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Die Form ist tiberall dieselbe, und muss es auch,
denn ein Geist ist, der sie denkt.’
Johann Wilhelm Ritter

1 Introduction

The emergence of regular spatial patterns from inanimate natural processes
has been a source of fascination and wonder since the beginnings of scien-
tific exploration. A quantitative understanding of the mechanisms underlying
pattern formation is a rather recent achievement, which has been possible
through a strong concerted research effort in nonlinear physics and mathe-
matics during the past two or three decades. This, by now classic, body of
work [1] has been mostly concerned with pattern formation phenomena in
macroscopic systems, such as hydrodynamic instabilities and chemical oscil-
lations. More recently, patterns in granular materials such as sand ripples
have also been addressed from related points of view [2, 3].

The focus of the present contribution is on submicron-scale patterns
like mounds, ripples and step bunches, which form on solid surfaces under
nonequilibrium conditions. This subject differs from macroscopic pattern for-
mation in that (i) the visualization of the patterns of interest requires ad-
vanced microscopy techniques, notably scanning probe microscopes, and (ii)
the formation of the patterns often relies on specific atomic processes, which
must be analyzed in detail to reach quantitative agreement between theory
and experiment [4]. Nevertheless a phenomenological continuum approach to
pattern formation at solid surfaces has been developed, to some extent in
analogy to the established macroscopic theories of pattern formation. Such
an approach has proven to be useful, because it allows for a compact, unified
description of a variety of mechanisms, as well as for the efficient analytical
or numerical modeling of global aspects of the surface morphology.

* To appear in Collective Dynamics of Nonlinear and Disordered Systems, ed. by
G. Radons, P. Hiussler and W. Just (Springer, Berlin 2004).

2 The shape is the same everywhere, as it has to be, because it is conceived by one
mind.
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The purpose of this article is to provide an elementary introduction to
the continuum approach. The article is based on lectures on pattern forma-
tion during epitaxial growth and erosion, which were delivered jointly with
Thomas Michely. In addition to the topics covered in these lectures, phenom-
ena related to surface electromigration and steering (the deflection of the
trajectories of depositing atoms due to the attraction by the growing film
surface) will be included here. The lectures also addressed atomistic aspects
of growth and erosion, and the detailed relationship between the atomistic
and continuum viewpoints. As extensive recent reviews on these issues are
available elsewhere [4, 5, 6, 7], they will be treated only briefly here. We
further emphasize that we are concerned only with kinetically (rather than
energetically) driven morphological instabilities. This excludes the formation
of hill-and-valley structures at thermodynamically unstable surfaces, as well
as the broad class of patterns which form in heteroepitaxial growth due to the
strain caused by the lattice mismatch between the substrate and the growing
film [6, 7, 8].

The basic instability mechanisms are described in the next section. Section
3 discusses the emergence of the characteristic length scale of the patterns in
the early time regime, while in Sect. 4 the nonlinear, late time evolution is
discussed. Experimental examples are presented as appropriate to illustrate
the theoretical concepts.

2 Instability Mechanisms

The basis of the continuum theory is the description of the surface mor-
phology in terms of the height function h, which gives the surface position
z = h(r,t) above a point r = (z,y) in the substrate plane at time ¢. The
height function satisfies an evolution equation of the general form
% = F(Vh,V?h,..), (1)
where the function F must be chosen appropriately to encode the processes
that contribute to the morphological evolution. It depends on the derivatives
of h but is independent of the height itself, because the evolution is invariant
under constant shifts of the reference plane, h — h+C. Moreover, the function
F is constructed such that the evolution equation always admits solutions
corresponding to a flat, featureless surface, either parallel to the reference
plane, or, more generally, inclined relative to the reference plane with a tilt
vector m. In growth and erosion processes the mean height of the flat surface
grows or recedes with some velocity v. The general flat solution of (1) is
therefore of the form

ho(r,t) =m-r +ovt. (2)

The emergence of a pattern on the surface is signalled by the instability of the
flat solution (2). In the following subsections, the leading order contributions
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to F corresponding to various nonequilibrium processes will be derived, and
the conditions for morphological instability will be explored.

2.1 Epitaxial Growth

In epitaxial growth from an atomic or molecular beam, atoms arrive at the
surface at a rate set by the deposition flux F. They diffuse as adatoms over
the atomically flat terraces and are incorporated into the crystal at steps
of monoatomic height. As each step separates an upper and a lower atomic
terrace, the incorporation of atoms can occur either from above or from be-
low. Using field ion microscopy, Ehrlich and Hudda discovered in 1966 that
diffusing adatoms tend to be reflected when they approach a descending step
from above [9]. This implies that incorporation into steps is typically more
facile from the lower terrace, and that interlayer transport, which involves
step crossing, is reduced compared to the transport within one atomic layer.
The corresponding potential energy landscape experienced by the adatom is
illustrated in Fig. 1.

Fig. 1. The upper part of the figure shows the descent of adatoms (shaded) from
an island. The adatom on the right descends through hopping, while the adatom
on the left descends by exchanging its position with a step atom. The lower part of
the figure illustrates the potential energy landscape experienced by the descending
adatom on the right; the potential minima are aligned with the corresponding
adsorption sites on the surface. The descent into the favorable position at the
step edge is hindered by an additional step edge energy barrier AFs. In the case
of hopping, the existence of an additional barrier can be attributed to the poor
coordination of the adatom in the transition state. The exchange process on the
left allows the descending adatom to maintain the coordination to its neighbors,
but it requires to move two atoms rather than just one

The Villain Instability

Jacques Villain first developed a continuum picture which shows that the
step edge barrier illustrated in Fig. 1 generically implies a morphological
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instability of the growing surface [10]. The essence of his argument is depicted
in Fig. 2. It shows a small bump on the surface which may have been formed
through a random fluctuation. The terraces on the slopes of the bump are
bounded by one descending and one ascending step, and are called wicinal
terraces. Because of the step edge barrier, the atoms deposited onto these
terraces attach preferentially to the ascending step. The figure shows how
this implies a net displacement of each adatom, between its point of impact
and its point of incorporation, which is, on average, in the uphill direction.
Within the continuum description, this implies a net mass current j(Vh),
which is a function of the local slope Vh. Assuming isotropy within the
reference plane, the current can be written in the form

3(Vh) = f(IVh[*) VA 3)

The current is uphill when f > 0.

Fig. 2. Mechanism underlying the Villain instability (see text)

It is intuitively plausible that an uphill current will cause the bump to
grow, and thus destabilize the surface. To analyze the instability in mathe-
matical terms, we write down a surface evolution equation of the form (1).
The mean film height grows at rate F', and the current j redistributes the de-
posited mass without changing the volume of the growing film. This implies
a continuum equation of conservation type,

% =-V-j+F, 4)
which is obviously satisfied by the flat solution (2) with v = F.

For the time being, we specialize to a horizontal surface [m = 0 in (2)]. To
probe the stability of the flat state, we insert the ansatz h(r,t) = Ft+¢e(r,t)
into (4) and expand to linear order in e. This yields

0 _
at
a diffusion equation with diffusion coefficient — f(0). A linear partial differen-

tial equation like (5) is most conveniently solved by Fourier transformation.
We make the ansatz for a perturbation of wavevector g,

e(r,t) = goeld ™t @t (6)

—f(0)V%e, (5)
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and insert it into (5). We find that the growth rate of the perturbation is
w(q) = f(0)|q|?. Thus the flat state is unstable (the perturbation grows)
when f(0) > 0. Through the uphill current that it causes, the step edge
barrier implies a mound instability of the growing surface. An experimental
example of the mound morphology caused by this effect is shown in Fig. 3
(see [11] for details).

Fig. 3. Scanning tunneling microscope images of a Pt(111) surface after deposition
of (a) 0.35 monolayers (ML), (b) 3 ML, (c¢) 12 ML and (d) 90 ML of platinum [11].
The growth temperature was 440 K and the deposition flux F = 7 x 1073 ML/s.
The triangular shape of the islands and mounds reflects the threefold symmetry of
the fec(111) surface. The image size is 3450 Ax 3450 A. Note that the different
images do not show the same sample location. Courtesy of Thomas Michely
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Vicinal Surfaces

It is straightforward to generalize the above stability analysis to surfaces of
nonzero tilt [m # 0 in (2)]. Without loss of generality, the tilt vector can
be chosen along the z-axis, i.e. m = (m,0) (see Fig. 4). We then find the
following anisotropic generalization of (5):

Oe d% d%

+V_La_y2 ) (7)

ot~ og?
where the coefficients are given by [12, 13]

v = ~[f(m?) + 2 (m?)m?] = ~dj/dm
vi = —f(m?) = —j(m)/m, ®)

and j(m) = mjf(m?) is the one-dimensional version of the current (3).
The growth rate of a general perturbation (6) is now found to be w(q) =
—v) g3 — v1q;- Thus the coefficients | and v, govern the stability of the
surface against perturbations parallel to the tilt (with wavenumber ¢,) and
perpendicular to the tilt (with wavenumber g, ), respectively.

A perturbation parallel to the tilt implies that the initially uniform spac-
ing between the surface steps becomes modulated. If such a perturbation is
amplified (i.e., if /| < 0), the surface undergoes a step bunching instability,
in which it breaks up into regions of high step density (the step bunches)
separated by wide flat terraces. A perturbation perpendicular to the step im-
plies that the individual steps become wavy, hence v; < 0 implies that the
surface undergoes a step meandering instability. Because steps cannot cross,
the meander can be accomodated only if the steps are deformed in phase
with each other.

/

Fig. 4. Sketch of a vicinal surface

To evaluate the coefficients 1| and v, we need to specify the function
f(Vh) in (3). We consider a vicinal surface of the staircase shape shown
in Fig. 4, which is composed entirely of vicinal terraces; it consists of steps
of a single sign, which run on average along the y—axis and form no closed
loops (i.e., adatom or vacancy islands). Such a surface shape is maintained
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during growth, if each adatom deposited onto a terrace is able to reach one
of the bordering steps before it encounters another adatom to form an island.
This is called the step flow growth mode, and it requires that the spacing [
between steps is small compared to the spacing Ip between islands formed
on a completely flat surface (the island spacing Ip is evident in Fig. 3a).

It is easy to determine the surface current (3) for a surface growing in
step flow mode. Let us assume for simplicity that the step edge barrier is
very strong, so that all adatoms have to attach to the upper step of a terrace.
Then each adatom travels a mean distance [/2 between its point of arrival
and the step, and the magnitude of the current is Fl/2. Since the surface
height gradient is |Vh| = a/l, where a denotes the thickness of an atomic
layer, we have that f(m?) = (F/2)a/m? and

. Fa
jm) = 5= ©)
Comparison with (8) shows that vy > 0 and v, < 0, hence the current stabi-
lizes the surface against step bunching but makes it unstable with respect to
step meandering. While the first conclusion was reached already by Schwoebel
and Shipsey [14] shortly after the discovery of the step edge barrier by Ehrlich
and Hudda, the step meandering instability was predicted only much later,
in 1990, by Bales and Zangwill [15]. Both these works relied on the model
of step motion pioneered by Burton, Cabrera and Frank (BCF) [16], rather
than on the continuum viewpoint presented here.

A detailed experimental study of growth-induced step meandering on cop-
per surfaces vicinal to Cu(100) has been presented by Ernst and collabora-
tors [17]; examples of the observed morphologies are shown in Fig. 5. The
quantitative analysis of the patterns revealed, however, that the underlying
mechanism in this case is not the one proposed by Bales and Zangwill. In-
stead, the meander is caused by the one-dimensional analogue of the Villain
instability acting on the individual steps [18, 19, 20, 21]. The one-dimensional
counterpart of the step edge barrier illustrated in Fig. 1 is an additional en-
ergy barrier which prevents atoms diffusing along a step edge from crossing
kinks [22]. We will return to this issue below in Sect. 3.

2.2 Steering

In theories of epitaxial growth, it is usually assumed that the atoms arrive
at the surface randomly and uniformly, without any dependence on the local
surface morphology. The deposition flux could therefore be represented by a
constant term F in (4). However, this assumption is not strictly true, because
an atom approaching the surface feels the attractive force from the substrate
atoms, which tends to deflect its trajectory away from a straight line. This
effect is called steering, and it is well documented in molecular dynamics
simulations [23, 24, 25]. The deflection becomes more pronounced the lower



8 Joachim Krug

Fig. 5. Scanning tunneling microscope images of step meandering on copper sur-
faces vicinal to Cu(100) [17]. Left panel: Cu(1,1,17) surface after deposition of 18
ML of Cu at 280 K with flux F' = 5x 102 ML/s. The image size is 1000 A x 1000 A.
Right panel: Cu(0,2,24) surface after deposition of 20 ML at 250 K with flux
F = 3 x 107% ML/s; image size is 1300 A x 1300 A (from [17]). The mean step
orientation is along the close—packed direction for the Cu(1,1,17) surface, and runs
at 45° to the close—packed direction for the Cu(2,2,24) surface. Courtesy of Hans-
Joachim Ernst

the kinetic energy of the incident atom, i.e., the lower the beam temperature.
Experimentally, strong effects of steering have been observed in epitaxial
growth of copper, when deposition occurs at near grazing incidence (the atom
trajectories follow an angle of 80° from the surface normal) [26]. In this
geometry steering implies an enhanced flux onto the top of islands near the
ascending step, which leads to elongated island shapes and ripples. The same
effect can be shown to induce step bunching on vicinal surfaces [25, 27].

Although steering affects the deposited atoms before they become adatoms,
the consequences are rather similar to those of an uphill current along the
surface, as it would be generated by a step edge barrier (Sect. 2.1) [25].
This idea was implemented already more than a decade ago in a simple one-
dimensional growth model, where it leads to the formation of a morphology
of well-separated columns [28].

In a continuum picture, in which morphological details such as steps and
islands are ignored, the destabilizing effect of steering can be represented as
in Fig. 6. There it is assumed that the trajectories are deflected abruptly
towards the surface normal as soon as the atoms come within a distance §
from the surface. The flux that reaches a portion of the surface is then the
flux that is incident on the “virtual surface” indicated by the dashed line in
Fig. 6, which is obtained by moving the original surface by a distance ¢ along
its normal. For a surface morphology with a typical radius of curvature R,
this implies an excess flux of order F'(§/R) at the hilltops and a corresponding



Kinetic Pattern Formation at Solid Surfaces 9

Fig. 6. Illustration of the destabilizing effect of steering during growth. In this
simplified picture, it is assumed that depositing atoms follow straight vertical tra-
jectories until they are within a distance é from the surface, at which point they
are abruptly deflected in the direction of the surface normal. It is evident that this
implies a larger flux to hilltops than to valleys

reduction of the flux in the valleys. The flux becomes curvature dependent in
a way that destabilizes the flat surface.

For a one-dimensional geometry, the effect can be described by the con-
tinuum equation

oh 1 o2h
~ —F_F il
ot O+ (9h/02)7 7 022

= F(1 + k), (10)

where k is precisely the curvature of the curve h(z,t). Equation (10) was
derived in [29, 30] based on the picture illustrated in Fig. 6, however with a
different interpretation: The scale § was taken to be the size of the deposited
particles, and the instability was related to the columnar microstructure of
thin films grown at low temperatures. For small deviations e(z,t) from the
flat surface, (10) reduces to 0e/0t = —F§0%c/dx?, and similarly in two di-
mensions ¢ /0t = —F§V2¢, which is the same as (5) in the case of the Villain
instability. A continuum equation with such a destabilizing term attributed
to steering was proposed in [31] to describe the formation of mound-like
structures in the growth of amorphous metal films.

2.3 Erosion by Ion Beams

It has been known for a long time that the erosion of a solid surface by
ion bombardment gives rise to a variety of patterns such as pits and ripples
[32, 33]. While much of the early results concerned amorphous solids, recent
work has considered the erosion of single crystal metal surfaces [34, 35, 36, 37,
38, 39]. As an example, Fig. 7 shows the evolution of erosion pits during the
bombardment of a Pt(111) surface with Xe™ ions [34, 35]. The mechanism
responsible for the formation of patterns like this will be described next,
and we return to the case of amorphous surfaces in the second part of this
subsection.
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Fig. 7. Scanning tunneling microscope images of pit formation on Pt(111) by ero-
sion with 1keV Xe* ions at 650 K. The amount of removed material is (a) 0.26 ML,
(b) 6.2ML and (c) 454 ML. The topograph size is 1600 Ax 1610 A. Courtesy of
Thomas Michely

e

Erosion as Negative Growth

Evidently the shape of the pits seen in Fig. 7 is quite similar to an inverted
version of the mounds in Fig. 3. Indeed, in the regime of interest here, the
erosion process can be described in close analogy to epitaxial growth. To
understand why this is so, we need to consider in some detail the atomic
processes involved (see Fig. 8); this discussion is valid at not too low tem-
peratures, above 20% — 30% of the melting temperature [35]. The net effect
of an ion impact on the surface morphology is the creation of a few sur-
face vacancies and adatoms. As these are created in close spatial vicinity,
the recombination of vacancies and adatoms takes place rapidly, leaving a
few excess surface vacancies behind to account for those atoms which have
been sputtered away®. On intermediate time scales, ion bombardment can
therefore be viewed as a process in which vacancies are “deposited” onto the
surface.

Once created, the surface vacancies diffuse over the terrace, as sketched
in Fig. 8b. When a vacancy encounters a descending step edge, it simply
disappears. In contrast, at an ascending step edge, it can pass to the higher
layer only if a step atom jumps into it. This requires not only that the step
atom moves to the lower layer, which may be impeded by a step edge barrier,
but it requires, first, that the step atom detaches from its lateral neighbors.
A surface vacancy is therefore subject to an additional step edge barrier even
when no such barrier exists for adatom diffusion [39]. This implies that the
Villain instability should be generically present in ion beam erosion, and many
of the concepts developed in Sect. 2.1 carry over to the erosion of crystalline

3 It is also possible that the number of adatoms is larger than the number of
surface vacancies, leading to net growth induced by ion bombardment, at the
expense of the creation of bulk vacancies [40].
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Fig. 8. Schematic of atomic processes in erosion. (a) An ion, indicated by the large
arrow, penetrates into the solid and causes the material in the region enclosed by
the dashed line to melt. After recrystallization of the melted region, the net effect
of the ion impact is the creation of a bulk vacancy, three surface vacancies and two
adatoms. Two atoms are sputtered away. (b) Intralayer and interlayer transport of
surface vacancies. The surface vacancy on the right passes to the next higher layer
when the shaded atom jumps into it

surfaces, however with the additional complication that one is dealing with
currents of two diffusing species, adatoms and vacancies [35].

The Bradley-Harper Instability

A different mechanism for pattern formation by ion bombardment was pro-
posed by Bradley and Harper to account for the numerous observations of
sputter-induced ripple formation on amorphous surfaces [41]. The mechanism
is based on a curvature dependence of the sputtering yield Y, the number of
sputtered atoms per incident ion, and is, in this sense, similar to the growth
instability due to steering discussed in Sect. 2.2. Within Sigmund’s theory of
sputtering [42], it is assumed that the energy deposited by the penetrating
ion is distributed according to a Gaussian with an elliptic shape, and the
sputtering yield is proportional to the deposited power density at the sur-
face. As shown in Fig. 9, this implies a larger sputtering yield in the valleys
than on the hilltops. A similar mechanism has been proposed to act on a
macroscopic scale in abrasive waterjet cutting [43].

Starting from Sigmund’s theory, Bradley and Harper computed the mor-
phology dependence of the sputtering yield to linear order in the surface
modulation. The ion beam is taken to impinge on the surface at an angle 8
from the normal. For 8 > 0 the horizontal projection of the ion beam singles
out a direction within the surface plane, which implies in-plane anisotropy
in the topography evolution, similar to the case of growth on vicinal surfaces
discussed in Sect. 2.1. Choosing the beam direction along the z-axis, the
leading terms of the evolution equation read [41]

oh dY, oh 8%h 8%h
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Fig. 9. Origin of the curvature dependence of the sputtering yield. Ions penetrating
the surface at positions A, B and C deposit their energy as indicated by the dashed
energy density contour lines. The energy deposited at B due to the ions incident
at A and C is larger in (a) than in (b), because the centers of the corresponding
ellipses are closer to the surface point B. Therefore the sputtering yield is larger in
a valley [(a)] than on a hilltop [(b)]

Here Y(0) denotes the sputtering yield for a flat (unmodulated) surface. The
second term on the right hand side describes the drift of surface features along
the z-axis, while the stability of the flat surface is determined by the signs of
the second derivative coefficients v and v, [compare to (7)]: An instability
occurs when at least one of the two coefficients is negative, and the type
of instability is determined by which of the negative coefficients is of larger
absolute magnitude. Near normal incidence both coefficients are negative, as
expected from Fig. 9, but near grazing incidence (§ — 90°) the instability
along the beam direction is overcompensated by the fact that the (exposed)
hilltops receive a larger ion flux than the valleys. Therefore |y > 0 and
v < 0 for near-grazing incidence, which implies ripples running parallel to
the beam direction. The ripple orientation rotates* at a critical angle 8., such
that ) < v, < 0 and the ripples run perpendicular to the beam direction
for 8 < .. This scenario is well documented experimentally [32, 33, 44], and
has also been observed in computer simulations [45].

2.4 Surface Electromigration

Surface electromigration is the biased motion of adatoms on the surface of a
current—carrying solid. For metal surfaces, the dominant microscopic mech-
anism is the momentum transfer to the adatom caused by the scattering of
conduction electrons (the wind force) [46, 47]; the direction of the electro-
migration force then coincides with the direction of electron flow. Much like

* In sputter erosion of crystalline surfaces, ripple rotation can also occur due to
the crystalline anisotropy [37].
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a flow of air or water causes the formation of ripples on a sand surface, the
mass flow induced by electromigration can give rise to patterns on the surface
of a solid [48]. Such patterns were first observed in 1938 on the surfaces of
burned-out tungsten filaments in incandescent lamps [49]. Recent experimen-
tal studies on the morphological effects of surface electromigration on silicon
have uncovered a whole zoo of patterns with a complicated temperature de-
pendence [50], but the microscopic coupling between the electric current and
the adatom motion is not clearly understood for this system.

A continuum description of the current-induced destabilization of a solid
surface in a one-dimensional geometry was presented by Frohberg and Adam
in 1975 [51]. Here we briefly describe the two-dimensional theory of [48], em-
phasizing the similarity to the growth instabilities discussed in Sect. 2.1, and
show how simple considerations explain some features of the experimentally
observed patterns. In the absence of growth and evaporation, the evolution
equation for the surface is given by the conservation law (4) with F = 0. In
contrast to the situation in Sect. 2.1, where the current j in (4) was induced
by the deposition flux in conjuction with the step edge barrier, here the mass
current along the surface is simply driven by the local electric field E. Hence
we can write

j=0(Vh)eZ*E , (12)

where ¢ is the adatom mobility, e is the unit charge and Z* denotes the
effective valence of the adatom, which contains the details of the microscopic
origin of the electromigration force. In the following we take Z* > 0 without
loss of generality.

The coupling between the electromigration current and the surface mor-
phology arises because of the slope dependence of the mobility o(Vh). We
expect that the mobility will be reduced in the presence of surface steps,
which are able to trap the adatoms; the mobility should therefore be a de-
creasing function of |Vh|. Assuming isotropy in the plane, the mobility can
then be expanded for small slopes in the form

o(Vh) = 0¢ — 01| Vh|? (13)

with o1 > 0. Inserting (13) into (12) and (4), the stability of the general flat
solution (2) with respect to a perturbation of the form (6) can be investigated.

The problem is similar to the stability analysis of the growing vicinal
surface in Sect. 2.1, but it is more complicated because we are now faced
with the interplay between two in-plane vectors, the tilt direction 7 and the
electric field direction E. This is reflected in the resulting expression for the
growth rate of a perturbation with wavevector g, which reads [48]

w(q) = —201(q - E)(gq - m). (14)

Thus the surface is unstable against perturbations which satisfy the condition
(¢- E)(g-m) <0.
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Fig. 10. Regions of unstable wavevectors (shaded) and most unstable direction
(dashed lines) for the morphological instability caused by surface electromigration
with different choices of the direction of the tilt vector m and the electric field
vector E

Most experiments on vicinal silicon surfaces have been limited to the sit-
uation where the electromigration force points either in the up-step direction
(E and m parallel) or in the down-step direction (E and m antiparallel). The
expression (14) implies stability for all ¢ in the former case, and instability
for all g in the latter. This is in agreement with the classic stability analysis
carried out by Stoyanov within a one-dimensional step model based on BCF
theory [52], which predicts a step-bunching instability when the force acts in
the down-step direction (see [63] for a generalized treatment). For surfaces
vicinal to Si(111), four different temperature regimes for electromigration-
induced step bunching have been identified [50]. In each regime step bunching
occurs either when the electric current is in the up-step or in the down-step di-
rection, but the stable and unstable directions interchange when going from
one regime to the next5. The step bunching mechanism first predicted by
Stoyanov [52], and reproduced by the continuum theory [48], seems to be
realized in the lowest temperature regime,

For general relative orientations of E and m, the expression (14) implies
that the stability depends on the direction of the perturbation wavevector
q (Fig. 10). In particular, when E and m are almost, but not quite paral-
lel, the unstable wavevectors accumulate in the direction perpendicular to m
(Fig. 10a). As was discussed in Sect. 2.1, a perturbation wave vector perpen-
dicular to m, i.e., parallel to the steps, is indicative of a step meandering
instability. Given that the local miscut typically displays some fluctuations
relative to the global miscut m, one may expect that step meandering per-
sists also when the global miscut is exactly parallel to the field direction.
Such a behavior has indeed been seen in Monte Carlo simulations [48].

The scenario is also qualitatively consistent with experimental observa-
tions for Si(111) in the second of the four temperature regimes mentioned

5 The dependence of the stability of the surface on the current direction is a clear
indication that a directional effect like electromigration must be involved, rather
than just thermal effects related to Ohmic heating.
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above, in which step meandering is found when the electric current is in the
down-step direction and step bunching occurs for an up-step current [50].
Experiments carried out with other relative orientations of E and m near
the down-step direction display patterns with wavevectors roughly between
the vectors perpendicular to E and m, as would be expected from (14) [54].
This interpretation of the experiments would imply, however, that the elec-
tromigration force is directed against the current in this temperature regime
(i-e. that the effective valence Z* in (12) is negative), which is known not to
be the case from other measurements [55]. The actual mechanism acting in
this temperature regime, as well as the origin of the additional transitions
occuring at higher temperature, remains largely unexplained at present.

3 Wavelength Selection in the Linear Regime

When observing a regular array of ripples or mounds on a surface, the first,
most obvious question to address concerns the origin of the characteristic
length scale of the pattern. In the initial stages of the morphological instabil-
ity, when the amplitude of modulation is small, this question can be answered
on the basis of the linearized version of the evolution equation (1). The linear
evolution equations derived in Sect. 2 do not select a characteristic wave-
length, because they favor the growth of perturbations of arbitrarily small
length scale: The growth rate w(q) of the perturbation (6) is a quadratic
function of g, which grows without bounds as |g| increases.

Wavelength selection therefore requires that the instability mechanisms
described in Sect. 2 are counteracted by a smoothening mechanism on short
length scales, which reduces the growth rate w(q) for large |q|. Smoothening
is generally driven by the increase of the surface free energy caused by the
modulation. According to the Gibbs-Thomson relation, the chemical poten-
tial near a curved surface is enhanced by an amount Ay = yx, where 7 is the
surface free energy and k is the curvature. The relaxation towards thermo-
dynamic equilibrium thus drives a mass transfer from the maxima (Ay > 0)
to the minima (Ayp < 0) of the topography. The smoothening mechanism
depends on the available kinetic pathways for mass transport, as was first
analyzed by Mullins in a continuum setting [56]. For the conditions of in-
terest here, the dominant smoothening mechanism is by surface diffusion.
The surface diffusion current is proportional to the gradient of the chemical
potential, and can thus be written in the form

Jsmooth = _UV('Y’"") ~ KV(Vz)h, (15)

where the small slope approximation k & —V2h has been used, o denotes
the adatom mobility [compare to (12)] and K = 0.

We illustrate the wavelength selection mechanism using the Villain insta-
bility as an example. Adding the smoothening current (15) in the divergence
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on the right hand side of (4) and linearizing around the horizontal, flat sur-
face, we now obtain the equation

% = —f(0)V% — K(V?)%, (16)
which leads to the wavenumber-dependent growth rate

w(g) = f(0)la|* - K|q* . (17)

This shows that the surface is stable (w < 0) against perturbations of
wavenumbers |g| > ¢. = 4/f(0)/K, while the amplification is maximal for
perturbations of wavenumber ¢* = ¢,/ V2. The corresponding wavelength

A =2n/q" =27/2K/f(0) (18)

will therefore dominate the morphology in the early stages of growth. Anal-
ogous considerations apply to the other instabilities discussed in Sect. 2.

In order for (18) to attain predictive power, it is necessary to express
the coefficients f(0) and K in terms of microscopic quantities. This problem
is discussed in detail elsewhere [4, 6, 57, 58]; here we only summarize the
main results. When the step edge barrier is large, the initial length scale in
mound growth is essentially determined by the spacing Ip of the submono-
layer islands which form during the growth of the first layer, and which act
as templates for the further evolution. This is the case in the growth experi-
ment on Pt(111) shown in Fig. 3, and it is the typical behavior observed in
metal homoepitaxy [4]. For weak barriers the continuum theory predicts that
A* > Ip, and that mound formation is delayed such that the pattern appears
only after the deposition of a large number of layers. This situation appears
to be realized in homoepitaxial growth on Ge(100) [59, 60]. In this case the
experimental measurement of the initial mound spacing can be used to infer
quantitative information about the magnitude of the step edge barrier; at
long times the mounds coarsen and steepen (see Sect. 4.1), which eventually
leads to epitaxial breakdown (the formation of an amorphous film).

For the growth-induced step meandering instability on vicinal Cu(100)
surfaces described in Sect. 2.1 (see Fig. 5), the quantitative analysis of the
meander wavelength has been used to distinguish between two possible in-
stability mechanisms, the Bales-Zangwill instability and the one-dimensional
(1D) Villain instability [17, 20, 21]. As will be explained below in Sect. 4.1, in
this case the meander wavelength does not change during growth, and there-
fore the experimentally observed wavelength of the fully developed pattern
can be determined by linear stability analysis. For the Bales-Zangwill instabil-
ity the meander wavelength A is predicted to scale with the deposition flux
as A, ~ F~1/2 while for the 1D Villain instability with strong kink rounding
barriers the initial wavelength is set by the spacing between one-dimensional
nuclei along the step, which scales as F~'/4. The latter is consistent with
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the experimentally observed flux dependence, while the former ist not [17].
Also the effective activation energy governing the temperature dependence
of A is markedly different for the two mechanisms, because in the case of
the Bales-Zangwill instability it involves energy barriers related to terrace
diffusion and step crossing, whereas the 1D Villain instability is governed by
step edge diffusion and kink crossing barriers. The assumption of the 1D Vil-
lain mechanism leads to a consistent description® of the experimental data,
and allows (along with additional experimental information) to estimate the
additional energy barrier for kink rounding [21, 22].

4 Scenarios of Nonlinear Evolution

Within the linearized theory, unstable modes grow exponentially according
to (6). Thus after a time of order w(q*)~! the modulation amplitude becomes
so large that the nonlinear terms in the evolution equation can no longer be
neglected. The nature of the subsequent evolution depends on the structure of
these nonlinear terms. A priori, several different scenarios are conceivable: (i)
The morphology may coarsen, in the sense that the characteristic wavelength
increases with time. (ii) The topography may evolve at fixed local slope (slope
selection) or it may steepen during evolution; steepening and coarsening may
occur together, or steepening proceeds at fixed wavelength. (iii) Finally, the
morphology may evolve in an irregular, chaotic fashion while locally retaining
the characteristic wavelength of the linear regime. All these possibilities can
be realized in the context of pattern formation at solid surfaces, and will be
described in the following subsections.

4.1 Coarsening

In many cases coarsening involves a power law increase of the characteristic
wavelength,
) ~ /% (19)

which defines the coarsening ezponent 1/z. At the same time the modulation
amplitude, measured e.g. through the surface width

w(t) = 4/ {(h — h)?) (20)

also increases as
w(t) ~t7 . (21)

In (20), the angular brackets refer to a spatial average and h(t) is the mean
height at time ¢t. The exponent 8 in (21) is the roughening ezponent. The

5 This statement applies to the case when the average step orientation is along the
close-packed direction (left panel of Fig. 5). The origin of the instability at the
open steps (right panel of Fig. 5) is presently not well understood [21].
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typical slope of the topography is of the order w/A. Thus coarsening occurs
at fixed slope if 8 = 1/z, while steepening occurs if 3 > 1/z. A special case
is steepening at fixed lateral length scale, 1/z =0 and 8 > 0.

Coarsening is a familiar notion in the kinetics of first order phase tran-
sitions, where it refers to the evolution of the domain structure of the
stable phases during phase separation [61]. Although we are here dealing
with structures that do not, properly speaking, approach a state of thermal
equilibrium, many of the concepts and methods developed in phase order-
ing kinetics can be, and have been, applied to kinetic surface instabilities
[62, 63, 64, 65, 66, 67, 68]. Some of the pertinent results will be summarized
below.

Coarsening of Mounds and Pits

The basic continuum model for the coarsening of mounds generated by the
Villain instability can be constructed from the ingredients introduced in
Sects. 2.1 and 3. We just need to specify the full slope dependence of the
growth-induced current (3) and write it together with the smoothening cur-
rent (15) on the right hand side of the evolution equation (4). The limiting
behaviors of the function f(m?) for small and large slopes have been deter-
mined already: For m — 0 it approaches a constant f(0) > 0, and for large m
it vanishes as 1/m? according to (9). A simple extrapolation formula which
connects these two limits is [69]

BRI 2

for a detailed justification and a discussion of the physical meaning of the
parameters f(0) and 1 we refer to [6, 57].

The form (9,22) implies that the uphill surface current remains nonzero
for arbitrary values of the slope; as a consequence, the mounds steepen indef-
initely. The mound slopes attain a finite limit only if f(m?) vanishes at some
selected slope m* [70, 71]. A simple functional form describing this situation
is

f(m?) = F(O)[1 — (m/m")?]. (23)

Once the current function f(m?) has been fixed, the full nonlinear evolu-
tion equation takes the form

% = -V-f(|VA*)Vh — K(V?)?h+ F . (24)

To understand mathematically why the morphology described by (24) coarsens,
it is useful to introduce the functional

CIA(r, 8)] = / dr (%(V2h)2+V(Vh)> , (25)
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where the slope potential V(Vh) is defined by

1 rlml?

vim) =~ [ duf(w (26)
0

for an arbitrary choice of f(m?). Using the evolution equation (25), it is a

simple matter to verify that [64, 65]

dc oh\?
E——/dr(a) <0. (27)

Thus £ acts as an effective “free energy” functional for this nonequilibrium
process, which is minimized during the evolution.

The two terms in the integrand of (25) describe different aspects of this
minimization: On the one hand, the value of the slope potential V should
be minimized locally; on the other hand, the square of the surface curvature
V2h should become small. The minimization of the slope potential drives the
process of slope selection. The potential has a minimum only if the function f
goes through zero at some nonzero slope; otherwise, V decreases indefinitely
with increasing |m|, and the attempt to minimize it leads to unbounded
steepening.

Within the continuum theory, the minimization of the surface curvature
term in (25) provides the driving force for coarsening. The coarsening behav-
ior therefore depends on how the curvature is distributed on the suface. In
this respect the two models defined by (22) and (23) differ: For the model (22)
without slope selection, the curvature is distributed evenly on the scale A of
the mounds, while for the model (23) with slope selection it is concentrated
in the edges separating adjacent facets at which the selected slope |m| = m*
is attained. The width of these edge regions introduces an additional length
into the problem, which invalidates naive dimensional analysis [61]. Based on
these observations, scaling argument can be developed [4, 5] which show that
the scaling exponents defined in (19,21) take the values 1/z =1/4, 8 = 1/2
for model (22) [62, 63] and 1/z = @ = 1/3 for model (23) [65]. For model (23)
a weak version of the inequality 1/z < 1/3 has been rigorously established
[72].

Additional features of the model which may affect the coarsening expo-
nents include in-plane anisotropy of the current function [which can then no
longer be written in the form (3)] [19, 64, 65, 71, 73], fluctuations due to
the shot noise in the deposition beam [74] and nonlinear terms which break
the h — —h symmetry of the evolution equation (24). In the latter case one
must distinguish between terms that also change the conserved nature of the
evolution equation [75] and those that do not [67, 76]. Terms of the first kind
lead to a significant speedup of coarsening, and will be discussed further in
Sect. 4.3.

Experimentally, coarsening mound morphologies have been observed for
a large number of homoepitaxial growth systems [4, 6]. The coarsening ex-
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Fig. 11. Left panel: Evolution of the lateral mound separation, determined from
the shape of the height-height correlation function, during growth of Pt on Pt(111)
at 440 K. Right panel: Evolution of the lateral pit size during ion erosion of Pt(111)
at 650 K. Courtesy of Thomas Michely

ponents typically fall into the range 1/6 < 1/z < 1/3. The growth of Pt on
Pt(111) is an exception: As is seen in Fig. 3 and demonstrated quantitatively
in Fig. 11, for this system the mound morphology evolves at constant lat-
eral length scale. At the same time the surface roughness increases with the
square root of the deposit thickness, leading to the scaling exponents 1/z = 0
and @ = 1/2 [11]. This behavior can be well described by a simple model for
the growth of a single mound which does not exchange mass with its neigh-
bors [4, 5, 77, 78]. The model provides a detailed prediction for the shape of
the individual mounds, which can be used to infer the value of the step edge
barrier [79].

In contrast to the growth at 440 K, the pit morphology formed during
ion erosion of Pt(111) at 650 K clearly coarsens, with a coarsening exponent
of 1/z = 0.30 £ 0.02 [34, 35] (see Figs. 7 and 11). This difference in behavior
shows that the microscopic mass transport process needed for coarsening, the
generation of step adatoms at kinks, becomes thermally activated between
440 and 650 K [4, 80]. Coarsening of surface structures formed by ion erosion
has also been reported for pits on Au(111) [36] and ripples on Cu(110) [38].

Coarsening in One Dimension

A detailed mathematical analysis of coarsening is possible for one-dimensional
evolution equations. In one dimension, the growth equation (24) with the cur-
rent function (23) becomes equivalent to the Cahn-Hilliard equation of phase
ordering kinetics [61]. For this system it was shown long ago by Langer that
the domain size grows logarithmically, A\ ~ Int [81]. Langers derivation is
based on the analysis of the stationary periodic solutions of the equation.
These periodic solutions are all linearly unstable, but the characteristic life-
time on which they decay increases exponentially with the wavelength, re-
flecting the exponential spatial decay of the interactions between the domain
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walls. During coarsening the system passes through a sequence of almost pe-
riodic configurations, and the time it spends in each is given by the lifetime
of the corresponding stationary solution. Inverting the relationship between
the lifetime and the wavelength thus yields the coarsening law.

Politi and Torcini have applied this approach to the one-dimensional ver-
sion of the surface evolution equation (24) with a generalization of the current
function (22), in which the current decays for large slopes as j(m) ~ |m|™7,
with v > 1 [68]. They find that 1/z = 1/4for 1 < v < 3 and 1/z =
(1 +~)/(1 + 5y) for v > 3. This is in contrast to the scaling arguments
employed in the two-dimensional case, which would predict that 1/z = 1/4
independent of 4. The reason for the discrepancy is that the different, com-
peting contributions which govern the growth of A and w, and which are
assumed in the scaling theory to be of a similar order of magnitude, may
precisely cancel, to leading order, in the one-dimensional case [6]. As a con-
sequence, the scaling arguments only give an upper bound on the coarsening
exponent.
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Fig. 12. Left panel: Time evolution of the collective step meander according to
(28) with p = 1/2. Right panel: When the evolution equation (28) is started with
an initial condition of wavelength Ao > 2\*, an additional meander appears; here
Ao = 2.8\"

One-dimensional growth equations appear naturally in the description of
the nonlinear evolution of vicinal surfaces undergoing the Bales-Zangwill in-
stability [82, 83, 84]. The linear stability analysis shows that the different
steps meander in phase in the early time regime [85]; within the continuum
theory of Sect. 2.1, this is reflected in the fact that, because | > 0 and
v < 0, the growth rate w(q) is maximal for perturbations with g, = 0.
Therefore a single, one-dimensional function z = ((y,t) is sufficient to de-
scribe the displacement of the common step profile from the flat straight
reference configuration ( = 0. A solvability condition arising from a multi-
scale expansion of the BCF equations for the problem yields an evolution
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equation of the form [84]

Ay n B
1+¢  (L+Q)H

G=-

Cuy ]
: (28)
T+Qr7

Y

where subscripts denote partial derivatives and A and B are positive con-
stants. The first term inside the curly brackets is destabilizing and propor-
tional to the deposition flux, while the second term is a one-dimensional
version of the stabilizing smoothening current introduced in (15). The ex-
pression inside the square brackets is the curvature of the step, and the term
multiplying the square brackets is a kind of mobility, which depends on the
dominant channel for mass transport; the exponent g = 1 when mass trans-
port is over the terraces (the coefficient B is then proportional to the adatom
diffusion coefficient on the terrace), and g = 1/2 when mass transport is
along the step (with B proportional to the step edge diffusion coefficient)
[83]. The geometric nonlinearities in (28) arise because, in contrast to (15),
here the shape gradient ¢, is not assumed to be small.

For the physically relevant values of y (more precisely, for y > —1/2) the
step patterns generated by (28) show an unbounded growth of the meander
amplitude as v/%, but no lateral coarsening (Fig. 12). This finding is consistent
with the experimental observation that the wavelength of the step meander
does not change during growth [17]. Asymptotically for large ¢, the equation
admits separable solutions of the form ((y,t) = v/t g(y), where the function
g(y) can be constructed to have any wavelength larger than a minimal value
Amin- Starting from an initial condition with small random fluctuations, the
wavelength of the pattern is determined by the maximum of the linear growth
rate, as explained in Sect. 3. In the notation of (28), the maximally unstable
wavelength is A* = 274/2B/A, and \* > Ay, for p > 0.2283. Patterns with
wavelengths larger than A* can be created by starting with an appropriate
initial condition; however the initially chosen wavelength A\g persists only up
to Ao =~ 2X\*, as for larger values an additional meander can grow between
the maxima and minima of the initial profile (Fig. 12).

In general, the presence or absence of coarsening for an evolution equa-
tion like (28) depends on the relationship between the wavelength A and the
amplitude A of its periodic stationary solutions: Coarsening requires that
d)\/dA > 0 [86]. This condition is satisfied in (28) for arbitrarily large A when
1 < —1/2[83]. A physical mechanism which changes the form of the nonlin-
earities in (28) such as to induce coarsening is the elastic interaction between
steps [87]. Somewhat surprisingly, it is not obvious whether a one-dimensional
surface evolution equation with stationary, fixed wavelength solutions which
neither coarsen nor steepen can be written down [86]; this question is of in-
terest in relation to sand ripples formed under an oscillatory flow of water
[88].
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Coarsening and Scaling of Step Bunches

A clear experimental example for power law coarsening is provided by the
electromigration-induced step bunching of Si(111), where the distance L be-
tween step bunches is found to increase with time as L ~ ¢/2 in two of
the temperature regimes mentioned in Sect. 2.4 [89]. This behavior has been
reproduced in Monte Carlo simulations [48] as well as in a step-dynamical
model based on BCF theory [90, 91]. In addition, the scaling relations

N~ W, Iy ~N7 (29)

connecting the number of steps in a bunch, N, the minimal distance between
steps in the bunch, l;hin, and the lateral width W of the bunch have been pro-
posed [90, 92, 91] and experimentally verified [93]. The minimal step distance
decreases with increasing N, because in a large bunch the steps are pushed
more strongly together against the repulsive step-step interaction. Depending
on the temperature regime, the values v = 0.60 = 0.04 and v = 0.68 £ 0.03
were obtained experimentally for Si(111) [93].

W L

Fig. 13. Characteristic length scales of a step bunch

In order of magnitude, I, ~ W/N, which yields the exponent identity
v =1—1/a. The steepening of the bunch with increasing size implies v > 0
and hence a > 1. Since the overall surface slope is fixed globally, we also
have L ~ N. It is important to note that W and L define two distinct lateral
length scales characterizing the bunch morphology (see Fig. 13). Introducing
a coarsening exponent 1/z through W ~ t/%, it follows that L ~ t®/#  which
grows faster than W when a > 1.

A unified framework for describing the scaling properties of step bunch
morphologies has recently been proposed by Pimpinelli and coworkers [94].
It is based on the continuum equation

2
oh B PR

5% 82 (m) — 2™ @|m| (30)
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for the one-dimensional surface profile h(z,t) perpendicular to the steps (in
the z-direction, see Fig. 4). Here m = 0h/0z is the slope in the z-direction”,
j(m) is the destabilizing surface current, and the second term on the right
hand side describes the smoothening of the vicinal surface by surface diffu-
sion, with K > 0 being proportional to the surface diffusion coefficient. For a
vicinal surface, the driving force for smoothening is the repulsive interaction
between the surface steps. The step-step repulsion is encoded in the exponent
n, which describes the decay of the interaction potential with step distance
l as [™™; for the most common type of entropic and elastic step-step inter-
actions, n = 2 [7]. The exponent k in (30) is related to the diffusion kinetics
on the vicinal surface®. If diffusion on the terraces is fast compared to the
attachment-detachment processes at the steps we have £ = 1, while in the
opposite limit k = 0 [95, 96].

In addition, it is assumed in [94] that the destabilizing current j(m) can be
represented by its leading order term in a gradient expansion, j(m) ~ Bm?,
where Bp > 0 to satisfy the condition dj/dm > 0 required for a linear
instability (compare to Sect. 2.1). Then the scaling exponents a and z can
be determined by requiring that (30) should be invariant under the scale
transformation

h(z,t) = b~ *h(bz,b*t) (31)

for an arbitrary scale factor b. Comparing the three terms on the right hand
side of (30) yields two conditions for the unknown exponents a and z, which
are solved by the expressions

2 2 21+n—k—2p)
=t e VS iy TS s (32)
The authors of [94] argue that all known examples of step bunching are
covered by three universality classes corresponding to p = 1, p = —1 and
p=-2.

Let us see how this framework applies to the problem of electromigration-
induced step bunching. For detachment-limited dynamics, a continuum equa-
tion can be derived which has the form (30) with p = —1 and k£ = 1 [90].
According to (32), this implies v = 2/(2 4+ n), in particular v = 1/2 for the
canonical case n = 2. This result is at variance with numerical simulations of
step dynamical models [91, 92], which yield ¥ = 2/(1+ n), as well as with the
experimental results quoted above [93], which are consistent with y = 2/3.

The reason for the discrepancy is revealed by a careful analysis of the
stationary solutions of (30) [97]. The shape of a stationary bunch is obtained
by setting the total current on the right hand side of (30) equal to a constant
Jo- As explained in [90], this current must be determined by the microscopic
boundary conditions at the step, and it turns out to be independent of the

" We take m > 0 without loss of generality.
8 In [94], only the case k = 0 was considered.
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bunch size. As the bunches steepen with increasing size, this implies that the
destabilizing current j(m) ~ 1/m becomes irrelevant relative to the mean
current jo for large bunches. Their shape is instead determined by the balance
between jo and the stabilizing term. In this sense the correct value of p to
chose for the scaling of the stationary bunch shape is p = 0. Together with
k = 1 this gives v = 2/(1 4+ n), in agreement with simulations [92, 91] and
experiments [93].

Turning next to the dynamic scaling properties, we have already noted
that experiments on Si(111) yield a/z = 1/2 [89]. Step dynamical simulations
show that this result is actually independent?® of the step interaction exponent
n [91]. Inspection of the expressions (32) reveals that a/z = 1/2 independent
of n only if p = —1. Thus, as far as the dynamical properties are concerned,
our initial, naive choice p = —1 is appropriate. This probably reflects the fact
that the coarsening dynamics is governed by current differences, which are
not affected by the mean current j,.

While somewhat preliminary and incomplete, the considerations in this
subsection show that the step bunch equation (30) must be interpreted with
caution. It must be kept in mind that the derivation of a continuum equation
from discrete step dynamics can be rigorously justified [98] only when the
terrace size is a slowly varying function of the terrace index. This condition
clearly breaks down at the boundaries of the step bunch, where the steeply
sloped part joins the large terraces that separate it from neighboring bunches.

4.2 Chaotic Bubbling

Coarsening is the typical long-time behavior for surface evolution equations
that are of conservation type, in the sense that the terms on the right hand
side can be written (apart from an additive constant) as the divergence of
a mass current. The Villain instability in epitaxial growth and the instabil-
ities related to surface electromigration (in the absence of desorption) fall
into this class of conserved dynamics, but the steering instability and the
Bradley-Harper instability in ion erosion of amorphous surfaces do not. As
a representative example of the class of non-conserved surface dynamics, we
discuss here the nonlinear evolution of the Bradley-Harper instability.
Building on the work of Bradley and Harper [41] and of Sigmund [42],
Cuerno and Barabdsi derived the leading order nonlinear contributions in
the expansion of the sputtering yield Y in terms of the gradients of the
topography [33, 99]. The resulting evolution equation is of the form

Or
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® An appealing explanation for the robustness of the value 1 /2 for the coarsening
exponent is given in [90]; the argument assumes, however, that the bunch spacing
L is the only lateral length scale in the problem, which is not strictly true.
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where the first two terms on the right hand side of (11) have been eliminated
by going to a comoving frame, and the smoothening current (15) has also
been added. Clearly the nonlinear terms ~ (8h/0z)%, (8h/0y)? cannot be
written as the divergence of a conserved current.

Fig. 14. Snapshots from the evolution of the isotropic, two-dimensional Kuramoto-
Sivashinsky equation. The upper panel shows the early time regime governed by
the linear instability, the lower panel shows the fully developed chaotic state. Note
that the lateral length scale is the same in both images, but in the chaotic regime a
cellular structure with clear up-down asymmetry has developed. Courtesy of Martin
Rost

Equation (33) is an anisotropic, two-dimensional generalization [100] of
the Kuramoto-Sivashinsky (KS) equation, which was originally derived in the
context of flame front propagation [101] and phase dynamics in spatially ex-
tended oscillatory systems [102]. The KS equation has become a paradigm
of spatio-temporal chaos [103, 104]. It is the prime example of an interface
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evolution equation where the nonlinear terms stabilize the linear instabil-
ity not by forcing the system into a near-periodic morphology which evolves
more and more slowly through coarsening, but instead by establishing a dy-
namic steady state of irregular but bounded fluctuations. Two snapshots
from the evolution of the isotropic, two-dimensional KS equation are shown
in Fig. 14. The surface consists of convex cells of a characteristic size given
by the most unstable wavelength A* of the linear instability (see Sect. 3).
These cells split and merge in a random fashion, leading to an appearance of
chaotic bubbling!®, similar, perhaps, to the surface of a boiling mudpool. On
large length scales, the chaotic fluctuations can be described by an effective
stochastic interface equation [105, 106, 107].

The introduction of anisotropy [100] opens up the possibility of quali-
tatively different modes of evolution, apart from the isotropic chaotic state
shown in Fig. 14. For example, when 7| > 0 and v, < 0, as in the Bradley-
Harper instability at near grazing ion beam incidence, and A and A have the
same sign, then the initial pattern of ripples parallel to the z-axis undergoes a
secondary pinching instability, and the surface develops an anisotropic chaotic
pattern with a finite coherence length along the ripples. The most dramatic
anisotropy effect occurs when A /AL < 0 and v /vy > Aj/AL (with at least
one of the two linear coefficients v, negative). Then (33) can be shown to
possess one-dimensionally modulated solutions for which the nonlinear terms
precisely cancel, and which therefore show unbounded exponential growth.
These cancellation modes correspond to tilted ripple patterns in which the
ripples form an angle + arctan /—\; /AL with respect to the y-axis. Because
the angle can take two different values, there are actually two symmetry-
related ripple patterns which compete for domination of the surface. As a
consequence, a kind of coarsening scenario is observed which seems to pre-
vent the exponential blowup of the modulation amplitude. This remarkable
prediction of the continuum theory has so far not been verified experimen-
tally, but it has been shown numerically that the phenomenon persists in the
presence of external noise [108].

4.3 From Coarsening to Chaos

Having described two qualitatively different scenarios for nonlinear morpho-
logical evolution in the preceding two subsections 4.1 and 4.2, we now ask
how the transition from one regime to the other occurs when, for example,
the height conservation property of the evolution equation is only weakly vi-
olated. A physically relevant example is epitaxial growth in the presence of
a small amount of desorption. A continuum description of this situation is
provided by the evolution equation®! [75]

10 This term was suggested to me by Per Jogi.
11 Similar equations have been used to describe the faceting of thermodynamically
unstable surfaces in the presence of a growth flux [109, 110].
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which combines the (suitably rescaled) mound evolution equation (24) [with
slope selection, i.e. f(m) given by (23)] with an additional nonlinear term
modeling the desorption flux. The form of this term can be motivated from
BCF theory. Qualitatively, it expresses the fact that the desorption flux de-
creases with increasing tilt (increasing step density), because the atoms are
captured by steps before they can desorb; the coefficient g in (34) is propor-
tional to the desorption rate on a flat terrace.

Fig. 15. Mounded surface generated by the evolution equation (34) with ¢ ~ 0.32.
Conical mounds (right) form a cellular structure shown in gray-scale representation
on the left

The desorption term breaks the up-down symmetry of the evolution equa-
tion (24) and leads to a morphology of conical mounds (Fig. 15). More impor-
tantly, desorption is found to significantly speed up the coarsening behavior,
with the coarsening exponent increasing from 1/z = 1/3 for ¢ = 0 (see
Sect. 4.1) to 1/z = 1/2 for p # 0 and long times [75]. This result can be un-
derstood as follows. Desorption occurs mostly from flat surface regions, i.e.
from hilltops and valleys. Because of the up-down asymmetry, hilltops are
pointlike whereas valleys form a network of lines. The fraction of the surface
occupied by valleys is of order 1/\, much larger than the fraction ~ 1/)2
occupied by hilltops. As more material desorbs from the valleys than from
the hilltops, the peak-to-valley height difference grows at rate go/A. Due to
the slope selection property of the evolution equation, the lateral mound size
has to increase at the same rate. Thus we have

dX/dt ~ /A = A~ et. (35)



Kinetic Pattern Formation at Solid Surfaces 29

A model system for which the speedup of coarsening and the transition
from coarsening to chaotic dynamics has been studied in detail is the one-
dimensional convective Cahn-Hilliard equation [110, 111]

2 4

%—T+%(m—m3)+%+2gm%—rg:0. (36)
This is just the one-dimensional version of (34), written in terms of the slope
m = Oh/0z, in which the desorption term has been replaced by its lead-
ing gradient expansion. For ¢ = 0 (36) becomes the one-dimensional Cahn-
Hilliard equation [61], which shows logarithmic coarsening, as was mentioned
above in Sect. 4.1. The term proportional to g has a formal similarity with
the nonlinear convection term in the equations of hydrodynamics; it implies
that fluctuations in m are convected at a speed proportional to m. Equation
(36) has been introduced as a description of phase ordering kinetics in the
presence of an external field [112, 113] and in the context of step growth with
crystal anisotropy [114].

Rewriting (36) in terms of the rescaled variable n = gm and taking
@ — 00, one finds that (36) reduces to the one-dimensional KS equation,
which displays spatio-temporal chaos (see Sect. 4.2). Thus it is clear that (36)
must show a transition from coarsening to chaos as g is increased. The analysis
of the stationary (0m/8¢t = 0) solutions of (36) indeed shows that weakly
unstable periodic patterns, through which the coarsening process passes, exist
only for 29 < 1/2/3. For larger values of g stationary and traveling wave
solutions with a fixed periodicity and amplitude are found, while around
20 = T spatio-temporal chaos sets in [110].

The coarsening behavior of (36) for small but nonzero g has been analyzed
in [111]. In this work the phenomenologically derived [113] scaling law (35)
has been firmly established for times 1/p < t < 1/g%. For even longer
times a crossover to logarithmic coarsening, as in the standard Cahn-Hilliard
equation, is found.

5 Conclusion

An important lesson from the examples described in this article is that similar
patterns can be formed through widely different mechanisms. For solid sur-
faces driven out of equilibrium, patterns of mounds or pits typically appear
if no in-plane direction is distinguished, while in the presence of a direction
singled out by, e.g., the surface miscut, an electric current or an erosion beam,
ripples perpendicular or parallel to this direction can be expected. The exis-
tence of a small number of archetypical patterns implies that the appearance
of a particular pattern on a surface does not tell us much about the processes
that are involved in its formation.

We should therefore be cautious in postulating analogies between widely
different systems just on the basis of qualitative similarities in the observed
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patterns; this applies even more when patterns on the nanometer scale are
compared to macroscopic patterns like sand ripples and dunes (although in
some cases such an analogy can be well-founded, see [48]). It is only through a
detailed quantitative analysis of the microscopic physics, in close cooperation
between theory and experiment, that an understanding of the mechanisms
responsible for pattern formation, and thus, the ability to manipulate the
features of the patterns can be achieved. In this article I have described some
of the recent progress in this direction; but clearly much work remains to be
done.
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