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Large-scale simulations of ballistic deposition: The approach to asymptotic scaling
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Extensive kinetic Monte Carlo simulations are presented for ballistic deposition (BD) in (1 + 1) dimensions.
Asymptotic scaling is found only for lattice sizes L >≈ 212. Such a large system size for the onset of scaling explains
the widespread discrepancies of previous reports for exponents of BD in one and likely higher dimensions. The
exponents obtained from our simulations, α = 0.499 ± 0.004 and β = 0.336 ± 0.004, are in excellent agreement
with the exact values α = 1

2 and β = 1
3 for the one-dimensional Kardar-Parisi-Zhang equation. Our findings make

possible a more informed exploration of exponents for BD in higher dimensions, accurate estimates of which
have proven to be elusive.
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Fluctuations of growing surfaces are often described by
idealized models [1–3] wherein the complex interactions
between atoms or molecules are replaced by simple transition
rules on a lattice that abstract the essence of these interactions.
The appeal of such models stems from the fact that their rules
can be easily implemented in efficient kinetic Monte Carlo
(KMC) algorithms. This enables a comprehensive analysis of
their statistical characteristics, which can be compared directly
with experiments [4–6].

A complementary approach is based on postulating a
stochastic differential equation. Solutions of such equations
typically focus on the asymptotic kinetic roughening regime,
where the standard deviation W (L,t) of the surface profile
exhibits dynamic scaling [7]:

W (L,t) = [〈h2〉 − 〈h〉2]1/2 ∼ Lαf (t/Lz). (1)

Here h(x,t) is the surface height at position x and time t ,
L is the lateral viewing scale, α is the roughness exponent,
z is the dynamic exponent, and f is a scaling function. At
early times (t � Lz), f (x) ∼ xβ and W ∼ tβ , where β is
the growth exponent and z = α/β. For long times (t � Lz)
f → constant, so the saturated roughness Wsat ∼ Lα . The
connection to a lattice model is based on comparing exponents
and invoking universality [2].

The foregoing paradigm can be justified for many models
[2,8], but outstanding issues persist in some cases, most
notably, ballistic deposition (BD). Originally formulated as a
model for aggregation and sedimentation [9,10], BD is the
prototypical model of nonconserved growth, in which the
volume of material over the substrate is not equal to that
deposited, in this case because of void formation. In classic
BD [9,10] a particle impinges on a randomly chosen lattice site
and irreversibly attaches to the first vertical or lateral nearest
neighbor encountered. The updating algorithm for the integer
heights hi(n) at site i after n depositions is

hi(n + 1) = max [hi−1(n),hi(n) + 1,hi+1(n)] , (2)

for i = 1,2, . . . ,L, where max[x,y,z] yields the maximum of
the three arguments.

The continuum formulation of BD is thought to be the
Kardar-Parisi-Zhang (KPZ) equation [11],

∂u

∂t
= ν∇2u + λ(∇u)2 + ξ, (3)

where u(x,t) is the deviation of the height from its mean at
position x and time t on a d-dimensional surface, ν is the
surface tension, λ is the “excess velocity” [2], and ξ is a
Gaussian noise with mean zero and covariance,

〈ξ (x,t) ξ (x′,t ′)〉 = 2Dδ(x − x′)δ(t − t ′). (4)

Although among the first surface growth models to be studied
with KMC simulations [7], discrepancies remain between the
scaling properties of BD and the KPZ equation [12–14],
even on one-dimensional (1D) surfaces. Their relationship
is even less certain in higher dimensions [15–27], including
the suggestion [28] that the two models belong to different
universality classes.

In this Rapid Communication, we report the results of
extensive KMC simulations of BD on 1D lattices with up
to 220 sites, well beyond the onset of saturation, for up to
106 independent realizations. In view of the pitfalls associated
with hidden correlations in random number generators [29],
which may be especially acute for BD [13], we have used
the Mersenne twister MT19937 [30,31]. This pseudorandom
number generator has a period of 219 937 − 1, output that is
uniformly distributed in 623 dimensions, implying negligible
serial correlation, and has passed the most stringent statistical
tests [32]. These properties, and its computational efficiency,
make the Mersenne twister eminently suitable for large-scale
KMC simulations.

The massive computational resources required for the sim-
ulations reported here relied upon unconventional “overnight
office computing.” Social networking skills were employed in
the development of the Simulation Through Social Networking
(STSN) project, in which 120–130 computers were utilized
for some 9 months to drive the KMC simulations of even the
largest lattices deep into the saturation region [33]. Details
may be found in Refs. [36,37].
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FIG. 1. (Color online) Log-log plot of Wsat against L for the
data in Table I. Error bars are of the order of the symbol size or
smaller. The slope α = 0.499 ± 0.004 of a linear fit to the data points
for L = 212–216 (red dots) is in excellent agreement with the KPZ
value of 1

2 . The broken line indicates the approximate range of system
sizes used in previous work (L = 24–212) for calculating α and the
resulting slope.

Figure 1 shows a log-log plot of Wsat against L using
the data in Table I. Wsat was calculated by taking samples
every 4τ to τ monolayers (MLs), depending on the lattice
size, where τ ∼ L3/2 is the relaxation time [38], to ensure
that the data points were statistically independent, and taking
binned horizontal averages to alleviate any drift in the data
over time [2,39]. Simulations for L = 16 384, L = 32 768, and
L= 65 536 were carried out for up to 33.5 × 106 layers, but
many data points were excluded because of the stretched expo-
nential tail in Wsat. Stretched exponential tails have also been
observed in the dynamical structure factor in the stationary
regime of the 1 + 1-dimensional KPZ equation [40,41].

Most apparent from Fig. 1 is that an accurate estimate of
α requires system sizes beyond L = 211 because of the slow
approach to asymptotic scaling. For the smallest systems there
is appreciable deviation from the asymptotic behavior because
of finite-size effects which persist even to system sizes of 211.
Our estimate of

α = 0.499 ± 0.004 , (5)

obtained from the fit between L = 212 and L = 216, captures
the value of α = 1

2 for the 1D KPZ equation [11]. To our
knowledge, this is the first time that the roughness exponent
of BD has been shown to agree with the KPZ value (within
the error bounds) directly from an analysis of simulation data
and without invoking any scaling corrections [2,14,28]. To
put our results into perspective, the line from L = 24 to L =
212 in Fig. 1 indicates the approximate range and slope of
the simulation data used in previous work for calculating α,
resulting in an appreciable underestimate of this exponent.

The slow approach of α to its asymptotic value suggests
that a similar trend should be expected for β. However, in
contrast to the calculation of α, which requires simulations that
extend well into the saturation regime to obtain accurate values
of Wsat, the problem in determining β is not computational

TABLE I. The saturated roughness Wsat of 1D lattice sizes
L = 2n for n = 2,3, . . . ,16 obtained from KMC simulations with the
indicated number of independent realizations. The time to saturation
is t× and ts indicates how far the simulations were continued into the
saturation regime. Where none is indicated, the calculated error is
smaller than 10−2.

L Wsat Error Realizations t× (ML) ts (106 ML)

4 1.33 100 000 4
8 1.97 100 000 1

16 2.63 93 000 1
32 3.40 100 000 19.75 1
64 4.41 10 000 44.5 1

128 5.82 10 000 108 1
256 7.85 10 000 259 1
512 10.73 10 000 675 1

1024 14.93 7486 1900 1
2048 20.95 0.03 1010 5200 4.1
4096 29.39 0.05 841 13 700 4.1
8192 41.58 0.1 253 38 000 4.1

16 384 58.69 0.2 724 106 500 10
32 768 84.09 0.2 407 297 000 10
65 536 116.55 1.0 249 770 000 10

overhead per se. Rather, the difficulty lies in precisely
delineating the limits of the growth region [14] over which
W ∼ tβ .

The growth times tg and the corresponding βL are compiled
in Table II. The most striking trend in these data is the slow
approach to the asymptotic value β = 1

3 [11], which is even
more pronounced than that in Fig. 1. Lattice sizes in excess of
218 are needed to obtain βL to within 1% of the exact value.

TABLE II. The growth exponent βL and the associated error for
lattice sizes L = 2n, with n = 5, . . . ,20 obtained from KMC simu-
lations with the indicated number of realizations. The corresponding
growth time tg over which each βL is calculated, and its error, are
also shown.

L βL Error Realizations tg (ML) Error

32 0.176 0.01 1 000 000 2 1
64 0.20 0.02 1 000 000 4 5

128 0.224 0.006 1 000 000 10 5
256 0.254 0.002 1 000 000 20 5
512 0.270 0.002 1 000 000 80 10

1024 0.280 0.002 100 000 284 10
2048 0.2907 0.001 100 000 700 10
4096 0.302 0.001 100 000 1400 100
8192 0.308 0.001 54 000 4200 500

16 384 0.312 0.002 810 7936 1000
32 768 0.317 0.002 407 23 000 7000
65,536 0.322 0.0005 800 61 000 4000

131 072 0.325 0.002 105 130 000 10 000
262 144 0.323 0.01 9 260 000 50 000
524 288 0.334 0.005 2 520 000 100 000

1 048 576 0.332 0.005 2 1 040 000 200 000
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FIG. 2. (Color online) Effective growth exponents βL plotted
against Lλ for the data in Table II with optimized parameters in the
scaling form (6). System sizes L = 210–217 (red points) were used
in the fit, with smaller lattices (blue points) having growth regions
that are too short to give reliable results. System sizes L = 218 and
L = 220 (red circles) were excluded from the fit because of insufficient
accuracy. The data point corresponding to L = 219 has been omitted
for clarity.

These observations can be quantified by fitting the data to the
scaling form [14]:

βL = β + A

Lλ
. (6)

The data in Table II yield (Fig. 2) A = −0.530 ± 0.128, λ =
0.324 ± 0.043, and

β = 0.336 ± 0.004 (7)

for L = 210–217. The data for the largest lattices were excluded
from this fitting because of insufficient accuracy, but the best
fit still lies within their error bars.

In measuring tg , we have expanded the criteria suggested
by Reis [14] by using floating “beginning” and “end” points
for each lattice size and imposing a maximum time criterion.
Figure 3 shows a log-log plot of tg against L with a linear fit
of the data points from L = 216 to L = 220. Only when the
slope of this line, which we call the “growth-time exponent”
γ , reaches unity can we say that the systems have reached the
asymptotic regime. The power-law growth regime is bounded
by (i) the (largely L-independent) transient regime, during
which the system first follows random deposition, before
the BD rules determine the growth characteristics, and (ii)
the approach to the saturation regime, which is strongly
L-dependent and corresponds to a deviation from power-law
behavior of the surface width. For small system sizes, the
transient and saturation regimes are sufficiently close together
that the growth exponent deviates significantly from the
asymptotic BD value (inset to Fig. 3). However, as L increases,
the time between the transient and saturation regimes increases
and eventually becomes sufficiently separated to enable true
BD behavior to develop. It is for these values of L that we
observe the slope of unity in Fig. 3.

The scaling relation (1) implies that plots of W/Lα against
t/Lz for different system sizes “collapse” onto the universal
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FIG. 3. (Color online) Log-log plot of tg against L for the
data in Table II. The slope γ = 1.02 ± 0.01 of a linear fit to the
data points from L = 216–220 (red dots) approaches unity, indicating
the onset of the asymptotic regime. (Inset) Log-log plot of W

against t for L= 1024, showing the transient regime and approach
to saturation (blue dots) bounding the growth regime (red dots and
gray shading). The slope of the linear fit within the growth regime
is βL = 0.280 ± 0.002.

scaling function f . Our estimate of z = α/β from the values of
α in (5) and β in (7) is z = 1.485 ± 0.03 [42]. The KPZ value
of z = 3

2 lies within the uncertainty of this estimate. Figure 4
shows the data collapse for L = 214,215,216. The values of α

for these sizes are well into the asymptotic regime (Fig. 1)
and the corresponding values of β are within ∼0.01 of the
asymptotic value of β = 1

3 (Table II). We have used our best
estimates of α = 0.499 and β = 0.336 in this plot, but there are
few discernible differences if the exact values are used instead.

The high quality of this data collapse, which is indicative
both of the accuracy of our data and the fact that these systems
lie within the asymptotic scaling regime, invites a comparison
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FIG. 4. (Color online) Data collapse for the roughness for sizes
L = 16 384, L = 32 768, and L = 65 536 with α = 0.499 and z =
1.485 determined directly from our simulations. The data points for
each lattice size were taken at times t = 2k .
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with the scaling function of the KPZ model [43]. However,
the disparity in the roughness of the surfaces produced by
the two models means that the scaling functions are different.
This does not preclude the 1D BD model and KPZ equations
from belonging to the same universality class, but casts further
doubt [28] on the KPZ equation as the continuum expression
of BD.

To summarize, we have used massive KMC simulations of
BD onto 1D surfaces to demonstrate the slow approach of this
system to the asymptotic scaling regime. The exponents α and
β were shown to converge to the exact values obtained from
the KPZ equation, with systems of up to 220 sites required
for a clear indication of convergence. We have used only
a single random generator, the Mersenne twister MT19937,
so our results shed no light on the reason for the slow
convergence. However, given the long period of this random
number generator and its other statistical and operational
properties, this is likely an intrinsic property of BD. Future

work on 1 + 1-dimensional BD will focus on more detailed
comparisons between our simulations and numerical solutions
of the KPZ equation [41,43].

We conclude with a few remarks about the implications
of our results for simulations of BD in higher dimensions.
Preliminary simulations on two-dimensional substrates sug-
gest that the slow convergence toward asymptotic scaling
persists for higher dimensional substrates, but we have not
yet determined the rate of convergence. In this regard, a
plot such as Fig. 3 is vital for indicating if a particular
system size exhibits statistical characteristics of the asymp-
totic scaling regime. This will be taken up in a future
publication.
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