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General goal: To bridge the gap between atomistic processes
and large scale morphological evolution through the study of
simple step and island configurations on single crystal surfaces



Continuum Model of Shape Evolution

V

j

� mass transport along island edges

� anisotropic mobility and stiffness

� normal edge velocity vn satisfies

vn � ∂ j � ∂ s� 0 � j� σ � θ � �

Ft

� ∂
∂ s

γ̃ � θ � κ

	

s: arc length θ : edge orientation κ : edge curvature
σ � θ � : adatom mobility γ̃ � θ � : step stiffness Ft: tangential force

� electromigration dominates on length scales 
 lE

� γ̃ �� F�



Local vs. Nonlocal Evolution

local nonlocal
� local model: Ft� F0 cos � θ � φ � φ : field direction

single layer islands (Pierre-Louis & Einstein 2000)

dislocation loops (Suo 1994)

� nonlocal model: Ft� � ∂U � ∂ s with ∇2Uoutside

� Uinside

� 0
insulating voids in metallic thin films
(Kraft & Arzt, Gungor & Maroudas, Mahadevan & Bradley, Schimschak & JK...)

� interpolation by general conductivity ratio ρ� Σinside � Σoutside � �

0 � 1 �



Results for the isotropic case

� The circle is a stationary solution for any ρ (Ho, 1970)
� Linear instability at critical radius R � 1 �

c

� R̂ � 1 �

c lE for ρ � 0
(Wang, Suo, Hao 1996)

� Nonlinear instability for ρ � 0 (Schimschak & JK, 1998)

� No non-circular stationary shapes for ρ � 0
(Cummings, Richardson, Ben Amar 2001)

� ρ � 1: Slightly distorted circles approach non-circular
stationary shapes for

R̂ � 1 �

c � 3� 26 � R � lE � R̂ � 2 �
c � 6� 2



Non-circular stationary shapes
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� Effective radius R � lE

� 3.3, 4, 5, 6

� Shapes approach finger solution of width W � 4� 8lE

(Suo, Wang, Yang 1994)



Island breakup
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� Effective radius R � lE

� 7

� Breakup mediated by outgrowth of finger



Void breakup in the nonlocal model

M. Schimschak, J.K., J. Appl. Phys. 87, 695 (2000)
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� Splitoff of circular void, no finger solution



Island breakup in kinetic Monte Carlo simulations

O. Pierre-Louis, T.L. Einstein, Phys. Rev. B 62, 13697 (2000)



Stationary shapes without capillarity

� Island moves along x-axis
� Parametrization: x� x � θ � � y� y � θ �

dy � dx� � tan � θ �

x

y θ
� Stationarity condition: vn� V sin � θ � � V y� j � const. (Suo 1994)

� In the absence of capillarity � γ̃� 0 � this implies

y � θ �� F
V

σ � θ � cos � θ � φ � � x � θ �� � θ

0
dθ� dy

dθ� cot � θ� �

� Mobility model: σ � θ �� σ0� 1 � Scos2

�

n � θ � α � � 2

�� S: Anisotropy strength

n: Number of symmetry axes

α : Orientation of symmetry axes



Conditions on physical shapes:

(i) x � θ � finite � dy � dθ� 0 at θ� 0 and π

(ii) no self-intersections � dy � dθ �
� 0 for θ �
� 0 � π

(iii) closed contour: x � θ � 2π �� x � θ � � tan � nα � tan � φ �� n for odd n

Consequences:

� No stationary shapes for odd n !

� For even n smooth stationary shapes exist in a range 0 � S � Sc of
anisotropy strengths

� Condition (i) selects direction of island motion which is generally different
from the direction of the field



Formation of self-intersections
� n � 6, α � φ � 0, Sc � 0� 35:

� For α � π � n and φ � 0 self-intersections appear at
θ � 0 and π with

Sc � 1
n2 � 2 � 1



Stationary shapes for sixfold anisotropy
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Direction of island motion
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For S � S̃c � 2 � n2 the direction of motion changes discontinuously
at the angle α � φ � π � n of minimal mobility



Anisotropic stationary shapes for the nonlocal model
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M. Schimschak, J.K.

J. Appl. Phys. 87, 695 (2000)



Anisotropic stationary shapes for the local model

R̂ � 2.5 σ
�

θ

�

for n � 6



� “Facet” orientations are close to orientations of maximal linear stability:
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Obliquely moving stationary shapes (n=6, S=2)

� “Spontaneous” breaking of symmetry w.r.t. field & anisotropy direction



Oblique oscillatory motion
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� Initial radius R̂� 4, anisotropy strength S� 1, maximal mobility at θ� 0

� Upper edge is linearly stable, lower edge linearly unstable



Zig-zag motion
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Oscillatory behavior in the nonlocal model

M.R. Gungor, D. Maroudas, Surf. Sci. 461 (2000), L550

� Propagation of edge voids with crystal anisotropy
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� Onset of oscillations at a critical void size

� Divergence of oscillation period at onset



Tentative phase diagram for n � 6, α � 0
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Angle of motion as an order parameter (S � 2)
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Divergence of the oscillation period at the oo � os transition

3.02 3.04 3.06 3.08 3.1
0

500

1000

1500

2000
N=40
N=50
N=60
N=70
N=90

� N: Number of discretization points

� Best fit: τ� � R0

� Rc �� 2 � 5



Outlook
� Nature of bifurcations (low-dimensional truncation)?

� Oscillatory behavior in kinetic Monte Carlo simulations?

� Different kinetic regimes of Pierre-Louis & Einstein?
(with F. Hausser & A. Voigt, caesar )


