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e Multilayer growth modes and interlayer transport
e The Ehrlich-Schwoebel effect
e Mounds and spirals

e Rapid roughening
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Kinetic growth modes
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Key factors: In-layer and inter-layer mobility

e step flow

e layer-by-layer

e mounds

e self-affine rough



Reentrant layer-by-layer growth on Pt(111)
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e Nonmonotonic temperature dependence of inter-layer mobility
R. Kunkel, B. Poelsema, L.K. Verheij, G. Comsa, Phys. Rev. Lett. 65, 733 (1990)



Layer coverages and roughness measures

Vertical film structure described by layer coverages 6,
withn=1,2.3,...,0<6,<1

Substrate 6, = 1, total coverage © =y ., 6,
Exposed coverage/height probability distribution ¢, = 6,—06,,, >0

n+1 =

Surface roughness W? = ano(n —0)%¢pn=d %((h—(h))?)

h(7): surface profile  d: monolayer thickness
Anti-phase Bragg intensity |, .. = | ¥ ~o(—1)"¢n|*
Perfect layer-by-layer growth:
Wiy = (@ [O])(1—0+[0]), |yrm = (1-2(0—[6)])

[X]: integer part of X



Statistical growth

e In the absence of interlayer transport layer n incorporates the entire flux
incident on the exposed part of layer n— 1.

d6,

= OF (6, ;- 60)

F: flux Q): atomic area

e The solution is a Poisson distribution of heights:

—OMn
¢n — - n|@ ! W :Vvstat — \/67 Ianti — e_4@
e Forlarge ©
1 5 1
On — \/%exp[—(n—@) /20, Gn—>§{1—erf[(n—@)/\/2@]}



Distributed growth models

P.I. Cohen et al., Surf. Sci. 216, 222 (1989)

Fraction o, of atoms deposited in layer nincorporate into layer n— 1.

_.dé
(QF) ld_tn =(1—an)(6,_1—6n) +0a,,1(6,—6,,,)

with the constraint that a, = 0 when 6, = 1.

Simplest case: a, =« L. Brendel (2001)

o < 1/2: Gaussian height distribution of width W ~ /(1 —2a)©
a > 1/2: Finite width W(© — o) — W, ~ (2a —1) "t fora — 1/2

a=1/2: W ~ ©1/3 with Airy function height probability distribution



The Ehrlich-Schwoebel effect

G. Ehrlich, F Hudda (1966); R.L. Schwoebel, E.J. Shipsey (1966)

@M@O@O D: in-layer difiusion

/.
Energy ! D’: Interlayer transport

D'/D = exp[—AEy /kgT] < 1

e Growth instabilities of vicinal surfaces during growth and sublimation
R.L. Schwoebel, 1969; G.S. Bales & A. Zangwill, 1990

e Diffusion bias = “uphill” growth-induced mass current
J. Villain, 1991; JK, M. Plischke, M. Siegert, 1993

e Enhanced two-dimensional nucleation on top of islands
Kunkel et al., 1990; J. Tersoff, A.W. Denier van der Gon, R.M. Tromp, 1994



Mound formation on Pt(111) at 440 K

T. Michely, JK: Islands, Mounds and Atoms (2004)
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Statistical growth with delayed nucleation

Statistical growth dynamics for layers 0 <n<n,, —1, and éntop =FQ~0

D. Cherns (1977); JK, P. Kuhn (2002)

ntop o

New top layer nucleates [n,,, — N, +1] when 6, = 6

6. — 0: statistical growth 6. — 1: layer-by-layer growth

Layer distribution for large © is a cut-off error function with width

W=./(1-6,)0

Inflection point of the coverage profile at n=©

Microscopic interpretation of 6.
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Fit to Pt(111) mound growth
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Anti-phase Bragg intensity
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e Persistent oscillations of amplitude ~ 902 despite unbounded increase of
the surface width (W ~ 1/©)

e On longer time scales oscillations are damped due to dephasing amoung
different mounds



Spiral growth

Paul Klee: Heroische Rosen



Theories of spiral growth

e Kinematics of facetted spiral growth |. Markov: Crystal Growth for Beginners

f

= step spacing set by length of core segment
e Burton, Cabrera & Frank (1951): Normal step velocity
Vh=Vo(1—KR:) K : curvature Rc: radius of critical nucleus
= K = 1/R; at the spiral core, asymptotic step spacing ¢ =~ 19.81 x R.

e Karma & Plapp (1998): Nonlocal step dynamics without desorption

= initial steepening, constant asymptotic step spacing depending on D/F



Spiral growth of perylene/Al,O,/glass

AN
A. Farahzadi, M. Mohamadi, P. Niyamakom & M. Wuttig (RWTH Aachen)

e "Nonclassical” spiral hillocks:
Non-constant step spacing < mound-like height profile



Phase field modeling of spiral growth

classical with Ehrlich-Schwoebel barrier

A. Ratz, A. Voigt, caesar Bonn



Mounds versus spirals



Mounds versus spirals

e Hillsides: Steepening due to diffusion bias



Mounds versus spirals

e Hillsides: Steepening due to diffusion bias

e Top: Atoms near the spiral core feel no confinement due to the Ehrlich-
Schwoebel effect, but there is also no need for nucleation!



Spiral growth on Pt(111)

O. Ricken, A. Redinger, T. Michely, Universitat zu Kéln — poster O 17.64

e Screw dislocations induced by He™ bombardment

e Mounds and spirals coexist, and spiral hillocks are higher



Comparison of shapes at 400 K

height [ML]

scaled radius

= enhanced "effective Ehrlich-Schwoebel barrier” AE—AEg +0.13eV



Scaling with film thickness
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e Ah: Height difference between spiral hillocks and mounds

e Scaling form of the coverage profile

implies Ah ~ /O

6,(t) = F[(n—©) /O]




Is the Ehrlich-Schwoebel effect relevant for organic thin film growth?

e PTCDA on Ag(111): 2D — 3D transition and slope selection
Krause, Schreiber, Dosch, Pimpinelli & Seeck, EPL 65, 372 (2004); Kilian, Umbach &
Sokolowski, Surf. Sci. 573, 359 (2004)

e Non-classical spiral hillocks on pentacene
Ruiz et al., Chem. Mater. 16, 4497 (2004)

e Fractal mounds on pentacene
Zorba, Shapir & Gao, PRB 74, 245410 (2006)



Is the Ehrlich-Schwoebel effect relevant for organic thin film growth?

e PTCDA on Ag(111): 2D — 3D transition and slope selection
Krause, Schreiber, Dosch, Pimpinelli & Seeck, EPL 65, 372 (2004); Kilian, Umbach &
Sokolowski, Surf. Sci. 573, 359 (2004)

e Non-classical spiral hillocks on pentacene
Ruiz et al., Chem. Mater. 16, 4497 (2004)

e Fractal mounds on pentacene
Zorba, Shapir & Gao, PRB 74, 245410 (2006)

Microscopic calculation: M. Fendrich, University of Duisburg-Essen

e Molecular statics calculation for a-phase of PTCDA (C,, O4 Hyg)

e AMBER force field + electrostatics, 2 rigid layers, NEB algorithm



Computational setup




diffusion on the terrace
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e diffusion barrier Ey ~ 0.08 eV, additional ES-barrier AE¢ ~ 0.67 eV

e complete suppression of interlayer transport at room temperature



Kinetic growth modes

AT

e step flow

e layer-by-layer

e mounds

e self-affine rough



Anomalous scaling and rapid roughening

JK, Adv. Phys. 46, 139 (1997)

Scaling theory of surface roughness evolution
G(r,t) = ([h(F,t) —h(0,t)]2) = a%(t) r? #(r/& (1))
E(t) ~tYZ a(t) ~th, G(r — oo,t) = 2W3(t) ~ t?#
Anomalous scaling: Steepening exponent A =3 —a/z> 0
Rapid roughening: B > 1/2 asymptotically = W >W,,

Stochastic and deterministic roughening mechanisms generally lead to
B <1/2and W <W,,,

= rapid roughening (probably) requires thermodynamically driven true
uphill mass transport or quenched disorder

Caution: 3 > 1/2 does not necessarily imply W >W,, .,



Rapid roughening in organic thin film growth

e DIP on SiO,: B~ 0.75, a ~ 0.68,1/2~ 0.92, but W < W,

(@)

18.4 A

Durr et al., PRL 90, 016104 (2003)
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e Phthalocyanine on glass: B~ 1.02, a =~ 0.61, 1/z~0.72

Yim, Jones, PRB 73, 161305(R) (2006)



Rapid roughening induced by disorder

e Kardar-Parisi-Zhang equation with quenched random growth rates yields
W ~t/[Int]? = asymptotically =1 JK, PRL 75, 1795 (1995)

e Kinetic Monte Carlo simulations of deposition with quenched random
diffusion yields 5 ~ 0.6
F. Eisholz, E. Scholl and A. Rosenfeld, APL 84, 4167 (2004)

e Both mechanisms require lateral disorder that persists vertically
throughout the thickness of the film



Conclusions

e Broad range of concepts available for the analysis of morphology evolution
during thin film growth

e Combine insights from real space and real time probes

e Expect novel effects in organic films from internal degrees of freedom
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