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MOTIVATION
Intriguing example

No quantum code can correct more than         
arbitrary errors        

n/4 Consequence of no-cloning theorem

Classical codes (Ex: repetition code) can correct 
up to           arbitrary classical errors      bn/2c

Crépeau et. al. (2005) construct an approximate 
quantum code that can correct up to         

arbitrary quantum errors!bn/2c

Indication that 
approximate codes can 

outperform exact codes!

Crépeau et. al. (2005), quant-ph/0503139 



MOTIVATION
What about topological codes?

Codes often characterised by three numbers:
length     ; distance    ; encoded (qu-)bits      n kd

Tradeoff bounds

kd2  cn

kd  cn

kd1/2  cn

Commuting projector codes      

Subsystem codes

Classical lattice systems

Bravyi, Poulin, Terhal

Bravyi

Bravyi, Poulin, Terhal; Yoshida

Where do approximate quantum codes sit?
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(i) Topological order
(ii) Decoupling I⇢(A : CR) = S(A) + S(AB)� S(B)
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(i) Topological order
(ii) Decoupling
(iii) Error correction
(iv) Disentangling unitary
(v) Cleaning
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Which properties can be extended to approximate codes?
Focus on topological codes; tradeoff bounds



BPT BOUND?
Tradeoff bound

Toric code saturates the bound in 2D

Proof:

kd2  cn Subspace or commuting projector codes      
Bravyi, Poulin, Terhal

Expansion bound
Union bound
Counting degrees of freedom



BPT BOUND? kd2  cn

Expansion Lemma:

A B C

⇤

If    is correctable and     is correctible, then            is correctable.A B A [B

Proof:
correctableA

B

)

correctable )
D

⇢ACD = !A ⌦ ⇢CD

Define a map

(iv)

(iii)

FABC
C (⇢CD) = RABC

AC (!A ⌦ ⇢CD)

RABC
AC (⇢ACD) = ⇢ABCD

Show (iii) FABC
C (⇢CD) = RABC

AC (!A ⌦ ⇢CD) = RABC
AC (⇢ACD) = ⇢ABCD



BPT BOUND? kd2  cn

Union Lemma:

A

C ⇤

If    is correctable and     is correctible, then            is correctable.A B A [B

Proof:
correctableA

B

)

correctable )

(iv)

(iii)
B

@A @B

RB@B
@B (⇢⇤\A) = ⇢⇤

RB@B
@B (⇢⇤\B) = ⇢⇤

Clearly, RAB@B
@AB (⇢⇤\AB) = ⇢⇤



BPT bound:

⇤

Proof:
Construct the largest square correctible region
by adding ‘onion’ rings. 

kd2  cn

A

B1 B2

Largest square region d2

Decompose the lattice as in Fig 2. 

X Y

ZI(X : R) = S(X) + S(R)� S(XR) = 0

   and     are correctable

S(Y ) + S(R)� S(Y R) = 0

X Y

Fig 2

Sum the two and use subadditivity to get

S(R)  S(Z)

Take identity state on code space
S(R) = k log(2) S(Z)  cn/d2and ) kd2  cn
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Which properties can be extended to approximate codes?
Focus on topological codes; tradeoff bounds

Take as our basic definition



AQEC?

There exists a recovery map          such that for any code state  
                 the following holds:

A

B

R

Bures distance

Stabilised distance;      is a copy of the logical 
space.

B(⇢ABR,RAB
B (⇢BR))  �

⇢ABR 2 C
RAB

B

B(⇢,�)2 = 1� F (⇢,�)

F (⇢,�) = tr[
qp

�⇢
p
�]

R

Definition (approximate correctability):



AQEC?

There exists a recovery map          such that for any code state  
                   the following holds:

state can be recovered without modifying        

RAB
B

Definition (local approximate correctability):

A

B

C

R

B(⇢ABCR,RAB
B (⇢BCR))  �

⇢ABCR 2 C

C

`



EQUIVALENT FORMULATIONS

               is in the code space        

Definition (information-disturbance tradeoff):

inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR) = inf
RAB

B

sup
⇢ABCR

B(RAB
B (⇢BCR, ⇢ABCR)

⇢ABCR

         is some fixed state on       !A A

               is in the code space        ⇢ABCR

�`(A) := inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR)

A

B

C

R`
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Which properties can be extended to approximate codes?

(iii) <=> (iv)



EQUIVALENT FORMULATIONS
Definition (information-disturbance tradeoff):

�`(A) := inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR)

Definition (decoupling):
1

9
�`(A)2  sup

⇢ABCR

B(⇢ACR, ⇢A ⌦ ⇢CR)  2�`(A)

inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR) = inf
RAB

B

sup
⇢ABCR

B(RAB
B (⇢BCR), ⇢ABCR)

A

B

C
R

`
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Which properties can be extended to approximate codes?

(iii) <=> (iv)
(iii) <=> (ii) but with different error order



CLEANABILITY
Error correction      cleanability:)
If    is locally correctable: B(RAB

B (⇢BCR), ⇢ABCR)  �A

Then for any logical unitary         , the pull-back                            
satisfies

UABC V BC = (RAB
B )⇤(UABC)

||(UABC � V BC)⇧||  4
p
�

If for any        there exists a                  on     s.t. UAB ||V B ||  1 B ||(UABC � V BC)⇧||  �

Then there exists        s.t. !A ||⇢AB � !A ⌦ ⇢R||1  5�

A

B

C
R A

B

R

Error correction      cleanability:(

()
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Which properties can be extended to approximate codes?

(iii) <=> (iv)
(iii) <=> (ii) but with different error order
(iii) <=> (v) but with different error order 
and different locality constraints

Topological quantum 
order seems to be 

different!



APPROXIMATE BPT
Tradeoff bound

becomes

Proof:

kd2  cn

Approximate union bound

Approximate expansion bound

(1� c
n�

d
log

d

n�
)kd2  c0n`4

Need (iv) and (iii)

Need locality of recovery

A BC
D

A

C

B



BPT bound:

⇤

Proof:
Construct the largest square correctible region
by adding ‘onion’ rings. A

B1 B2

Largest square region d2

Decompose the lattice as in Fig 2. 

X Y

ZI(X : R) = S(X) + S(R)� S(XR) = 0

   and     are correctable

S(Y ) + S(R)� S(Y R) = 0

X Y

Fig 2

Sum the two and use subadditivity to get

S(R)  S(Z)

Take identity state on code space
S(R) = k log(2) S(Z)  cn/d2and ) kd2  cn

(1� c
n�

d
log

d

n�
)kd2  c0n`4



BPT bound:

⇤

Proof:
Construct the largest square correctible region
by adding ‘onion’ rings. A

B1 B2

Largest square region d2

Decompose the lattice as in Fig 2. 

X Y

ZI(X : R) = S(X) + S(R)� S(XR) = 0

   and     are correctable

S(Y ) + S(R)� S(Y R) = 0

X Y

Fig 2

Sum the two and use subadditivity to get

S(R)  S(Z)

Take identity state on code space
S(R) = k log(2) S(Z)  cn/d2and ) kd2  cn

(1� c
n�

d
log

d

n�
)kd2  c0n`4

Need (iii)=(iv)

Continuity of mutual information



EXAMPLES
Perturbations of commuting projector codes

Follows from the stability of topological order and 
Lieb-Robinson bounds

(i)



EXAMPLES
Perturbations of commuting projector codes

Follows from the stability of topological order and 
Lieb-Robinson bounds

MERA codes 

(i)

(ii)



MERA CODES

“Disentangling” unitary

Isometry

Logical space

Physical space

=

=



MERA MODEL

“Disentangling” unitary

Isometry

Logical space

Physical space

=

=

|⇢si = W1W2 · · ·Ws|�(s)i |�(s)i 2 Hs

The MERA circuit encodes the subspace      into      as Hs H0

Cs ⇢ Hs



MERA MODEL

Local operators get mapped to local operators!



MERA MODEL

Local operators get mapped to local operators!

h⇢s|Os|�si = h⇢s+1|�s+1
s (Os)|�s+1i

O

�(O) is a quantum channel in the Heisenberg picture

�n(O) ⇡ 1tr[⇢O] Exponentially fast in n.



Definition (information-disturbance tradeoff):

1

9
�`(A)2  sup

⇢ABCR

B(⇢ACR, ⇢A ⌦ ⇢CR)  2�`(A)

inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR) = inf
RAB

B

sup
⇢ABCR

B(RAB
B (⇢BCR), ⇢ABCR)

AQEC?

More familiar distance measure 2B2(⇢,�)  ||⇢� �||1  2
p
2B(⇢,�)

To show the existence of a good local recovery map, we need to bound:

||⇢A ⌦ ⇢CR � ⇢ACR||1 is small

�`(A) := inf
!A

sup
⇢ABCR

B(!A ⌦ ⇢CR, ⇢ACR)

Proof is very similar to showing 
decay of correlations



RESULT

“Disentangling” unitary

Isometry

Logical space

Physical space

=Proof is similar to that for decay of 
correlations in MERA

||RAB
B (⇢BCR)� ⇢ABCR||1  c

✓
|A|
|AB|

◆⌫/2



PROOF SKETCH

“Disentangling” unitary

Isometry

Logical space

Physical space

=

||⇢A ⌦ ⇢CR � ⇢ACR||1 = sup
OACR

tr[OACR(⇢
A ⌦ ⇢CR � ⇢ACR)]

tr[OACR⇢] = tr[�s(OACR)⇢(s)] =
X

j

tr[�s(OAj)⌦ �s(OCRj)⇢(s)]

⇡
X

j

tr[1⌦ �s(OCRj)⇢(s)]tr[OAj�]



FURTHER RESULTS
Kd↵  cnTradeoff bound

Lieb-Robinson bound ||[OA, OB(t)]||  ||OA|| ||OB ||elog(vt)�d(A,B)/⇠

↵ = 0.63

↵ = 0.78 From uberholography



HOLOGRAPHY?

Useful toy model

Constructive connection b/w QEC and 
Holography?

Some properties not recovered 
(entanglement wedge hypothesis)

Possible access to dynamics



OPEN PROBLEMS

Approximate Eastin-Knill?

Decoding MERA codes / AQEC?

Further examples?

Dynamics or Fault tolerance?

Source-channel codes

Defining topological order with frustration


