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LOCAL RECOVERY MAPS

I⇢(A : C|B) = S(AB) + S(BC)� S(B)� S(ABC) � 0

I⇢(A : C|B) = 0 , RAB(⇢BC) = ⇢

RAB(�) = ⇢1/2AB⇢
�1/2
B �⇢�1/2

B ⇢1/2AB

Markov State

there exists a disentangling unitary on B. 

Petz map

Strong subadditivity (SSA):

Equality

⇢ = �j⇢ABL
j
⌦ ⇢BR

j C

P. Hayden, et. al., CMP 246 (2004)

M. Ohya and D. Petz, (2004)
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LOCAL RECOVERY MAPS
Approximately
Strengthening SSA:

I⇢(A : C|B) � �2 log2 F (⇢, RAB(⇢AB))

RAB(�) =

Z
dt�(t)⇢

1
2+it
AB ⇢

� 1
2�it

B �⇢
� 1

2+it
B ⇢

1
2�it
AB

Rotated Petz map

ABC are arbitrary

Is the map universal?
Is the conditional mutual information necessary?
Other properties of the map?

O. Fawzi and R. Renner, CMP 340 (2015)

M. Junge, et. al. arXiv:1509.07127
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APPLICATIONS
Shannon Theory and Entanglement theory
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MANY-BODY SETTING

For any A, and B shielding A:

A`

B

C

Exact recovery

I⇢(A : C|B) = 0

H = H⌦N
2
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HAMMERSLEY-CLIFFORD

   is the Gibbs state of a local 
commuting H

⇢ > 0

               is the ground state of a 
local commuting H

⇢ = | ih |

For any A, and B shielding A:

A`

B

C

Exact recovery

I⇢(A : C|B) = 0

H = H⌦N
2

W. Brown, D. Poulin,  arXiv:1206.0755
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HAMMERSLEY-CLIFFORD

   is the Gibbs state of a local 
commuting H

⇢ > 0

               is the ground state of a 
local commuting H

⇢ = | ih |

For any A, and B shielding A:

A`

B

C

Exact recovery

I⇢(A : C|B) = 0

Approximate recovery

For any A, and B shielding A: I⇢(A : C|B)  Ke�c`

   is the Gibbs state of a local non-commuting H⇢ > 0

    is the ground state of a gaped local non-commuting H⇢ = | ih |

H = H⌦N
2

W. Brown, D. Poulin,  arXiv:1206.0755

K. Kato, F Brandao,  arXiv:1609.06636
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AREA LAW

A`

Further consequences

B1

B2
B3

I(A : B1 · · ·Bn+1)� I(A : B1 · · ·Bn) = I(A : Bn+1|B1 · · ·Bn)

Decaying CMI provides a 
quantitative MI area law

Mutual info area law: I(A : Ac)  c|@A|
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Decaying CMI provides a 
quantitative MI area law
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Can also show: Small CMI implies efficient 
MPS/MPO representation!

Take-home message: CMI replaces Area Law, HC program 
replaces the area law conjecture
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AREA LAW

A`

Further consequences

B1

B2
B3

I(A : B1 · · ·Bn+1)� I(A : B1 · · ·Bn) = I(A : Bn+1|B1 · · ·Bn)

Decaying CMI provides a 
quantitative MI area law

Mutual info area law: I(A : Ac)  c|@A|

Can also show: Small CMI implies efficient 
MPS/MPO representation!

Take-home message: CMI replaces Area Law, HC program 
replaces the area law conjecture

What about 
dynamics and 

state preparation?
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MONTE-CARLO SIMULATIONS
Want to evaluate: hQi =

X

x

⇡(x)Q(x) ⇡ / e��H

classical Gibbs state

Idea: - obtain a sample configuration from the distribution ⇡

- Set up a Markov chain with      as an approximate 
fixed point 

⇡
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⇡(x)Q(x) ⇡ / e��H

classical Gibbs state

Idea: - obtain a sample configuration from the distribution ⇡

- Set up a Markov chain with      as an approximate 
fixed point 

⇡

Metropolis algorithm: (- start with random configuration)
- Flip a spin at random, calculate energy
- If energy decreased, accept the flip
- If energy increased, accept the flip with probability pflip = e���E

- Repeat until equilibrium is reached
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MONTE-CARLO SIMULATIONS
Want to evaluate: hQi =

X

x

⇡(x)Q(x) ⇡ / e��H

classical Gibbs state

Idea: - obtain a sample configuration from the distribution ⇡

- Set up a Markov chain with      as an approximate 
fixed point 

⇡

Metropolis algorithm: (- start with random configuration)
- Flip a spin at random, calculate energy
- If energy decreased, accept the flip
- If energy increased, accept the flip with probability pflip = e���E

- Repeat until equilibrium is reached Equilibrium?
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ANALYTIC RESULTS
Note: - Glauber dynamics (Metropolis) is modeled by a 

semigroup Pt = etL
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ANALYTIC RESULTS
Note: - Glauber dynamics (Metropolis) is modeled by a 

semigroup Pt = etL

Fundamental result for Glauber dynamics:

    has exponentially 
decaying correlations

     mixes in time     

 independent of boundary conditions in 2D

no intermediate mixing

Pt⇡ O(log(N))

 independent of specifics of the model

     is gapped   L
F. Martinelli, Lect. Prof. Theor. Stats , Springer

A. Guionnet, B. Zegarlinski, Sem. Prob., Springer 
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QUANTUM GIBBS SAMPLERS

Davies maps are another 
generalization of Glauber 
dynamics

Tt = etL

L =
X

j2⇤

(Rj@ � id)

Rj@ is the Petz recovery map!

Commuting Hamiltonian

MJK and K. Temme,  arXiv:1505.07811
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QUANTUM GIBBS SAMPLERS

Davies maps are another 
generalization of Glauber 
dynamics

Tt = etL

L =
X

j2⇤

(Rj@ � id)

Rj@ is the Petz recovery map!

Commuting Hamiltonian

The exists a partial extension of the 
statics = dynamics theorem

Non-commuting Hamiltonian

L =
X

j2⇤

(Rj@ � id)

Rj@ is the rotated Petz map!
no longer frustration-free
Theorem    does not hold
Davies maps are non-local

MJK and F. Brandao, CMP 344 (2016) 

MJK and K. Temme,  arXiv:1505.07811
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STATE PREPARATION
Based on : MJK, F. Brandao, arXiv:1609.07877 
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SETTING

Hamiltonian:

Lattice: ⇤

A

Gibbs states:

A ⇢ ⇤

hj

hZ = 0 for |Z| � K

Note:

is the Gibbs state 
restricted to A 

HA =
X

Z⇢A

hZ

⇢A = e��HA/Tr[e��HA ]

Superscript for domain of definition of Gibbs state, 
while subscript for partial trace. 
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THE MARKOV CONDITION
Uniform Markov:

A`

B

C

A B
B

C `

Any subset                        with     
shielding      from      in      , we 
have

X = ABC ⇢ ⇤ B
A C X

I⇢X (A : C|B)  �(`)

Recall: ⇢X = e��HX/Tr[e��HX ]

Also must hold for non-
contractible regions

⇤
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CORRELATIONS

⇤

A
B

Cov⇢(f, g) = |tr[⇢fg]� tr[⇢f ]tr[⇢g]|

Cov⇢X (f, g)  ✏(`)

`
C

Uniform Clustering:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

ABC `

Note: Uniform Clustering 
follows from uniform Gap

Tuesday, November 15, 16



if 

General

⇤

e��(HA+HB) = e��HA

e��HB

[HA, HB ] = 0

e��(H+V ) = OV e
��HO†

V

||OV ||  e�||V ||

Only works if    is local!  

V`

Commuting Hamiltonian

Non-commuting Hamiltonian

V

||OV �O`
V ||  c1e

�c2` ⌘ �(`)

LOCAL PERTURBATIONS

MB. Hastings, PRB 201102 (2007)
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⇤

V`

Uniform Markov
APPROXIMATIONS

I⇢X (A : C|B)  �(`)
A`

B

C

A
B `

C
Uniform clustering

Cov⇢X (f, g)  ✏(`)

Local perturbations

||e��(H+V ) �O`
V e

��HO`
V ||  c1e

�c2` ⌘ �(`)
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LOCAL INDISTINGUISHABILITY

⇤

Cov⇢X (f, g)  ✏(`)

Result 1:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

Any subset                        with     
shielding      from      in      , if     is 
uniformly clustering, 

X = ABC ⇢ ⇤ B
A C X

A`

B

C
⇢

Consequence: Efficient evaluation of local expectation values

hOAi = tr[⇢⇤OA] ⇡ tr[⇢ABOA]

||trBC [⇢
ABC ]� trB [⇢

AB ]||1  c|AB|(✏(`) + �(`))
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LOCAL INDISTINGUISHABILITY

Cov⇢X (f, g)  ✏(`)

Result 1:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

Any subset                        with     
shielding      from      in      , if     is 
uniformly clustering, 

X = ABC ⇢ ⇤ B
A C X

C
⇢

Proof idea:

Remove pieces of the 
boundary of     one by oneB

A`

B

telescopic sum

Bound each term ||trBC [⇢
Xj+1 � ⇢Xj ]||1 ⇡ sup

gA
|tr[gA(O`

j⇢
XjO`,†

j � ⇢Xj ]|

||trBC [⇢
X � ⇢AB ⌦ ⇢C ]||1 

X

j

||trBC [⇢
Xj+1 � ⇢Xj ]||1

= Cov⇢Xj (gA, O
`,†
j O`

j)

||trBC [⇢
ABC ]� trB [⇢

AB ]||1  c|AB|(✏(`) + �(`))
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STATE PREPARATION

Cov⇢X (f, g)  ✏(`)

Main Result:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

If     is uniformly clustering and uniformly Markov, then there 
exists a depth         circuit of quantum channels                      of 
local range               , such that 

⇢

D + 1 F = FD+1 · · ·F1

O(log(L))

||F( )� ⇢||1  cLD(✏(`) + �(`) + �(`))

MJK, F. Brandao,  arXiv:1609.07877
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STATE PREPARATION

Cov⇢X (f, g)  ✏(`)

Main Result:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

If     is uniformly clustering and uniformly Markov, then there 
exists a depth         circuit of quantum channels                      of 
local range               , such that 

⇢

D + 1 F = FD+1 · · ·F1

Cov⇢X (f, g)  ✏(`)

Corollary:

Any subset                        with     
                   and

X = ABC ⇢ ⇤
supp(f) ⇢ A supp(g) ⇢ B

If     is uniformly clustering and uniformly Markov, then there 
exists a depth                     circuit of strictly local quantum 
channels                   , such that 

⇢

O(log(L))

F = FM · · ·F1

M = O(log(L))

||F( )� ⇢||1  cLD(✏(`) + �(`) + �(`))

||F( )� ⇢||1  cLD(✏(`) + �(`) + �(`))

MJK, F. Brandao,  arXiv:1609.07877
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PROOF OUTLINE
Step 1: Cover the lattice in concentric 

squares
⇤

A

A+

A� ⇢ A ⇢ A+

By the Markov condition`
A�

By Local indistinguishability
||trA[⇢

Ac
�

Ac ]� ⇢Ac ]||1  NA✏(`)

Local cpt map FA ⌘ R⇢
A+

trA

||R⇢
A+

(⇢Ac)� ⇢||1  NA(�(`) + �(`))

||FA(⇢
Ac

�)� ⇢||1  NA(✏(`) + �(`) + �(`))

If we can build the lattice       with holes, then we can 
reconstruct the original lattice.

Ac
�

Tuesday, November 15, 16



PROOF OUTLINE
Step 2: Break up the connecting regions⇤

By the Markov condition

By Local indistinguishability

Local cpt map

If we can build the lattice            , then we can reconstruct 
the original lattice.

B�

B+

B `

B� ⇢ B ⇢ B+

||R⇢
Ac

�

B+
(⇢

Ac
�

Bc )� ⇢A
c
� ||1  NB(�(`) + �(`))A�

||trB [⇢(A�B�)c ]� ⇢
Ac

�
Bc

�
]||1  NB✏(`)

FB ⌘ R⇢
Ac

�

B+
trB

||FBFA(⇢
(A�B�)c)� ⇢||1  (NA +NB)(✏(`) + �(`) + �(`))

(A�B�)
c
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PROOF OUTLINE
Step 3:

Project onto 

By locality 

C

⇢C

FC( ) = ⇢ctrC [ ]

Finally

The entire lattice can be built from a local circuit of cpt maps. 

||FCFBFA( )� ⇢||1  (NC +NA +NB)(✏(`) + �(`) + �(`))
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GROUND STATES

Proof ingredients (uniform) Local indistinguishability
(uniform) Markov condition
Local definition of states

For injective PEPS, proof can be reproduced exactly. 

We can show that the conditions of the theorem hold it the 
topological entanglement entropy is zero. 
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SPECTRAL GAP
We showed:

Define FA = etLA LA =
X

j

(FAi � id)

If                 had the same fixed point, then                           
is gaped, by the reverse detectability lemma. 
FA,FB ,FC L = LA + LB + LC

The same strategy works for proving gaps of parent 
Hamiltonians of injective PEPS

New strategy for proving the gap of the 2D AKLT model!!!

All about boundary conditions

||FCFBFA( )� ⇢||1  LDe�`/⇠

A. Anshu, et. al., Phys. Rev. B 93, 205142 (2016)
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OUTLOOK

Approximate Quantum error correction 

Renormalization Group, critical models, AdS/CFT

Tradeoff bounds

Spectral gap analysis, entanglement spectrum
New classification for many-body systems

New codes?
S. Flammia, J. Haah, MJK, I. Kim, arXiv:1610.06169 
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THANK YOU!
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