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THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS

IVAN CORWIN

Abstract. Brownian motion is a continuum scaling limit for a wide class of random processes,
and there has been great success in developing a theory for its properties (such as distribution
functions or regularity) and expanding the breadth of its universality class. Over the past twenty
five years a new universality class has emerged to describe a host of important physical and
probabilistic models (including one dimensional interface growth processes, interacting particle
systems and polymers in random environments) which display characteristic, though unusual,
scalings and new statistics. This class is called the Kardar-Parisi-Zhang (KPZ) universality
class and underlying it is, again, a continuum object – a non-linear stochastic partial differential
equation – known as the KPZ equation.

The purpose of this survey is to explain the context for, as well as the content of a number of
mathematical breakthroughs which have culminated in the derivation of the exact formula for the
distribution function of the KPZ equation started with narrow wedge initial data. In particular
we emphasize three topics: (1) The approximation of the KPZ equation through the weakly
asymmetric simple exclusion process; (2) The derivation of the exact one-point distribution of
the solution to the KPZ equation with narrow wedge initial data; (3) Connections with directed
polymers in random media.

As the purpose of this article is to survey and review, we make precise statements but provide
only heuristic arguments with indications of the technical complexities necessary to make such
arguments mathematically rigorous.
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1. Introduction

The overall goal of this review is to give a clear overview of over twenty-five years of work –
starting even before the seminal paper of Kardar-Parisi-Zhang [98] in 1986 – which has culminated
in early 2010 with the discovery of the probability distribution for the solution to the KPZ
stochastic PDE (not to be confused with the KPZ of quantum gravity) and the understanding
that the KPZ equation is the universal continuum mechanism for the crossover between the
two universality classes associated with growth models: The KPZ class and the EW (Edwards
Wilkinson) class [65]. The clarity which I aim for here is very much a benefit of hindsight,
as is the program outlined for how everything fits together. Emphasis will be on the important
conceptual steps and calculations involved in this program – not on the many technical challenges
and difficulties which arise along the way. While many of the important developments in the
study of the KPZ equation will be explained or alluded to, this literature is vast, and will not be
surveyed entirely herein.

The introduction to this article is meant to quickly provide the reader with the main results as
well as philosophies associated with the KPZ equation and its universality class. While the main
focus of this review is on growth processes and their relationship to the KPZ equation, in the last
section the connections to the study of directed polymers in random media will be illuminated.

This article is focused primarily on the mathematically rigorous side of results pertaining to
the KPZ equation and universality class. However, care has been taken to accurately represent
the accomplishments of physicists in this area and many of the relevant references are cited
(along with brief discussions). Still, it is nearly impossible to be exhaustive in recording the
accomplishments of the countless people who have worked in this area and thus the author begs
the pardon of anyone whose contribution to the field is overlooked in this article.

1.1. Beyond the Gaussian universality class. Since its discovery two hundred years ago the
Gaussian distribution has come to represent one of mathematics greatest societal contributions
– a robust theory explaining and analyzing much of the randomness inherent in the physical
world. Physical and mathematical systems accurately described in terms of Gaussian statistics
are said to be in the Gaussian universality class. This class, however, is not all encompassing.
For example, classical extreme value statistics or Poisson statistics better capture the randomness
and severity of events ranging from natural disasters to emergency room visits.

Recently, significant research efforts have been focused on understanding systems which are
not well described in terms of any of the classically developed statistical universality classes. The
failure of these systems to conform with classical descriptions is generally due to the non-linear
relationship between natural observables and underlying sources of random inputs and noise. A
variety of models for such complex systems have been actively studied for over forty years in both
mathematics and physics.

History should give great credit to those giants of probability, PDEs, representation theory
and mathematical/statistical physics who understood that it was worthwhile to dig deep in the
study of these systems. They defined these models, identified links between them and with other
fields, pinpointed many mysteries and seriously attacked the most important problems here with
a full battery of methods. In light of this work and a few other recent breakthroughs I seek
to identify and frame the two problems which are of central importance in the study of these
systems: (1) Universality of the scalings, statistics and limit objects, and (2) solvability and
integrability which enables exact formulas and computations for quantities associated with these
systems. These two complementary goals are behind significant amounts of on-going research
within probability, mathematical physics and related fields.

This review will focus on three types of systems:

(1) Random growth interfaces and interacting particle systems,
(2) Directed polymers in random media,
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(3) Non-linear SPDEs such as the KPZ equation, stochastic heat equation (SHE) with mul-
tiplicative noise and stochastic Burgers equation.

A number of books and review articles have been written about these models in mathematics and
physics, including [18, 44, 82, 86, 100, 102, 106, 108, 115, 117, 120, 158, 157]. Though not directly
addressed here, the study of these systems is closely related to and influenced by problems in
random matrix theory, non-intersecting path ensembles, random tilings and certain combinatorial
problems involving asymptotic representation theory [28, 71, 95, 158]. In particular, many (but
not all) of the statistics which arise in these systems were first analytically discovered in the
context of random matrix theory.

In all of these types of models there are certain observables of interest (such as height functions,
particle currents, free energy, or eigenvalues) which have random fluctuations that have been
shown, through experimental evidence, numerical simulations and in some cases mathematical
proof, to grow as a characteristic power law in the systems size or time. In the case of the classical
central limit theorem this power law would have an exponent of 1/2 and the limiting distribution
for the scaled fluctuations would be Gaussian. This, however, is not the case here. Surprisingly
for all of the above listed models the observables of interest fluctuate with a scaling exponent of
1/3 and display the same set of non-Gaussian limiting distributions. That is to say that they
form a new universality class – the KPZ universality class.

1.1.1. The Gaussian versus KPZ universality classes. Let us now briefly illustrate the difference
between the Gaussian and KPZ universality classes. All of the models considered here are 1 + 1
dimensional, meaning that there is one space and one time dimension. In the context of growth
models this means that the growing interface is given by a curve (as opposed to a surface – a
problem of great interest but few predictions and even fewer results).

The random deposition growth model involves square blocks being stacked in columns (indexed
by Z). Growth is driven by independent Poisson processes (one for each column) of blocks falling
from above and accumulating on top of the growing stacks of blocks. Due to the independence,
each column evolves independently (i.e., with no spatial correlation) while the height at time t

fluctuates like t1/2 and is governed by the Gaussian distribution (due to the classical central limit
theorem).

The ballistic deposition growth model (shown in Figure 0b) involves the same independent
process of blocks falling in each column, however a block sticks to the first block it touches. So
if a block falls in column x but the height of column x + 1 is larger than that of column x, the
block will stick to the side of column x + 1 and the height of column x will suddenly jump to
equal that of x+1. This important modification breaks the independence of the column heights
and importantly introduces spatial correlation. The salient features of this model (and all growth
models in the KPZ universality class) are threefold:

(1) Smoothing: Deep holes are rapidly filled to smooth the interface.
(2) Rotationally invariant, slope dependent, growth speed: The larger the absolute

value of the slope, the larger the height tends to increase.
(3) Space-time uncorrelated noise: The blocks fall spatially and temporally indepen-

dently.

Based on these three features it is predicted that in time t the column height will fluctuate around
its mean like t1/3 and that the correlation of these fluctuations will be non-trivial on a spatial
scale of t2/3 (in sharp contrast to random deposition). This prediction has not been proved.
However, in the case of the corner growth model (see Figure 0a) the same predictions have been
proved [93, 137]. We too will focus on the corner growth model – not ballistic deposition.

1.1.2. Kardar, Parisi and Zhang’s prediction. The KPZ universality class was introduced in the
context of studying the motion of growing interfaces in a 1986 paper of Kardar, Parisi and Zhang
[98] which has since been cited thousands of times in both the mathematics and physics literature.
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Figure 0a: The corner growth model
with growth rate q, death rate p
and total asymmetry q − p = γ > 0

↓ Poisson process of falling blocks

x
↓ ↓ ↓

Figure 0b: Ballistic deposition model.

Growth occurs when blocks stick to
first point of contact (denoted in gray).

Employing Forster, Nelson and Stephen’s [73] 1977 dynamical renormalization group techniques
(highly non-rigorous from a mathematical perspective), [98] predicted that scaling exponent of
1/3 and 2/3 should describe the fluctuations and correlations for a large class of models, stable
under varying model parameters such as underlying probability distributions or local rules.

These exponents had first been identified in 1977 by [73] in the study of the stochastic Burgers
equation (stochastic space-time noise, not initial data as studied in [39]). In 1985 the model of a
directed polymer in random media was first formulated in [87] and in the same year the scaling
exponents for the driven lattice gas (the asymmetric simple exclusion process) were discovered
by [20].1 The connections between polymers and lattice gases were understood quickly [97, 88].
The big step of Kardar, Parisi and Zhang was therefore to relate these models and calculations to
interface motion in arbitrary dimensions. This both broadened the universality class of models
which shared characteristic exponents as well as provided obvious physical realizations of the
universality class. Their observations caught the imagination of many and the paper deserves
the full credit of having triggered a large number of investigations. Examples of physical phe-
nomena modeled by the KPZ class include turbulent liquid crystals [159], crystal growth on a
thin film [171], facet boundaries [52], bacteria colony growth [172, 122], paper wetting [109], crack
formation [67], and burning fronts [118, 116, 119].

The scaling exponent predictions of [98] were based on studying a continuum stochastically
growing height function H(T,X) given in term of a stochastic PDE (ill-posed however) which is
now known as the KPZ equation. The time derivative of the height function depends on three
factors (the same as highlighted for the ballistic deposition model): smoothing (the Laplacian),
rotationally invariant, slope dependent, growth speed (the square of the gradient), noise (space-
time white noise).

∂TH = ν∂2XH + 1
2λ(∂XH)

2 +
√
DẆ . (1)

Here Ẇ is space-time white noise and ν, λ and D are non-zero parameters which can often be
(heuristically) computed for a particular growth model directly from the microscopic dynamics.
When one of these parameters is computed to be zero, this is indicative of the growth model not

1In fact, [20] computed in approximation the stationary two-point function for the ASEP though in simulations
full distributions were out of reach at this time.
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being in the KPZ class (for instance when λ = 0 this is the EW class). We will specialize the
parameters to the values ν = 1

2 , λ = −1 and D = 1 and thus refer to the KPZ equation as

∂TH = 1
2∂

2
XH− 1

2(∂XH)
2 + Ẇ . (2)

However, nothing is lost in doing this since the general solution Hν,λ,D (the subscripts emphasize
the coefficients) to the KPZ equation can be recovered by a combination of change of variables
and rescaling as

Hν,λ,D = − λ2D

(2ν)3
H1

2 ,−1,1

(

λ2D

(2ν)3
x,−λ

4D2

(2ν)5
t

)

. (3)

It has been argued in the physics literature that the long time behavior of this equation should
be the same as that of a variety of physical systems as well as mathematical models which
share these three features – hence the belief in the wide universality of the KPZ class. Besides
universality of the scaling exponents, there quickly developed a belief that the asymptotic long
time scaling limit probability distributions (also called amplitudes) were universal (within certain
geometry dependent subclasses).

In the years following [98] it became a very hot subject in the physics literature to try to both
demonstrate the scaling exponents as well as compute or estimate properties of these universal
scaling limit probability distributions. Many (mathematically non-rigorous) approaches – both
analytical and numerical – were employed to gather more information about the KPZ universality
class and its inhabitants. These included replica methods, matrix models, field theory methods,
saddle point equations, mode coupling equations, perturbation theory, and Monte-Carlo simula-
tions (see [82] for references and examples of many of these approaches).

These early papers worked to establish in broad terms and via brute force numerical methods,
the full notation of KPZ universality. Most of these focused on flat geometries (as it was easier
to simulate) and calculated statistics for the height function fluctuations for various models. Via
Monte-Carlo methods the skew and kurtosis were approximated in [81, 107] and in [101] a rough
plot of the distribution function was given for both a growth model and a polymer model (and
they agreed).

1.1.3. Exact statistics breakthrough for the KPZ class. Still, an exact and analytic description of
the statistics (probability distributions) associated with the KPZ class went entirely unknown
until, in the late 1990s, a group of mathematicians determined the exact formula for the one-point
statistics of the KPZ class (in the wedge growth geometry corresponding to Figure 0a). That
seminal work of Baik, Deift and Johansson [9, 93] dealt with two closely related discrete models
(polynuclear, and corner growth) predicted to have the KPZ scaling.2 By using exact formulas
(arising from combinatorics and representation theory) and then by studying asymptotics of the
resulting expressions, [9, 93] were able to calculate the statistics of the one-point fluctuations for
these KPZ class models.3 Surprisingly these statistics had been discovered in the early 90s by
Tracy and Widom in the context of random matrix theory [162]. The previous numerical work of
the 1990s agreed with the values readily computed from the exact formulas [135]. Experimental
work has shown that the scalings and the statistics for the KPZ class are excellent fits for certain

2While [93] dealt directly with the corner growth model, [9] considered the fluctuations of the longest increasing
subsequence of a random permutation (Ulam’s problem). The Poissonize version of Ulam’s problem is related
to an interacting particle system known as the Hammersley process [83, 3] (see [131, 7] for relevant numerical
experiments). It was Prähofer and Spohn [135] who recognized the connection of poissonized Ulams problem to
the polynuclear growth model.
3[9] studied the combinatorial problem in terms of Toeplitz matrices (a reduction due to Gessel [75]) and the
associated Riemann-Hilbert problem method. Their asymptotics therefore were those of Riemann-Hilbert steepest
descent and their limiting formula’s were in terms of Riemann-Hilbert problems and hence Painlevé expressions.
[93] derives a Fredholm determinant and thus is able to perform classical steepest descent directly on the integral
kernel, resulting in Fredholm determinant formulas for the limiting statistics.
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physical phenomena. Of note is the recent work of [159] on liquid crystal growth (see also
[171, 116, 119] for other experimental evidence).

Even before the work of Baik, Deift and Johansson, the KPZ class and equation were topics of
interest in mathematics. However, after their work the field blossomed (for instance there have
been two semester long MSRI programs focused in this direction). In the past ten years there has
been a significant amount of refinement of the theory of the KPZ universality class. For instance,
it is now understood that while the 1/3 and 2/3 scaling exponents occur for all models, the exact
statistics of KPZ class models fall into different subclasses based on the growth geometry, or initial
/ boundary data (see Figure 4). The long-time statistics have been written down explicitly for
six of these subclasses which, arguably are the most important phenomenalogically.

1.1.4. Exact statistics breakthrough for the KPZ equation. One should be clear now that all of
the mathematically rigorous results until recently involving exact statistics have been for models
which are believed to be in the KPZ universality class, but not for the KPZ equation itself. In
fact, before 2010 very little was known of the exact statistics of the solution to the KPZ equation
itself.

One stumbling block is that the KPZ equation is mathematically ill-posed due to its non-
linearity (the function H is believed to be locally Brownian and so it doesn’t make sense to
square its derivative). However, this issue was essentially resolved in the mid-1990s by Bertini-
Giacomin [23] who provided a convincing interpretation for what it means to solve the KPZ
equation. First they formally defined the Hopf-Cole solution to the KPZ equation as

H(T,X) := − logZ(T,X)

where Z(T,X) satisfies the well-posed SHE (stochastic heat equation)

∂TZ = 1
2∂

2
XZ − ZẆ . (4)

They then proved that the discrete Hopf-Cole transform of the height function for a certain
KPZ class model (the corner growth model) converged weakly as a space-time process to the
solution to the stochastic heat equation. Their work required a special sort of scaling which
is called weakly asymmetric scaling, and only applied to the growth model started close to its
stationary distribution.4 The interpretation of this result, however, is strikingly clear – up to this
odd transformation and scaling, the discrete growth model converges to the KPZ equation. This
Hopf-Cole interpretation had been used previously (though without the justification provided by
[23]) in the physics literature for some time. Other attempts at interpreting the KPZ equation
(such as [85]) have resulted in solutions which are considered to be physically irrelevant as their
solutions have very different long-time scaling behavior [43].

Since the KPZ equation is a fundamental mathematical / physical object, one would hope
to be able to write down and prove the exact probability distribution of its solution and show
that its long time limit is governed by the KPZ class scaling and statistics – i.e., that the KPZ
equation is in the KPZ universality class.

This long-standing goal was achieved in the fall of 2009 (and posted in spring 2010). Two
groups (independently and in parallel) derived the exact formula for the one-point statistics for
the solution to the KPZ equation [5, 147]. In addition to a derivation, [5] provided the highly
non-trivial mathematical proof of the formula.

Theorem 1.1 ([5]). For any T > 0 and X ∈ R, the Hopf-Cole solution to KPZ with narrow
wedge initial data (given by H(T,X) = − logZ(T,X) with initial data Z(0,X) = δX=0) has the

4The stationary distribution is a height profile given by the trajectory of a simple symmetric random walk. Strictly
speaking this is not stationary though its discrete derivative (interpreted as particles and holes) is stationary in
time. Within the probability literature (as well as in [23]) this is called “equilibrium” initial data, though we
attempt to avoid this term. The reason being that this system is a paradigm for non-equilibrium statistical physics
and thus using equilibrium to describe initial data would likely cause un-needed confuse.



THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS 7

following probability distribution:

P(H(T,X)− X2

2T
− T

24
≥ −s) = FT (s) (5)

where FT (s) does not depend on X and is given by

FT (s) =

∫

C

dµ

µ
e−µ det(I −KσT,µ

)L2(κ−1

T s,∞) (6)

where κT = 2−1/3T 1/3, C is a contour positively oriented and going from +∞+ ǫi around R
+ to

+∞− iǫ, and Kσ is an operator given by its integral kernel

Kσ(x, y) =

∫ ∞

−∞
σ(t)Ai(x+ t)Ai(y + t)dt, and σT,µ(t) =

µ

µ− e−κT t
. (7)

Given this explicit formula it is then a relatively easy corollary that as T goes to infinity, under
T 1/3 scaling, the statistics of the KPZ equation converge to those of Baik, Deift and Johansson
(the Tracy-Widom FGUE distribution) – thus the KPZ equation is in the KPZ universality class!

The short time (T goes to zero) statistics scale like T 1/4 and converge to those of the EW (Edwards
Wilkinson) class [65] – which is governed by the additive stochastic heat equation and hence has
a Gaussian one-point distribution. The short time results are more easily derived directly from
the chaos expansion for the multiplicative stochastic heat equation. This shows, in fact, that the
KPZ equation actually represents a mechanism for crossing over between two universality classes
– the KPZ class in long-time and the EW (Edwards Wilkinson) class in short-time (see also the
plots of Figure 1)

Corollary 1.2. The Hopf-Cole solution to the KPZ equation with narrow wedge initial data has
the following long-time and short-time asymptotics:

FT (2
−1/3T 1/3s)

T→∞−→ FGUE(s) FT (2
−1/2π1/4T 1/4(s− log

√
2πT ))

T→0−→ G(s). (8)

The GUE distribution function was first discovered in [162] and therein was expressed in terms
of a Fredholm determinant as well as in terms of the Hastings-McLeod solution to the non-linear
ODE known as Painlevé II

FGUE(s) = det(I −KAi)L2(s,∞) = exp

(

−
∫ ∞

s
(x− s)q2(x)dx

)

(9)

where q(x) solves the ODE

q′′(x) = (x+ 2q2(x))q(x) (10)

subject to q(x) ∼ Ai(x) as x→∞. Also

KAi(x, y) =

∫ ∞

−∞
1t≥0Ai(x+ t)Ai(y + t)dt (11)

and hence is of the form of the Kσ with σ = 1t≥0. G(s) is the Gaussian distribution

G(s) =

∫ s

−∞

1√
2π
e−r2/2dr. (12)

It is important to note that the T 2/3 correlation scaling for the KPZ equation still remains
unproved. This is because the methods used above for the KPZ equation presently only give
one-point fluctuation results, and one would require control over the two-point correlation in
order to show this scaling. A proof of this and moreover an exact expression for the multi-point
correlation functions remains an important goal.
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Figure 1. Properly scaled probability density functions for FT (s) showing the
crossover to FGUE in long time (green, upper curves) and Gaussian in short time
(red, lower curves). These plots have been made by evaluating the Fredholm
determinant expressions for FT (s) (in fact in a slightly different form than quoted
in this survey – see for instance the Gumbel convolution formula of [5] Theorem
1). Recent advances in numerical calculations of Fredholm determinants by F.
Bornemann [27] have enabled fast calculations of these plots (as well as many
other distribution functions arising in random matrix theory and the study of the
KPZ universality class). Special thanks to S. Prolhac and H. Spohn for permission
to reproduce these plots from [140].

1.1.5. The KPZ equation as a critical scaling object. In order to properly understand the above
crossover we shall see that the KPZ equation arises as the scaling limit of the corner growth
model under weak asymmetry (we will soon specify in Section 1.2.3 exactly what this means).
In Section 1.2.3 we will observe, however, for any positive asymmetry the corner growth model
is in the KPZ class, while for zero asymmetry it is in the EW class.

This entire picture of the KPZ equation being the weakly asymmetric limit of the corner growth
model, and having statistics which crossover between universality classes just further confirms a
mantra in statistical physics that at critical points (in this case the interface between universality
classes) one can expect to see universal scaling objects. In this case that object is the KPZ
equation, though other examples abound. Analogous to our case is the fact that the scaling limit
for critical percolation (on the hexagonal lattice) is governed by SLE6.

To motivate this whole pursuit and approach, it is useful to draw upon a rather simple analogy
with the story of random walks and Brownian motion. There are a wide (infinite) variety of
random walks. However, assuming the jumps have finite second moment, if you subtract off their
linear drift, and scale properly, they all converge to a single (hence universal) continuum object
– the Brownian motion.

In that case, the benefit of having a single limiting object is enormous. As long as one is dealing
with a suitably long time-scale, the above result shows that all such random walks essentially
look similar. Thus, if we compute properties of the Brownian motion, these will (with a little
care) imply similar (and exact in the limit) results for the random walks. This observation can
be thought of as the basis for Gaussian statistics. Because of its importance, the properties
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of Brownian motion have been incessantly studied and results pertaining to its properties fills
countless volumes of books and research articles. In particular, a calculus was developed for the
Brownian motion.

When it comes to proving properties of the Brownian motion there are many approaches.
However, it is informative to recall that the earliest approach, taken by de Moivre, was to consider
a particularly solvable discrete model – the simple symmetric random walk. In that setting he
took asymptotics of Binomial coefficients to compute the limiting Gaussian distribution. Even
though now the techniques have evolved past relying on such simple models to prove properties
of the Brownian motion, early on such solvable models were essential.

Presently, the state-of-the-art in solving for the statistics of the KPZ equation is analogous to
taking asymptotics of Binomial coefficients. It is only through exactly solvable discrete models
(which can be proved to converge to the KPZ equation) that one is able to compute anything
about the KPZ equation rigorously. As far as universality of the KPZ equation as a scaling
limit, few doubt it, but presently it is only known rigorously to arise in the particular case of the
corner growth model. However, the KPZ equation is essentially equivalent to the free energy of
a continuum directed random polymer model, and within the study of directed polymers, it is
simpler to prove universality of the continuum model (see Section 1.3.1).

1.1.6. The proof of Theorem 1.1 in two steps. There are two main steps involved in the proof of
the above theorem – the first is a universality result and the second a solvability result (these are
both explained in greater depth in Section 2 and 3 respectively). The first step is to rigorously
relate the corner growth model to the Hopf-Cole solution to KPZ with narrow-wedge initial data.
Bertini-Giacomin’s earlier work [23] does not apply to the wedge geometry since it is very far
from stationary initial data. In fact, a new term appears in the scaling and in [5] it is necessary
to provide a proof that under this corrected scaling, the KPZ equation arises (the proof of this
result certainly draws on the work of [23] though).

To fix notation, hγ(t, x) represents the height function for the corner growth model at time
t ≥ 0 above position x ∈ Z. The γ is the asymmetry and is given by γ = q − p where q is the
growth rate and p is the death rate (see Figure 0a or Section 1.2.1). Wedge initial condition
corresponds to hγ(0, x) = |x|.

This first step is summarized in the following:

Theorem 1.3 (Theorem 1.14 of [5]). Fix wedge initial conditions. For ǫ > 0 set γ = ǫ1/2,

νǫ = p + q − 2
√
qp ≈ 1

2ǫ and λǫ =
1
2 log(q/p) ≈ ǫ1/2 (recall q + p = 1 and q − p = γ) and define

the discrete Hopf-Cole transformed height function as

Zǫ(T,X) = ǫ−1

2 exp{−λǫhγ( t
γ , x) + νǫ

t
γ }. (13)

Let Pǫ denote the probability measure on space-time processes in Du([0,∞);Du(R)) (here Du

refers to right continuous paths with left limits in the topology of uniform convergence on compact
sets). Then Pǫ, for ǫ ∈ (0, 1/4), are a tight family of measures and the unique limit point is
supported on C((0,∞);C(R)) (continuous in both space and time) and corresponds to the solution
of the SHE with delta function initial data Z(0,X) = δX=0.

The second step is to use the recently discovered exact formulas of Tracy and Widom [163,
164, 165] for the corner growth model height function, and take their weakly asymmetric limit.

Theorem 1.4 (Tracy-Widom ASEP formula [165]). Consider the corner growth model with
wedge initial conditions and with q > p such that q + p = 1. Let γ = q − p and τ = p/q. For
m = ⌊12 (s+ x)⌋, t ≥ 0 and x ∈ Z

P (hγ(t, x) ≥ s) =
∫

Sτ+

dµ

µ

∞
∏

k=0

(1− µτk) det(I + µJt,m,x,µ)L2(Γη) (14)
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where Sτ+ is a positively oriented circle centered at zero of radius strictly between τ and 1, and
where the kernel of the determinant is given by

Jt,m,x,µ(η, η
′) =

∫

Γζ

exp{Ψt,m,x(ζ)−Ψt,m,x(η
′)}f(µ, ζ/η

′)

η′(ζ − η) dζ (15)

where η and η′ are on Γη, a circle centered at zero of radius strictly between τ and 1, and the ζ
integral is on Γζ , a circle centered at zero of radius strictly between 1 and τ−1, and where

f(µ, z) =
∞
∑

k=−∞

τk

1− τkµz
k

Ψt,m,x(ζ) = Λt,m,x(ζ)− Λt,m,x(ξ) (16)

Λt,m,x(ζ) = −x log(1− ζ) + tζ

1− ζ +m log ζ

It is relatively straight-forward to guess the correct limiting formula (and hence guess the
exact formula for the KPZ equation) as we demonstrate in Section 3.1. However, to make these
asymptotics rigorous requires a significant amount of work. Besides the usual complications
involved in proving uniformity and tail bounds (for the purpose of trace-class convergence),
there is a major technical issue one encounters in the asymptotics. Briefly put, the heart of the
asymptotics involves Taylor expanding the function Ψ around a critical point ξ and showing that,
in rescaled coordinates, along one contour (Γη′) Ψ rapidly goes to +∞ away from ξ and along the
other contour (Γζ) Ψ rapidly goes to −∞ away from ξ. To facilitate this, one generally wants to
deform the two contours to be very far from each other (for instance one contour leaves ξ at angle
±π/3 and the other at ±2π/3). However, due to the weak asymmetry scaling, the two contours
of interest can not be deformed as such since doing so one would cross a diverging number of
poles as indicated by the restriction from the function f that ζ/η′ ∈ (1, τ−1). Therefore, it is
necessary to prove that despite staying extremely close together, one can still choose contours
which have the desired opposing decay properties. A priori it is far from clear that this is possible.
[5] explicitly shows it is possible and give the necessary contours and estimates.

1.1.7. The chronology. Before going further we should remark on the chronology of the solution
to the KPZ equation (see also Sasamoto and Spohn’s contributions to StatPhys 24 [150]). The
formula was independently and in parallel discovered in mathematics by Amir-Corwin-Quastel
[5] and mathematical physics by Sasamoto-Spohn [147, 148, 149] in the fall of 2009 and posted
early in 2010. The derivation (unsurprisingly) relied on a similar approach.

Amir-Corwin-Quastel’s work contains a complete and rigorous proof of the exact formula
(and in particular dealt carefully with the technically involved asymptotic analysis of the Tracy-
Widom corner growth model solution mentioned above) and the necessary extension of the work
of Bertini-Giacomin away from near-stationary initial data. Additionally, they showed that the
solution satisfies a certain extension of the Painlevé II equation, suggesting a relationship to
integrable systems.

Sasamoto-Spohn derive the exact formula as well as provide detailed numerical plots of the
newly discovered statistics, compute the long-time correction to the Tracy-Widom GUE distribu-
tion, notice certain connections with q combinatorial identities and explain the physical context
of the KPZ equation in detail. Certain points in the derivation, however, proceed without rigor-
ous mathematical justification. The first is in the application of Bertini-Giacomin’s convergence
theorem (which does not apply in this setting and must be replaced by [5], Theorem 1.3 – re-
sulting in a log ǫ shift in the height function). Instead, [147] determine that this should be the
necessary shift by using a first moment fitting argument. The second point is in freely deforming
contours during asymptotic analysis (when in fact there is a very restrictive condition on con-
tour manipulations imposed by the critical scaling of the formulas of Tracy and Widom). The
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Figure 2. Integrating the spin variables of the SEP yields the corner growth model.

deformation through many poles should introduce a diverging correction to their formula which,
however in later manipulations, is luckily canceled and results in a correct final formula.

At the same time, a very different (and mathematically non-rigorous) approach was pursued
by two groups of physicists, Dotsenko [62] and Calabrese-Le Doussal-Rosso [41]. The nth moment
of Z satisfies a closed evolution equation which coincide with the quantum many body system
known as the attractive δ-Bose gas on R with n particles. The eigenfunctions for this system
were found by McGuire [123] in 1964, and the norms of these eigenfunctions were determined
using the algebraic Bethe Ansatz (for instance [104, 25, 155]) in [40] in 2007. Going from the
moments of Z to its distribution (or the distribution of its logarithm) is mathematically unsound

since one readily checks that the moments grow like ecn
3

which means that the moment problem
is ill-posed. This is a classic issue in replica trick calculations and necessitates summing highly
divergent series and performing unjustified analytic continuations. In January 2010 Dotsenko
[63] posted an attempt at this, but admittedly got the wrong answer. Likewise, in February
2010 in the first posted version of [41], Calabrese, Le Doussal and Rosso find formulas which do
not have the Tracy-Widom GUE distribution as the long-time asymptotics. In late March both
groups realized the correct way to sum the divergent series and get a Fredholm determinant and
in the end they were able to show agreement of their formulas with those of Sasamoto-Spohn and
Amir-Corwin-Quastel.5 Despite the inherent lack of mathematical rigor in this approach, these
methods have proved to be powerful and have lead to certain predictions which can not yet be
confirmed rigorously (see Section 4.3.2 for more about this approach).

1.2. Models in the KPZ universality class. A growth model is considered to be in the KPZ
universality class if its long time behavior is similar to that of the KPZ equation itself. There are
a wide variety of systems which are predicted to fall into this class and herein we only consider
a few of the simplest examples.

1.2.1. Interacting particle systems and the simple exclusion process. In many cases, growth mod-
els can be thought of as integrated version of interacting particle systems (see [115] for an overview
of this field). Particles moving stochastically and interacting according to a specified rule system
are effective ways of simulating and studying real world systems and gaining key insight into
complex phenomena. Particle systems such as the ones we consider are important models for
mass transport, traffic flow, queueing theory, driven lattice systems, and turbulence. We consider
particle systems where individual particles attempt to orchestrate random walks (often with posi-
tive drift) with the caveat that they are influenced by their local environment (of other particles).
Just as with growth processes, it is believed that varying the mechanisms for this interaction and
for the random walks should not affect the limiting fluctuations of the integrated particle density
(i.e., the height function). Furthermore these height fluctuations should be governed by the KPZ
class scaling and statistics.

5In fact, while both [62] and [41] write down generating functions for the KPZ equation distribution function and
find the long-time asymptotics to be Tracy-Widom GUE, only [41] extracted finite time statistics.
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The simple exclusion process [99, 156] (and its integrated version – the corner growth model)
is the poster child for all such particle systems and serve as a paradigm for non-equilibrium
statistical mechanics (with thousands of articles in mathematics and physics written on it, alone).
It is simple to state and in some ways exactly solvable, yet seems to contain all of the expected
complexities and phenomena of a general system. Particles attempt continuous time simple
random walks on Z, jumping left at rate q and right at rate p = 1− q with the caveat that jumps
are suppressed if the destination site is already inhabited (see Figure 2). The asymmetry or drift
here is recorded as

γ = q − p.
This process can be coupled to the corner growth model (see also Figure 1a) in terms of a height
function hγ(t, x) given as

hγ(t, x) =











2N(t) +
∑

0<y≤x η̂(t, y), x > 0,

2N(t), x = 0,

2N(t) −∑0<y≤x η̂(t, y), x < 0,

(17)

where N(t) records the net number of particles to cross from site 1 to site 0 in time t and where
η̂(t, x) equals 1 if there is a particle at x at time t and −1 otherwise (these are called spin variables,
though it is sometimes more natural to speak of occupation variables η(t, x) = 1

2(η̂(t, x)+1) which
are 1 if there is a particle and 0 otherwise). The dynamics for the corner growth model were
previously illustrated in Figure 1a. To review them, a local valley is filled in to form a local hill
at rate q and likewise a local hill is removed to form a local valley at rate p.

Let us fix some notation. When γ = 1 this process is totally asymmetric (TASEP), when γ > 0
it is partial asymmetric (PASEP) and when γ = 0 it is symmetric (SSEP). The case we will focus
on and define soon is weakly asymmetric (WASEP). We will freely move between speaking about
the particle process and growth process since they are exactly coupled as above. We will use
capital letters X and T for variables in the continuum models (such as the KPZ equation and
SHE) and small letters x and t for discrete models.

1.2.2. Hydrodynamics. Before studying fluctuations we must address the question of the long-
time limit shape of the height function hγ(t, x) of the corner growth model (with γ > 0) with
fixed given initial conditions. The natural scaling to see a limit shape of h is to take t = ǫ−1T
and x = ǫ−1X and consider whether

h̄(T,X) = lim
ǫ→0

ǫhγ(t/γ, x)

exists. If we assume that such a limit exists (in a suitable sense) for T = 0 (and calling the limit
h̄0(X)) then it is a theorem (see for instance [143, 144, 173]) that the limit exists for all T > 0
and that h̄(T,X) is the unique weak solution to the PDE known as the inviscid Burgers equation

∂T h̄ =
1− (∂X h̄)

2

2
,

with initial data h̄0(X) and subject to an entropy condition.
For instance, with a step initial condition (particles initially only at x > 0), h̄0(X) = |X| and

after time T the wedge shape has resolved itself in the window x ∈ [−T, T ] to equal the parabola
(see Figure 3)

h̄(T,X) = T
1 + (X/T )2

2
,

and remains unchanged everywhere else. In particular, right above the origin it is at height T/2.
This is just a glimpse at the rich theory of model dependent hydrodynamical limits. It is

widely believed that the fluctuations around these model dependent limits are universal (i.e.
model independent) and fall into a few large universality classes characterized in terms of scaling
exponents and limiting statistics.
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Figure 3. A simulation of the height function fluctuations for the γ = 1 corner
growth model started in the wedge initial condition. The curve represents the limit
shape (a parabola) while the piecewise linear line represents the height function.
Fluctuations live on the t1/3 scale and are correlated spatially in the t2/3 scale (as
indicated by the box). Special thanks to Patrik Ferrari for the above simulation.

1.2.3. Fluctuations: asymmetry versus symmetry. In 1985, based on physical methods known as
mode-coupling, [20] argued that the simple exclusion process with positive asymmetry γ > 0
should have height function fluctuations like t1/3 and exhibit non-trivial spatial correlations on
the t2/3 scale. After the work of [98] this behavior became known as being in the KPZ universality
class. On the other hand, the symmetric case γ = 0 corresponds to the EW (Edwards-Wilkinson)

class [65] and have fluctuations of scale t1/4 with spatial correlation on the scale of t1/2. For the
EW class, the limiting fluctuation statistics were also predicted (and relatively easily proved – see
for example [157]) to be Gaussian, however for the KPZ class the limiting fluctuation statistics
were not found until the work of Baik, Deift and Johansson [9, 93] and then Prähofer and Spohn
[137] (for the spatial correlation). These works only dealt with the totally asymmetric (γ = 1)
simple exclusion process for step initial condition (or equivalently the corner growth model in
the wedge geometry) – which is illustrated in Figure 3. Tracy and Widom [165] extended the
one-point fluctuation results to γ > 0 by way of their exact formula, recorded here as Theorem
1.4. It is clear that in order to treat all values of γ > 0 equivalently, we should speed up time
to compensate for smaller growth asymmetry: we should take time like t/γ. The t/2 which is
subtracted from hγ comes directly from the hydrodynamic theory. Putting together the one-point
fluctuation results of [93, 165] we have:

Theorem 1.5. For all γ ∈ (0, 1] and for ρ− = 0 and ρ+ = 1

lim
t→∞

P

(

h( t
γ , 0) − t

2

2−1/3t1/3
≥ −s

)

= FGUE(s).

Thus we see a critical point: For any γ > 0, fluctuations scale like t1/3 and have limiting GUE
statistics, while for γ = 0, fluctuations scale like t1/4 and have limiting Gaussian statistics. Thus,
scaling γ to zero with the other model parameters one would hope to find a scaling limit which
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interpolates between these two universality classes. As proved in [5], that is exactly what the
KPZ equation does.

When we later consider directed polymers, this same perspective of looking between univer-
sality classes will guide us towards looking at the weak noise or intermediate disorder regime –
where again we will encounter the KPZ equation (in the guise of the continuum directed random
polymer).

1.2.4. Six fundamental KPZ universality class geometries and fluctuation statistics. The rescaled
initial conditions for the particles/height function plays an important role in the hydrodynamic
theory. We turn now to fluctuations and ask how does the initial data affect the scalings and
statistics for the long time fluctuations. Height function fluctuations detect differences in the
initial data or geometry, though scalings remain governed by the characteristic 1/3, 2/3 expo-
nents. There are six types of initial data on which we will focus. Each of these cases corresponds
to a markedly different geometry, and the spatial limit process associated to each of these has
been rigorously derived through asymptotic analysis of exact formulas. There are, however, also
geometries in which the fluctuations of the initial data overwhelm the KPZ class fluctuations (see
[46] for example of both Gaussian and KPZ type).

The following six initial conditions have been well-studied and are arguably the most important
subclasses of the KPZ universality class (see Figure 4):

(1) Wedge (step): hγ(0, x) = |x|, or η(0, x) = 0 for x ≤ 0 and 1 for x > 0.
(2) Brownian (stationary): hγ(0, x) = RW (x) (a simple symmetric random walk), or

η(0, x) are i.i.d. Bernoulli random variables with parameter 1/2.
(3) Flat (periodic): hγ(0, x) linearly oscillates between 0 and 1, or η(0, x) = x mod 2.
(4) Wedge→Brownian (half Bernoulli): hγ(0, x) = −x for x ≤ 0 and RW (x) for x > 0,

or η(0, x) are 0 for x ≤ 0 and are i.i.d. Bernoulli random variables for x > 0.
(5) Wedge→Flat (half periodic): hγ(0, x) = −x for x ≤ 0 and linearly oscillates between

0 and 1 for x > 0, or η(0, x) are 0 for x ≤ 0 and x mod 2 for x > 0.
(6) Flat→Brownian (half periodic / half Bernoulli): hγ(0, x) linearly oscillates between

0 and 1 for x ≤ 0 and equals RW (x) for x > 0, or η(0, x) are x mod 2 for x ≤ 0 and are
i.i.d. Bernoulli random variables with parameter 1/2 for x > 0.

It is fairly simple to see, heuristically, why these are distinguished. Assume that we are
considering a fixed (though possibly random) initial condition. Furthermore, assume that there
is a hydrodynamic limit for the evolution of this initial condition (i.e., a law of large numbers).
We are interested in the fluctuations of the height function around its deterministic limit shape.
The KPZ scaling suggests that we set t = ǫ−3/2T , x = ǫ−1X and we scale fluctuations by ǫ−1/2

so as to look at

ǫ−1/2
(

hγ(
t
γ , x)− h̄(T, 0)

)

,

where we have subtracted h̄(T, 0) because the spatial scaling is now smaller than the temporal
scaling (and hence only the asymptotic height above the origin plays a role). Since we have fixed
the initial data and scaled diffusively, the only possible limits for the rescaled initial data are those
which are invariant in distribution under diffusive scaling. The three simplest such limits are:
constant zero, Brownian motion, and, infinity (except for X = 0). As the limit can be different
on the left and right of the origin these cases give six different limits, which correspond with
the six geometries above. There are other possible limits, such as combinations of independent
Brownian motions under the (max,+) algebra (see [8] for instance).

We give two examples to illustrate this rescaling. Consider some finite pattern of particles and
holes (for instance particle, particle, hole, hole). Fix the initial condition to be a tiling of this
pattern. Under the diffusive scaling of the initial fluctuations this initial condition converges to
the same limit (constant zero) as does the flat geometry. Thus, the statistics of the T > 0 height
function fluctuations should agree. For the second example consider initial conditions where
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η(0, x) are determined by Bernoulli random variables with periodic parameters (i.e., parameter
depending on x mod m for some m ≥ 1) then the T = 0 fluctuations converge to a scaling of
a Brownian motion and likewise, the statistics of the T > 0 height function fluctuations should
agree with the usual Bernoulli case (Tracy and Widom called these periodic Bernoulli initial
conditions [168]).

Of course there are some serious mathematical issues which, in fact, are unresolved here. First
of all, even if two different initial conditions converge to the same fluctuation initial data, does
that mean that their positive T fluctuation statistics coincide as well? The hydrodynamic theory
showed this was true at the level of limit shapes, but fluctuations are much more complicated
and such a theorem does not exist. Another complication comes from trying to make sense of
the diffusive rescaling of initial data which seems to scale to infinity (except at X = 0). There
are many legitimate types of initial data which rescale to this under diffusive scaling.

It turns out that all of these issues can be resolved mathematically if you scale γ to zero (like

γ = ǫ1/2) and deal with the Hopf-Cole transform of the fluctuations, rather than the fluctuations
directly. We will return to this point very soon.

Having identified six fundamental growth geometries in the KPZ universality class, we should
ask how does the geometry affect the associated fluctuation statistics (the scaling exponents,
after all, should all be the same). Thanks to a great deal of effort in the last twelve years, the
spatial fluctuations are entirely classified when γ = 1 and exact formulas have been proved to
describe the multi point (fixed T ) statistics. For general γ > 0, Tracy and Widom have extended
the one-point statistic results for the wedge and wedge→Brownian geometries (of course there is
no doubt all of this holds for general positive γ). The chart (4) summarizes the six spatial limit
processes. As can be predicted by the composite nature of their associated initial conditions, the
second set of three limit processes are actually transition processes between combinations of the
first three. Understanding the evolution of these spatial limit processes in time T is a problem
of great interest which only recently has begun to be answered (see [50]).

1.2.5. Six fundamental initial data of the KPZ equation. We introduced above six fundamental
geometries (or subclasses) of the KPZ universality class. Under weak scaling of the asymmetry

γ (like γ = βǫ1/2), we may now rigorously prove that all initial data which rescale diffusively to
a limit given by one of these geometries, will have fluctuations which rescale (as ǫ goes to zero)
to the same space-time fluctuation process as in these distinguished and solvable cases.

This fact was proved in the Brownian and flat geometries by Bertini-Giacomin [23] in the
mid 1990s (the following explanation is illustrated in Figure 5). Rather than directly studying
the height function fluctuations, they looked at its Hopf-Cole transform (f 7→ exp{−f}) which
they called Zǫ. Gärtner [74] had previously recognized that this transform linearizes the dy-
namics of the corner growth model into a discrete stochastic heat equation with multiplicative
noise. Taking ǫ to zero, the solution (Zǫ) to the discrete stochastic heat equation converges
to the solution (Z) to the continuum stochastic heat equation with multiplicative space-time
white noise. Un-doing the Hopf-Cole transform gives (at least formally) the KPZ equation.
As explained before, due to the ill-posedness of the KPZ equation, it is better to deal at the
level of the well-posed SHE. The initial data associated with the Brownian geometry becomes
Z0(X) = exp{−B(X)} for a Brownian motion B(X) independent of the white noise, while flat
geometry becomes Z0(X) = exp{−0} = 1. Their work also applies to the flat→Brownian geome-
try and gives Z0(X) = 1X<0+exp{−B(X)}1X≥0. Moreover, one does not need to start with the
exact initial conditions specified above. It suffices that the initial condition fluctuations converge
to the limit point associated with these three geometries.

Bertini-Giacomin’s results do not extend to the three wedge-related geometries. It is clear from
the above discussion what initial data should be associated with the two transition geometries
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Figure 4. Six fundamental geometries in the KPZ universality class. Fluctua-
tions have been entirely classified for these geometries at the level of one-point and
multi-point spatial statistics (the temporal evolution of these spatial processes is
conjecturally described in [50]). Under suitable weak asymmetry the entire space-
time evolution of KPZ class models converge as a process to the Hopf-Cole solution
to the KPZ equation (note the logarithmic correction to the scaling in the wedge
geometry). Exact formulas and moment/variance bounds for the KPZ equation
solutions (stated in terms of the initial data for the associated stochastic heat
equation) have only been derived and proved in the wedge, wedge to Brownian,
and Brownian (only bounds) cases. Even in those cases, only one-point formulas
and bounds exist.
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Figure 5. Illustration of the route between discrete and continuum models. The
quotation marks imply that these are ill-posed SPDEs and interpreted via the
solution to the stochastic heat equation.

– wedge→Brownian and wedge→flat. The first should have Z0(X) = exp{−B(X)}1X≥0 while
the second should have Z0(X) = 1X≥0. Of course, it does not make sense to un-do the Hopf-
Cole transform for T = 0, but due to a theorem of Müller [124], Z is almost surely everywhere
positive for T > 0 and X ∈ R. The above convergence is made rigorous in [5, 49] (and builds on
Bertini-Giacomin) and will be explained in Section 2.3.

For the wedge geometry the above arguments fail. Since hγ(0, x) = |ǫ−1X|, it is clear that

Ze = exp{−ǫ1/2|ǫ−1X|} = exp{−ǫ−1/2|X|}. As ǫ goes to zero, Zǫ goes to 0 for all X 6= 0, and
goes to 1 for X = 0 (this is analogous to the issue discussed earlier regarding initial data rescaling
diffusively to infinity). Such initial data is massless and can not be right. The solution, however,
is simple and was discovered in [5]. Bertini-Giacomin’s scalings do not exactly apply for this
geometry – there is a logarithmic correction needed to the height function fluctuations when
dealing with weak asymmetry. This can be seen by observing that putting a prefactor of ǫ−1/2/2
in front of the above Zǫ, results in conservation of mass and in this modified scaling, the wedge
geometry scales to a delta function at zero. Thus, with this additional correction, [5] shows that
the wedge geometry corresponds to Z0(X) = δX=0 (in fact one can show that any wedge-like

initial condition has the same limit). It is exactly this ǫ−1/2/2 prefactor which accounts for the
necessary correction to Bertini-Giacomin’s scalings.

This shows that, at least in the weakly asymmetric scaling, these six geometries correspond
to large universality subclasses. The asymmetry (written before as γ = βǫ) can be ratcheted up
after taking ǫ to zero, by increasing β. Due to scalings of the continuum equations, this amounts
to taking T to infinity. As such, one would hope to recover the γ > 0 statistics and scales by
simply studying the statistics of the long-time limit of the KPZ equation.
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A proof of this fact (at the level of one point statistics) has now been given by [5] and [49]
for the wedge and the wedge→Brownian initial data / geometry. This relies on taking the long
time limit of the rigorously proved explicit formula for the finite T solution to the KPZ equation
(with these initial data).

Using the replica trick method and carefully summing divergent series [62, 41] have successfully
(though highly non-rigorously) re-derived the above formula and large T asymptotic result for
the wedge geometry. Using this method, [139] gave a non-rigorous derivation of the large T limit
of the multi point statistics which matched up with the KPZ class statistics (the Airy2 process)
for the wedge geometry.

At a rigorous level, nothing is known about the multi-point (fixed time) statistics for the
solution to the KPZ equation. Aside from the exact solutions of [5] and [49], the only other case
with some success is that of the Brownian geometry – [15] and [49] have derived bounds showing
that the variance and moments of the solution to the KPZ equation with Brownian initial data
are of the correct scale ([49] also provides some tail decay bounds in one direction). The exact
statistics here, and bounds or statistics for the other three cases of initial data remain entirely
open.

1.3. Discrete and continuum directed polymers in random media. Until now we have
dealt entirely with growth processes and interacting particle systems. Under suitable scaling we
showed (at least for the simple exclusion process or corner growth model) that the KPZ equation
arises as a continuum scaling limit. We also saw that the initial conditions for the discrete models
translate readily into initial data for the KPZ equation. In fact, it was only at the level of the
SHE where everything became rigorous and meaningful (especially with respect to the wedge
geometry).

In this section we will observe that, via a version of the Feynman Kac formula, it is possible
to interpret the solution to the SHE as the partition function for what is called the continuum
directed random polymer (CDRP). Thus the free energy (essentially the logarithm of the partition
function) for the CDRP corresponds with the Hopf-Cole solution to the KPZ equation. The
initial data for the SHE corresponds to an initial potential which affects the starting position
of the polymer. The fundamental solution for which we have presented the exact probability
distribution formula above corresponds with fixing the departure position at zero.

Once we have introduced the CDRP we will provide a few approximation schemes which have
the CDRP partition function (hence SHE) as a limit. Most significant of these schemes is that
of approximation via a large class of discrete directed polymers in random media (explained in
Section 4.1.4).

Polymer models are important from a number of perspectives. They were introduced in [87]
to study the domain walls of Ising models with impurities [112] and have been applied to other
problems like vortices in superconductors [24], roughness of crack interfaces [84], Burgers turbu-
lence [73], interfaces in competing bacterial colonies [80] (see also the physical review [82] or [72]
for more applications).

Directed polymers in disordered environments provide a unified mathematical framework for
studying a variety of different abstract and physical problems. They represent generalizations
of path integrals through disordered potentials and are thus useful ways of solving stochastic
(partial) differential equations; they are useful for solving and formalizing many optimization
problems, including important problems in bio-statistics [120, 89, 121, 145] and operations re-
search [6]; they arise in the study of branching Brownian motions and random walks in random
environments [37]; they serve as paradigms for the study of other disordered systems [57]; and
phenomena like pinning and wetting [4, 86]. On top of that, their relationship to random growth
models and interacting particle systems means that any exact solvability developed in the frame-
work of polymers, can be translated (at least at the continuum level) into exact solvability of
the associated continuum growth models or particle systems (SPDEs). Add to these topics the
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connections to combinatorics and integrable systems (see [93, 51] for example) and it is clear why
polymers have received so much interest in recent years.

1.3.1. The free energy of the continuum directed random polymer. Let us start at the level of
physics and write down the following expression for the free energy of the CDRP:

F(T,X) = logE

[

: exp:

{

−
∫ T

0
Ẇ (t, b(t))dt

}]

(18)

where the expectation E is over Brownian bridges b(·) such that b(0) = 0 and b(T ) = X, and
: exp : is known as the Wick exponential. Observe that F(T,X) is random with respect to the

disorder (the Gaussian space-time white noise Ẇ ). If one considers the white noise as a random
potential in which paths arrange themselves according to a Boltzmann weight6, then exp{F} is
the partition function for this ensemble and F is the free energy.

Mathematically, equation (18) requires some work to make rigorous and in Section 4.1 we give
the following five schemes to define / approximate the free energy of the CDRP – all of which
are equivalent in that they can be shown to lead to the same object. They are:

(1) Chaos series and time ordering,
(2) Stochastic PDEs,
(3) Spatial smoothing of the white noise,
(4) Discrete directed polymers,
(5) Growth processes and interacting particle systems.

The fourth and fifth scheme are perhaps most interesting from a physical perspective. That
growth processes and interacting particles systems would be related to the CDRP is initially
unclear. However, one may recognize that the path integral in the definition of the free energy
can be interpreted, via a version of the Feynman Kac formula, as the solution to the SHE with
multiplicative white noise. Thus the free energy is closely related to the KPZ equation, which
we have seen is a continuum growth model.

The connection between polymers and growth models was previously observed only at the level
of zero-temperature polymers (last passage percolation) and totally asymmetric growth models
(the corner growth model with γ = 1).

It is worth noting that while everything so far has been focused on the case of the point-to-point
polymer, it is possible to likewise consider other initial potentials in which the polymer optimizes
its starting position. This corresponds with different initial data for the SHE, to different growth
geometries for the growth models and to different initial conditions for the particle systems (see
Section 4.2).

1.3.2. Exact solvability of the discrete and continuum directed polymer. Having established above
that the CDRP and its free energy / partition function is a truly universal object, it is of
great interest to compute scaling exponents, exact and asymptotic statistics, and the answers to
various other probabilistic questions related to this random processes. This direction has seen
an explosion of progress in the past three years. There are essentially three approaches which
have been recorded so far, and each one seems to uncover new structure and expand the scope
of what can be computed. We list them chronologically in order of discovery. All but the replica
trick provide rigorous means to access information about the CDRP (though the replica trick is
useful none-the-less for deriving new formulas). These approaches are explained in Section 4.3.

(1) The Tracy Widom ASEP (or equivalently corner growth model) formulas,
(2) The replica trick and Bethe ansatz,
(3) The solvable finite temperature polymers.

6As written the inverse-temperature parameter β has been set to equal 1, though rescaling time like β4T and space
like β2X effectively reintroduces this factor
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The first approach greatly extends work of [151], while the third approach likewise extends the
solvability of the zero temperature polymer models (last passage percolation) via the Robinson-
Schensted-Knuth correspondence (studied at length since the work of [9, 93] in the late 1990s) to
the positive temperature setting. The replica trick has been used to study the CDRP since the
work of Kardar [96] but only recently developed to the point of yielding formulas for statistics.

1.4. Some open problems. In this Section we briefly highlight a few important open questions
(and any partial progress towards resolving them).

(1) The full scope of solvability for the KPZ equation: Figure 4 highlighted the fact
that for the KPZ equation we presently do not have one-point distribution results for four
of the six fundamental initial data for which we expect solvability. Moreover, we do not
have any rigorous results for spatial processes for the KPZ equation at finite time and it
is not clear whether the formula derived in [138, 139] via replica trick is correct (as they
note, it is under a false factorization assumption that they derive the finite T formula and
it is only in the large T limit that the factorization seems to be correct and they recover
the Airy2 process).

In a related question one would like to understand Tracy and Widom’s exact formulas
through a more systematic and algebraic perspective in which their combinatorial iden-
tities have meaning. Such an understanding could enable extensions of their approach to
more general initial data and multi-point distributions.

(2) The multi-layer free energy process: The image of exponential weight matrices under
the RSK correspondence can be projected to a measure on partitions where the lengths
of the partition equal (in distribution) the eigenvalues of the Lageurre Unitary Ensemble
of random matrix theory. It is only the top level of the partition (or eigenvalue) which
we have focused on above. However, the entire collection of top eigenvalues rescales to a
non-trivial point process (which can further be extended into a multi-layer extension of
the Airy2 process.

It was observed in [129] (and then further discussed in [130] that there exists a similar
multi-layer process extension to the free energy of finite temperature polymers – and in
particular the CDRP. It is of interest to study the finite T statistics of this multi-layer
process and derive finite T versions of many of the processes associated with classical
random matrix theory.

(3) Path properties: The entire multi-layer free energy process, as well as the multi-layer
Airy2 scaling limit, should have certain nice path properties. The first property is that
every path should be locally absolutely continuous with respect to Brownian motion. This
have been shown in [48] for the multi-layer Airy2. Along the way to proving that result [48]
proves that the entire ensemble of lines in the multi-layer Airy2 process has a Brownian
Gibbs resampling property – which is to say that removing a portion of the kth line
between a and b, one can resample according to a Brownian bridge conditioned to start
and end at the correct locations and to avoid the (k+1)st and (k−1)st line. The result of
this resampling is a new configuration of lines which is distributionally equivalent to the
original configuration. Such a property should hold for the finite temperature multi-layer
free energy process.

(4) Large deviations and the Painlevé II like expression of [5]: The tails of the Tracy
and Widom FGUE(s) [162] distribution decay differently — the upper tail decays like

e−cs
3
2 while the lower tail decays like e−cs3 . The lower tail exponent was particularly

difficult to derive and required the connection with Painlevé II established in [162]. One
would like to compute similar tail estimates for the finite T solution to the KPZ equation
as in [5]. In [5] an integro-differential equation generalizing the Painlevé II equation was
derived. However, it has not yet been analyzed to the point of being able to prove tail
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estimates of the sort described above, nor has the connection with integrable systems been
sufficiently understood (for instance whether it arises in relation to inverse scattering as
in [53]). In [49] some upper tail estimates are derived for various KPZ initial conditions.

(5) Universality: The universality conjecture roughly says that (within reason) changing
local rules of a model will not affect the global or scaling limit behavior. For instance,
for random matrix theory changing the distribution of random variable matrix entries
or the type of eigenvalue potential does not affect the limiting statistics for eigenvalues.
Herein we have considered a number of types of systems including growth models, particle
systems and polymers. We are particularly interested in universality of the KPZ equation
(hence studying these systems under weak asymmetry). For polymers this goal is in
progress in the work of [2]. For growth models and particle systems the only universality
results are those of [23, 5, 49] which deal only with the corner growth model / simple
exclusion process.

It is of great interest to prove that for more general particle systems the KPZ equation
still arises. For instance one could consider the exclusion process with jumps beyond just
nearest neighbor. Or also jump rates which depend on the local environment. Work of
[76] deals with these more general processes and shows tightness of the fluctuation field
within a class of so called “energy solutions” to the KPZ equation. This class certainly
contains the unique Hopf-Cole solution (by virtue of the work of [23, 5, 49]) but it is far
from clear whether it is the only element of whether there are (possibly infinitely) many
other energy solutions.

Another form of universality is with respect to the scaling exponents. A result which
might reach beyond the limited class of exactly solvable models is [14] were exponents
are derived for a class of zero range processes that are defined by the requirement that
the slode of the nondecreasing, concave jump rate function decrease geometrically.

(6) Other questions: Without commenting on them, it is worth noting three other impor-
tant questions. The first deals with proving the conjectural description and formulas of
[50] with regards to the renormalization fixed point for the KPZ universality class. The
second deals with making sense of the KPZ equation and CDRP in more than one spatial
dimension (see [92, 44] for some polymer results in higher dimensions). And the third
deals with the still mysterious connections between the classes of models discussed above
and random matrix theory.

1.5. Outline and acknowledgements. The introductory section above contained the state-
ment of a number of important results, a discussion of the KPZ universality class and subclasses,
and an overview of the material which follows. In Section 2 we present the rigorous connection
between the WASEP and the KPZ equation and explain step by step how one goes about proving
such a connection. In Section 3 we show how, by using that connection and the explicit work
of Tracy and Widom, one can derive the exact statistics for the KPZ equation. We also explain
some of the important and highly non-trivial technical issues one must overcome to make such
a derivation rigorous. In Section 4 we review the theory of directed polymers in random media
and show how the continuum directed random polymer (CDRP) is a universal scaling limit for a
wide class of such models. We then review developments in the solvability of random polymers
and the KPZ equation.

I wish to thank MSRI and the organizers of the Random Matrix Theory workshop during the
fall of 2010. The notes on which this survey is based were developed during that semester and
are loosely based on a MSRI/Evans lecture I had the opportunity to deliver in September 2010,
and a series of lectures (organized by Freydoun Rezakhanlou) in the Berkeley math department I
delivered during the fall of 2010. I would also like to thank all those who attended these lectures
and encouraged me to turn these into a survey article. Parts of this survey were also written
during my time at MSRI, the Fields Institute, and IMPA.
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I would also like to thank many people for their collaboration, support or illuminating dis-
cussions (and often all three): Mark Adler, Gérard Ben Arous, Jinho Baik, Pasquale Calabrese,
Percy Deift, Amir Dembo, Victor Dotsenko, Steven Evans, Patrik Ferrari, Timothy Halpin-Healy,
Charles Newman, Neil O’Connell, Jeremy Quastel, Freydoun Rezakhanlou, Tomohiro Sasamoto,
Timo Seppäläinen, Vladas Sidoravicius, Herbert Spohn and Pierre van Moerbeke.

Ongoing support from the NSF through the PIRE grant OISE-07-30136 is acknowledged and
appreciated.

2. Weakly asymmetric simple exclusion process approximation of the KPZ

equation

In the original 1986 paper of Kardar, Parisi and Zhang [98], it is predicted that the eponymous
(KPZ) equation captures the behavior of the fluctuations of a wide class of discrete models. This
prediction was rather vague, however, and did not explain exactly in what sense the continuum
equation should be related to the discrete models. Still, it led to a prediction for the long time
fluctuation scaling exponents for many physical systems and mathematical models – which have
since been shown to be startlingly accurate in certain cases. Even though the scaling exponents
are universal through a wide class of models, [98] made no predictions about the exact statistics.
Subsequent works in mathematics have revealed an additional level of universality – that the
statistics seem to only depend on certain model characteristics such as the growth geometry, and
are otherwise universal across different models. There are now also reasonably well developed
conjectures about large classes of models which are in the KPZ universality class (see for instance
the review of [106]).

The purpose of this section is to explain how to make rigorous sense of the relationship between
discrete models and the KPZ equation. We will focus mainly on a single discrete growth model
called the corner growth model and its connection, under a particular type of weakly asymmetric
scaling, to the KPZ equation. The below diagram records three levels of discrete and continuous
processes and their relationship which is rigorously proved at the top level. The relationship
between the discrete corner growth and continuum KPZ equation exists only under a specific
weakly asymmetric scaling for the corner growth model. It was the work of Bertini-Giacomin
[23] that first rigorously proved this fact (they focused entirely on the model near stationary initial
data). They considered this scaling in terms of hydrodynamics and interpreted the KPZ equation
as the fluctuations one sees upon looking past the hydrodynamic scaling. In Section 1.1.5 we
saw how one can also interpret this weak asymmetry as scaling into the critical point between
two universality classes (the KPZ class and the EW or Edwards-Wilkinson class). The KPZ
class arises when there is positive asymmetry and the EW class when their is zero asymmetry.
The recent success in computing the statistics of the KPZ equation shows indeed that the KPZ
equation really represents a crossover in scaling and statistics between these two extremes.

We now set out and briefly explain the four tasks of rigorously relating the corner growth
model to the KPZ equation which will be the focus of this section (see Figure 5 for an illustration
of these steps):

(1) Define the corner growth model SPDE: We provide an SPDE for the corner growth
model and show how it arises from considering an interactive particle system called the
simple exclusion process (SEP). We will also say a bit about the hydrodynamic theory
(LLN) for this system.

(2) Make rigorous sense of the KPZ equation: We will address the question of how to
define what it means to solve the ill-posed KPZ equation . We will provide a definition
for the Hopf-Cole solution to KPZ which is defined as H = − logZ where Z solve the
stochastic heat equation which is well-posed. Differentiating the KPZ equation yields the
stochastic Burgers equation.
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Figure 6. The graphical construction of the SEP (the horizontal axis represents
space and the vertical axis represents time). Arrows are distributed independently
in each column according to Poisson point processes with rates q (left pointing
arrows) and rates p (right pointing arrows).

(3) Gärtner’s discrete Hopf-Cole transform: We will show that, miraculously, applying
the Hopf-Cole transform to the corner growth model results in a discrete version of the
SHE.

(4) Convergence of discrete SHE to continuum SHE under weak asymmetry: We
will follow the work of Bertini-Giacomin, and the extension of [5], [49], to show how we
can prove space-time process convergence of the discrete to continuum solution of the
SHE.

2.1. Corner growth model stochastic PDE. In the introductory section we informally de-
fined the simple exclusion process (SEP), and then by integration, the corner growth model.
Presently we will show how to rigorously construct the dynamics of the SEP, and in doing so
we will write down a stochastic PDE for the corner growth model height function. The SEP
is a continuous time, discrete space Markov process. Its state space can be written in terms of
occupation variables ηt ∈ {0, 1}Z or spin variables η̂t ∈ {−1, 1}Z (related by 2ηt(x)− 1 = η̂t(x)):

η(t, x) =

{

1 particle

0 hole
η̂(t, x) =

{

1 particle

−1 hole
(19)

2.1.1. The graphical construction and the jump processes L and R. One can define the process
in terms of its Markov generator. However, we will not take this tact here, and will rather focus
on a graphical construction of the process (see [115] for more on this).

The figure above illustrates this construction. The horizontal axis represents space and the
vertical axis represents time. Each vertical line will be called a ladder, and each region between
two consecutive ladders will be called a column. We will construct the SEP up to a fixed time
T . Consider two Poisson point processes L and R. L is a random point measure on Z × [0, T ]
with the property that for each x ∈ Z, L(x) are i.i.d. poisson point processes (on [0, T ]) with
intensity q. In the above figure we represent the points of L as left arrows in each column (x
identifies a column). Likewise, R is defined but with intensity p, and its points are represented as
right arrows. These point processes will be the randomness driving our SPDE. It is common to
treat L(x) and R(x) as recording the net number of jumps above x whereas ∂tL(x) and ∂tR(x)
represent the random measure composed of adding delta functions for each jump.
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Having fixed an environment, we now introduce particles at time 0 (at most one per ladder)
and let them evolve as follows: particles stay in their ladder until an arrow at which point they
attempt to follow the direction of the arrow. If their destination site is unoccupied the jump is
achieved, otherwise the arrow is ignored. One should pause to ask whether such a dynamic is
well-defined on all of Z. Without going into the fine details, the saving grace here is the existence
of gaps. In the above figure there are two columns without any arrows. Therefore, up to time
T , the evolution of the SEP between the gaps is independent of everything else – thus reducing
our considerations to that of a finite state Markov chain. For any fixed T such gaps will almost
surely exist at a finite distance from the origin.

2.1.2. Coupling with the corner growth model. As explained in the introduction, the corner growth
model can be viewed as the integrated spin variables of the simple exclusion process for a given
asymmetry γ = q − p. Fixing that hγ(0, 0) = 0 this coupling is given by setting, as in equation
(17)

hγ(t, x) =











2N(t) +
∑

0<y≤x η̂(t, y), x > 0,

2N(t), x = 0,

2N(t) −∑0<y≤x η̂(t, y), x < 0,

(20)

where N(t) records the net number of particles to cross from site 1 to site 0 in time t and where
η̂(t, x) equals 1 if there is a particle at x at time t and −1 otherwise.

The dynamics of the exclusion process are readily translated into corner growth model dynam-
ics. In terms of spin variables:

• Local valley ⇒ local hill at rate q: When η̂(t, x) = −1 and η̂(t, x+ 1) = 1, then hγ(t, x)
will increase by 2 at rate qdt (and hence leaving η̂(t+dt, x) = 1 and η̂(t+dt, x+1) = −1).
• Local hill ⇒ local valley at rate p: When η̂(t, x) = 1 and η̂(t, x+ 1) = −1, then hγ(t, x)
will decrease by 2 at rate pdt (and hence leaving η̂(t+dt, x) = −1 and η̂(t+dt, x+1) = 1).

This is illustrated in figure 2. It is possibly to encode these dynamics as a stochastic PDE driven
by the two Poisson point processes L and R (on Z×R

+ of rates q and p respectively). Recall that
L corresponds to the running total of attempted jumps to the left (i.e., increases in the height
by 2). So all we need to do is multiply ∂tL by an indicator function for the event that there is
no particle in position x and there is a particle in position x + 1. We do likewise for R, which
yields:

∂thγ(t, x) = 2

(

1− η̂(t, x)
2

)(

1 + η̂(t, x+ 1)

2

)

∂tL(t, x) (21)

−2
(

1 + η̂(t, x)

2

)(

1− η̂(t, x+ 1)

2

)

∂tR(t, x). (22)

Of course, the above differential relation should be interpreted in weak integrated form. This
is well-posed and has solutions due to our explicit construction of such a solution.

2.1.3. Hydrodynamics. Before delving into the main focus of fluctuations, it is worth observing
that from the SPDE (21) it is possible to read off the PDE which governs the evolution of the
limit shape for the corner growth model. Assume presently that γ = q − p > 0 and define,
according to Eulerian scaling

hǫγ(T,X) = ǫh(ǫ−1T, ǫ−1X), η̂ǫγ(T,X) = ǫη̂γ(ǫ
−1T, ǫ−1X). (23)

Define Lǫ and Rǫ to be similarly rescaled versions of L and R.
We will show, heuristically, that

lim
ǫ→0

hǫγ(T,X) = h̄γ(T,X)
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exists and solves a PDE. We can rewrite the SPDE (21) in terms of the scaled variables, as

∂Th
ǫ
γ(T,X) = 2

(

1− η̂ǫγ(T,X)

2

)(

1 + η̂ǫγ(T,X + ǫ)

2

)

∂TL
ǫ(T,X) (24)

−2
(

1 + η̂ǫγ(T,X)

2

)(

1− η̂ǫγ(T,X + ǫ)

2

)

∂TR
ǫ(T,X). (25)

That equation can be written suggestively as

∂Th
ǫ
γ(T,X) =

1

2

[

1− η̂ǫγ(T,X)η̂ǫγ(T,X + ǫ)
]

(∂TR
ǫ(T,X)− ∂TLǫ(T,X)) (26)

+
1

2

[

η̂ǫγ(T,X + ǫ)− η̂ǫγ(T,X)
]

(∂TR
ǫ(T,X) + ∂TL

ǫ(T,X)) . (27)

Due to the scaling, a law of large numbers applies and shows that ∂TR
ǫ(T,X)−∂TLǫ(T,X)→

γdT and that ∂TR
ǫ(T,X) + ∂TL

ǫ(T,X) → dT . Recall now that η̂ is the derivative of h. The
term

[

η̂ǫγ(T,X + ǫ)− η̂ǫγ(T,X)
]

then approximates ǫ∂2X h̄ as ǫ goes to zero. The tricker term is

the non-linear one
[

1− η̂ǫγ(T,X)η̂ǫγ(T,X + ǫ)
]

. A reasonable assumption (which can be shown
rigorously as well) is that of local equilibrium which says that the limit can be taken inside this
non-linear function of the η̂ǫ, which yields 1 − (∂X h̄(T,X))2. Putting this all together we find
that

∂

∂T
h̄ =

γ

2

(

1−
(

∂

∂X
h̄

)2
)

+ ǫ
1

2

∂2

∂2X
h̄. (28)

Since γ > 0 the last term clearly drops off and we are left with a PDE known of as the inviscid
Burgers equation. There are, however, multiple ways of solving this PDE and we need to know
which one is the correct one. However, the above heuristic also gives us that. The Laplacian term
which disappeared in this scaling as ǫ went to zero is known as a viscosity. For ǫ positive, there
exists a unique weak solutions to equation (28). The solution to the inviscid Burgers equation
we want is the ǫ = 0 limit of the unique weak solution to the viscous Burgers equation. This is
equivalent to imposing the so called entropy condition and the resulting solution can be solved
via the method of characteristics (see Chapter 3 of [66]).

If γ we taken to go to zero like ǫ, and time were sped up like ǫ−2T (not ǫ−1T ) then the
above argument shows that the resulting PDE for the limit shape is, in fact, the viscous Burgers
equation. Likewise, if γ = 0 then only the viscosity term (the Laplacian) remains and under
the same ǫ−2T time scaling the heat equation governs the evolution of the limit shape. It is
important to note that the weak scaling of γ = ǫ above is actually different than the weak scaling
necessary to see the KPZ equation. In that setting γ = ǫ1/2 and time is like ǫ−3/2T/γ = ǫ−2T

and space is like ǫ−3/2X.
As explained in the introduction, the idea of the hydrodynamic PDE is that if the time zero

height profile converges to a given limit shape, then the positive T evolution of that initial height
profile will likewise converge to the PDE evolution of the limiting profile.

2.1.4. Fluctuations. The hydrodynamic PDE associated with a particle system or growth model
is highly dependent on the local update rules. The fluctuations around this limit shape, however,
are expected to be universal and highly independent of model specifics. This belief originates
from the physics work of Kardar, Parisi and Zhang [98] in 1986. Dealing not with this growth
model, but with a few other physically inspired models, KPZ proposed that a certain continuum
growth model – the stochastic PDE which know bears their initials – should be studied and used
to determine the long time scalings of these growth models. The believe that this equation should
(somehow) govern the scaling properties of the fluctuations of a wide variety of models is termed
universality.

From this SPDE, KPZ predicted that in a large time t, fluctuations should live on the scale of
t1/3 and should display non-trivial correlation to spatial scales of t2/3. That is to say that time
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: space : fluctuations should scale like 3 : 2 : 1. Thereafter any growth model which displayed
such scalings was said to be in the KPZ universality class. These exponent predictions (made via
non-rigorous dynamic renormalization group methods) are based on the fact that the (formal)
derivative of the solution to the KPZ equation solves the stochastic Burgers equation. The work
of Forster, Nelson and Stephen [73] from 1977 provides the relevant results then to deduce these
exponents. It was not until the work of [15] that these exponents were proved rigorously for
the KPZ equation with equilibrium initial data. The work of [5] has rigorously proved the 1/3
exponent for the KPZ equation with narrow wedge initial data. The techniques used in these
rigorous proofs were very different than the non-rigorous approach of [73] and the approach used
in [5] rigorously computes the associated probability distribution for the narrow wedge initial
data fluctuations.

Two points should be emphasized about the KPZ paper. The first is that, despite giving a
heuristic explanation for each of the terms in their equation, KPZ gave no hint as to how one
would actually derive the KPZ equation from a discrete growth model. The second point is that
they gave absolutely no predictions about the exact nature of the statistics associated with the
fluctuations.

As people began to realize the far reaching importance of the KPZ universality class, these
two questions became active subjects of research within the physics community. There have been
many heuristic derivations of the KPZ equation from microscopic models [126, 133]. However,
the only derivation which makes mathematical sense is that of Bertini and Giacomin [23]. The
exact nature of the statistics of models in the KPZ universality class was studied by a battery of
methods and too much avail (see the discussion at the end of Section 1.1.2). However, despite
all of this work, exact an analytic formulas for the statistics of models in the KPZ universality
class went unknown until mathematicians entered the story.

In 1999, Baik, Deift and Johansson [9] and Johansson [93] gave the first rigorous proofs of the
1/3 fluctuation exponent for growth models. Moreover, the also proved exact formulas for the

statistics of the fluctuations (in the t1/3 scale). It came as a surprise to both the physics and
mathematics communities that the KPZ class statistics were identical to the statistics describing
the largest eigenvalue of a random (Gaussian) Hermitian matrix. These statistics had been
discovered by Tracy and Widom [162] in the early 1990s and are now often called the Tracy-
Widom GUE distribution and notated as FGUE or F2 (we will stick with the first). The spatial
correlation exponent as well as exact statistics for multi point distributions was first worked out
by Prähofer and Spohn [137] in 2002 for the wedge geometry. Since then the spatial correlation
statistics for the other five geometries of the KPZ universality class have similarly been worked
out (see Section 1.2 of the introduction for a chart recording all of these statistics and geometries).

Until the recent work of Tracy and Widom, however, all of the exact statistics results per-
tained to growth models were for totally asymmetric models with only growth (and no means for
interfaces to recede). With regards to the corner growth model, this means that γ = 1. Slightly
earlier, [16] rigorously proved the 1/3 and 2/3 exponents for the corner growth model with any
γ > 0 (see also work [142, 17]). Returning to the question of exact statistics, to illustrate the

type of result one has, further set t = ǫ−3/2T and xk = 21/3t2/3Xk for k = 1, . . . m (note that
these definitions are temporary as we will soon redefine t and x with slightly different constants
for the purpose of the rest of this work). Then

lim
ǫ→0

P

(

m
⋂

k=1

{

hγ(
t
γ , x)− t

2

t1/3
≥ 2−1/3(X2

k − sk)
})

= P

(

m
⋂

k=1

{A2(Xk) ≤ sk}
)

(29)

where A2 represents the Airy2 process which is stationary, continuous [94], locally absolutely
continuous to Brownian motion [48], has FGUE as its one point marginal and has finite dimensional
distributions which can be written in terms of Fredholm determinants [137, 94] or certain PDEs
[1, 167].
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The above results deal only with the spatial correlation structure of the limit of the corner
growth model – but say nothing about the joint distribution of the fluctuations for two different
values of T . For instance, how are the height function fluctuations above the origin at time
ǫ−3/2T1 and ǫ−3/2T2 asymptotically correlated. Presently, all that is known rigorously of this
important question is that if T2 = T1 + o(1) then they two fluctuations converge in probability
(as ǫ goes to zero) [47].

One might guess that the limiting space-time process for the corner growth model with γ = 1
is the KPZ equation. This, however, is not true (as definitively proved by [5]), and the true
limiting process has only recently been described in [50] as the so-called KPZ renormalization
fixed point.

The KPZ equation does, however, arise as the scaling limit of the height function fluctuations
of the corner growth model under weakly asymmetric scaling of γ = ǫ1/2. This fact was first
observed and rigorously proved (for certain geometries – not including the wedge) in 1995 by
Bertini-Giacomin [23].7 The rest of this section aims to give a clear explanation of their methods
and results, as well as detail extensions (in [5, 49]) to the other geometries (such as the wedge).
Before jumping into this, we first give a heuristic explanation of [23] (see also the discussion of
Section 1.2.4).

Definition 2.1. We will use the following scalings through the rest of this work:

γ = ǫ1/2, t = ǫ−3/2T, x = ǫ−1X, flucuations = ǫ−1/2. (30)

The object which should converge to the KPZ equation is the height function fluctuations
hflucǫ (T,X):

hflucǫ (T,X) = ǫ1/2
(

hγ

(

t
γ , x
)

− t
2

)

. (31)

Bertini-Giacomin make the following assumption on the initial data:

hflucǫ (0,X) = ǫ1/2hγ(0, x) = H0(X) + o(1) (32)

where H0 is a (possibly random) function which has at most linear growth and is Hölder < 1/2
(see Section 2.4.1 for the exact statement of these assumptions). Then Bertini-Giacomin show
that for T > 0

hflucǫ (T,X) = H(T,X) + o(1) (33)

and H(T,X) evolves according to the KPZ equation.
Two geometries for which is applies are Brownian and flat. For the Brownian geometry, h(0, x)

is a simple symmetric random walk. Thus ǫ1/2h(0, ǫ−1X) converges to a Brownian motion, i.e.,
H0(X) = B(X) for some Brownian motion B(X) : R → R with B(0) = 0. Likewise for the flat
geometry, ǫ1/2h(0, x) = 0 + o(1) and hence H0(X) = 0.

There are, however, some very important geometries which are not covered by Bertini-Giacomin’s
results – in particular, anything wedge-like. For instance, the initial condition for KPZ in the
wedge→Brownian geometry should look like ǫ1/2 times |ǫ−1X| for X < 0 and like a Brownian
motion for X ≥ 0. The problem is, however, that the limit for X < 0 is infinity. Rather weird
initial data, no doubt?

Well things get even weirder for the wedge geometry. Since hγ(0, x) = |x| it follows that

ǫ1/2|ǫ−1X| should be the KPZ initial data. However, this is infinity for all X 6= 0 and 0 for
X = 0.

Clearly one would not have much luck solving a stochastic PDE with this type of initial data.
The answers to this confusion, however, comes from understanding what it means to solve the

7The term weakly asymmetric has been used in a few other contexts with regards to the simple exclusion process.
In the study of fluctuations, [54, 60, 77] deal with weaker asymmetry than γ = ǫ1/2 such as γ = ǫ and find Gaussian
limiting fluctuation processes which correspond to the EW universality class. In the study of hydrodynamical theory
as in Section 2.1.3 (see also [157]) one finds the vicious Burgers equation by tuning the asymmetry correctly.
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KPZ equation. After all, it turns out that as written, this equation is ill-posed due to the
non-linearity. Thus the first step towards proving the results of Bertini-Giacomin, and towards
extending them to include wedge-like geometries, is to rigorously define what it means to solve
the KPZ equation.

2.2. Hopf-Cole solution to the KPZ equation. At this point we turn our attention towards
making rigorous the connection between the height function fluctuations of the weakly asymmetric
corner growth model and the KPZ equation. Despite its popularity and importance, there is
presently no satisfactory way of making sense of the KPZ equation directly. The reason is that
due to the white noise one expects spatial regularity like that of the Brownian motion (in fact for
a fixed time the solution should be locally absolutely continuous with respect to Brownian motion
– like the Airy2 process). Thus the non-linearity (the square of the first derivative) is ill-defined.
One might hope that Wick ordering of the non-linearity can lead to well defined solutions. While
such an approach allows one to give a definition for solving the KPZ equation, it can be shown
that the scalings for those solutions are all wrong [43]. Hence, from the physical perspective we
are taking, that is the wrong definition.

As we shall see below (and later as well in Section 4) the physically relevant way to define the
solution to the KPZ equation is via the definition which we give momentarily.

2.2.1. The Hopf-Cole solution to KPZ. Bertini-Giacomin provide the following definition for what
it means to solve the KPZ equation with initial data H0(X).

Definition 2.2. H(T,X) is the Hopf-Cole solution to KPZ if Z(T,X) = exp{−H(T,X)} solves
the SHE (see equation (4) or Definition 2.3 below) with Z0(X) = exp{−H0(X)}.

As long as Z0(X) is a sigma-finite positive measure, then with probability one, Z(T,X) is
positive for all T > 0 and all X ∈ R [124]. Owing to this fact, H(T,X) will be almost-surely a
well-defined process. In fact, since it is really the SHE that we will be focusing on, initial data
is more naturally thought of as initial data for SHE. This perspective opens the door for dealing
with geometries such as the wedge, for which the KPZ initial data seems hopeless.

Bertini-Giacomin give some evidence for the physical relevance of this definition since they
prove that it is, in fact, the scaling limit of a discrete growth model. [5] provides further evidence
by proving that this Hopf-Cole solution has the scaling properties predicted in [98].

While the KPZ equation is expected to be the weakly asymmetric scaling limit of a whole
class of growth models, the approach used in [23] only works for the corner growth model. [76]
study a broad class of such models but can not prove that they converge to the unique Hopf-
Cole solution to KPZ. Instead, they define a class of energy solutions to KPZ (which contains
the Hopf-Cole solution) and show that along subsequential limits, these models converge to such
solutions. However, it is far from clear if this energy condition is a strong enough condition to
impose uniqueness. Uniqueness is important since one would like to use the exact solution of [5]
to show that (at least under weak asymmetry) the statistics for this broad class of models are all
the same.

2.2.2. The Stochastic Heat equation. Since the KPZ equation is now defined in terms of the SHE,
it is important to understand what is means to solve the SHE. The lecture notes of Walsh [170]
are a good reference for the study of linear stochastic PDEs and even though he does not deal
with multiplicative noise, most of the theorems he states can be immediately translated into the
setting we require. Walsh defines Itô integration with respect to space-time white noise in a
very hands on manner. For a more abstract approach of may refer to the lecture notes of Hairer
[79] on SPDEs (though again he does not deal with multiplicative noise). For the type of initial
data with which we are concerned, we actually rely on results of Bertini-Cancrini [22] which are
recounted below.
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Let us take the opportunity to state equation (4) precisely: W (T ), T ≥ 0 is the cylin-

drical Wiener process, i.e. the continuous Gaussian process taking values in H
−1/2−
loc (R) =

∩α<−1/2H
α
loc(R) with

E [〈ϕ,W (T )〉〈ψ,W (S)〉] = min(T, S)〈ϕ,ψ〉
for any ϕ,ψ ∈ C∞

c (R), the smooth functions with compact support in R. Here Hα
loc(R), α < 0,

consists of distributions f such that for any ϕ ∈ C∞
c (R), ϕf is in the standard Sobolev space

H−α(R), i.e. the dual of Hα(R) under the L2 pairing. H−α(R) is the closure of C∞
c (R) under the

norm
∫∞
−∞(1 + |t|−2α)|f̂(t)|2dt where f̂ denotes the Fourier transform. The distributional time

derivative Ẇ (T,X) is the space-time white noise,

E

[

Ẇ (T,X)Ẇ (S, Y )
]

= δ(T − S)δ(Y −X).

Note the mild abuse of notation for the sake of clarity; we write Ẇ (T,X) even though it is
a distribution on (T,X) ∈ [0,∞) × R as opposed to a classical function of T and X. Let
F (T ), T ≥ 0, be the natural filtration, i.e. the smallest σ-field with respect to which W (S) are
measurable for all 0 ≤ S ≤ T .

The stochastic heat equation (4) with initial data Z0(X) is shorthand for its integrated (mild)
version

Z(T,X) =

∫ ∞

−∞
p(T,X − Y )Z0(dY )−

∫ T

0

∫ ∞

−∞
p(T − S,X − Y )Z(S, Y )W (dS, dY ) (34)

where p(T,X) is the standard heat kernel

p(T,X) =
1√
2πT

e−X2/2T , (35)

and where the integral with respect to W (dS, dY ) is an Itô stochastic integral against white noise
[170], so that, in particular, if f(T,X) is any non-anticipating integrand,

E

[

(
∫ T
0

∫∞
−∞ f(S, Y )W (dY, dS))2

]

= E

[

(
∫ T
0

∫∞
−∞ f2(S, Y )dY dS

]

. (36)

If Z0 = δX=0 then the first term above simply becomes p(T,X).
One should note that the slightly awkward notation here is inherited from stochastic partial

differential equations: W represents the cylindrical Weiner process, Ẇ represents space-time
white noise (the temporal distributional derivative of W ), and the stochastic integrals are with
respect to space-time white noise W (dS, dY ). For more details into the properties of white noise
and the cylindrical Weiner process and Itô stochastic integrals with respect to these processes,
see [22, 23, 170].

Following [22] we make the following:

Definition 2.3. The process Z(T,X) is a mild solution of the stochastic heat equation with
initial data Z0 if Z(T, ·), T > 0 is a continuous Ft-adapted process such that for any U > 0

sup
T∈(0,U ]

sup
X∈R

∫ T

0
dS

∫ S

0
dS′

∫

R

dy

∫

R

dy′p(T−S,X−Y )2p(S−S′, Y −Y ′)2E(Z(S′, Y ′)2) <∞, (37)

for any T > 0, equation (34) is satisfied, and if for any uniformly bounded f ∈ C0(R)

lim
T→0+

∫

R

dXf(X)Z(T,X) =

∫

R

dZ0(X)f(X). (38)

In order to have existence of uniqueness of the solution to the SHE as above we must impose
a level of regularity on the initial data (however not so much as to rule our working with delta
functions).
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Definition 2.4. We call initial data Z0(X) regular if it is a (possibly random) positive Borel
measure on R such that for any T > 0 it satisfies

sup
S∈(0,T ]

sup
X∈R

E

[

√
S

(
∫

R

dY p(S,X − Y )Z0(Y )

)2
]

<∞. (39)

Iterating the above definition leads to an alternative expression for Z(T,X) in terms of a
convergent chaos series (see Section 4.1.1).

The class of initial data we consider is fairly large and allows for singularities of order T−1/2

as T → 0+ in the initial data. One can therefore check that Z0(X) = δX=0 falls into the class of
regular initial data. The work of Bertini-Giacomin which we will draw upon in Section 2.4 uses
a slightly different class of initial data, however, as we will observe, their class of initial data is
strictly contained in the above class.

We can now record a few basic results the solution to the SHE which are proved in [22] Theorem
2.2 (Claim (2) is actually from earlier work of Müller [124]).

Proposition 2.5. Fix regular initial data (Definition 2.4), then there exists a unique solution to
the stochastic heat equation as in Definition 2.3. Furthermore, with probability one the following
two events occur: (1) Z(T,X) is Hölder continuous with exponent < 1/2 in space and < 1/4 in
time; (2) For all T > 0 and X ∈ R, Z(T,X) > 0.

The mild solution to the SHE is really a strong solution. Given the initial data and a white
noise, one can construct the solution Z(T,X) for all T > 0 and X ∈ R. Under more restrictive
conditions, Walsh [170] provides a Picard fixed point scheme for such a construction. That
approach applies to a general class of equation and for the SHE more direct approaches are
available. In particular in Section 4.1.1 we will provide the chaos series for the SHE and then
in Section 4.1.3 an approximation scheme involving spatial smoothing of the white noise. Both
provide ways to construct the solution of the SHE in a path-wise manner.

In order to prove the convergence of the discrete version of the SHE (which we will derive in
the coming section) to the continuous SHE above we will go through the technology of martingale
problems. We will hold of on a discussion of this formulation of the SHE until necessary in Section
2.4.

2.3. Gärtner’s discrete Hopf-Cole transform. We want to show that the fluctuations in
equation (31) converge to the solution of the KPZ equation. In this section we will see how to
prove such a result. It turns out that for near-stationary initial data (for ASEP) this convergence
is essentially true (up to a finite shift in the solution to the KPZ equation) as shown in [23].
However, for initial data corresponding to wedge geometry (or step initial condition for ASEP)
the scaling is equation (31) is more severely wrong – it is necessary to shift the height by a constant
times log ǫ (which becomes divergently large as ǫ goes to zero). This disparity in scalings was
not predicted and only discovered in the convergence result proof of [5].

Presently we only know how to define what it means to solve the KPZ equation via Definition
2.2 which is in terms of the SHE. Therefore, all convergence results must be lifted to the level of
the SHE by way of applying the Hopf-Cole transform to both the KPZ equation and the discrete
height function. For general growth models, the Hopf-Cole transform of the height function is
governed by nasty non-linear SPDEs and seeing how these converge to the SHE is difficult (and
presently beyond our reach). However, for the corner growth model Gärtner [74] observed that the
Hopf-Cole transform of the height function actually satisfies a linear SPDE – a discrete SHE with
multiplicative noise (given by a rather messy martingale though). As this is the starting point
for both Bertini-Giacomin’s work as well as our own, we will now review Gärtner’s transform.

We will fix our scalings just as in Definition 2.1. The choice of weak asymmetry γ = ǫ1/2 will
be justified near the end of these computations, so for now we leave that as a parameter in the
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following expressions. Define

Zǫ(T,X) = cǫ exp

{

−λǫhγ
(

ǫ−3/2T

γ
, ǫ−1X

)

+ νǫ
ǫ−3/2T

γ

}

(40)

where cǫ, λǫ and νǫ are ǫ dependent parameters which will be determined in time. In order to
fit with the believe that KPZ class models have 3 : 2 : 1 scalings, we expect that λǫ ≈ ǫ1/2

and νǫ ≈ 1
2ǫ. Under these scalings we approximately recover the expression of equation (31).

The parameter cǫ will depend on the growth regime and is necessary in order to have Zǫ(0,X)
converge to a non-trivial limit as ǫ goes to zero. In particular, in the work of Bertini-Giacomin,
cǫ = 1 while for the wedge geometry, [5] must take cǫ = ǫ−1/2/2 (see Sections 1.2.5 or 2.4.2 for a
discussion of this point).

In order to prove convergence of Zǫ to Z we need to understand what SPDE Zǫ solves. There
are three factors which affect the value of Zǫ(T,X) in an instant dT :

(1) hγ(t, x) increases by 2 at rate q
4 (1− η̂t(x))(1 + η̂t(x+ 1)), which correspond with:

Zǫ(T,X) 7→ Zǫ(T,X)e−2λǫ at rate r−ǫ (T,X) =
ǫ−3/2

γ

q

4
(1− η̂t(x))(1 + η̂t(x+ 1)). (41)

(2) hγ(t, x) decreases by 2 at rate q
4(1 + η̂t(x))(1 − η̂t(x+ 1)), which correspond with:

Zǫ(T,X) 7→ Zǫ(T,X)e2λǫ at rate r+ǫ (T,X) =
ǫ−3/2

γ

p

4
(1 + η̂t(x))(1 − η̂t(x+ 1)). (42)

(3) Continuous growth due to the νǫ
ǫ−3/2T

γ term:

Zǫ(T,X) 7→ Zǫ + Zǫνǫ
ǫ−3/2T

γ
dT. (43)

Putting these three pieces together, and separating the martingales from the drifts we find
that Zǫ satisfies the following SPDE:

dZǫ = ΩǫZǫdT + ZǫdMǫ (44)

where the drift term is given by

Ωǫ(T,X) = νǫ
ǫ−3/2

γ
+ (e−2λǫ − 1)r−ǫ (T,X) + (e2λǫ − 1)r+ǫ (T,X). (45)

The term dMǫ(·,X) is a martingale for each X and is given by

dMǫ(T,X) = (e−2λǫ − 1)dM−
ǫ (T,X) + (e2λǫ − 1)dM+

ǫ (T,X) (46)

where

dM±
ǫ (T,X) = dP±

ǫ (T,X)− r±ǫ (
ǫ−3/2

γ
T, ǫ−1X)dT (47)

and P±
ǫ (T,X) (for X ∈ ǫZ) are independent Poisson processes with rates r±ǫ (

ǫ−3/2

γ T, ǫ−1X).

At this point it is not clear how this is related to the SHE. The martingale term is a little
messy but an analysis of its quadratic variation reveals that it is not so different than space-time
white noise. Right now the major stumbling block towards establishing convergence to the SHE
is the fact that ΩǫZǫdT appears to be nothing like a Laplacian. In fact, up to this point one
could have taken any growth rule / jumping rule and written a similar (all be it more involved)
SPDE.

The critical observation of Gärtner [74] is that we can choose values of λǫ, νǫ and a new
parameter Dǫ so that our equation is linearized via

ΩǫZǫ =
1

2
Dǫ∆ǫZǫ (48)
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where ∆ǫ is the ǫ discrete Laplacian defined via

∆ǫf(X) = ǫ−2[f(X + ǫ)− 2f(X) + f(X − ǫ)]. (49)

In order to show equation (48) we must calculate ∆ǫZǫ(T,X). Recall that by the definition
of our height function, the value of hγ(t, x + 1) is given by hγ(t, x) plus ηt(x+ 1). Likewise the
value of hγ(t, x− 1) is given by hγ(t, x) minus ηt(x). This translates into the fact that

Zǫ(T,X + ǫ) = Zǫ(T,X)e−λǫ η̂t(x+1), and Zǫ(T,X − ǫ) = Zǫ(T,X)eλǫ η̂t(x). (50)

This shows that

1

2
Dǫ∆ǫZǫ(T,X) =

1

2
ǫ−2Dǫ(e

−λǫη̂t(x+1) − 2 + eλǫη̂t(x))Zǫ(T,X). (51)

Observe that the expression in equations (45) and (51) only depend on the values of η̂t(x)
and η̂t(x+ 1). Therefore, in order to show the validity of the equality in equation (48) we must
choose λǫ, νǫ and Dǫ such that for all four possible values of the pair η̂t(x) and η̂t(x+1), we have
equality. A priori one should not expect that this can be done since there are four rather non-
linear equation and only three unknowns to play with. Two of the equations are identical, and
surprising, despite the non-linearity, the remaining three equations can be solved. The equality
of the first two equations can be understood as a consequence of the symmetry of ∆ǫ and the
fact that no changes can occur when η̂t(x) and η̂t(x + 1) are the same. The four equations are
recorded in the following chart.

η̂t(x) η̂t(x+ 1) 1
2Dǫ∆ǫZǫ(T,X) Ωǫ(T,X)

1 1 1
2ǫ

−2Dǫ

(

e−λǫ − 2 + eλǫ
)

ǫ−3/2

γ νǫ

− 1 −1 1
2ǫ

−2Dǫ

(

e−λǫ − 2 + eλǫ
)

ǫ−3/2

γ νǫ

1 −1 1
2ǫ

−2Dǫ

(

eλǫ − 2 + eλǫ
)

ǫ−3/2

γ

(

νǫ + (e2λǫ − 1)p
)

− 1 1 1
2ǫ

−2Dǫ

(

e−λǫ − 2 + e−λǫ
)

ǫ−3/2

γ

(

νǫ + (e−2λǫ − 1)q
)

The three equations can be solved by setting

λǫ =
1

2
log(

q

p
), νǫ = p+ q − 2

√
pq, Dǫ =

ǫ1/2

γ
2
√
pq. (52)

With these parameters we find that Zǫ satisfies the following discrete space, continuous time
version of the SHE:

∂TZǫ(T,X) =
1

2
Dǫ∆ǫZǫ + ZǫdMǫ, (53)

which is really short hand for the integrated equation

Zǫ(T,X) = ǫ
∑

Y ∈ǫZ

pǫ(T,X−Y )Zǫ(0, Y )+

∫ T

0
ǫ
∑

Y ∈ǫZ

Dǫpǫ(T −S,X−Y )Zǫ(S, Y )dMǫ(S, Y ). (54)

Now the choice of γ = ǫ1/2 becomes clear. In order for the above equation to converge to
the SHE as in equation (4) we require Dǫ to look like 1 as ǫ goes to zero. In fact, by choosing
q − p = γ = ǫ1/2 we find that

λǫ =
1

2
log

(

1 + γ

1− γ

)

, νǫ = 1−
√

1− γ2, Dǫ =
√

1− γ2, (55)

which after Taylor expansion yields

λǫ = ǫ1/2 +
1

3
ǫ3/2 +O(ǫ5/2), νǫ =

1

2
ǫ+

1

8
ǫ2 +O(ǫ3), Dǫ = 1− 1

2
ǫ+O(ǫ2). (56)
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These scalings correspond exactly with the choices of λǫ and νǫ suggested by the KPZ scaling
theory discussed right after equation (40).

The martingale Mǫ is explicitly defined above in equation (46) in terms of independent (for
each value of X) Poisson processes Pǫ(X,T ). As such it is easy to calculate its quadratic variation
d〈Mǫ(X,T ),Mǫ(Y, T )〉 to be:

1(X = Y )
(

(e2λǫ − 1)2d〈P+
ǫ (X,T ), P+

ǫ (Y, T )〉+ (e−2λǫ − 1)2d〈P−
ǫ (X,T ), P−

ǫ (Y, T )〉
)

. (57)

Using the definition of the Poisson processes we find that

d〈P+
ǫ (X,T ), P+

ǫ (Y, T )〉 = r+ǫ (T,X) = ǫ−2 p

4
(1 + η̂t(x))(1 − η̂t(x+ 1)) (58)

where we recall that x = ǫ−1X and t = ǫ3/2

γ T . Similarly

d〈P−
ǫ (X,T ), P−

ǫ (Y, T )〉 = r−ǫ (T,X) = ǫ−2 q

4
(1− η̂t(x))(1 + η̂t(x+ 1)). (59)

This can be combine in a suggestive way so that

d〈Mǫ(X,T ),Mǫ(Y, T )〉 = ǫ−11(X = Y )bǫ(τ−ǫ−1Xηt)dT. (60)

Here τxη(y) = η(y − x) and
bǫ(η) = 1− η̂t(0)η̂t(1) + b̂ǫ(η) (61)

where b̂η(η) is explicit (see [5]). Moreover it follows easily that (regardless of the type of initial
data) for some constant C <∞,

b̂ǫ ≤ Cǫ1/2 (62)

and for sufficiently small ǫ > 0,

bǫ ≤ 3. (63)

The bound for b̂e implies that the martingale with which we are dealing has quadratic variation
essentially given by (up to the τ shift) 1− η̂(0)η̂(1). If one starts the underlying exclusion process
at (or near) stationary initial data, then one expects that this non-linearity should behave roughly
like its expectation – zero. The analysis of this non-linearity requires care and follows from a key
estimate in [23] which we restate in Section 2.4.1.

The bound for bǫ is crude but turns out to be sufficient to analyze the short time behavior of
the discrete SHE. We rely on this analysis in Section 2.4.2 where we show that Bertini-Giacomin’s
near-stationary initial data results may be extended to a much broader class of initial conditions
– in particular the wedge geometry.

2.4. Convergence of discrete SHE to continuum SHE under weak asymmetry. We now
recount the ingredients of Bertini-Giacomin’s proof of convergence of the discrete SHE (53) to
the continuous SHE (4). Their work applies only for near-stationary initial data as is clear from
the hypothesis given below in Section 2.4.1. However, in Section 2.4.2 we recount the approach
of [5] which enables one to extend far from these settings.

Recall the following function spaces and their topologies. C(R+) (or perhaps more precisely
C(R, R+)) is the space of continuous functions from R with range supported on the positive
real numbers and endowed with the topology of uniform convergence on compact subsets. This
topology is, furthermore, metrizable. C([0, T ];M) is the space of continuous trajectories subject
to the uniform topology. D([0, T ];M) is the space of CADLAG (continuous from the left and with
a limit from the right) functions from [0, T ] to M (a metric space) endowed with the Skhorohod
topology which allows for wiggles in both time and space M variables. Du([0, T ];M) is the space
of CADLAG functions from [0, T ] to M endowed with the topology of uniform convergence on
compact subsets.
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2.4.1. Bertini-Giacomin’s near-stationary initial data result. In this discussion of near-stationary
initial data results we take cǫ = 1 (see equation (40)).

Definition 2.6. The class of near-stationary initial data with which Bertini-Giacomin deal sat-
isfies the following three hypothesis:

(1) There exists Z0(X), a random function in C(R+), such that Zǫ(0, ·)⇒ Z0(·) as ǫ→ 0 in
the topology of C(R+).

(2) For all p > 0 there exists a = a(p) > 0 such that

sup
X∈ǫZ

e−a|X|
E [(Zǫ(0,X))p] <∞. (64)

(3) For all p > 0 there exist positive a = a(p) and c = c(p) such that

E
[

(Zǫ(0,X) − Zǫ(0, Y ))2p
]

≤ cea(|X|+|Y |)|X − Y |p. (65)

The above definition is based on Definition 2.2 of [23] though that is written in terms of height
function fluctuations and not Zǫ (the assumptions are just translated from one setting to the
other, however).

The first hypothesis is about convergence of the initial data to Z0; the second is an a priori
bound which ensures that logZǫ grows at most linearly; and the third is an a priori estimate
which says that the initial data is effectively Hölder with any exponent < 1/2 (just as Proposition
2.5 shows the solution to the SHE is in space).

We may now state the main near-stationary convergence result. Observe that because height
changes in the corner growth model are bound in size and intensity, we can consider Zǫ as an
element of Du([0, T ];C(R+)) instead of D([0, T ];C(R+)).

Theorem 2.7 (Theorem 2.3 of [23]). Let Qǫ denote the law of Zǫ(·, ·) on Du([0, T ], C(R+)). Then
the family {Qǫ}ǫ>0 is tight, concentrates on C([0, T ], C(R+)), and furthermore has a unique limit
point which coincides in law with the solution to the SHE with initial data Z0.

We will now briefly review the main steps in the proof of this result.
The tightness and fact that limit points concentrate on C([0, T ], C(R+)) follow from bounds

which show that the Hölder continuity properties of the continuous SHE (see Proposition 2.5)
are also present for this discrete SHE. Specifically, under Hypotheses 1,2 and 3, [23] Lemma 4.1
shows that for all p > 0 there exists a = a(p) > 0 and c = c(p) > 0 such that

sup
S∈[0,T ]

sup
X∈ǫZ

e−a|X|
E [(Zǫ(S,X))p] < c. (66)

Then [23] Lemma 4.2 shows that Hypothesis 3 can likewise be extended uniformly over times
S ∈ [0, T ] so that, using Kolmogorov’s Continuity Theorem, it is possible (as done in [23] Lemma
4.5) to prove that Zǫ is uniformly (for S ∈ [0, T ]) Hölder continuous with exponent < 1/2 in
space (as measured in terms of Lp of the probability measure on space-time evolutions). Likewise
[23] Lemma 4.6 shows temporal Hölder continuity with exponent < 1/4. A slight nuance of these
estimates is that they must be done on temporally linearized versions of the space-time process
(otherwise the discrete height jumps mess up the estimates). The difference between the original
and linearized processes is negligible as shown in [23] Lemma 4.7.

The above estimates imply tightness and the claimed concentration of limit points. The proofs
of the above estimates are essentially discrete versions of the arguments one uses for the continuous
SHE to prove the analogous statements in Proposition 2.5. Iteration of the integrated version
of the equation along with the initial data hypotheses and applications of inequalities such as
Gronwall’s and Burkholder-Davis-Gundy yield the necessary estimates.

The uniqueness of the limit of the lawsQǫ and the coincidence with the law of the solution to the
SHE is shown by way of the method of the martingale problem [105]. In the following fT (X) de-
notes the canonical coordinate in C([0,∞), C(R+)) (i.e., the space-time function fT (X) is a func-
tion of ω ∈ Ω corresponding to the probability measure Q below) and (g, h) =

∫

R
g(X)h(X)dX.
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Definition 2.8. Let Q be a probability measure on C([0,∞], C(R+)) such that for all T > 0

sup
S∈[0,T ]

sup
X∈R

e−a|X|Q
[

(f(S,X))2
]

<∞ (67)

for some a > 0. The measure Q solves the martingale problem for the SHE with initial data Z0

if Q[f(0, ·) ∈ A] = P[Z0(·) ∈ A] for all Borel sets A ∈ C(R+) and if for all ϕ ∈ D(R) (the space
of smooth test functions)

MT (ϕ) = (fT , ϕ) − (f0, ϕ)− 1
2

∫ T

0
dS(fS , ϕ

′′), (68)

ΛT (ϕ) = MT (ϕ)
2 −

∫ T

0
dS

∫

R

dXfS(X)2ϕ(X)2 (69)

are Q-local martingales.

The key fact is that the above martingale properties uniquely characterize the solution to the
SHE as shown by

Proposition 2.9 (Proposition 4.11 of [23]). For every (possibly random) Z0 ∈ C(R+) satisfying
hypothesis 1, the martingale problem for the SHE with initial data Z0 has a unique solution Q.
Moreover Q coincides with the law of the process Z which exists and is unique via Proposition
2.5.

The discrete SHE also satisfies an analogous martingale problem. The task of proving the
convergence theorem, therefore, reduces to proving that the solutions Qǫ to the martingale prob-
lem for Zǫ converge to the unique solution to the continuous SHE. Convergence of the linear
martingales to MT is fairly straight-forward. However the convergence of the quadratic variation
martingales to ΛT requires a key estimate about the quadratic term which showed up in equation
(61) for bǫ(η). Lemma 4.8 of [23], translated to our context, says that for any 0 < δ < T0 < ∞
and ρ > 0, there are a,C > 0 such that for all δ ≤ S < T ≤ T0 and ǫ > 0,

E[|E[(Zǫ(T,X+ǫ)−Zǫ(T,X))(Zǫ(T,X)−Zǫ(T,X−ǫ))|F (S)]|] ≤ Cǫ1/2−ρ|T−S|−1/2ea|X|, (70)

where F (S) is the sigma field generated by Zǫ up to time S. From this estimate it is possible to
deduce the convergence of the quadratic variation martingales to ΛT and complete the proof of
the discrete to continuous SHE convergence.

To illustrate these results consider two initial data (a) Brownian, (b) flat. Then in case (a),
(letting RW denote a two-sided simple symmetric random walk with RW (0) = 0, and B likewise
a two-sided Brownian motion)

Zǫ(0,X) = exp{−ǫ1/2RW (ǫ−1X)} ⇒ exp{−B(X)}, (71)

and in case (b), (letting mod2 denote the parity function)

Zǫ(0,X) = exp{−ǫ1/2mod2(ǫ−1X)} ⇒ 1. (72)

Note that there is an O(ǫ1/2) error in the exponentials above which is inconsequential in the
ǫ→ 0 limit.

2.4.2. Extending beyond the near-stationary case. While Bertini-Giacomin’s results apply directly
to Brownian, flat and flat→Brownian geometries (as well as many others) it is clear that the hy-
potheses of Definition 2.6 given in the previous section do not apply in any wedge-like geometries.
In [5] it was, therefore, necessary to prove a new result which shows how results like those of
Bertini-Giacomin still apply out-side of the near-stationary regime. The key fact is that in the
wedge geometry, the scaling of Bertini-Giacomin must be modified so that the initial data cor-
responds to a non-trivial limit. Plugging in the fact that hγ(0, x) = |x| and the scalings, we find
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that (recalling λǫ ≈ ǫ1/2 + 1
3ǫ

3/2)

Zǫ(0,X) = cǫ exp{−λǫ|ǫ−1X|} = cǫ exp{−ǫ−1/2|X|}. (73)

The only scaling for cǫ which results in a non-trivial limit is cǫ = ǫ−1/2/2 under which Zǫ(0,X)
converges (weakly in the sense of PDEs) to δX=0. (This necessarily different choice for cǫ accounts
for the logǫ correction given below – see also the discussion in Section 1.1.7). Note that there is
an O(ǫ1/2) error in the exponentials above which is inconsequential in the ǫ→ 0 limit.

It is clear that even with this cǫ scaling, hypotheses 2 and 3 of Definition 2.6 do not apply
to the wedge geometry initial data for Zǫ. Theorem 1.3 above shows that [5] non-the-less find a
way to prove convergence of the discrete SHE to continuous SHE for the wedge geometry. The
approach splits into two parts. The first step involves explicit estimations which show that for
any time δ > 0, Zǫ(δ, ·) satisfies the hypotheses of Definition 2.6. Essentially this is a direct result
of the regularizing properties of the discrete SHE and is proved essentially through estimating the
terms of the associate Chaos series. The second step uses the above results of Bertini-Giacomin
and show that by taking δ → 0, the consistent family of solutions after time δ converge to the
solution to the SHE with the desired δX=0 initial data. Details of this argument can be found in
Section 3 of [5].

This approach provides a general scheme for how to extend beyond Bertini-Giacomin’s near-
stationary setting. As an illustration, in the (a) wedge→Brownian or (b) wedge→flat regimes
cǫ = 1 but hypotheses 2 and 3 of Definition 2.6 do not hold. The same approach as in [5] (worked
out for case (a) in [49] as well) yields that in case (a), (letting RW denote a simple symmetric
random walk and B a one-side Brownian motion)

Zǫ(0,X) = exp{−ǫ1/2RW (ǫ−1X)1X≥0 − ǫ1/2|ǫ−1X|1X<0} ⇒ exp{−B(X)}1X≥0, (74)

whereas in case (b), (letting mod2 denote the parity function)

Zǫ(0,X) = exp{−ǫ1/2mod2(ǫ−1X)1X≥0 − ǫ1/2|ǫ−1X|1X<0} ⇒ 1X≥0. (75)

Note that there is an O(ǫ1/2) error in the exponentials above which is inconsequential in the
ǫ→ 0 limit.

3. The exact formula for the one-point distribution of the KPZ equation with

narrow wedge initial data

In section 2 we developed the rigorous path between the weakly asymmetric simple exclusion
process (WASEP) and the KPZ equation and explained how the initial conditions for the WASEP
correspond to initial data for the KPZ equation (or really the SHE). For step initial condition
– which corresponds in its scaling limit to the fundamental solution to the SHE (i.e., narrow
edge initial data for KPZ) – Tracy and Widom [163, 164, 165] derived an exact formula for the
probability distribution of the location of a single particle in the ASEP with step initial condition
(see section 3.1.1 for a review of this). Using this formula and the convergence results detailed
already, [5] provided a rigorous derivation of the exact formula for the one-point probability
distribution of the Hopf-Cole solution to the KPZ equation with narrow wedge initial data. This
is stated herein as Theorem 1.1.

From the formula in Theorem 1.1 it is relatively easy to see that lims→∞ FT (s) = 1. However,
from the formula it is much harder to see that lims→−∞ FT (s) = 0 or that FT (s) is non-decreasing.
However, we do know that almost surely, for all T > 0 and X ∈ R, Z(T,X) > 0, and hence
− logZ(T,X) is a well-defined random variable. The fact that FT (s) describes its statistics is
due to the convergence result of Theorem 1.3 which was explained in the previous section.

The formula in Theorem 1.1 is not the first result of the rigorous asymptotic analysis of Tracy
and Widom’s formula and in fact comes after a fair amount of post-processing. Initially one finds
the following version of the formula:
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FT (s) := lim
ǫ→0

P (Fǫ(T,X) + T
4! ≤ s) =

∫

C̃
e−µ̃ det(I −Kcsc

s )L2(Γ̃η)

dµ̃

µ̃
, (76)

where the contour C̃, the contour Γ̃η and the operator Kcsc
s are defined below in Definition 3.1.

Definition 3.1. The contour C̃ is defined as

C̃ = {eiθ}π/2≤θ≤3π/2 ∪ {x± i}x>0,

navigated starting at ∞+ i and going counter-clockwise.
The contours Γ̃η, Γ̃ζ are defined as

Γ̃η = {c3
2

+ ir : r ∈ (−∞,∞)}

Γ̃ζ = {−c3
2

+ ir : r ∈ (−∞,∞)},

where the constant c3 is defined henceforth as

c3 = 2−4/3,

and both contours are navigated from ± c3
2 + i∞ down. The kernel Kcsc

s acts on the function

space L2(Γ̃η) through its kernel:

Kcsc
s (η̃, η̃′) =

∫

Γ̃ζ

e−
T
3
(ζ̃3−η̃′3)+21/3s(ζ̃−η̃′)

(

21/3
∫ ∞

−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃ dt

)

dζ̃

ζ̃ − η̃
. (77)

It is very important to observe that our choice of contours for ζ̃ and η̃′ ensure that Re(−21/3(ζ̃−
η̃′)) = 1/2. This ensures that the integral in t above converges for all ζ̃ and η̃′. In fact, the

convergence holds as long as we keep Re(−21/3(ζ̃ − η̃′)) in a closed subset of (0, 1). The inner
integral in (77) can be evaluated and we find that following equivalent expression:

Kcsc
s (η̃, η̃′) =

∫

Γ̃ζ

e−
T
3
(ζ̃3−η̃′3)+21/3s(ζ̃−η̃′)π2

1/3(−µ̃)−21/3(ζ̃−η̃′)

sin(π21/3(ζ̃ − η̃′))
dζ̃

ζ̃ − η̃
.

This serves as an analytic extension of the first kernel to a larger domain of η̃, η̃′ and ζ̃. We do
not, however, make use of this analytic extension, and simply record it as a matter of interest.

3.1. Weakly asymmetric scaling limit of the Tracy-Widom formula. Due to the process
level convergence of WASEP to the stochastic heat equation, exact information about WASEP
can be, with care, translated into information about the stochastic heat equation. Until recently,
very little exact information was known about ASEP or WASEP. The work of Tracy and Widom
in the past few years, however, has changed the situation significantly. In order to use their
formula we must rewrite the probability that we are interested in, as the limit of probabilities for
the WASEP.

Define
Hǫ(T,X) = − log(ǫ−1/2/2) + λǫhγ(

t
γ , x)− νǫǫ

−1/2t.

We are interested in understanding the behavior of P (Hǫ(T,X) − X2

2T − T
24 ≥ −s) as ǫ goes to

zero. This probability can be translated into a probability for the height function, the current
and finally the position of a tagged particle:

Since we are dealing with step initial conditions hγ is initially given by hγ(0, x) = |x|. It is
easy to show that because of step initial conditions, the following three events are equivalent:

{hγ(t, x) ≥ 2m− x} = {J̃γ(t, x) ≥ m} = {xγ(t,m) ≤ x)
where xγ(t,m) is the location at time t of the particle which started at m > 0 and where J̃γ(t, x)
is a random variable which records the number of particles which started to the right of the
origin at time 0 and ended to the left or at x at time t. For this particular initial condition
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J̃γ(t, x) = Jγ(t, x) + x∨ 0 where Jγ(t, x) is the usual time integrated current which measures the
signed number of particles which cross the bond (x, x+ 1) up to time t (positive sign for jumps
from x + 1 to x and negative for jumps from x to x + 1). The γ throughout emphasizes the
strength of the asymmetry.

Therefore we have the following string of manipulations:

P (Hǫ(T,X)− X2

2T − T
24 ≥ −s) = (78)

P
(

− log(ǫ−1/2/2) + λǫhγ(
t
γ , x)− νǫǫ

−1/2t− X2

2T − T
24 ≥ −s

)

=

P

(

hγ(
t
γ , x) ≥ λ−1

ǫ [−s+ log(ǫ−1/2/2) +
X2

2T
+ νǫǫ

−1/2t+ T
4! ]

)

=

P

(

hγ(
t
γ , x) ≥ ǫ−1/2

[

−s+ log(ǫ−1/2/2) +
X2

2T

]

+
t

2

)

=

P (J̃γ(
t
γ , x) ≥ m) = P (xγ(

t
γ ,m) ≤ x),

where m is defined as

m =
1

2

[

ǫ−1/2

(

−s+ log(ǫ−1/2/2) +
X2

2T

)

+
1

2
t+ x

]

, (79)

and [·] above refers to the integer part.
Thus the proof of the exact formula for the solution to the KPZ equation amounts to two

pieces of information. The first is

Theorem 3.2. For all s ∈ R, T > 0 and X ∈ R we have the following convergence:

lim
ǫ→0

P (Hǫ(T,X)− X2

2T − T
24 ≥ −s) = FT (s) (80)

where FT (s) is defined in equation (6).

And the second was the convergence result of Theorem 1.3 which as a corollary shows that

lim
ǫ→0

P (Hǫ(T,X) − X2

2T − T
24 ≥ −s) = P (H(T,X)− X2

2T − T
24 ≥ −s). (81)

3.1.1. Tracy-Widom formula for the asymmetric simple exclusion process with step initial con-
dition. The starting point for asymptotics is the remarkable formula of Tracy and Widom first
stated in [165] in the form below, and developed in the three papers [163, 164, 165]. We will

apply it to the last line of (78) to give us an exact formula for P (Hǫ(T,X)− X2

2T − T
24 ≥ −s), and

then we will take asymptotics as ǫ goes to zero.
We consider only step initial condition ASEP, where every positive integer lattice site is initial

occupied by a particle (and zero and the negative sites are empty). Recall that xγ(t,m) is the
location at time t of the particle which started at m > 0. Consider q > p such that q + p = 1
and let γ = q − p and τ = p/q. For m > 0, t ≥ 0 and x ∈ Z, it is shown in [165] that,

P (x(γ−1t,m) ≤ x) =
∫

Sτ+

dµ

µ

∞
∏

k=0

(1− µτk) det(I + µJt,m,x,µ)L2(Γη) (82)

where Sτ+ is a circle centered at zero of radius strictly between τ and 1, and where the kernel of
the operator in the Fredholm determinant is given by

Jt,m,x,µ(η, η
′) =

∫

Γζ

exp{Ψt,m,x(ζ)−Ψt,m,x(η
′)}f(µ, ζ/η

′)

η′(ζ − η) dζ (83)

where η and η′ are on Γη, a circle centered at zero of radius ρ strictly between τ and 1, and the ζ
integral is on Γζ , a circle centered at zero of radius strictly between 1 and ρτ−1 (so as to ensure
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that |ζ/η| ∈ (1, τ−1)), and where, for fixed ξ,

f(µ, z) =

∞
∑

k=−∞

τk

1− τkµz
k,

Ψt,m,x(ζ) = Λt,m,x(ζ)− Λt,m,x(ξ),

Λt,m,x(ζ) = −x log(1− ζ) + tζ

1− ζ +m log ζ.

All contours are counter-clockwise. Throughout the rest of the paper we will only include the
subscripts on J , Ψ and Λ when we want to emphasize their dependence on a given variable.

Let us briefly remark on the approach Tracy and Widom used in deriving this formula in
[163, 164, 165]. It involves solving for an exact formula for the transition probability of a finite
number of ASEP particles. Marginal distribution of a fixed particle are then compactly calculated
using certain, so-called magical combinatorial formulas. The finite number of particles is taken to
infinity and in the step initial condition, the marginals take particularly nice forms which can be
turned into Fredholm determinants and manipulated into the form above. While this approach
has been pushed far, it suffers from its ad hoc nature and, due to the lack of a proper algebraic
framework or understanding for this derivation it is very difficult to extend Tracy and Widom’s
work to other initial conditions (aside from the half-Bernoulli case [166]) as well as to calculations
of multipoint distributions.

3.1.2. Heuristic derivation of the one-point distribution. We will now present a computation
deriving the expressions given in Theorem 3.2 for FT (s). After presenting the derivation, we will
stress that there are a number of very important technical points necessary to overcome to make
this computation into rigorous mathematics – many of which require serious work to resolve. In [5]
a rigorous proof of Theorem 3.2 is given in which we deal with all of the possible pitfalls. Besides
the usual issues of convergence of integrals, trace-class convergence and cutting of contours, the
calculation presented here (similar also to that of Sasamoto and Spohn) is plagued by one very
significant technical problem regarding the simultaneous deformation of the two contours along
which we are preforming steepest descent. The fact is that one can not freely deform these
contours since doing so would introduce a diverging (with ǫ) number of poles. However, a priori,
it is not clear that one can actually perform steepest descent given the rather harsh constraint
on the two main contours of interest.

Definition 3.3. Recall the definitions for the relevant quantities in this limit:

p =
1

2
− 1

2
ǫ1/2, q =

1

2
+

1

2
ǫ1/2

γ = ǫ1/2, τ =
1− ǫ1/2
1 + ǫ1/2

x = ǫ−1X, t = ǫ−3/2T

m =
1

2

[

ǫ−1/2

(

−s+ log(ǫ−1/2/2) +
X2

2T

)

+
1

2
t+ x

]

{

Hǫ(T,X) − X2

2T − T
24 ≥ −s

}

=

{

x(
t

γ
,m) ≤ x

}

.

We also define the contours Γη and Γζ to be

Γη = {z : |z| = 1− 1
2ǫ

1/2} and Γζ = {z : |z| = 1 + 1
2ǫ

1/2}

The first term in the integrand of (82) is the infinite product
∏∞

k=0(1 − µτk). Observe that

τ ≈ 1 − 2ǫ1/2 and that Sτ+ , the contour on which µ lies, is a circle centered at zero of radius
between τ and 1. The infinite product is not well behaved along most of this contour, so we will
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deform the contour to one along which the product is not highly oscillatory. Care must be taken,
however, since the Fredholm determinant has poles at every µ = τk. The deformation must avoid
passing through them. Observe now that

∞
∏

k=0

(1− µτk) = exp{
∞
∑

k=0

log(1− µτk)},

and that for small |µ|,
∞
∑

k=0

log(1− µ(1− 2ǫ1/2)k) ≈ ǫ−1/2

∫ ∞

0
log(1− µe−2r)dr

≈ ǫ−1/2µ

∫ ∞

0
e−2rdr = −ǫ

−1/2µ

2
. (84)

With this in mind define
µ̃ = ǫ−1/2µ,

from which we see that if the Riemann sum approximation is reasonable then the infinite product
converges to e−µ̃/2. We make the µ 7→ ǫ−1/2µ̃ change of variables and find that the above
approximations are reasonable if we consider a µ̃ contour

C̃ǫ = {eiθ}π/2≤θ≤3π/2 ∪ {x± i}0<x<ǫ−1/2−1.

Thus the infinite product goes to e−µ̃/2.
Now we turn to the Fredholm determinant. We determine a candidate for the pointwise limit

of the kernel. That the combination of these two pointwise limits gives the actual limiting formula
as ǫ goes to zero is, of course, completely unjustified at this point. Also, the pointwise limits here
disregard the existence of a number of singularities encountered during the argument.

The kernel J(η, η′) is given by an integral and the integrand has three main components: An
exponential term

exp{Λ(ζ)− Λ(η′)},
a rational function term (we include the differential with this term for scaling purposes)

dζ

η′(ζ − η) ,

and the term
µf(µ, ζ/η′).

We will proceed by the method of steepest descent, so in order to determine the region along
the ζ and η contours which affects the asymptotics we consider the exponential term first. The
argument of the exponential is given by Λ(ζ)− Λ(η′) where

Λ(ζ) = −x log(1− ζ) + tζ

1− ζ +m log(ζ),

and where, for the moment, we take m = 1
2

[

ǫ−1/2(−s+ X2

2T ) + 1
2 t+ x

]

. The real expression for

m has a log(ǫ−1/2/2) term which we define in with the s for the moment. Recall that x, t and m

all depend on ǫ. For small ǫ, Λ(ζ) has a critical point in an ǫ1/2 neighborhood of -1. For purposes
of having a nice ultimate answer, we choose to center in on

ξ = −1− 2ǫ1/2
X

T
.

We can rewrite the argument of the exponential as (Λ(ζ)−Λ(ξ))− (Λ(η′)−Λ(ξ)) = Ψ(ζ)−Ψ(η′).
The idea in [165] for extracting asymptotics of this term is to deform the ζ and η contours to lie
along curves such that outside the scale ǫ1/2 around ξ, ReΨ(ζ) is large and negative, and ReΨ(η′)
is large and positive. Hence we can ignore those parts of the contours. Then, rescaling around
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ξ to blow up this ǫ1/2 scale, we obtain the asymptotic exponential term. This final change of
variables then sets the scale at which we should analyze the other two terms in the integrand for
the J kernel.

Returning to Ψ(ζ), we make a Taylor expansion around ξ and find that in a neighborhood of
ξ,

Ψ(ζ) ≈ − T
48
ǫ−3/2(ζ − ξ)3 + s

2
ǫ−1/2(ζ − ξ).

This suggests the change of variables,

ζ̃ = 2−4/3ǫ−1/2(ζ − ξ) η̃′ = 2−4/3ǫ−1/2(η′ − ξ), (85)

and likewise for η̃. After this our Taylor expansion takes the form

Ψ(ζ̃) ≈ −T
3
ζ̃3 + 21/3sζ̃. (86)

In the spirit of steepest descent analysis, we would like the ζ contour to leave ξ in a direction
where this Taylor expansion is decreasing rapidly. This is accomplished by leaving at an angle
±2π/3. Likewise, since Ψ(η) should increase rapidly, η should leave ξ at angle ±π/3. The ζ

contour was originally centered at zero and of radius 1 + ǫ1/2/2 and the η contour of radius
1 − ǫ1/2/2. In order to deform these contours without changing the value of the determinant,
care must be taken since there are poles of f whenever ζ/η′ = τk, k ∈ Z. We ignore this issue
for the calculation, and deal with it carefully in [5] by using different contours.

Let us now assume that we can deform our contours to curves along which Ψ rapidly decays
in ζ and increases in η, as we move along them away from ξ. If we apply the change of variables
in (85), the straight part of our contours become infinite at angles ±2π/3 and ±π/3 which we

call Γ̃ζ and Γ̃η. Note that this is not the actual definition of these contours which one must use
in the statement and proof the theorem because of the singularity problem mentioned above.

Applying this change of variables to the kernel of the Fredholm determinant changes the L2

space and hence we must multiply the kernel by the Jacobian term 24/3ǫ1/2. We will include this
term with the µf(µ, z) term and take the ǫ→ 0 limit of that product.

As noted before, the term 21/3sζ̃ should have been 21/3(s − log(ǫ−1/2/2))ζ̃ in the Taylor ex-
pansion above, giving

Ψ(ζ̃) ≈ −T
3
ζ̃3 + 21/3(s− log(ǫ−1/2/2))ζ̃ ,

which would appear to blow up as ǫ goes to zero. We now show how the extra log ǫ in the
exponent can be absorbed into the 24/3ǫ1/2µf(µ, ζ/η′) term. Recall

µf(µ, z) =
∞
∑

k=−∞

µτk

1− τkµz
k.

If we let n0 = ⌊log(ǫ−1/2)/ log(τ)⌋, then observe that for 1 < |z| < τ−1,

µf(µ, z) =
∞
∑

k=−∞

µτk+n0

1− τk+n0µ
zk+n0 = zn0τn0µ

∞
∑

k=−∞

τk

1− τkτn0µ
zk.

By the choice of n0, τ
n0 ≈ ǫ−1/2 so

µf(µ, z) ≈ zn0 µ̃f(µ̃, z).

The discussion on the exponential term indicates that it suffices to understand the behaviour of
this function when ζ and η′ are within ǫ1/2 of ξ. Equivalently, letting z = ζ/η′, it suffices to
understand µf(µ, z) ≈ zn0 µ̃f(µ̃, z) for

z =
ζ

η′
=

ξ + 24/3ǫ1/2ζ̃

ξ + 24/3ǫ1/2η̃′
≈ 1− ǫ1/2z̃, z̃ = 24/3(ζ̃ − η̃′).
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Let us now consider zn0 using the fact that log(τ) ≈ −2ǫ1/2:

zn0 ≈ (1− ǫ1/2z̃)ǫ−1/2( 1
4
log ǫ) ≈ e− 1

4
z̃ log(ǫ).

Plugging back in the value of z̃ in terms of ζ̃ and η̃′ we see that this prefactor of zn0 exactly
cancels the log ǫ term which accompanies s in the exponential.

What remains is to determine the limit of 24/3ǫ1/2µ̃f(µ̃, z) as ǫ goes to zero, for z ≈ 1− ǫ1/2z̃.
This can be found by interpreting the infinite sum as a Riemann sum approximation for a certain
integral. Define t = kǫ1/2 and observe that

ǫ1/2µ̃f(µ̃, z) =
∞
∑

k=−∞

µ̃τ tǫ
−1/2

ztǫ
−1/2

1− µ̃τ tǫ−1/2
ǫ1/2 →

∫ ∞

−∞

µ̃e−2te−z̃t

1− µ̃e−2t
dt. (87)

This used the fact that τ tǫ
−1/2 → e−2t and that ztǫ

−1/2 → e−z̃t, which hold at least pointwise in
t. For (87) to hold , we must have Rez̃ bounded inside (0, 2), but we disregard this difficulty for
the heuristic proof. If we change variables of t to t/2 and multiply the top and bottom by e−t

then we find that

24/3ǫ1/2µf(µ, ζ/η′)→ 21/3
∫ ∞

−∞

µ̃e−z̃t/2

et − µ̃ dt.

As far as the final term, the rational expression, under the change of variables and zooming in

on ξ, the factor of 1/η′ goes to -1 and the dζ
ζ−η′ goes to

dζ̃

ζ̃−η̃′
.

Thereby we obtain from µJ the kernel −Kcsc
a′ (η̃, η̃′) acting on L2(Γ̃η), where

Kcsc
a′ (η̃, η̃′) =

∫

Γ̃ζ

e−
T
3
(ζ̃3−η̃′3)+21/3s′(ζ̃−η̃′)

(

21/3
∫ ∞

−∞

µ̃e−21/3t(ζ̃−η̃′)

et − µ̃ dt

)

dζ̃

ζ̃ − η̃
,

with s′ = s+ log 2. Recall that the log 2 came from the log(ǫ−1/2/2) term.
We have the identity

∫ ∞

−∞

µ̃e−z̃t/2

et − µ̃ dt = (−µ̃)−z̃/2π csc(πz̃/2), (88)

where the branch cut in µ̃ is taken along the positive real axis, hence (−µ̃)−z̃/2 = e− log(−µ̃)z̃/2

where log is taken with the standard branch cut along the negative real axis. We may use the
identity to rewrite the kernel as

Kcsc
s′ (η̃, η̃′) =

∫

Γ̃ζ

e−
T
3
(ζ̃3−η̃′3)+21/3s′(ζ̃−η̃′)π2

1/3(−µ̃)−21/3(ζ̃−η̃′)

sin(π21/3(ζ̃ − η̃′))
dζ̃

ζ̃ − η̃
.

Therefore we have shown (without mathematical justification) that

lim
ǫ→0

P (Fǫ(T,X) + T
4! ≤ s) := FT (s) =

∫

C̃
e−µ̃/2dµ̃

µ̃
det(I −Kcsc

s′ )L2(Γ̃η)
,

where s′ = s+log 2. To make it cleaner we replace µ̃/2 with µ̃. This only affects the µ̃ term above

given now by (−2µ̃)−z̃/2=(−µ̃)−21/3(ζ̃−η̃′)e−21/3 log 2(ζ̃−η̃′). This can be absorbed and cancels the
log 2 in s′ and thus we obtain,

FT (s) =

∫

C̃
e−µ̃ dµ̃

µ̃
det(I −Kcsc

s )L2(Γ̃η)
,

which, up to the definitions of the contours Γ̃η and Γ̃ζ , is the desired limiting formula.
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3.1.3. Important pitfall in making it math. We now briefly note some of the problems and pitfalls
of the preceding computation, all of which will be addressed in the real proof of [5].

Firstly, the pointwise convergence of both the prefactor infinite product and the Fredholm
determinant is certainly not enough to prove convergence of the µ̃ integral. Estimates must be
made to control this convergence or to show that we can cut off the tails of the µ̃ contour at
negligible cost and then show uniform convergence on the trimmed contour.

Secondly, the deformations of the η and ζ contours to the steepest descent curves is entirely
illegal, as it involves passing through many poles of the kernel (coming from the f term). In
the case of [165] this problem could be dealt with rather simply by just slightly modifying the

descent curves. However, in our case, since τ tends to 1 like ǫ1/2, such a patch is much harder
and involves very fine estimates to show that there exists suitable contours which stay close
enough together, yet along which Ψ displays the necessary descent and ascent required to make
the argument work. This issues also comes up in the convergence of (87). In order to make sense
of this we must ensure that 1 < |ζ/η′| < τ−1 or else the convergence and the resulting expression
make no sense.

Finally, one must make precise tail estimates to show that the kernel convergence is in the sense
of trace-class norm. The Riemann sum approximation argument can in fact be made rigorous.
In [5] the proof proceeds, however, via analysis of singularities and residues.

3.2. The one-point distribution of the KPZ equation with half Brownian initial data.
Based on the exact formula of [166], the convergence methods of [23, 5] and the asymptotic
methods of [5], it is likewise possible to rigorously derive the one-point (crossover) formula for
the half Brownian initial data. We call this family edge corssover distributions as they represent

the statistics near the edge of the rarefaction fan in the WASEP. Observe that F edge
T,X (s) now

depends on X (in addition to T ) which reflects the loss of spatial stationarity which was present
in the case of [5].

Theorem 3.4 ([49]). For any T > 0 and X ∈ R, the Hopf-Cole solution to KPZ with half
Brownian initial data (given by H(T,X) = − logZ(T,X) with initial data Z(0,X) = eB(X)1X≥0)
has the following probability distribution:

P(H(T,X)− X2

2T
− T

24
≥ −s) = F edge

T,X (s) (89)

where F edge
T,X (s) and is given by

F edge
T,X (s) =

∫

C

dµ

µ
e−µ det(I −KΓ

σT,X,µ
)L2(κ−1

T s,∞) (90)

where κT = 2−1/3T 1/3, C is a contour positively oriented and going from +∞+ ǫi around R
+ to

+∞− iǫ, and KΓ
σT,X,µ

is an operator given by its integral kernel

KΓ
σT,X,µ

(x, y) =

∫ ∞

−∞

µ

µ− e−κT t
AiΓ(x+t, κ−1

T ,−2−2/3κ−1
T X)AiΓ(y+t, κ

−1
T ,−2−2/3κ−1

T X)dt. (91)

The Γ deformed Airy functions are defined as follows

AiΓ(a, b, c) =

∫

CΓ

exp{13z
3 − az}Γ(−bz + c)dz, (92)

AiΓ(a, b, c) =

∫

CΓ

exp{13z
3 − az} 1

Γ(bz + c)
dz. (93)

The contour CΓ comes from ∞eπi/3 towards the origin but goes to the left of the pole at z = c/b

and then leaves in the direction ∞e−πi/3. The contour CΓ comes from ∞eπi/3 towards the origin
and then leaves in the direction ∞e−πi/3 (there are no issues with poles since 1/Γ has no poles).
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As a corollary, [49] prove that scaling s like T 1/3 and X like T 2/3, as T goes to infinity, the
one-point statistic converges to that of the so called BBP-transition [8] first discovered in the
study of perturbed Wishart (LUE) random matrices. [49] is also able to give lower bounds on
the growth (as T goes to infinity) of the moments of the the KPZ equation one-point distribution
as well as estimates for the decay of probability of the upper tail.

By developing an FKG inequality in the context of the stochastic heat equation, [49] then
extends these moment and tail bounds to the case of the KPZ equation started with a two-sided
Brownian motion as the initial data. It appears that this FKG inequality is new.

4. Directed polymers in random media

In this section we will focus on a class of models introduced first by Huse and Henley [87]
which we will call directed polymers in a random media (DPRM). Such polymers are directed
in what is often referred to as a time direction, and then are free to configure themselves in the
remaining d spatial dimensions. The probability of a given configuration of the polymer is then
given (relative to an underlying path measure on paths π(·)) as a Radon Nikodym derivative
which is often written as a Boltzmann weight involving a Hamiltonian which assigns an energy
to the path:

dP β
Q(π(·)) =

1

Zβ
Q

exp{βHQ(π(·))}dP0(π(·)). (94)

In the above equation dP0 represents the underlying path measure (which is independent of the
Hamiltonian and its randomness). The parameter β is known as the inverse temperature since
modifying its value changes the balance between underlying path measure (entropy) and the
energetic rewards presented by the disordered or random media in which the path lives. The
term HQ represents the Hamiltonian which assigns an energy to a given path. The subscript Q
stands for quenched which means that this HQ(π(·)) is actually a random function of the disorder

ω which we think of as an element of a probability space. Finally, Zβ
Q is the quenched partition

function which is defined as necessary to normalize dP β
Q as a probability measure:

Zβ
Q =

∫

exp{βHQ(π(·))}dP0(π(·)). (95)

The measure dP β
Q is a quenched polymer measure since it is still random with respect to the

randomness of the Hamiltonian HQ. This is to say that dP β
Q is also a function of the disorder

ω. We denote averages with respect to the disorder ω by an overline, so that Zβ
Q represents the

averaged value of the partition function. We also use var(·) to denote the variance with respect
to the disorder.

When β = 0 the above model reduces to the original path measure dP0. Let us now focus on
the case when dP0 is the path measure for a standard simple symmetric random walk (SSRW).
This means that for β = 0, π(·) will rescale diffusively to a Brownian motion (or Brownian
bridge if we pin the endpoint). A general question of interest in the study of polymer is to
understand the effect of a random Hamiltonian at positive β on the behavior and energy of a

dP β
Q typical path. This is generally recorded in terms of two scaling exponents: the transversal

fluctuation exponent ξ and the longitudinal fluctuation exponent χ. When dP0 is supported on
n-step SSRWs, as n goes to infinity, the first exponent describes the fluctuations of the endpoint
of the path π: var(π(n)) ≈ n2ξ. The second exponent likewise describes the fluctuations of the
free energy: var(β−1 logZβ) ≈ nχ. On top of these scaling exponents it is of essential interest to
understand the statistics for the properly scaled location of the endpoint and fluctuations of the
free energy.
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We will now focus entirely on Hamiltonians which take the form of a path integral through a
space-time independent noise field. In the discrete setting of dP0 as SSRW of length n, the noise
field can be chosen as IID random variables wi,x and then HQ(π(·)) =

∑n
i=0wi,π(i).

The first rigorous mathematical work on directed polymers was by Imbrie and Spencer [92] in
1988 where (by use of an elaborate expansion) they proved that in dimensions d ≥ 3 and with
small enough β, the walk is diffusive (ξ = 1/2). Bolthausen [26] strengthened the result (under
same same d ≥ 3, β small assumptions) to a central limit theorem for the endpoint of the walk.
His work relied on the now fundamental observation that renormalized partition function (for

dP0 a SSRW of length n) Wn = Zβ
Q/Z

β
Q is a martingale.

By a zero-one law, the limit W∞ = limn→∞Wn is either almost surely 0 or almost surely
positive. Since when β = 0, the limit is 1, the term strong disorder has come to refer to the case
of W∞ = 0 since then the disordered noise has, indeed, had a strong effect. The case W∞ > 0 is
called weak disorder.

There is a critical value βc such that weak disorder holds for β < βc and strong for β > βc. It
is known that βc = 0 for d ∈ {1, 2} [44] and 0 < βc ≤ ∞ for d ≥ 3. In d ≥ 3 and weak disorder
the walk converges to a Brownian motion, and the limiting diffusion matrix is the same as for
standard random walk [45].

On the other hand, in strong disorder it is known (see [44]) that there exist (random) points

at which the path π has a positive probability (under dP β
Q) of ending. This is certainly different

behavior than that of a Brownian motion.
The behavior of directed polymer when restricted to d = 1 has drawn significant attention and

the scaling exponents ξ, χ and fluctuation statistics are believed to be universal with respect to
the underlying path measure and underlying random Hamiltonian. Establishing such universality
has proved extremely difficult (see [152] for a review of the progress so far in this direction).

The prototype for the class of d = 1 directed polymers is the Continuous Directed Random
Polymer CDRP in which the path measure is that of Brownian motion (or bridge) and the
Hamiltonian is given by a path integral through space-time white noise. We shall focus mainly
on the point-to-point CDRP in which the underlying path measure is that of a Brownian bridge.

We shall see below in Section 4.1 that the CDRP is not just the prototype of the d = 1 polymer
universality class, but is also a universal scaling limit in its own right. Moreover, it is related (via
a Feynman Kac interpretation) to the SHE with multiplicative noise and hence to the Hopf-Cole
solution to the KPZ equation. Given its universality, it is of essential physical and mathematical
interest to study the exponents and statistics of the CDRP. This relies on the recently discovered
exact solvability for the CDRP (as well as a few particular approximations to it) – see Section
4.3.

4.1. Approximating the free energy of the continuum directed random polymer. Re-
call that at the level of physics the free energy of the CDRP is written as:

F(T,X) = logE

[

: exp:

{

−
∫ T

0
Ẇ (t, b(t))dt

}]

(96)

where the expectation E is over Brownian bridges b(·) such that b(0) = 0 and b(T ) = X, and
: exp : is known as the Wick exponential. Observe that F(T,X) is random with respect to

the disorder (the Gaussian space-time white noise Ẇ ). It requires some work to make sense of
this object rigorously. For instance, it is not immediately clear how to interpret integrating a
Brownian bridge through a space-time white noise, and nor is it clear how to exponentiate such
an expression. The problem arises due to the fact that space-time white noise is not a function,
but rather a random generalized function. We now introduce five different schemes through which
to define and approximate the free energy of the CDRP.
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4.1.1. Chaos series and time ordering. The correct way to interpret the Wick exponential is to
Taylor expand the Wick exponential, time ordering the multiple Itô integrals and then switching
the order of integration with E. Doing this results in a series of multiple stochastic integrals
whose logarithm we define as F(T,X):

exp{F(T,X)} =
∞
∑

n=0

(−1)n
∫

0≤t1<···<tn≤T

∫

Rn

PBB(t1, . . . , tn;x1 . . . , xn)Ẇ (dt1dx1) · · · Ẇ (dtndxn),

(97)
where PBB(t1, . . . , tn;x1 . . . , xn) represents the n-step transition probability of a Brownian bridge
started at 0 at time 0 and ended at X and time T to go through positions xi at times ti for
i = 1, . . . , n. The multiple stochastic integrals are those of Itô. The series is convergent in
L2(Ẇ ). This follows by applying equation (36) to each term in the Chaos series (since they
orthogonal) and the estimate that

∫

0≤t1<···<tn≤T

∫

Rn

(PBB(t1, . . . , tn;x1 . . . , xn))
2 ≤ C(n!)−1/2. (98)

The positivity of the right-hand side is not immediately clear but results from the next equivalent
formulation, and work of [124].

Conceptually, the reason for the time ordering is to avoid self-interactions of the space-time
white noise. By time ordering it is possible to use the independence of the field to define multiple
stochastic integrals and hence to make sense of non-linear functions of the noise. This type of
procedure is often referred to as self-energy renormalization in the physical literature.

In [5], the Chaos series proves useful in calculating short time asymptotics of F(T,X), however
it seems that fixed and large T statistics are unattainable directly from the analysis of this series.

4.1.2. Stochastic PDEs. Defining Z(T,X) = p(T,X) exp{F(T,X)} (where p(T,X) is the stan-
dard Gaussian heat kernel and exp{F(T,X)} is defined as above) we find that Z satisfies a simple
recursion relation:

Z(T,X) = p(T,X) −
∫ T

0

∫

R

p(T − S,X − Y )Z(S, Y )Ẇ (dSdY ). (99)

This recursion is none other than the mild or integrated form of the stochastic heat equation
with multiplicative noise (see equation 34); the initial data for F(0,X) is identically 1, hence the
initial data for Z is δX=0. This is perhaps not surprising since one would expect (formally) that
the path integral for exp{F(T,X)} is a Feynman Kac formula for an imaginary time Schödinger
equation with space-time white noise potential (the p(T,X) accounts for the difference between
Brownian bridges and Brownian motions).

As the Hopf-Cole solution to the KPZ equation is defined as − logZ(T,X), we find that F =

log
√
2πT + X2

2T −H(T,X). In this way we see that F is effectively (up to shift by a deterministic
function of T,X) equal to the Hopf-Cole solution to the KPZ equation. Differentiating H in
space provides us (formally) with the solution to the stochastic Burgers equation [15].

4.1.3. Spatial smoothing of the white noise. Smoothing space-time white noise by spatial con-
volution with an approximate delta function δκ (i.e., δκ(x) = κ−1h(κ−1x) where h is an even,

positive function of compact support and integral 1) results in a smooth noise field Ẇ κ = δκ ∗ Ẇ
through which one can make sense of a path integral along the trajectory of a Brownian bridge.
Let M denote this, now well-defined path integral (see Section 2.1 of [22]) and define, for this
smoothed noise, the Wick (or Girsanov) exponential as

:exp: {M} = exp{M − 1
2〈M,M〉}, (100)
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The quadratic variation term 〈M,M〉 is necessary to keep E [:exp: {M}] a martingale in T . Since
the smoothed white noise is still temporally independent,

〈M,M〉 =
∫ T

0

1

2
〈Ẇ κ(S, b(S))〉dS =

T

2

(

δk ∗ δk(0)
)

(101)

since 〈Ẇ κ(S, b(S))〉 =
(

δk ∗ δk(0)
)

. As the smoothing goes to zero (κ→ 0), Bertini-Cancrini [22]

prove that the smoothed partition function (times p(T,X)) converges in L2(Ẇ ) to Z(T,X) with
Z(0,X) = δX=0. The removal of the quadratic variation can be interpreted as another form of
self-energy renormalization.

4.1.4. Discrete directed polymers. There are many ways to discretize, or semi-discretize the
CDRP. Perhaps the simplest approach is to replace the space-time white noise by an IID field
of random variables, and to replace the Brownian bridge by a simple symmetric random walk
bridge. Specifically let wi,j be IID random variables and define the polymer measure on Πn,y

(the collection of simple symmetric random walk trajectories from 0 at time 0 to y at time n) as

P
β
n,y(π) =

1

Zβ(n, y)
exp{βT (π)} (102)

where the discrete path integral T (π) =
∑n

i=0wi,π(i) and the partition function is

Zβ(n, y) =
∑

π∈Πn,y

exp(β

n
∑

i=0

wi,π(i)) =
∑

π∈Πn,y

n
∏

i=0

(1 + w̃i,π(i)). (103)

Here β is called the inverse temperature, and w̃i,j are coupled to wi,j so that eβwi,j = (1 + w̃i,j).
This means that for β small, w̃i,j ≈ βwi,j by Taylor approximation.

At this point it is worth noting that it is possible to recover Pβ
n,y from partition functions. For

instance if we let Zβ(m,x;n, y) denote the quenched partition function for a polymer started
from x at time m and ended at y at time n, then

P
β
n,y(π(m) = x) =

Zβ(0, 0;m,x)Zβ(m,x;n, y)

Zβ(0, 0;n, y)
. (104)

In fact, this also worked for the CDRP. In fact, we have not yet described what the quenched
path measure is for the CDRP, though it can be built in terms of coupled solution to the SHE
started and ended at different space-time locations (see for instance [50]).

If we denote the normalized partition function Z̃β(n, y) = 2−nZβ(n, y) then it clearly satisfies
the recursion

Z̃β(n, y) = 1
2

(

Z̃β(n− 1, y − 1) + Z̃β(n− 1, y + 1)
)

(1 + w̃n,y), (105)

which is a discrete form of the SHE with multiplicative noise.
As observed by Calabrese-Le Doussal-Rosso [41] and Alberts-Khanin-Quastel [2], under dif-

fusive time-space scaling of n = ǫ−4T , y = ǫ−2X and under weak noise scaling β = ǫα, the
normalized partition function Z̃β(n, y) converges to Z(α4T, α2X) where Z solves the multiplica-
tive noise stochastic heat equation with delta initial data. Alberts-Khanin-Quastel furthermore
presented a scheme (which they are now working to make rigorous) through which this result
can be proved for all wi,j which are IID (subject to centering and scaling which only depends on
a certain number of finite moments) in time and space. The essential idea is that for small β,
w̃i,j ≈ βwi,j. Iterating the recursion (105) and using this we get a finite series in β which can be
readily identified as a discrete version of the Chaos series of Section 4.1.1. The observation is the
basis for the proof. One should note that it is possible to try to make such a scheme work in the
context of the discrete SHE for the corner growth model, yet the structure of the martingale is
much more complex and this approach has not been successfully implemented.
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This scheme can be extended to encompass more general noise and underlying random walk
measures. Thus, in this weak scaling regime for the noise, the CDRP is a universal scaling object,
and its statistics provide the asymptotic statistics for all models which scale to it! This is very
much analogous to the weak asymmetry scaling for the corner growth model under which the
KPZ equation arises.

4.1.5. Growth processes and interacting particle systems. The universality of the KPZ equation
has already been discussed, and thus, owing to the equivalence of the KPZ equation to the
free energy of the CDRP, one can consider growth models and interacting particle system height
functions as approximation schemes for the free energy of the CDRP. Since these models are much
further from the CDRP or SHE, this approximation scheme has only been rigorously implemented
for the corner growth model (or equivalently SEP) in [23, 5, 49] (or see Theorem 1.3 above).

From above we know that weak noise discrete directed polymers and the weakly asymmetric
corner growth model both scale to the KPZ equation. This connection is recent, though it is
not the first connection observed between these models. Last passage percolation (LPP) is the
zero temperature limit of the discrete directed polymer, in which the path measure concentrates
entirely on the (in the case of continuously distributed weights) unique path which maximizes its
path integral through the IID field (one can also look at the minimal path which is called first
passage percolation). The free energy for this model is this maximal path integral – known as
the last passage time. If the path measure underlying the polymer is a nearest neighbor random
walk, and the noise is formed from IID exponential random variable weights, then there is an
exact coupling between LPP and the totally asymmetric corner growth model started with a
wedge (see for example [136] or [19]).

4.2. Beyond the point-to-point polymer. The six fundamental initial data for the KPZ
equation (Section 1.2.5) correspond with the CDRP with either final or initial potential [49]
and arise from appropriately tuned boundary data for discrete polymers as well (see [46] for
example). By boundary data for a discrete polymer one means that the wi,j for i = j or i = −j
have different distributions generally with a large mean. This creates an attractive potential
along the boundary of the paths trajectory and hence causes it to remain straight much longer
than a standard random walk. Critically tuning the type and strength of the boundary potential
results in different subclasses of statistics [8, 19, 46].

Under the Feynman Kac interpretation for the SHE with initial data Z0,

Z(T,X) = EX

[

Z0(b(T )) : exp:

{

−
∫ T

0
Ẇ (t, b(t))dt

}]

(106)

where EX represents the expectation over Brownian motions which start at X at time 0. Thus
logZ0 can be interpreted as an a form of energetic cost/reward of ending at a certain location.
Alternatively, due to time reversal properties of Brownian motion, it is possible to consider Z0

as the exponential of the integrated potential in which a CDRP chooses to depart from the time
zero spatial axis.

We now review the six fundamental initial data for the KPZ equation (Section 1.2.5) and
provide (1) a brief explanation for their polymer interpretation, (2) how they arise from weak noise
scaling of discrete polymers with given terminating conditions, and (3) how they likewise arise
from polymers with boundary conditions. Note that this dictionary between discrete polymers
and initial data for the KPZ equation relies on the approach of [2] as well as the slow decorrelation
results of [47].

Below RW represents a random walk independent of all else such that RW (0) = n.

• Z(0,X) = δX=0: (1) Point to point polymer (discussed at length above); (2) Limit of
point to point discrete polymers; (3) Limit when boundary conditions are subcritical and
not strong enough to attract the polymer path.
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• Z(0,X) = eB(X): (1) Point to Brownian polymer; (2) Limit of polymers which go from a
fixed point and terminate at the first space-time point (π(m),m) at which RW (π(m)) =
m; (3) Limit when boundary conditions are random and critically tuned (in terms of
mean). There is, in fact, a scaling window for the critical tuning and within that window
one introduces a drift into the two sides of the Brownian motion B(X). The long time
scaling behavior of this whole window is understood (in terms of last passage percolation)
in [35, 10, 46].
• Z(0,X) = 1: (1) Point to line polymer; (2) Limit of polymers which go from a fixed point
and terminate at a fixed time n (without a fixed endpoint); (3) Limit when boundary
conditions are deterministic and critically tuned.
• eB(X)1X≥0: (1) Point to half Brownian polymer; (2) Limit of polymers which go from a
fixed point and terminate at the first space-time point (π(m),m) with π(m) ≥ 0 at which
RW (π(m)) = m (if no such point exists, then the path is not considered); (3) Limit when
boundary conditions are random and the weights along the line i = j are critically tuned
(in terms of mean) while the weights along the line i = −j are subcritical.
• 1X≥0: (1) Point to half line polymer; (2) Limit of polymers which go from a fixed point
and terminate at a fixed time n subject to the condition that π(n) ≥ 0; (3) Limit when
boundary condition weights along line i = j are deterministic and critically tuned, while
along i = −j the weights are subcritical.
• 1X<0 + eB(X)1X≥0: Point to half line / Brownian polymer; (2) Limit of polymers which
go from a fixed point and terminate either at the first space-time point (π(m),m) with
π(m) ≥ 0 at which RW (π(m)) = m or terminates at time n if π(n) < 0; (3) Limit when
boundary condition weights along line i = j are random and critically tuned, while along
i = −j the weights are deterministic and critically tuned.

As recorded in the last column of Figure 4, we are far from having a complete characterization
of the statistics for the six types of initial data / polymers above. A goal, therefore, of developing
the solvability of the CDRP is to be able to calculate one-point and multi-point statistics for
each of the six different types of initial data. One expects to be able to do this owing to the fact
that the long time limits (in terms of last passage percolation) are known and solvable in each
of these cases.

We also remark that, as noted in the open question of Section 1.4, there exists a multi-layer
extension to the polymer free energy whose statistics correspond to some sort of finite temperature
version of the top eigenvalues of large LUE random matrices. See [93, 35, 59] for explanations
of how the zero-temperature polymer – last passage percolation is related to LUE eigenvalues.
Also, a similar relationship holds in the zero-temperature version of the Brownian polymer [129]
with LUE replaced by GUE.

For completeness let us briefly review the construction of the multi-layer extension as done in
[130]. Define

Zn(T,X) = P (T,X)n
∞
∑

k=0

(−1)k
∫

0≤t1<···<tk≤T

∫

Rk

R
(n)
k ((t1, x1), . . . , (tk, xk))Ẇ (dt1dx1) · · · Ẇ (dtkdxk).

(107)

Here R
(n)
k is the k-point correlation function for a collection of n non-intersecting Brownian

bridges which all start at 0 at time 0 and end at X at time T . These Zn(T,X) form the partition
function hierarchy. The multi-layer extension to the polymer free energy is achieved by setting

Fn(T,X) = log
Zn(T,X)

Zn−1(T,X)
− log P (T,X), (108)

where by convention we set Z0 = 1. Clearly F1(T,X) = F(T,X), as defined earlier. For a fixed
T , these free energies form an ensemble of lines which may intersect (though have a tendency
which grows with T to avoid such overlapping). It is believed that they represent crossover,
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or finite temperature versions of the Airy line ensemble first introduced in [137] and studied
extensively since (see [48] in particular where the existence and various properties are proved).
Thus, another goal of solvability is to calculate various statistics related to these additional levels
of the multi-layer free energy process.

4.3. Solvability of polymer models. The first suggestion that finite temperature polymer
models may be solvable came from the solvability of the zero temperature analogous – last pas-
sage percolation [9, 93] with exponential or geometric weights (or a Poisson point environment).
Likewise this corresponds with the solvability of the TASEP. The work of Tracy and Widom
[163, 164, 165] did not deal directly with polymers, however through the work of [5] their exact
formulas for ASEP have been translated into exact one-point statistics for the free energy of the
CDRP. In this section we discuss the solvability approaches which have presently been developed
to date.

4.3.1. Tracy Widom formulas. Tracy and Widom [163, 164, 165] extended earlier formulas of
Schütz [151] to give exact formulas for the transition probabilities for N particles in the ASEP .
Then, using two “magical” combinatorial formulas (whose origin and meaning are still a mystery)
as well as a great deal of work manipulating formulas and Fredholm determinants, Tracy and
Widom produced exact formulas for the transition probability of a single particle in the ASEP
with step (and step Bernoulli) – see Section 1.2.4 for an explanation of these initial conditions. [5]
(and [49]) then took rigorous asymptotics of these formulas to derive the probability distribution
for the free energy of the CDRP in the point-to-point (and half-Brownian) case – or equivalently
the KPZ equation with narrow-wedge or wedge→Brownian initial data.

This approach was the first taken and has a few advantages. The pre-asymptotic formula
(given by Tracy and Widom [163, 164, 165] and restated in Theorem 1.4) is already written
as a Fredholm determinant and has undergone significant manipulations to make it amenable
to asymptotics. On the other hand, taking rigorous asymptotics of this formula in the scaling
necessary to correspond to the CDRP is a lengthy ordeal involving a number of highly non-
trivial technical issues. Moreover, the derivation of the pre-asymptotic formulas is essentially
ad-hoc and presently limited (to the extent needed for asymptotics) to the two cases mentioned
above. Moreover, only one-point distributions have been computed by this method, rendering it
presently impossible to find multi-point distributions in this manner for the KPZ equation.

4.3.2. Replica trick and attractive delta-Bose gas Bethe ansatz. The replica approach [62, 41]
uses the polymer formulation of Z to express the moments of Z(T,X) (with respect to the
disorder induced by the white noise potential) in terms of the solution to a quantum many body
system governed by a the Lieb-Liniger Hamiltonian with two-body attractive delta interaction.
Specifically if we write joint moments at time T as

Z(X1, . . . ,Xn;T ) =
n
∏

i=1

Z(T,Xi) (109)

then Z(X1, . . . ,Xn;T ) satisfies the equation

− ∂TZ(X1, . . . ,Xn;T ) = HnZ(X1, . . . ,Xn;T ), Hn = −1

2

n
∑

j=1

∂2xj
− 1

2

n
∑

j 6=k

δ(xj − xk), (110)

solved on the bosonic subspace (which means functions invariant under permutations of its en-
tries).

Mathematically, it is convenient to restrict attention to the Weyl chamber X1 < X2 < · · · <
Xn. Then solving the above equation means that Z solves the free equation (without δ interac-
tion) inside the Weyl chamber, and at the boundary it satisfies the following boundary conditions

(∂Xi+1
− ∂Xi + 1)Ψ(x) = 0 (111)
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when Xi+1 = Xi.
One may to solve this many body system is by demonstrating a complete basis of eigen-

functions (and normalizations) which diagonalize the Hamiltonian and respect the boundary
condition. The eigenfunctions we written down in 1963 for the repulsive delta interaction (the
+1 in the boundary condition becomes −1) by Lieb and Liniger [114] by Bethe ansatz and their
completeness was proved by Dorlas [61] (on [0, 1]) and Tracy and Widom [169] (on R as we are
considering presently). For the attractive case, McGuire [123] wrote the eigenfunctions in terms
of string states in 1964. However, the norms of these states were not derived until 2007 in [40]
using ideas of algebraic Bethe ansatz (see [104, 25, 155]). Dotsenko [62] later worked these norms
out very explicitly through combinatorial means. According to [58] completeness of the eigen-
functions for the attractive case on R was shown in the Ph.D. thesis of Oxford [132]. The author,
however, has not been able to access this Ph.D. thesis to determine to what degree this work is
mathematically rigorous. Moreover, this work apparently is unknown to several experts. In [141]
the formula of [169] is analytically continued to consider an attractive delta potential and in this
way the completeness for this case is proved.

As discussed in Section 1.1.7 this replica approach is plagued by the fact that moments of Z
grow far to rapidly to uniquely identity the Laplace transform of Z or the distribution of logZ. It
took some time for [62] and [41] to work how to re-sum divergent series and analytically continue
functions (only a priori defined on the integers) as necessary to derive distribution formulas. It
was not, in fact, until after the work of [147, 148, 149, 5] that the replica approach was able to
recover the newly discovered distribution functions.

One should note that even though recovering the Laplace transform via the replica trick is non-
rigorous mathematically, the formulas for moments derived via the replica trick are essentially
rigorous (up to the question of completeness) and can also be rigorously calculated in terms of
local-time as in [22]. Furthermore, even with regards to the full distribution function, the correctly
applied replica trick has some benefits. Prolhac and Spohn [138, 139] used this approach to derive
a conjectural form of the spatial process for the KPZ equation in the geometry corresponding to
growth in a narrow wedge and confirm that the long time limit of this spatial process is the Airy2
process.8 In [50] this approach is used to derive a conjectural form for the transition probabilities
for the random non-linear semi-group which governs the KPZ renormalization fixed point.

Very recently [42] employed the replica trick to derive a conjectural formulas for the crossover
one-point distributions for the flat Z(0,X) = 1 case. Also, [91] used this approach to rederive the

formula for the statistics correspond to Z(0,X) = ǫB(X)1X≥0, which [49] had rigorously derived
a year earlier based on work of [166].

4.3.3. Solvable finite temperature polymers. The solvability of LPP [93, 9] relies on the combina-
torial Robinson-Schensted-Knuth (RSK) correspondence. RSK maps a matrix of positive weights
onto a pair of Young Tableaux – or equivalently Gelfand Zetlin (GZ) patterns – from which one
can immediately read off information like the last passage time for the original matrix. When
matrix weights are chosen as independent exponential random variables, the resulting measure on
GZ patterns is given by the Schur measure and in this case it is possible to write exact formulas
for the probability distribution for the last passage time (and many other quantities) – hence the
solvability.

Last passage percolation represents a zero temperature polymer model, and thus in order to
access the statistics of the KPZ equation, it is necessary to find solvable finite temperature poly-
mers. This is accomplished in [129] for semi-discrete Brownian polymer and [51] for a particular
discrete polymer involving inverse-gamma weights (which was initially studied in [152] in which
a Burkes type theorem was uncovered – first hinting at solvability). In the case of [51], the
solvability relies on a few facts. The first is the existence of a finite temperature version of RSK –

8This and the work of [50] make a critical factorization assumption in the form of the moments of Z which may
not be true at finite t but which appears to hold in the long-time limit.
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the tropical RSK correspondence introduced by A.N. Kirillov [103] in the context of tropical com-
binatorics. The classical RSK correspondence can be encoded as a combinatorial algorithm over
the (max,+) algebra – gRSK amounts to formally replacing: max 7→ + and + 7→ ×. The image
of a matrix of positive entries under gRSK is a triangular array from which one may immediately
read off the polymer partition function associated with the original matrix. This can be done
with any weight matrix, however, in the case of inverse-gamma distributed IID weights, a miracle
occurs and, due to a certain intertwining relation and the theory of Markov functions [134], it
is possible to show that a wide variety of projections of the triangular array have the structure
of Markov chains (with respect to the filtration formed by their own history). The transition
kernels for these chains can be diagonalized in terms of ratios of Whittaker functions (which
plays the tropical analogue of Schur functions) and an integrate-out lemma (the Bump-Stade
identity) originally developed in the study of automorphic forms enables the exact calculation of
the Laplace transforms of of polymer’s partition function.

The algebraic structure associated with the finite temperature polymer solvability is much bet-
ter understood than in the context of Tracy and Widom’s work with the ASEP. Therefore, much
more information about the KPZ equation should be accessible through this approach. Since the
expression naturally (and rigorously) derived by this approach is the Laplace transforms of the
partition function (which is a positive random variable), we can invert and recover expressions
the distribution function of the free energy.
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