

Topological quantum
order seems to be
different!




APPROXIMATE BPT

Tradeoff bound
I kd? < cn becomes (1 — Cn—5 log i)kd2 <@l

Proof: D
@ Approximate expansion bound C
m)  Need (iv) and (iii)

@ Approximate union bound

=) Need locality of recovery 0




Proof:

Construct the largest square correctible region
by adding ‘onion’ rings.

j ) |argest square region d?

Decompose the lattice as in Fig 2.

X and Y are correctable

I(X :R) = S(X) + S(R) — S(XR) =0 A
S(Y) + S(R) — S(YR) = 0

Sum the two and use subadditivity to get
S(R) < S(Z) Fig 2
Take identity state on code space

S(R) =klog(2) and S(Z)<en/d® = kd* <cn -



Proof:

Construct the J
by adding ‘of

Decompose the lattice as in Fig 2.

X and Y are correctable

Fig 2

Take identity state on code space

S(R) =klog(2) and S(Z)<en/d® = kd* <cn -



EXAMPLES

(¢) Perturbations of commuting projector codes

=) Follows from the stability of topological order and
Lieb-Robinson bounds



EXAMPLES

(¢) Perturbations of commuting projector codes

=) Follows from the stability of topological order and
Lieb-Robinson bounds




MERA CODES

(s=5 Hs

o ' '
'v'

s =1

s=20

v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'

BT “Disentangling” unitary

—e [sometry

( ) Logical space

Physical space




MERA MODEL
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1 ] L 1
o v
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S = 5

ps) = WiWa - - Wi|d(s)) Ds)) € Hs

The MERA circuit encodes the subspace ‘Hs into Hg as
Cs C Hs




MERA MODEL

Q
~—

(s=5 Hs )
=y P2 =2 D=2 D=2 == ==
- e O OO O A Ol C
S = 5

Local operators get mapped to local operators!




MERA MODEL

<:08 |Os |‘78> — <,03+1 |(I)§+1 (OS) ‘(78+1>

®(O) s a quantum channel in the Heisenberg picture

d"(0) ~ 1tr[pO]  Exponentially fast in n.

Local operators get mapped to local operators!




AQEC!

More familiar distance measure  2B%(p, o) < ||p — o||1 < 2v2B(p, o)

To show the existence of a good local recovery map, we need to bound:

e ———

o4 ® p¢F — pAE|l;  is smalll

| Proof Is very similar to showing

decay of correlations




RESULT

(3=5 Hs )

N P U P ~- P

Ve levlevleoVleVlePlelevleolw
s=1 'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'v'C

. (W B W W H H K

5)

v/2
HRAB(,OBCR) _IOABCRHI < c ’A’ /
’ — \|4B8

Proof Is similar to that for decay of
correlations in MERA




PROOF SKETCH

tr{Oacrp| = tr|®

*(Oacr)p(

Oacr

a)
(s =95 Hs )

s =4
s=3 —
s =2
s=1 B R
s—q HHHHHHHHHHHHHHE gl A A A A A A A A A A A A A A A AAAEF Cs

10" @ p“"* = p2“T|1 = sup tr[Oacr(p? @ p©* — p"“MH)]

Ztr [@%(04;) ® ®*(Ocrj)p(s)]

~ Ztr 1 ® ®°(Ocrj)p(s)]tr[Oajo]

J




FURTHER RESULTS

a=0.63

radeoff bound 'Kda <cn |

a = (.78 From uberholography

=

Lieb-Robinson bound iH[OA»OB()HKHOAH |05 |eloBw)—d(A.B) /¢
!

s=4 -

I Er VP eoPePleo¥VvPoPeoPleleVy
m é 'v'v'v'v'v'v'v'v’/.v.'.v.’v'v'v'v’v'v'!’?’v\‘v'
P e R A DA AR T R AR C.

0, Oz




HOLOGRAPHY?

Constructive connection b/w QEC and
Holography!?

Useful toy model

Possible access to dynamics

Some properties not recovered
(entanglement wedge hypothesis)




OPEN PROBLEMS

Further examples?

= Source-channel codes

Decoding MERA codes / AQEC!

Defining topological order with frustration

Dynamics or Fault tolerance!?

= Approximate Eastin-Knill?




