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Abstract. The persistence probability P(T) of a stochastic process X(t) is
defined as the probability that X does not change sign during a time interval of
length T'. Here it is pointed out that the asymptotic decay rate of P(T) can be
determined exactly for a one-parameter family of stationary Gaussian processes,
which are related to fractional Brownian motion (fBm). The argument consists
of two steps. First, the asymptotic behavior P(T') ~ T—(1=H) ig derived for fBm
with Hurst exponent H, a result which is argued to hold for any translationally
invariant, self-affine process with stationary increments whose variance increases
as |t — t'[*. Second, fBm is mapped onto a stationary process by going to
logarithmic time. Through a comparison theorem of Slepian, our result can be
used to obtain bounds on the persistence probability of more general processes.
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1. Introduction

| Consider a stationary Gaussian stochastic process X (t) with zero mean, unit
E variance and covariance function (X (£)X(0)) = f(t), f(0) = 1. We define the
‘ persistence probability

P(T | X(t)) = Prob[X(t) £0,0< ¢ < T (1.1)

as the probability that the process does not cross zero in a time interval of
length 7. In the cases of interest here P decays exponentially for large T,

P(T|X(t) ~e T, T — oo (1.2)
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The key question, then, is how to determine the decay rate 8 from the knowledge
of f(t). I.n full generality, this is a difficult and unsolved problem (4,5,17].
If X is Markovian, then f(t) = exp{—AJt|} and (see [17])

P(T|X()= %arcsine"\T, (1.3)

he.n.ce # = A. For non-Markovian processes, the persistence probability is ex-
plicitly known only in a few special cases [4,17]. Here I will show that for a
one-parameter family of processes X (¢) governed by the covariance functions

1 ;
fu(t) = cosh(Ht) — 5[25inh(t/2)}2H, H € (0,1), (1.4)

the persistence decay rate is given by the simple expression
g =1-H. (1.5)

In two special cases this relation is obvious. For H = 1/2, (1.4) reduces to
f1/2(t) = exp{—[t|/2}, hence X1/2 is Markovian and 61/, = A = 1/2. On the
other hand, for H = 1 we have f,(t) = 1, so X; (t) is the constant process with
61 = 0. The general relation (1.5) will be derived in Section 2 by mapping the
- Xg(T) to fractional Brownian motion [14] and exploiting the scale invariance
of the latter. In Section 3 it is shown how bounds on the persistence probability
for a larger class of processes can be obtained using (1.5) and a theorem due to
Slepian [17].

The relation (1.5) has been presented in a previous publication concerned
With the persistence of fluctuating interfaces [9]. The purpose of this note is to
give a more careful and critical derivation, and to make the result available to
a probabilistic audience. The paper contains no mathematical proofs, and thus
1ts statements should be regarded as (hopefully plausible) conjectures. Rigorous
versions of the arguments would be most welcome.

2. Fractional Brownian motion

2.1. Definition and basic properties

' Fractional Brownian motion By (s) is a Gaussian process with stationary
increments of mean zero and variance

([Br(s) = Bu(s)|*) = |s — &' (2.1)

where H. € (0,1) is the Hurst ezponent [13,14]. Since the process is invariant
under shifts By (s) — B (s) + const, it is convenient to fix its value at s — 0,

By (0) =0. (2.2)
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For H = 1/2, By (s) is Markovian and reduces to the standard Wiener process.
Fractional Brownian motions with H # 1/2 arise naturally in the Markovian
description of spatially extended systems, where the dynamics at a fixed point
in space becomes non-Markovian due to the coupling to the neighborhood. For
example, Bj/4(s) describes the fluctuations of certain one-dimensional inter-
faces [9] or harnesses [18] driven by Gaussian noise.

In contrast to the processes considered in Section 1, By (s) is not stationary.
The definition of the persistence probability therefore must contain two time

arguments,
PH(So,Sl) EPI‘Ob[BH(S) #0,0< 5y <S<Sl]. (23)

For the Wiener process By /3 (s) a simple calculation yields the explicit expression

2
Pi/2(S0, 1) = = arcsin [\/s0 /sl} . (2.4)
Fractional Brownian motion is self-affine [13], i.e. the process is statistically
invariant under the rescaling

By (s) = b= By (bs) (2.5)

where b > 0 is an arbitrary scale factor. Consequently the persistence probabil-
ity can depend only on the ratio of the two time arguments,

P (S0, 51) = Fr(S1/S0), (26)

as is illustrated by the result (2.4) for the Markovian case. By definition Fi (1) =
1. Below I will argue that for general H

Py (So,51) ~ (So/S)YH, 81> Sp. (2.7)

While this result does not seem to be rigorously established, heuristic arguments
have been presented in several papers [7,8]. The derivation given in the following
section appears to be simpler and more transparent than earlier versions.

2.2. Geometry of zero crossings

The power law dependence of the variance (2.1) on the time increment im-
plies that the set of zero crossings of By (s) has Hausdorff dimension [1,3,13,15]

Dy=1-H. (2.8)

Usually this is taken to imply that the number N(e, L) of intervals of size
required to cover the zero crossings in [0, L] behaves as

N(e,L) ~ (L/e)*~H (2.9)
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for e — 0. When viewed at infinite resolution, the number of zero crossings in
any finite interval is infinite. However, since we are interested in the persistence
probability at large times, that is, the occurrence of large gaps between sub-
sequent crossings, a fixed finite resolution scale e suffices [2]. Due to the scale
invariance property (2.5) the relation (2.9) holds equally well for fixed ¢ and
L, and determines then the expected (finite!) number of coarse-grained zero
crossings which can be distinguished at this resolution.

Let us therefore chose € and L with L/e > 1, and ask how the number
Ns (g, L) of gaps of sizes exceeding ¢ depends on ¢. The answer is given by a,
simple renormalization argument. Initially we have a total of M = L/e covering
intervals, a number N = (L/e)P# of which contain zero crossings, while the
remaining M — N intervals are empty. Now we double the resolution scale,
€ — 2¢e, by merging subsequent pairs of covering intervals. When both intervals
of length ¢ are empty (filled), the resulting interval of length 2e will be empty
(filled). If these were the only possibilities, the number of filled intervals would
be halved, whereas in fact N(2¢,L) = 2=P#N(e, L) > (1/2)N(e, L). The excess
of filled intervals at scale 2¢ comes from pairs of intervals at scale € in which a
filled interval sits next to an empty one. These pairs are located at the edges of
sequences of empty intervals, that is, at the edges of gaps larger than . Since
each gap has two edges, the number of such large gaps can be estimated as

Ns(e,L) = (2= Pr+D) _ 9= N(e, L) ~ (L/e)'H. (2.10)

The probability of finding a gap of size larger than € is proportional to e~(1—#)
in agreement with (2.7). Note that the argument suggests a general relation
between the Hausdorff dimension and the distribution of gap sizes for self-similar
sets on the line, which can be easily verified for the standard Cantor set [13].

The derivation relies on two properties of By (s): its scale invariance (2.5),
and the invariance of the increment statistics (2.1) under translations in time
(the increments are homogeneous [1]). Together these two features imply the
self-similarity and translational invariance of the set of zero crossings. In con-
trast, the Gaussian character of the process is not important. The power law
(2.7) should therefore be valid also for non-Gaussian, self-affine, translationally
invariant processes with Hurst exponent H. There is some numerical evidence
in support of this conjecture [7,16]. On the other hand, (2.7) generally fails for
Gaussian, self-similar processes which are not translationally invariant in time,
such as “deformed” fractional Brownian motions defined by

(Br(s) = Bu(s)I*) = ar(s/s')|s = o' [ (2.11)

with some positive, bounded function ay. The factor ag(s/s') does not affect
the scaling symmetry (2.5) but it clearly destroys the translational invariance
of the set of level crossings. Processes of this kind arise in the dynamics of
fluctuating interfaces starting from a flat initial condition [9], see Section 3.
Another example is the Riemann — Liouville version of fractional Brownian mo-
tion [10,14].
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2.3. The logarithmic time transformation

It remains to establish the relation between fractional Brownian motion and
the stationary process X (t) introduced in Section 1. To this end we first define,

for s > 0, the process
Yu(s) = s~ By (s), (2.12)

which has zero mean, unit variance, and the covariance function

g =3 ()" (5) -5 -5

s
Since this depends only on the ratio s/s’, the process Yy (s) becomes stationary
by passing to logarithmic time ¢ = Ins [6,11,12]. Defining

Xg(t) = YH(et) (2.14)

2H
. (2.13)

the covariance (2.13) therefore reduces to (1.4), and the persistence probability
of X (t) becomes, using (2.6) and (2.7),

P(T\Xx(t) = Fg(e') ~e 08T T 5 oo, (2.15)

establishing our main result (1.5). In the Markovian case, H = 1/2, inserting
the expression (2.4) in (2.15) yields (1.3).

3. Applications

The usefulness of a relation like (1.5) lies in a comparison theorem due to
Slepian (Theorem 1 of [17]), which states that for two processes X, Y with
covariance functions f(t), g(t), where f(t) > g(t) in some interval 0 <t < To,
the corresponding persistence probabilities satisfy P(T | X (¢)) > P(T | Y(t?)
for 0 < T < Ty. If Ty = oo, this yields an inequality between the asymptotic
persistence decay rates of the two processes. . ‘

Slepian’s theorem is particularly powerful if the two covariance functions
have the same type of singularity near ¢ = 0, because then both upper and
lower bounds on the persistence of one process can be obtained in terms of
the persistence of the other [17]. Following Slepian we define the class a of a
covariance function f(t) to be the leading power in an expansion around t = 0,

7(t) = 1= Clt™ + ollt]). (3.1)

From (1.4) we obtain a = 2H and C' = 1/2 for the covariance function fg(t).
For the application of the comparison theorem it is also useful tq know the‘
behavior of f(t) for large t. We will assume an exponential decay with rate A,

ft) ~e™, t— 0. (3.2)
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The decay rate of fr(t) is given by

Ag = min[H,1 - H]. (3.3)

Now let f(t) be a monotonically decreasing covariance function of class a €
(0,2), with known values of the amplitude of the leading term in the short time
expansion (3.1), C, and the asymptotic decay rate A. It is always possible to
find scale factors by, and byax such that

foz/?(bmaxt) S f(t) S fcv/?(bmint) (34)

for all ¢. Using (1.5), the unknown decay rate § of the Gaussian process governed
by f(t) is then bounded by

bmin (1 — @/2) €0 < bmax(1 — a/2). (3.5)

To establish that (3.4) holds for all times the whole function f(t) has to be
examined. However simple bounds on bpnin and bmax can be obtained using
the short and long time asymptotics of f. Comparing (3.1) and (3.2) to the
corresponding behavior of fx(t) one finds

bmax > max[\/ g, (2C)Y/2H],

bmin < min[A/Ag, (20)1/2H), (3.6)

and with some luck these inequalities may be satisfied as equalities.
_ In [9] this method was applied to the one-parameter family of processes
Xu(t) governed by the covariance function

fr(t) = [cosh(t/2)]*H — |sinh(t/2)[*, H € (0,1), (3.7)

which is the logarithmic time version of a deformed fractional Brownian motion
as given by (2.11), with the amplitude function

22H—1(1 4 $2H) _ (1 + :E)QH

|1 — z2H , an(0) =221 ap(1) =1. (3.8)

CLH(IB) =14+

For 0 < H < 0.1366... the bound

. 1— H)?
QHZ%

(3.9)
was established for the decay rate of P(T | Xy(t)), which illustrates the dra-
matic reduction of the persistence for small H due to the innocuous factor ag
in (2.11): while the decay rate for Xy tends to unity for H — 0, the bound
(3.9) forces 8y to diverge in this limit. This can also be read off directly from
the expression (3.7) for the covariance function, which vanishes for any nonzero
t when H — 0.
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Abstract. We consider n particles evolving as asymmetric random walks in the
lattice Z¢ with an exclusion rule that allows at most one particle per site. For
two subsets A, B of Z¢ with n elements, denote by p;(4, B) the probability for
the system being at time ¢ at B if it started from A. We prove that there exists
a universal constant C = C(d,n) such that p,(4,B) < Ct™"%/2. In the case
of mean zero gradient processes we obtain Gaussian estimates with logarithmic
corrections of the off-diagonal terms.
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1. Introduction

One of the first questions in the study of Markov processes is the investigation
of the rates of convergence to equilibrium. Several tools have been developed in
this respect in these last years and among them estimates for the spectral gap
of the generator of reversible processes and logarithmic Sobolev inequalities.

In the context of conservative interacting particle processes, a spectral gap
for the generator of the symmetric simple exclusion process restricted to a finite
cube has been obtained by Quastel [12], see also [5]. Lu and Yau [11] introduced
a general method to prove a spectral gap for conservative and non conservative
dynamics and applied the method to Kawasaki dynamics with mixing condi-
tions. Landim, Sethuraman and Varadhan [9] applied Lu and Yau’s method
to zero range dynamics, where the spins are unbounded. On the other hand,
recently Yau [13,14] proved the logarithmic Sobolev inequality for generalized
exclusion processes and Kawasaki dynamics with strong mixing conditions.




