SX SFB 680
§) Molecular Basis of
% Evolutionary Innovations

The geometry of evolution:
Statistical topography of biological fithess landscapes

Joachim Krug
Institute of Theoretical Physics, University of Cologne, Germany

joint work with Jasper Franke, lvan Szendro, Arjan de Visser and Martijn Schenk

General Physics Colloquium, Goéteborg, March 15, 2012



Seguence spaces

Watson & Crick 1953: Genetic information is encoded in DNA-sequences
consisting of Adenine, Cytosine, Guanine and Thymine

ACTATCCATCTACTACTCCCAGGAATCTCGATCCTACCTAC...

The sequence space consists of all 4- sequences of length L

Typical genome lengths:
L ~ 10° (viruses), L ~ 10° (bacteria), L ~ 10° (higher organisms)

Proteins are sequences of 20 amino acids with L ~ 10°

Classical genetics: L genes that are present as different alleles;
distinguish between wild type (0) and mutant (1) = binary sequences

Genotypic distance: Two sequences are nearest neighbors if they differ in
a single letter (mutation)



Binary sequences spaces are hypercubes
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Fithess landscapes

e Fitness is a measure of reproductive success of an organism (e.g., number
of offspring in the next generation)

e A fitness landscape assigns a fitness value w(g) to each genotype
sequence 0

e Example: L =2

e Evolution is a hill-climbing process in the fitness landscape



Fitness landscapes

S. Wright, Proc. 6th Int. Congress of Genetics (1932)
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Fitness landscapes

S. Wright, Proc. 6th Int. Congress of Genetics (1932)
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"The problem of evolution as | see it is that of a mechanism by which the
species may continually find its way from lower to higher peaks in such a
field.”



Fitness landscapes

S. Wright, Proc. 6th Int. Congress of Genetics (1932)

“The two dimensions of figure 2 are a very inadequate representation of such a field.”



Evolutionary pathways

John Maynard Smith

"The model of protein evolution | want to discuss is best understood by analogy
with a popular word game. The object of the game is to pass from one
word to another of the same length by changing one letter at the time, with
the requirement that all the intermediate words are meaningful in the same
language. Thus WORD can be converted into GENE in the minimum number
of steps, as follows:

WORD — WORE — GORE — GONE — GENE

This is an analogue of evolution, in which the words represent proteins.”
Nature 225:563 (1970)



Two conflicting intuitions:

e Proliferation of fithess peaks severely hampers evolution in high-
dimensional genotype spaces; valley crossing is crucial.
(Wright, Kauffman,...)

e Proliferation of possible pathways implies high evolutionary accessibility in

high dimensional spaces; valley crossing is not an issue.
(Fisher, Gauvrilets,...)

Questions:

e How can the structure of high-dimensional fithess landscapes be quantified
and modeled?

e How does the fithess landscape topography constrain the evolutionary
process?

e What do real fithess landscapes look like?



Empirical fitness landscapes

Review: |I.G. Szendro, M.F. Schenk, J. Franke, JK, J.A.G.M. de Visser, arXiv:1202.4378



Example 1: The TEM1 [-lactamase resistance landscape

D.M. Weinreich, N.F. Delaney, M.A. De Pristo, D.L. Hartl, Science 312, 111 (2006)

. First mutation Second mutation . Third mutation =~ Fourth mutation ~Fifth mutation
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e Accessible mutational pathways are monotonically increasing in resistance

e 102 out of 5! =120 paths from the wildtype to the fivefold mutant are
Inaccessible



Example 2. Pyrimethamine resistance in the malaria parasit e

E.R. Lozovsky et al., Proc. Natl. Acad. Sci. USA 106, 12025 (2009)
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e 4 mutations in the dihydrofolate reductase confer resistance to an important
malaria drug

e One local maximum at 1001



Example 2: Pyrimethamine resistance in the malaria parasit e

E.R. Lozovsky et al., Proc. Natl. Acad. Sci. USA 106, 12025 (2009)
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e 14 out of 4l =24 paths from the wildtype to the fourfold mutant are
Inaccessible

e Dominating pathways consistent with polymorphisms in natural populations



Example 3: The Aspergillus niger fitness landscape

J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)
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e 5 individually deleterious marker mutations in different chromosomes

e 95 out of 120 paths from the fivefold mutant to the wildtype are inaccessible



Example 4. Adaptive mutations in  Methylobacterium extorquens

Chou et al., Science 332, 1190 (2011)
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e All pathways are accessible



Evolutionary accessibility
IN model landscapes

J. Franke, A. Klozer, J.A.G.M. de Visser, JK, PLoS Comp. Biol. 7 (2011) e1002134



Random fithess landscapes

e The fithess W(0) of genotype O is the expected number of offspring  of
an individual carrying o

e The mapping 0 — w(0) is very complicated:

genotype ——= phenotype

+ fitness
environment

Simple choice: Assign fithesses at random to genotypes

e Fitnesses as i.i.d. random variables = Kingman’s house-of-cards model
Kingman 1978, Kauffman & Levin 1987

e Equivalent to Derrida’s Random Energy Model of spin glasses Derrida 1981

e REM/HoC landscape is uncorrelated but maximally rugged (epistatic)



Evolutionary accessibility in the house-of-cards model

What is the mean number of shortest, selectively accessible paths n,.. from
an arbitrary genotype at distance d to the global maximum?

The total number of paths is d!, and a given path consists of d
iIndependent, identically distributed fitness values Wg,Wy,....,Wq_1 With
Wy > max{Wo, W1, ...,Wq_1}.

A path is accessible iff wp < Wq.... < Wg_1

Since all d! permutations of the d random variables are equally likely, the
probability for this event is 1/d!

= (nacc>:d—1!><d!:1

This holds in particular for the L! paths from the “antipodal” reversal
genotype of the global maximum.



Distribution of number of accessible paths from reversal ge notype
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e "Condensation of probability" at n,.. = 0, B_(0) tends to unity for L — oo

e Constraining the antipodal sequence to be the global fithess minimum
leads to nonmonotonic behavior of R (0)



Landscapes with tunable ruggedness

Kauffman’s LK-model Kauffman & Weinberger 1989

e Each site interacts randomly with K < L — 1 other sites:

L
f(o)= Z| fi(ailoiy,...,01,)  fitiid.RV's
=

e Diluted spin glass with random fields and interactions up to order p=K+1
Rough Mt. Fuji landscapes Aita et al. 2000

e Average fitness decreases linearly with distance from reference genotype:
f(0) = —6d(0,0"")+n(0)
n: (Gaussian) RV’s with unit variance  d(g,0’): Hamming distance

e Equivalent to REM in an external magnetic field



Kauffman model: Mean number of accessible paths
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Simple special cases: e K=0: (N,.) = L! e K=L—-1:(Ny)=1



Kauffman model: Distribution of the number of accessible pa ths
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e Roughly exponential decay with combinatorial structure for K =1



Kauffman model: Probability of no accessible path
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e Accessibility increases with L both for fixed K > 3 and fixed K /L



Application to empirical data

J. Franke, A. Klozer, J.A.G.M. de Visser, JK, PLoS Comp. Biol. 7 (2011) e1002134



The A. niger data set

J.A.G.M. de Visser et al., Evolution 51, 1499 (1997)

e L = 8 individually deleterious marker mutations residing on different
chromosomes of Aspergillus niger (black mold)

e 186 out of 28 = 256 possible combinations were isolated in ~ 2500 trials
e Fitness (= growth rate) was measured for two replicates per strain
e Fitness relative to wild type falls in the range W,,;;, = 0.274 <w <1

e Likelihood of missing more than one strain with fithess > W,,;, IS<5 %
= assign zero fitness to missing strains (“lethals™)



Subgraph analysis

e Probe effect of scale by analyzing ensembles of (;) subgraphs containing
subsets of mmutations (2<m< L)

e Example: L=3,m=2

000
100 001
110 011

111



A selection of m=4 subgraphs of the
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Mean number of accessible paths from subgraph analysis
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e Error bars from resampling analysis

e Data are reasonably well described by Kauffman model with K =1L/2 or
rough Mt. Fuji model with 6 ~ 0.25



Cumulative distribution of the number of paths ( m=
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Predictability of evolution

on an empirical fitness lanscape

|.G. Szendro, J. Franke, J.A.G.M. de Visser, JK (in preparation)



Convergent evolution

“The evolutionary routes are many, but the destinations are limited.”
Simon Conway Morris

marsupial placental



Evolutionary dynamics on an empirical fithess landscape

Fixed number N of individuals reproduce asexually in discrete generations
(Wright-Fisher model)

Mutations occur with probability u per site and generation
Evolution starts from a viable genotype at distance dg from the wildtype

Two types of evolutionary trajectories:

— Lines of descent: Track first appearance of mutations
— Paths of the most populated genotype (not necessarily continuous)

Quantify predictability by the entropy of the distribution of pathways or
endpoints, averaged over a large number of evolutionary runs

Expect: Evolution becomes more predictable with increasing N
K. Jain, JK, Genetics 2007
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— non-monotonic because new pathways become available when Nu? ~ 1
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Summary

The concept of evolutionary accessibility motivates new questions about
fitness landscape models

Simulations suggest simple dichotomy in the behavior of accessibility with
increasing genotype dimensionality L.:

— For uncorrelated landscapes (REM) B.(0) — 1 and (N,..) =1
— For correlated landscapes (LK, Mt. Fuji) B.(0) — 0 and (N,e.) — o0

Empirical fitness landscapes are of intermediate ruggedness, with distinct
patterns depending on the type of mutations under consideration
Szendro et al. 2012

Predictability of evolution on realistic fithess landscapes depends non-
monotonically on population size



