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Di� usion-limited aggregation: a kinetic critical phenomenon?

L EO N AR D M . SAN D ER

Di� usion-limited aggregation (DL A) is a model which represents noisy growth limited by
di� usion. T his process is quite common in nature and the simple algorithm gives a good
representation of the large-scale structure of many natural objects. T he clusters grown in the
computer and the real objects in question are tenuous and approximately self-similar. A
good deal is known about the algorithm, but a complete theory is not yet available. I review
the current state of knowledge about the model, its applications and theoretical analysis of
the results.

1. Introduction

In 1981 Tom W it ten and I wro te an a rt icle [1] with the tit le

above Ð withou t the quest io n mark . I t in troduced a

co mpu ter algor ithm wh ich we dubbed di� u sion -lim ited

aggrega tio n (D LA ). D LA represen ts noisy gr owth lim ited

by d i� u sion , e.g. crysta lliza t ion in a random environmen t. I

rem em ber a t th e t im e tha t I though t tha t th e id ea was

pret ty in ter est in g ma in ly because I wan ted to p la y with

co mpu ter graphics Ð we had ju st a cq uired a new H ewlett±

Pack a rd pen p lo tter (n ow hopelessly obso lete). N o one

expected tha t eigh teen year s la ter th e su b ject wou ld st ill b e

alive.

H owever, a la rge number o f scien tists qu ick ly becam e

fascina ted with D LA and sta rted to do resea rch on the

su bject . O u r o rigina l paper has been cited a lm ost 2000

tim es, and the litera tu re is st ill growing unaba ted . F rom

tim e to tim e, I have felt like C onan D oyle, who repea ted ly

wanted to kill o � Sher lo ck H o lm es Ð withou t su ccess. In

fact , a fter many year s o f working in other ® eld s I am

am azed to see that th ree of m y recen t papers have been . . .

abou t D L A.

W ha t makes th is su b ject so in terest in g and , in fa ct ,

ra ther pecu lia r are th ree facts.

(i) The extr em ely sim ple process seem s to seize the

essentia l ingred ien ts o f a gr ea t many natu ra l phen om -

en a with very lit t le physical in pu t .

(ii) I t p roduces clu ster s of in tr igu ing co mp lexity wh ich

look very much like r ea l object s wh ich are r andom ,

ten uous and app roxima tely self-sim ila r . The m a the-

ma tical fa ct t ha t th e simp le a lgo rithm m akes self-

sim ila r (fra ct al) clusters is rem arkab le. The fa ct th a t

things very lik e this occu r ra ther co mm on ly in nature

is st ill m ore rem arkab le.

(iii) The simp le p rocess in the a lgo rithm has resis ted

ana lysis desp ite the fact th a t th e model is very wid ely

known . Th is is a devilishly di� cu lt m odel to so lve,

even app roxim a tely.

The a lgo rithm is the fo llowing: su ppose we sta rt with a

nuclea t ion cen tr e, a single `p a rt icle’ o f rad ius a which we

lo ca te a t t he o rigin o f co o rd in a tes. Then relea se another

sim ila r pa rt icle a t a r andom poin t so m e distance away. The

new pa rt icle is a llowed to d i� u se, i.e. take st ep s o f length a
in random d ir ect io ns, until it h appen s to be with in a o f the

® rst . Then it is stopped and added to the aggrega te a t the

po in t of con tact . Then a second wa lk er is released and

a llowed to d i� u se un til it is with in a o f eith er o f the ® rst

two , and so on . A D LA clu ster of size N is th e resu lt o f the

add it io n o f N ± 1 pa rt icles to the o rigina l cen tr e. The resu lt s

o f so me co m pu ter run s of th is typ e a re shown in ® gu res 1 ±

3 fo r two -dim en siona l D L A . These are app roxima tely

fracta l, a s we will see below.

The a lgo rithm has a very appea ling sim plicit y, fa r

sim pler than so me models in quan tum ® eld theory tha t

can be worked th rough in co mp lete deta il. Th is ha s led

m any m athem a tically-in clin ed scientists to assume tha t it

m ust be tr ivial. O ne o f my fr iends to ld me tha t when he ® r st

h ea rd Tom W it ten talk about D LA he decided to go home
Author ’s address: H . M . R and a ll, L ab ora tory o f Ph ysics, The U niver sity

of M ichigan , An n Arb or, M I, U SA , 48109.

Contemporary Physics, 2000, vo lume 41, number 4, pages 203±218

Contemporary Physics ISSN 0010-7514 p rin t /ISSN 1366-5812 online Ó 2000 Taylor & F ran cis L td
htt p :/ /www.tandf.co .uk /jo urna ls

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

e 
Z

en
tr

al
bi

bl
io

th
ek

 f
ue

r 
M

ed
iz

in
] 

at
 0

9:
06

 2
0 

Ju
ne

 2
01

2 



and exact ly so lve the p rob lem tha t weeken d. H e co u ld no t

do it , and no one has suceeded since then .

The schem e was mo tiva ted by physics , though no t the

righ t physics, a s it tu rned out . Tom and I were in terested in

som e exper im en ts o f F or rest and W it ten [2] on a kind o f

co agu la ted aero so l. These a re no t described by D LA , bu t

by a relat ed p rocess that I will ta lk abou t below. Bu t, fr om

the ea rly work o f Brady and Ba ll on electrodep osit io n [3]

we began to see rea l ob jects with a sp ooky resemb lance to

co mpu ter generat ed D LA clusters. See ® gu res 4±6 for so me

exam ples. T his, mo re than anyt hing else ha s kep t in terest

alive in the model despite its hor rid d i� cu lty.

W it ten and I su ggested that , a s in the case o f other

geom etric fracta ls (e.g . perco la t io n clu ster s and self-

avo id ing wa lks), t here sh ould be a ren o rm aliza t io n theo ry

for th is su b ject ra ther lik e tha t of cr it ica l phenomena .

H owever, now, desp ite massive e� o rts we st ill h ave no id ea

whether th is id ea is co rrect . T he so ph ist icated expansion

and ren o rma lizat io n methods that have been so su cessfu l in

® eld theory and phase transit io n theo ry have no t worked

here. I will give so me rea so ns for these di� cu lt ies below. In

fact , very lit t le is r ea lly clea r abou t the theo ry o f D L A.

N evertheless it seems, if anyth ing, more in terest in g now

than it or igina lly d id , F o r a recen t co mprehensive review

with many referen ces see the book o f M eak in [4].

In th is a rt icle I will t ry to in troduce th is sub ject to a

general com mun it y. T his will necessa rily be a perso na l

view; a com preh en sive t rea tmen t o f the va st lit era tu re o f

this sub ject wou ld be im pract ica l. I will review the essent ia ls

of the m odel, ta lk abou t wha t na tu ra l shapes it ca n

describ e, and exp la in the very so ph ist icated co m pu ter

sim u la t io ns m ethods now ava ilab le. F in a lly, I will outlin e

what we can say abou t a theo ry.

2. Why it worksÐ screening and the Mullins± Sekerka
instability

The ® rst quest io n that a rises in looking at a p ictu re lik e

® gu re 1 is to ask why the clu ster ha s such a rough su rfa ce. I f

we th ink o f the clu ster as a co a st lin e, th er e ar e very deep

®̀ o rd s’ . W hy don ’ t th ey ® ll up? T here a re two co mp lemen-

tary ways to understand this: if we star t with a rough

su rfa ce fo r the cluster , we ca n see that th e ® o rd s are

screened and the clust er rem a in s rough . Add it io na lly, if we

sta rt with a sm ooth su rfa ce and a co mpact object without

® o rd s, a gr owth instab ility roughens the su rfa ce.

Basica lly, th e r eason tha t ® o rd s do no t ® ll up in the clu ster

is tha t random walk ers co m ing from the ou tside and h it one o f

the b ranch es before they ca n go very deep in sideÐ the ® o rd s

are screened . The situa t io n wou ld be qu ite d i� eren t if the

wa lk ers moved in a st raigh t lin e: a s we will see below; then the

clu st er wou ld be co mpact . Th is is a sim p le id ea , but it m ea ns

tha t th e la rge-sca le st ructu re o f a D L A clu ster is dom in a ted

by non-loca l e� ects. Any app roxima tio n tha t neglect s th is

fea tu re will no t wo rk , and tha t m akes the fo rm ula t io n o f an

ana lytica l th eo ry very tr icky. Screen ing is ea sily sta ted ,

although it tu rn s out to be one o f the most elu sive co ncep ts to

in co rpo ra te co rrect ly in a theo ry.

W e now tu rn the quest io n and ask how the clu ster gets to

be very rough in the ® rst p lace? W e co u ld sp ecu la te tha t a

sm oo th out lin e, e.g. a d isc, wou ld co nt in ue to gr ow

sm oo th ly, and never get in to the trap o f scr een ing.

H owever, th is is no t so : it is ea sy to test th at any in it ia l

N=10,000

Figure 1. A small DLA cluster; N= 10 000

N=100,000

Figure 2. A medium-sized DLA cluster; N= 100 000
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co nd it ion is so on forgo tten in the gr owth [5]. I f we star t

with a sm ooth sh ape it roughens im m ed ia tely because o f

growth in stab ility in tr in sic to d i� usion -lim ited gr owth .

Th is in stab ility was discovered in the co n text o f

meta llu rgy by M ullin s and Sek er ka 6]. To see wha t they

did , I resta te the prob lem of d i� usion -lim ited growth in

co nt in uum terms; this is known as the Stefan p roblem (see

[7]), and is the standa rd way to id ea lize crystallizat io n in the

di� u sion -lim it ed case. Suppose tha t we have a den sity

u(r, t) o f pa rt icles tha t d i� u se un til th ey reach the gr owing

clu st er wher e they dep osit . T hen we have:

­ u /­ t 5 m Ñ 2
u , (1)

­ u /­ n µ vn . (2)

That is, u sh ou ld obey the di� u sion eq ua tio n; m is th e

di� u sion co nstan t . The no rma l growth velocity, vn , of th e

in ter face is p ropo rt iona l t o the ¯ ux on to the su rfa ce,

­ u /­ n . I t is usefu l to est im ate the size o f the term ­ u /­ t by

no tin g tha t if th ere is a typ ica l velocity o f gr owth , v , th en

­ u /­ t µ v ­ u /­ x . N ow | Ñ 2u | » (v /D )| ­ u /­ n |. I n the D LA

ca se we launch one par t icle at a t im e, so tha t th e velocity

go es to zero . H en ce eq ua tio n (1) reduces to the Lap lace

eq ua tio n,

Ñ 2
u 5 0 . (3)

W e are to so lve an electrostatics p roblem and adva nce

the sur face p ropo rt io na l to the elec tr ic ® eld at each po in t .

Th is is ca lled the quasi-st at ic o r L aplacian gr owth regim e.

In the Lap lacian regim e the di� u sion co nstan t d rops ou t o f

the p roblem .

In add it ion to these co nd it io n s we need a bounda ry

co nd it ion fo r u . F o r D LA this is pu re ab so rpt io n a t th e

su rfa ce. In co n tinuum terms:

u s 5 0 . (4)

(In the ca se o f crysta lliza t ion eq ua tio n (4) is rep la ced by the

G ibbs±Thompso n bounda ry co nd it ion :

u s 5 d0 j , (5)

where j is th e curva tu re o f the sur face and d0 is a measure

of the su rface t en sion . I t exp resses the well-known fa ct th a t

crysta ls have a h igher m elt in g po in t when they have a

cu rved su rfa ce. W e will retu rn to the sign i® ca nce o f th is

term below.)

The bounda ry co nd it ion on u fa r from the clu ster

depends on the d im en siona lity. In d im en sion s gr ea ter than

two we ca n take u ® u ¥ . H owever , in d 5 2 we m ust

generalize th is. I will adop t the co nvent io n tha t th e `cha rge’

on the aggregat e is ® xed a t un ity: u(r ) ® log (r ).
N ow why do equa tio ns (1)±(4) no t simp ly describ e a

sm oo th su rfa ce which adva nces in t im e? In fa ct , if we star t

with a ¯ a t su rfa ce it does adva nce in tim e (with v µ t1 /2)

bu t this so lu tio n is no t stable [6, 7]. To see why this is so it is

su � cien t fo r ou r pu rposes to reaso n qua lita t ively . Suppose

we sta rt with a ¯ a t sur face with a sm a ll bump . Consider the

electro sta t ic in t erp reta t io n above. W e a re a sk ed to ® nd the

po ten tia l, u , near a grounded conducto r wit h a bum p , and

then adva nce the d i� eren t pa rts o f the su rfa ce a t a speed

p ropo rt iona l to ­ u /­ n |s, th e sur fa ce elect r ic ® eld . The ® eld

is la rgest nea r the bum p, as is known in elem en ta ry

electro sta t ics: th is is th e p rin ciple o f the ligh tn ing rod . Thus

the bum p grows larger .

In D LA bumps form on the su rfa ce due to the sh o t no ise

on the a rrival o f pa rt icles. They gr ow as a resu lt of the

in stab ility and then tip-splitting occur s, in this ca se, aga in

because o f no ise. The p ro lifera t ion and in teract io n of t ip s

through screen ing appea rs to give rise to a fra ct al, but the

det ails o f tha t p rocess st ill rem a in obscu re.

3. Examples of DLA-like growth

O ur mo tiva tio n in in troducing the m odel was to describ e

growth where the lim it in g step is d i� u sion to the su rfa ce o f

the growing ob ject . Such p rocesses a re qu ite co mmon in

na tu re. F or exam p le, when a crysta l grows by dep osit io n o f

m a tter o f a new layer on a crysta l su rfa ce an a tom lands on

a ter ra ce, wanders abou t (d i� u se) un til it ® n ds an island

and at taches. Suppose we idea lize the a tta ch ment p rocess,

and a ssume tha t th e a tom st ick s wit h 100% probab ility

where it ® r st a rr ives, and does no t rearr ange la ter . C lea rly

the D L A model sh ou ld have so met hing to do with the

shape so form ed . C ystallizat io n from a so lu t io n , elect ro -

dep osit ion , and many o ther p rocesses can be id ea lized the

sam e way under so me co ndit io ns. W e will see in th is sect io n

tha t t he resu lts o f su ch p rocesses o ften rea lly do look like

D LA clusters.

3.1. Crystallization and island growth on surfaces

M ater ia ls scien tists often grow su rfa ces u sing mo lecu lar

bea m ep itaxy. In this techn ique a bea m of ma ter ia l is

gener ated in high vacuum and is allowed to fa ll on a clean

sur face. T he atom s from the bea m st ick to the su rfa ce Ð

they are then known as adatom s. A t a ll bu t th e very lowest

growth tem pera tu res they d i� u se on the su rfa ce un til th ey

® nd a stab le site and sta rt to fo rm a new layer . U su a lly

through the nucleat io n and growth o f islands. In the p roper

t em pera tu re regime (see below), islands with st r ik ing

t en uous shapes a re fo rmed wh ich look very much like

D LA clusters.

Th is phen omen on is ea sily understood from the d iscus-

sion above and the co n tinuum descr ip t io n o f eq ua tio n s (1)±

(5). Island growth clea rly has a d i� u sive inst ab ility [8]: the

ada toms m ove by d i� u sion and st ick to the ed ges of islands

tha t are a lready nucleated . F or an exam ple, see ® gu re 4 fo r

D LA-like islands on R h [9]. O ften , a s the t em pera tu re is

r aised , com pact islands are fo rm ed because there is

adeq uat e di� u sion a round the island per ip hery to ® ll in

Diffusion-limited aggregation 205
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the ® o rd s. Th is is how the di� eren ce between eq ua tio n s (4)

and (5) man ifests it self: if th er e is negligib le rea rrangemen t,

sur face tension , wh ich favo urs co m pact islands, p la ys a

sm a ll role in the growth .

H owever, th e sto ry on ly begin s there. T he in tera ct io n

between the island shape and the fo rma tio n of new layers

ha s been stud ied in ten sively for abou t a decade [9].

Basically, if th e islands are D LA-like, th ey usua lly do no t

trap ada toms on top . Thus we have island nucleat io n and

growth fo llowed by merging of islands un til a new layer is

formed . Th is is layer-by-layer growth . C om pact islands,

however, o ften have an Eh rlich±Sch woeb el ba rr ier [11],

tha t is, th er e is a bar rier for ada tom s to fa ll o � . (W hy th is

ba rr ier is su ppressed fo r D LA -like islands is no t p recisely

known Ð it m ay be that th e extra ed ge length is enough to

allow escape of the second layer adatom s.) Then new

islands ca n be formed on top of the exis t in g ones and the

growth is not la yer-by-layer. A t st ill h igher tem pera tu res

the ada tom s ca n jum p the E hrlich±Sch woebel ba rr ier , and

layer-by-layer growth retu rn s. T his re-en tr an t la yer-by-

la yer growth crea ted co nsiderable in terest in the ma ter ia ls

science co m mun ity.

3.2. V iscous ® ngering

Equa tio ns (2)±(3) a re a system which has been in tensively

studied in another co n text , th a t o f ¯ u id ¯ ow. In a classic

paper Sa� mann and Taylo r [12] co nsidered the d isp la ce-

men t of a viscous ¯ u id (lik e oil) by an inviscid one (lik e a ir )

under co ndit io ns of creep ing ¯ ow, fo r examp le in a po rous

med ium , o r between th in parallel p la tes with a sm a ll gap (a

H ele±Shaw cell). T hey sh owed tha t an air bubb le does no t

sim p ly disp lace o il: because o f an in stability id en tica l in

form to the M ullins±Sek erka in stability, it forms a steady-

sta te ® n ger in the m iddle o f the ch annel.

The rela t io n sh ip to eq uat io n s (1)±(5) is ea sy to see: we

need on ly po in t ou t th a t ¯ ow in porous media o r a H ele±

Shaw cell is described by an em p ir ica l ru le ca lled D ’A rcy’ s

law wh ich gives for the ¯ u id velocity, V 5 2 K Ñ P , where P

is th e p ressure in the viscous ¯ u id . The p roport io na lity

co nstan t dep en ds on the visco sity. Sin ce m ost ¯ u ids are

alm ost in co mpressible,

Ñ . V 5 2 K Ñ 2
P 5 0 . (6)

W e take the zero o f p ressu re to be that in the inviscid ¯ uid

(since it h as sm a ll viscosity, it s p ressu re there is approxi-

ma tely const an t). W e have

Ps 5 r j , (7)

resu lt in g from the p ressure d rop due to the cu rva tu re of the

in ter face, wher e r is th e sur fa ce tension . A t the in ter face

D ’A rcy’ s law rea ds

Vn 5 2 K ­ P /­ n . (8)

These th ree eq ua tio ns a re the sam e as equa tion s (2), (3) and

(5). Presumab ly D LA has a clo se rela t io nsh ip to H ele±

Shaw ¯ ow in the presence of noise and for small surface
tension.

Figure 4. Islands on the surface of Rh observed with a scanning
tunnelling microscope. Each island is about 50 AÊ across. The
grey levels represent heights: there are a few muiltilevel islands.
C ourtesy of R. C larke.

Figure 3. A large DLA cluster, N= 100 000. The radius of this
object is roughly 15 times that of the cluster in ® gure 1. The
colours represent the time of arrival: thus white is the ® rst 1/10
of N , grey the second 1/10, etc. There are ten colours in all.
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Pa terso n po in ted out this rela t io n sh ip [13] and ano ther

fascina tin g fa ct : exper im en ts on the H ele±Shaw problem

look like D L A in som e cases with the air bubb le p laying the

ro le o f the cluster . Speci ® ca lly, when no ise p la ys a role, in a

po rous med ium or in fast ¯ ow in a H ele±Shaw cell, th en the

Sa� mann±T aylor ® n ger b reak s up in to su b ® ngers tha t

st r ik ingly resemb le D L A clu ster s. E ven m ore st r ik ing is the

fact th at fo r radial ¯ ow ther e is no need to in troduce

externa l no ise, and rad ia l H ele±Shaw ¯ ow m akes pattern s

wh ich sim p ly look like D LA clusters. See ® gu re 5 fo r an

exam ple.

3.3. Electrodeposition

W hen W it t en and I sta rted p laying with our model in the

ea rly eigh ties, I began to wonder if it was ju st a

ma them a tica l curio sity, o r whether we co u ld see so me rea l

exam ple of D LA growth in na tu re. M y doub ts wer e la id to

rest once and fo r all by a very elegan t paper in N a ture by

Ba ll and Brady [3] who m ade electrodep osits of copper on

the en d o f a th in wire in d i� usion -lim ited co nd it io ns. The

process is th e fam iliar one, th e r ed uct io n o f Cu fr om

CuSO 4. By exam ining electron m icrographs and fr om

ind ir ect eviden ce Ball and Brady sh owed tha t th e clu sters

seem ed to be self-sim ilar over ® ve o rders o f m agn itude in

size.

Th is was an im pressive ach ievem en t, bu t the dep osit s

were fragile and cou ld on ly be ra ther sm a ll. The aesthet ic

appea l o f the su b ject took a b ig jum p when a Japanese

group [14] and two A merican groups [15,16 ] m ade two-

d im en sional dep osits wh ich co u ld be qu it e large because

they were su ppo rted on a gla ss cell. I will d escr ib e the

M ich igan exper im ent [16] as an examp le.

W e made a th in cell by co n ® n in g a ® lm o f electro lyte

between two p lexiglass p la tes spaced by abou t 0.1 m m.

T here was a ca thode in the cen tre and a rin g anode o f

about 10 cm diamet er a round the per ipher y. The m eta l

dep osited on the ca thode, and we found that fo r slow

growth (vo ltages less than 1 V and sm a ll co ncen tr at io n s

o f electrolyte) we indeed got st ructur es that looked like

D LA, see ® gu r e 5. (N o te, however, th at ou r vo ltages are

a lways very h igh com pared to a co nven tiona l elect ro -

chem istry exper im ent ). F o r o ther cond it io n s we p roduced

o ther pa ttern s: fo r exam p le, fo r the highest vo ltages we

used (on o rder 5 V) we co u ld make ordered crysta lline

a rm s.

I t so on became eviden t th at th e situ a t io n was qu it e

com p lica ted , even fo r the low-vo ltage ca se. In fa ct , we

showed tha t our cells wer e ohm ic, so that th e d rift cu rren t ,

no t the d i� u sion cu rren t was the m ain co n tr ib u tio n to the

growth, unlik e the case of the Ball±Brady exper im en t.

H owever, a s I po in ted out above, t he pat tern fo rm a tion in

Figure 5. A radial viscous ® ngering pattern. Air is injected
through the tube in the centre and displaces ¯ uid (glycerin) which
is con® ned between two plates held 1 mm apart. The pattern is
about 20 cm across.

Figure 6. A zinc electrodeposit produced in a thin cell. The
electrolyte is con® ned between two plexiglass plates held 0.1 mm
apart. The cathode is inserted through a hole in the plate, and
there is a ring anode (not shown). The pattern is about 3 cm
across.
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th is case is expected to be sim ilar , and the D L A pa ttern is

rea lly no surpr ise.

Ther e a re many fa scina tin g det ails o f th is p rocess which I

have glo ssed over . In fa ct , [15,16] have sp awned a m ino r

indust ry wh ich a ttem pt s to take in to account the rea l

details o f the ch em istry in th is case. F o r more info rm a tion

the rea der shou ld consu lt [17].

3.4. Bacteria colonies and other examples from biology

The gr owth o f bacter ia co lon ies in Pet r i d ishes is a com mon

exper im en ta l techn ique. N o rma lly the overa ll shape o f the

co lony is ra ther un in terest in g: sta r t in g from an in fectio n

site a rough , more or less round co lony develop s. H owever,

this is not necessa rily true if th e growth takes pla ce under

co nd it io n s o f st ress. I n 1989 M a tsu sh ita and co llabo ra to rs

[18] sh owed that if the food su pp ly o f a co lony of bacillus
subtilus was red uced , the overa ll ou tlin e o f the growth

looked very much like a D LA clust er ! See ® gu re 6 for an

exam ple (with ano ther typ e o f bacter ium ). The rea so n ing

was tha t mu lt ip lica t io n o f the bact er ia at the su rfa ce co uld

be bo tt lenecked by the d i� usion of the food su pply (in th is

case, pep tone) and tha t th e gr owth o f the tips o f a rm s o f the

co lony is en hanced . The bacter ia in side a re not nou rished

and , in fa ct , b ecom e do rman t.

Th is observa tion ga ve r ise to a large amoun t o f act ivity,

and a peculiar in cu rsion of physicis ts in to b io logy. W hen

exam ined in deta il, th e situ a t io n is very com p lica ted indeed .

M any e� ects have been co nsidered su ch as chem o taxis,

mu ta t io n s and the secret io n o f ¯ u id by the bacter ia .

Bacter ia can do many more th ings than ju st exh ib it

un stab le growth. F o r exam ple they can grow sp ira ls. A

recen t in fo rma l review is given by Ben-J acob [19] who

reviews both exper im en ts and modelling. H owever , it

rem a in s true tha t th e genera l ob serva tio n of M atsush ita

et al. rem a in s va lid : th e shape o f co lonies in so me lim it in g

sit ua t io ns is like D LA, and this is em bod ied in m odels su ch

as the `comm un ica ting walk ers’ model o f Ben -J acob and

co llabo ra to rs [19] which has a d i� u sive inst ab ility [20].

O ther b ranch ing pa ttern s in b io logica l system s look very

much like D LA , and a number o f workers have t r ied to see

whether this is mere co in cidence, o r co rr esponds to a rea l

e� ect . F o r exam p le, F am ily et al. [21] mea su red the fra cta l

sca ling of the blood vessels in the ret in a , and found that the

self-sim ila rity was very m uch like a two -d im en siona l D LA

clu st er . Q uite recen tly F leu ry and Sch wartz [22] have given

a model based on the forma tion of b lood su pp ly in an

em bryo wh ich gives D LA pa tter ns.

I am aware of severa l o ther exam ples o f b io logica l

pa ttern s wh ich a re go verned by d i� usion -lim ited p rocesses

and give r ise to D L A-like patt ern s (e.g . in the gr owth o f

certa in sp onges [23]), and there a re undoub ted ly a la rge

num ber tha t I have no t hea rd o f. The applica t io n o f D LA

and rela ted models fo r the case o f living system s is st ill in it s

in fa ncy.

4. DLA and di� usion-limited growth

There is a go od dea l o f gener al theory a ssocia ted with

di� u sion -lim it ed growth without d iso rder [24]. In th is

sect io n I will men tio n som e resu lt s from this theory and

see how they help u s under stand D LA.

Figure 7. A colony of Paen ibacillus dendritiform is bacteria, T
morphotype, grown on hard agar and under severe starvation.
The pattern is about 10 cm across. C ourtesy of E. Ben-Jacob.

Figure 8. The radius of gyration of a DLA cluster as a function
of N .
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4.1. Orderly viscous ® ngers

The ma them a tica l th eo ry o f viscous d isp la cement in H ele±

Shaw ¯ ow is very well developed [25]. The genera l p ictur e

tha t em erges is a s fo llows. Suppose we co nsider the

developmen t of a ® n ger in a ch annel geom etry wher e we

in ject a ir fr om one en d. Then , indep en den t of the exact

form of the in it ia l co nd it io n a ® nger will develop wh ich

moves down the ch annel and wh ich occup ies a ® xed

fra ct ion of its wid th. T his fract io n go es to one-ha lf as the

su rfa ce ten sion goes to zero . T he select ion of the width is

though t to dep en d on the exist en ce o f su rface tension in an

essen tia l way. Th is so lu tio n to the prob lem is known as the

Sa� mann±T aylor ® n ger .

The disorderly clusters o f ® ngers that lo ok like D LA are

formed in cases where no ise pla ys a role. Theory [25] shows

tha t th e th resho ld for stability of a single ® nger decreases a s

the velocity increases and as surface tension decreases. F ast

® ngers have sm all thresholds and, as a pra ct ical matter,

quickly destabilize. A rneodo and collaborators [26] discov-

ered a fascinating and unexpla ined relat ionsh ip between

diso rder ly ® ngers of th is type, D LA , and the orderly

Sa� mann±Taylor ® nger . They superimposed a co llect ion o f

diso rder ly ® ngers and an ensemble of D LA clu sters grown in a

channel. Then they chose a reasonab le cr iterion for tracing an

average outlin e of th e fuzzy superposition s. This turned ou t to

be exactly the Sa� mann±Taylo r ® nger for sm all surface

tension! Levine and collabo ra tors have used this insight as a

mo tivation to develop a mean -® eld theory [27] ba sed on

ea rlier work of W itten and Sander and o th ers [5,28] which

tr ies to describe the superposit ion of mem bers of the ensemb le

of D LA clusters. There remain many ambigu ities in this area.

F o r the rad ia l ca se wit h su rfa ce ten sion very lit t le is

known from a ma them atica l po in t o f view. It appears tha t

there is no stab le steady sta te Ð the no ise th resho ld may be

zero . W e associa te this la ck o f a steady sta te with the

presence o f a dyn am ically evolving pa ttern wh ich even -

tua lly becom es fracta l.

Ther e a re m any known exact so lu tio ns to the p roblem

withou t su rfa ce ten sion [29], bu t these are probab ly

unstab le. F o r a gener ic in it ia l co ndit io n withou t sur face

ten sion the su rfa ce will develop cu sp s in ® n ite t im e: tha t is,

withou t su rfa ce ten sion the Stefan p rob lem is ill-po sed and

so me ® n it e r is necessa ry to regu la t e the p rob lem .

4.2. Dendritic growth and anisotropy

M any ma them at ician s and ma them a tica l physicis ts have

studied the Stefan p rob lem , eq ua tio n s (1), (2) and (5) [24],

wh ich models the d i� usion -lim ited growth o f a crysta llin e

so lid . The relevan t resu lts m ay be su m marized a s fo llows.

C rysta ls grow in many modes, bu t one of them , the

forma tion of den d rit ic t ip s (such a s one o f the b ranch es of a

sn ow¯ ake) is of pa rt icu lar in t erest to u s. In th is ca se a single

®̀ n ger ’ ca n fo rm , a lt hough usu ally with sideb ranch es, and

it ca n grow so tha t it s stea dy-sta te sh ape transla tes with

const an t velocity.

The steady-sta te t ip is no t a stab le so lu tio n to the

p rob lem un less a new fea tu re is in troduced wh ich

cor responds to an im po rtant e� ect in rea l crystals, the

an iso tropy o f the la t t ice. Th is m anifes ts it self because

d i� eren t crysta l fa ces have a d i� eren t su rfa ce energy and we

shou ld write u s 5 d0(h )j in eq uat io n (5), where h is the

angle with r espect to the crysta llin e axes. T he su rp rise in all

t his is th a t an a rb it ra r ily sm a ll aniso tropy ca n stabilize

single t ip growth Ð th is is im po rtant since the act ua l

an iso tropies in crysta ls a re u su a lly less than a few percen t .

In the absence o f an isot ropy, numer ical so lu t ion s [24]

show a sequen ce o f tip-splittings where tips fo rm , sp lit and

refo rm . Thus crysta l growth is stabilized by aniso tropy, and

in its ab sence, we expect t ip-split t ing. T here ar e direct

ana logu es o f th is sta tem en t in simu la t io n s o f D LA , a s we

will now see.

5. Variations on the theme

W hen the D LA model was ® rst proposed there was a

na tu ra l scep ticism in the com mun it y abou t the relevance

and m ea ning o f th is simp le process. O ne o f the ® r st

quest io n s we ask ed was how robust t he p rocess was. In the

cou rse o f t im e many va ria t io n s o f the o riginal m odel have

been tr ied , and many of them lead to in terest in g in sigh ts

about the p rocess, and abou t d isorder ly di� u sion -lim ited

growth in genera l.

5.1. O� -lattice and on-lattice DL A; anisotropy

T he D LA model in our o riginal paper was no t qu ite the one I

described above. In stea d , I had the random wa lk ers and the

clu ster de® ned on a sq uare la t t ice: part icles cou ld on ly live on

la t t ice poin ts. The co mpu tat io n s were m uch ea sier in tha t

case, and given the p rim it ive sta te o f co mpu ter resou rces a t

t ha t t im e, th e in crease in speed was very m uch worthwhile.

H owever, it was obvious tha t it was necessa ry to ch eck

whether the resu lts wer e la t t ice dep en den t. I was very proud

to be able to p roduce a sm all clu ster on a tr iangu la r la t t ice

wh ich looked very m uch like the squa re la t t ice r esu lt s, and

looked like it h ad the same sca ling. Indeed , fo r sm a ll clu ster s

(N < 100000) th e growth appea red to igno re the la t t ice.

The situ a t io n ch anged rad ica lly when the Brady±Ball

a lgorithm (see below) was in troduced and very large

clu sters became ava ilab le so tha t la t t ice e� ects sta r ted to

be visib le [30]. R obin Ball visit ed A nn Arbo r for a su mmer

and we worked together to m ake so me very la rge D LA s.

W e proved de® n it ively that fo r la rge (N ~ 106) clu st ers the

overa ll sh ape o f the clust er became elonga ted along the x

and y axes o f the la t t ice. Th is is p resumab ly rela ted to the

ext rem e sensit ivity o f den d rit ic gr owth to aniso tropy.
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F amily and H en tschel [31] have given so me argu ment s

wh ich sh ow why the squa re la t t ice sh ows the extrem e

disto rt io n s tha t we found. In a very in terest in g develop -

men t Ba ll et al. [32] sh owed how to understand the

overa ll sh ape d istor t io n s in the sp ecia l ca se where the

st icking p robab ility a long the x and y d irect ion s wer e no t

the sam e. H owever, a co mp lete understanding o f the

ma tter must awa it a theo ry of the growthÐ then we may

be ab le to add the an iso tropy back in a s a per turba tion .

F o r the momen t it is universa l pr act ice to work on ly with

o� -la t t ice D L As.

5.2. L aplacian growth

Thus fa r we have regarded the Lap lace equa tion (3) with

the boundary co nd it io n of equa tio n (4) a s a rep resen ta t io n

of the p robab ility o f the ar r iva l o f a random wa lk er at a

po in t ou tside of the clu ster . I t is po ssib le, however, to so lve

this eq uatio n d ir ect ly u sing, sa y, t he relaxa tio n method .

Pietronero and collabo ra to rs [33] d id th is, and m odelled

growth by saying tha t th e probab ilit y to grow a t a poin t on

the su rfa ce o f the cluster is given by:

Ps µ ­ u /­ n , (9)

cf. eq ua tio n (2). The m odel de® n ed by eq ua tio n s (3), (4)

and (9) m igh t be expected to be the sam e as D L A

neglectin g so me deta ils, and the exper im en ts o f Pa terso n

on viscous ® ngering (see above) a lso were in acco rd with

this expectat io n . T he sim ula t ion s o f [33] wer e co nsist en t

wit h the p ictur e.

Th is developmen t is qu ite signi® ca nt fo r severa l

rea so ns. F irst , we ca n regard th is schem e, now known

as L aplacian growth, a s a model in its own righ t . M ost

modern theo ret ica l developmen ts on D LA go back and

for th freely between part icle la ngu age and Lap lacian

growth. Second , th e au thor s po in ted ou t (following a

suggestio n in the or igina l W it ten±Sander paper) th a t th e

eq ua tio ns stat ed ca n be viewed as a represen ta t ion o f

dielectr ic b reakdown (or ligh tn ing), where u rep resen ts the

electro sta t ic po ten t ia l in the insu la to r b reak ing down, and

eq ua tio n (9) says tha t t he p robab ility of fu rther b rea k -

down on the sur face o f the ion ized region is t aken a s

propo rt iona l t o the elec tr ic ® eld a t t ha t po in t . They also

did mea su rem en ts o f rea l b reakdown pa ttern s (L icht en -

berg ® gur es) and sh owed tha t th ey had the fra cta l

dim ension o f D LA . F in a lly, P ietronero and co llabo ra to rs

gener alized the gr owth cond it io n to r ea d:

Ps µ [­ u /­ n ]
g

, (10)

where g is a pa rameter rep resent in g non linea rit ies in the

breakdown ch aract er ist ics. They found that fo r ea ch g

there is a d i� er en t fra ct al growth process with a d i� eren t

fra cta l d im en sion. F o r g 5 1 th e p roblem red uces to

ord in ary D LA.

5.3. Surface tension

The ro le of su rfa ce ten sion in d i� u sion-lim ited growth has

been glossed over in all o f ou r d iscu ssion so fa r . F o r the

no ise-fr ee prob lem , as we saw above, su rfa ce ten sion p lays

a cen tra l ro le in the pat tern fo rm at ion . H owever , D LA has

no su rfa ce ten sion and st ill gives rise to pat tern s sim ila r to

tho se seen, fo r examp le, in rad ia l H ele±Shaw growth , wher e

r ¤5 0.

There a re two asp ects o f the p rob lem to be considered .

One, su rfa ce tension regu la t es the u su a l H ele±Shaw

prob lem by elim in a ting sm all sca le singu la rit ies. In D LA

the ® n ite pa rt icle size p la ys th is ro le, a lthough the

regula t ion is qu ite d i� eren t , and simp ly cu t s o� featu res

wh ich a re too sm a ll. On the large scale, on the o ther hand ,

su rfa ce tension det erm in es the overa ll sh ape of a Sa� m ann±

Taylo r ® n ger and the fra ct ion o f the ch annel which it ® lls.

F o r D L A the overall p at t ern is determ in ed by no ise, no t r .

Thus the ro le o f su rfa ce ten sion is seconda ry and usu a lly

on ly gives rise to clu st ers with th ickened b ranch es wh ich

look very much like no isy H ele±Shaw pa ttern s.

Th is has been dem onst ra ted numer ically in va riou s ways.

The most p rim it ive version o f su rfa ce ten sion [5] is to

id ea lize th is e� ect in the most ba sic way possib le, in term s

of bond coun ting and to su ppose that th e st ick ing

probab ilit y fo r a site was h igher if th er e was more than

one occup ied neighbou r. I f we set j 5 number o f occup ied

neighbou rs to a growth site, we m igh t pu t pj µ p42 j
o for a

sq ua re la t t ice, with po < 1.

H owever, th is is no t a co m plete descrip t ion o f m acro -

scop ic sur face ten sion wh ich co rresponds to rea rrange-

men ts o f ma tter because the su rfa ce is in lo ca l equ ilib rium .

K adano � [34] and o thers [35] have sh own how to dea l with

this in a pa rt icle sim ula t ion . Basica lly, th ey allow par t icles

to be re-em it ted from the sur fa ce with a p robab ility

propo rt io na l t o the lo ca l curva tu re. Then , if th e pa rt icle

is rea b so rbed befo re it escapes to in ® n ity, th e growth is

allowed .

5.4. Cluster± cluster aggregation

The o rigina l p roblem tha t Tom W it ten and I thought we

were so lving had to do with the fo rma tio n o f a wispy b it o f

sm oke by aggrega tio n o f sm a ll pa rt icles. Th is is an

in ter est in g p rocess and gives rise to an in ter est in g m odel,

bu t it is no t D L A . The rea so n is tha t aggrega tes in an

atm osp here have so m e m obility: th ey ca n move and

co mb in e. In th is case we have a d i� er en t so rt of physics,

namely the aggregatio n o f aggrega tes or clu ster±clu ster

aggrega tio n . A model for the process [36] p roduces fra cta ls

of a d i� eren t so rt t han D LA . Th is m odel is d ir ect ly

app licab le to m any sit ua t io ns in co llo id and aero so l

ch em ist ry.

In the model, one begin s with a la rge co llect io n o f

pa rt icles ea ch o f wh ich is a llowed to d i� u se un til it
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en co un ters ano ther . Then the resu lt in g clu ster co ntin ues to

move un til la rge clust ers resu lt . C lu ster±clu ster aggregates

have a fr actal dim ension wh ich is much sm a ller than tha t o f

D LA . Som e resu lts [4] a re D (2) » 1.43, D (3) » 1.75
(compa re D L A with 1.7, 2.5 r espectively) . The reason is

sim p le: however since pa rt icles have much d i� cu lty in

wander ing down ® o rd s, clu sters will h ave much m ore

troub le and will st ick nea r to the su rfa ce. Th is is t ru e if th e

kin et ics is such tha t a t any tim e the clu ster size d istr ib u tio n

has a mean tha t increa ses in t im e so tha t a cluster does no t

en co un ter m any ind ividual par t icles , and the aggrega tion is

dom ina ted by aggregatio n o f clust ers o f sim ilar sizes. Any

`no rma l’ kin et ics tu rn s ou t to have th is proper ty, a s we will

now discu ss.

W e no ted that we m ust co n tin ue to let aggregat es d i� u se.

In o rder to co mp letely de® n e the model, we must decide on

how fa st th ey are to d i� u se, nam ely, wha t the di� u sion

co e� cien t o f an aggregate is to be. If we take Stoke’ s law of

fr ict ion fo r the d i� usion , th e reta rd ing fo rce is p ropo rt io nal

to the inverse rad iu s of the cluster . In the simu la t io n s it is

usua l to take the di� u sion co e� cien t , m , o f th e clusters to be a

power law of the m ass [36,37]:

m µ M
c

. (11)

F or Stoke’ s law c 5 D 2 1. In the simu la t io n s it is usua l to

take c to be a free pa rameter . In fa ct , th e fra ct al d im ension s

are independen t o f c (a nd eq ua l to the va lu es above) if c < 1.

In co ntr ast to the D L A ca se, th eo ry for th is p rocess ha s

been qu ite su cessfu l, and its app lica t io ns have tu rned ou t to

be useful in m any con texts [4]. The deep puzzles tha t p la gu e

the D L A m odel are absen t here, and we ca n, wit hou t too

much exaggera t io n, t hink of clust er±cluster aggrega tio n a s

a so lved p roblem .

6. Fractal scaling

The fa ct th a t D LA clu sters lo ok like macro scop ic ob jects is

rea lly very odd. The b iggest co mpu ter genera ted two -

dim ensiona l D LA s now have ~ 107 par t icles [38]. H owever,

this is a t in y number co mpa red to tho se fo r a rea l

macro scop ic ob ject wh ich has ~ 1020 pa rt icles.

F rom the beginn ing we rea lized tha t what we were do ing

was unco nventio nal. W hen I ® rst sta r ted plo tt ing pictu res

of D LAs (in 1980) we used ou r wonderfu l pen plo tter and it

made a lo t o f no ise. M y co lleagu e, Bob Lewis, wa lk ed by

one day and ask ed wha t the racket was abou t. I exp la in ed

tha t we were look ing a t th e sh ape o f crysta ls. `By simu la t in g

them molecu le by m o lecu le?’ h e a sk ed . I will n ever forget

the a re-you -crazy look on his face when I sa id yes. Th is is

clear ly a hopeless en terp rise, but fo r the st r ik ing fa ct th a t a

sm a ll D L A clust er and a large one look more o r less the

sam e (cf. ® gu res 1, 2 and 3)! T his fea tu re, (app roxim ate)

sca le-inva ria nce, is what caugh t everyo ne’ s a t ten tion , and

wh ich rem a ins a puzzle to th is day. I t a lso m ea n t tha t we

were no t as crazy as we looked .

6.1. Scale invariance and the correlation dimension

T he most obvious way to quan tify the sca le-inva ria nce o f a

D LA clust er is to u se the fra cta l geometry of M andelb ro t

[39]. T he word `fra cta l’ is de® n ed in many ways by d i� er en t

au tho rs. F o r the pu rposes o f th is a rt icle I will u se the term

to mean a geom etric ob ject in wh ich the pa rt is lik e the

whole. Th is am oun ts to saying tha t if we take a su bb ranch

from a clu ster and blow up the p ictur e, it will be sta t ist ica lly

the same as a ma in b ranch . An eq uivalen t st atem en t is th a t

t he co rrela t io n s o f the ma tter in a clu ster have no

cha racter ist ic scale. Thus the co rrela t ion funct io n s m ust

be power laws in d ist ance.

A quan tita t ive way to put th is is to de® n e a genera lized

d im en sion (the co rrela t ion d im en sion ) by assum ing tha t the

number o f pa rt icles wit hin a d istance, r , o f any pa rt icle on

the clu ster obeys:

á M (r )ñ 5 A r D 2 , (12)

where A is som e constan t . Then the two -po in t corr elat io n

funct io n fo r the m a tter den sity, q (r ), is also a power law:

C (r ) 5 á q (r 1 s)q (s)ñ /á q (s)ñ (13)

µ r d 2 D2 ,

where d is th e d im en sion o f sp ace. F o r a non-t r ivial fra cta l

D 2 is no t an in teger.

The co rrela t io n d im en sion has been mea su red m any

t im es fo r D LA clusters. M ost o ften eq ua tio n (12) is used in

the simp le fo rm of look ing a t th e mass dimension, i.e.

® gu ring ou t how many pa rt icles (the to ta l m ass) lie within r

o f the o rigin , see ® gu re 8. F o r D LA in two d im en sion s the

da ta ® t s very well to D 2 5 1.71. Some workers have looked

a t D LA in d im en sion s up to eigh t [40].

Still ano ther k ind o f d im en sion is the box-counting
fracta l dim en sion , D 0. Th is is de® n ed by co vering the

fracta l with boxes o f size ². Then set ¸ 5 ² /R , where R is

t he overall size o f the cluster . N ow coun t how m any boxes

there a re in the co vering and ca ll t his N ¸. T he box-coun ting

d im en sion is de® n ed by

N ¸ 5 B 2̧ D 0 , (14)

where B is so me const an t . F o r D LA in two d im en sions th is

quant ity is close to 1.7. F o r the relat io n sh ip between D 0

and D 2 see the next sectio n.

The case o f d 5 3 is o f pa rt icu la r physical in t erest . (T he

rea so n fo r lo ok ing a t d > 3 is ma in ly theo ret ical; see

below.) The best cu rren t va lu e o f D 2 is 2.49 . In my op in ion ,

t oo lit t le a t ten tio n has been pa id to the three-d im en siona l

case. A s we will see in the next sectio n , th ere is r ea son to
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believe that D L A in d 5 3 is bet ter beh aved than d 5 2.

U n fo rtuna tely, th e bea u tifu l p ictu res tha t ca ught every-

one’ s a t ten tion a re harder to p roduce fo r d im en sion s higher

than 2. The in tr icat e su bst ructu re of the clu ster is hidden .

6.2. Multifractal scaling and the growth probability

The probab ility o f growth o f a D L A cluster is very
in hom ogeneous. T ip s o f the clu ster ar e much more lik ely

to grow than po in ts inside the ® ords, and the inhomogene-

ity gr ows wit h clu ster size. T his fa ct ha s led many workers

to app ly the theo ry o f multifractals to D LA [41]. Th is

theory a rose in the theo ry o f tu rbu lence [42] and has also

been app lied in dyn am ica l system s theory. H owever, th e

growth p robab ility in D L A is one of the m ost su ccessfu l

and st r ik ing app lica t ion s.

The growth probab ility is a measu re de® n ed on the

sur face o f the clu ster , n amely a funct io n, ¹ , su ch tha t

0 £ ¹ £ 1. F o r D LA d¹ 5 ­ u /­ n . Ano ther in terest in g

mea su re is th e un ifo rm (o r mass) m ea sure, which is

co nst an t on the clu ster .

W e d ivide the su rfa ce o f the cluster in to boxes, a s above.

The probab ility fo r the i th box is pi 5
R

i d¹ . F or examp le,

for the ha rm on ic m ea su re, p i is the p robab ility tha t a

random walk er will a t ta ch in side a box. If th e p robab ility

va ries wild ly, th e in tegra l will sca le with the box size. A

mea su re is m u lt ifra cta l if it h a s two p roper t ies: (i) p i ~ ¸a ;

tha t is, p has singu la rit ies (e.g . near a sh a rp tip of the

clu ster ). N ow coun t how many boxes have the sam e

singu la rity st ren gth , and ca ll th is N ( a ). The seco nd

proper ty is (ii): N (a ) ~ 2̧ f ( a )g(a ), where g is a sm oo th

funct io n . If f (a ) > 0 we ca n in terp ret it a s a fra cta l

dim ension o f the set on wh ich singu la rity a occu rs:

co mpare equa tion (14). N ow a p lo t of f ver su s a is a

histogram of the in fo rm atio n abou t the singu la rit ies.

Ther e is ano ther way to pa rametr ize a m u lt ifra cta l

mea su re, by de® n in g genera lized d im en sions:

XN¸

i 5 1

p
q
i ~ ¸(q 2 1)D q . (15)

The D q and f ( a ) co nta in the same in forma tion : th ey are

related by a Legend re tran sfo rm [41].

N ow co nsider the un ifo rm m easure. I t is ea sy to see tha t

the D 0 and D 2 de® n ed from eq ua tio n (15) a re the sam e as

tho se in the p reviou s pa ragraph . A clu ster su ch that a ll th e

D q a re the sam e under the un ifo rm mea su re is an o rd ina ry

(m ono-) fra cta l. D LA is, a t least app roxim ately, a fra cta l in

this sen se. H owever , so me au thor s [43] have su ggest ed tha t

there a re devia t io ns from str ict sca ling, and tha t D L A

clu sters ar e m ult ifra cta l with respect to the un ifo rm

mea su re. In my op in ion the eviden ce fo r th is idea is no t

co mp letely co nvincing.

F o r the growth p robab ility, th ings a re m uch m ore

in terest ing [41]. There is qu ite a lo t o f eviden ce tha t fo r

posit ive a (th e t ip s, and in gener al, th e out side o f the

clu st er ) th ere is well-de® n ed m u lt ifra ct al scaling. Co rre-

sp ond ingly, fo r q ³ 0 th e D q a re d i� eren t and well

de® n ed . H owever, fo r nega tive a (or nega tive q) we are

dea ling with the sm a ll p robabilit ies which live in the

® o rd s. H ere, a t lea st in two d im en sion s, the situ a t ion is

st range. Basica lly, t hese sm all p robabilit ies do no t sca le

with a power law in system size , bu t more lik e an

exponen tia l. The harmonic m ea su re var ies even more
wildly th an ca n be accom oda ted in the m ult ifra cta l

forma lism . H owever, in th ree d im en sion s the situ at io n is

nicer [44]: th e ha rmon ic mea su re seems to be mu lt ifr act al.

Th is is rea so nab le: in two d im en sion s ® o rd s a re co m -

pletely scr eened because lin es of co nnected par t icles

co mp letely b lock the en trance to the dea d regions. In

thr ee dim ension s the loca l topo logy is st ill linear , so

pa rt icles ca n `go a round ’ th e blo ck and enter m ore deep ly.

There a re in terest in g rela t io n sh ips fo r the D q for D L A .

F o r the ca se q 5 1 (wh ich is, in fact , de® n ed fr om

eq ua tio n (15) by the lim it in g p rocess q ® 1) there is an

exact relat io n sh ip : D 1 5 1 [45]. H alsey has shown tha t we

sh ou ld expect 2D 3 5 D 0. In a recen t paper H a lsey and

co llabo ra to rs have su ggested tha t th ere are eno rm ous

¯ uctua tio ns for the D (q) fo r q > 3 [46].

6.3. DL A really self-sim ilar?

In ou r o riginal wo rk on the D L A model we assumed tha t

we wer e p roducing self-sim ilar fra cta ls in the sen se

men tio ned above, namely tha t th e par t was like the who le.

The evidence ava ilab le a t th at t im e was rea lly insu� cien t to

verify tha t a ssum pt ion , bu t it seemed to be approxima tely

true. F o r examp le, plo t t ing the mass±radiu s rela t ion sh ip

always ga ve (and gives ) an excellen t ® t to a power law.

H owever, th er e a re o ther featu res o f the simu la t io ns tha t do

no t seem to sa tisfy the hyp o thesis. Th is is one o f the

distu rb ing featu res o f D LA which m ake it a con tin u ing

mystery.

An examp le wh ich appea red very ea rly was an analysis o f

the gr owth zo ne Ð the region o f sp ace over wh ich new

pa rt icles a re added Ð by P lischke and R acz [47]. Their

num er ica l eviden ce seemed to say tha t th e growing region

was a fra ct io n o f the radiu s wh ich decreased with N. Tha t

is, th e wid th o f the growth zo ne was given by N m ¢
wher ea s

the rad ius grows as N (1/D ). I f, as seem ed to be the ca se,

m ¢ < 1 /D , we get a sha rper and sh arper growth zo ne.

H owever, for a self-sim ilar ob ject we wou ld expect th at the

growth zo ne wou ld be p ropo rt iona l t o the rad ius, sa y

always being a certa in percen tage of it .

La ter , m o re ca refu l work for larger clusters [48] found

tha t m ¢ in cr ea sed with N. Th is is an exam ple o f a slow
crossover to self-sim ilar ity, a phen omen on wh ich plagu es

this su bject , and wh ich is no t understood a t a ll. Even more

recen tly, ano ther group has go ne to even la rger sizes

L . M. Sander212

D
ow

nl
oa

de
d 

by
 [

D
eu

ts
ch

e 
Z

en
tr

al
bi

bl
io

th
ek

 f
ue

r 
M

ed
iz

in
] 

at
 0

9:
06

 2
0 

Ju
ne

 2
01

2 



N » 106 [38]. They cla im tha t th e data a re co nsisten t with

the possib ility tha t D LA is never self-sim ila r , bu t exh ib its

ìn ® n ite d rift ’ .

Ther e are m any o ther exam ples o f th is k ind o f

phen omenon . In m y opin ion , a ll of th em are cro ssovers,

and tha t t he a symp to tic st ate o f D LA is self-sim ila r . T his,

however, is ha rd to p rove, and more im po rtant , cr ossover s

tha t per sist for m illion pa rt icle clu sters ar e in them selves

in ter est in g and cry ou t fo r expla na tio n. W e have no theo ry

wh ich ca n trea t th ese unusu al phenom en a, a lt hough , fo r

so me very recen t work, see below.

7. Computer simulations

M y ® rst D LA program was hopelessly in e� cien t , and, in

ret ro sp ect , em ba rra ssingly na ive. T he worst th ing tha t I

did , in it ia lly, was to st ar t the r andom wa lker far from the

aggrega te to rep resent th e rea l physical situ a t io n .

U n fo rtunately, th e p rogram sp en t most of its t im e

aim lessly p ropaga ting the pa rt icle and no t ® n d ing a

pla ce to st ick .

H owever, I was d iscu ssing th is over d inner , and my

co mpanion a sk ed me why I d id not st art th e part icle a t a

random angle on a circle nea r the cluster . `Because it s

arr iva l probab ility a t th e clu ster wou ld not be random if

it sta r ted clo se by’ , I sa id . `H ow do yo u sta rt it fa r

away?’ sh e a sk ed . `A t r andom ’ , I sa id . `H ow much m ore

random do yo u th ink it will be when it gets to the

cir cle?’ sh e sa id . W hoops. I ® xed the program using the

tr ick o f star t in g on a circleÐ and we qu ick ly had n ice

clu st ers to look a t .

A la rge num ber o f peo p le have worked out techn iques to

make D LA simu la t io n s tra ctab le fo r qu ite la rge sizes

[30,40,49 ]. The cu rren t record is on the o rder o f 30 000 000

pa rt icles in two d im en sion s. I will ou tlin e in th is sect io n

so me o f the met hods used , in clud ing a very in terest in g

algor ithm or igina lly in troduced by Ball and Brady [30].

7.1. Some simple tricks

One simp le tr ick is th e one men tio ned above: th e random

wa lk er need no t actually sta rt fa r away from the aggrega te.

I t ca n sta rt a t a random po in t on a circle o f size R c which

ju st en clo ses the clu ster since it s p robability of a rr ival on

this circle is random . (T h is observa tion is due to M . E .

Sander .)

The wa lk er may wander away from the aggrega te,

ou tsid e o f R c . I n that ca se, it is necessa ry to allow a free

wa lk un til it is qu ite far away (m any aggrega te radii). Th is

is not a serio u s p rob lem since it is po ssible to a llow the

wa lk er to take la rge step s when it is ou tside. I t canno t

en co un ter any m att er , so it can take a step as large a s the

distance to the en clo sing circle, but in a random d irect ion .

(T h is tr ick was invented by P . M ea k in .)

H owever ther e is a bet ter way to do th is. R a ther than

t ak ing co m pu ter t im e to let th e par t icle walk a round

ou tside the circle, we can in st ead ® nd the p robab ility

den sity on the boundary and b ring back the pa rt icle in one

jump . T his amount s to ® n d ing the G reen ’ s fu nct ion ,

G (r, ro), fo r eq ua tio n (1) fo r a pa rt icle ou tside an abso rb ing

d isc o f radiu s R c . Then the p robability to la nd on the d isc is

given by ­ G /­ r a t r 5 R c . T he so lu tio n is easy to ® nd u sing

the method o f im ages [50], and ca n be adapted to d i� er en t

bounda ry co nd it io n s quite ea sily .

The ® na l r esu lt fo r a circu la r geomet ry is this: if the

pa rt icle is a t po sit io n ro 5 (xo, yo) ou tsid e o f R c , th en we

ca lcu la t e the posit io n on cir cle as fo llows. P ick a random

number , n , a nd pu t the pa rt icle a t r 5 (x, y):

x 5
R c

r o

(1 2 V 2)xo 2 2Vyo

1 1 V 2 ,

y 5
R c

r o

(1 2 V 2)yo 1 2Vxo

1 1 V 2 ,

V 5
r o 2 R c

r o 1 R c

tan (p n ).

(16)

7.2. T he method of hierarchical maps

T he G reen ’s fu nct io n met hod elegantly ® xes the p roblem of

® nd ing the cluster a fter th e pa rt icle ha s wandered away.

H owever, a b ig fra cta l clu ster ha s b ig ho les, and fo r la rge

clu sters most o f the co mpu ter t im e is sp en t walk ing wit hin

the holes withou t ® n d ing a p la ce to st ick. If we knew how

clo se the nearest po in t on the cluster was we co u ld , a s

above, t ake random wa lk step s o f th is distance. H owever,

we need to know, a t any t im e, how far away the pa rt icle is

from the ir regu la r clu ster . A na ive sea rch wou ld no t be

e� cien t .

The Brady±Ba ll method [30] is an extrem ely e� cien t way

to give a qu ick lower bound fo r the d ist ance to the clust er ,

and , a s a bonus provides a fa st mechan ism to lo ca te the

nea rby par t icles . O ne modern im plem en ta t io n was m ade by

m y studen t , E llak Somfai [51]. H ere is how he exp la in s

what he d id .

The clust er is put on an adap tively re® ned sq uare

m esh . That is, th e who le cluster is co vered with a

squa reÐ which we ca ll a map . The squa re is subd ivided

in to fou r sm aller squa res and ea ch is fu rther divided , bu t

on ly if th e clu ster is `su � cien tly clo se’ to it . The rule is a s

fo llows: each map is subdivided if and only if the cluster is
closer to it than half of the side of the square. T he

subd ivision co nt in ues on ly up to a p red e® ned maxim um

dep th , kmax . In ou r sim u la t io ns the sm a llest maps a re ® ve

to ten pa rt icle d iameters. A ll par t icles of the clu ster will

b e in one o f the sm a llest (d eepest) maps: a list o f the

pa rt icles is at t ached to these m aps.

As the cluster grows the m aps a re upda ted . Each

t im e a pa rt icle is added to a p reviou sly em pty sm a llest

m ap, th e neighbour ing m aps (on a ll levels) are ch ecked
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to see whether they sa tisfy the ru le. If no t , th ey are

subd ivided un til th ey do . W hen a wa lker la nds so me-

where, we ® nd the deepest m ap co n tain ing the po in t . If

this m ap is no t at kmax , th en the par t icle is fa r away

from any ma tter , and ha lf th e side o f the map is a

lower est im ate o f the wa lk er ’ s distance from the cluster .

If, on the o ther hand , th e par t icle la nds in a m ap o f

dep th kmax , th en it is close to the clu ster . The pa rt icle

lists o f the map and o f the neighbou ring sm a llest size

maps ca n be ch ecked to ca lcu la te the exact d istance

from the clu ster . E ith er way, the pa rt icle is en closed in

an em p ty circle o f known rad iu s and ca n be b rough t

to the per im et er in one step .

Em p ir ica lly, th e e� ciency o f th is schem e is qu ite

im pressive : t he com pu ta t io na l t im e, T , fo r an N pa rt icle

clu ster obeys T ~ N 1.1, and the m em ory is lin ea r in N. The

clu ster o f ® gu r e 3 was m ade using th is algo rithm .

8. Some theory

The D LA model is a lm ost un ique among well-stud ied

sta t ist ical models in tha t it h a s no t yielded to ana lysis. W e

have no co mp letely acceptab le t̀h eo ry of D L A ’ : th a t is, th e

the on ly sa tisfa ct ory way to ® nd the fr act al d im en sion , th e

mu lt ifra ct al sca ling spectrum , the cro ssovers and the

overa ll sh ape o f the clu ster is to do a sim u la t io n, although

som e progress ha s been m ade on a ll of th ese quest io n s. Th is

ch allenge has in tr igued the com mun it y o f stat ist ica l

physicis ts, and very co nsiderab le e� o rts have been made.

In this sect ion I will in vo ke an autho r ’ s p rivilege to t alk

abou t m y favo u rit e app roaches, and no t even try to do

ju st ice to a ll o f the very in terest in g techniques tha t have

been su ggest ed .

8.1. Estimates and bounds

There a re a num ber o f ra ther simp le est im a tes we ca n make

for the D L A process wh ich pu t co nst ra in ts on an even tua l

theory. T hey a lso make it clear why the p roblem is so hard.

8.1.1. A lower bound on the fractal dimension. A s a

® rst examp le, we can rather ea sily sh ow tha t th e fra cta l

dim ension o f D LA never becom es indep en den t o f the

dim ension o f sp ace, d. T h is is in co ntr ast to the u su al

situ a t io n in ® eld theo ry, or in more co nven tio na l

(equilib rium) m acromo lecu le models where there is an

`upper cr it ica l dim ension ’ above wh ich the fra cta l

dim ension is in dep en dent of the sp a tia l d im en sion .

F o r exam ple, a self-avo id ing random walk is a two -

dim ensional fra cta l for a ll d im en sion s above fou r. A

sim p le way to see th is is to po in t ou t th a t if a random

wa lk er co u ld pen et ra te a D LA clu ster , it wou ld ®̀ ll up ’

and becom e den se. H owever, if D %d t h is is exact ly

what wou ld happen because then fo r an aggrega te

whose sca le is R , th e e� ect ive number den sity

q µ RD /R d wou ld be sm a llÐ the aggregat e wou ld be

very wispy and ten uous, and walk ers would pen et r at e

and in crease q in stea d of st ick ing on the ou tside and

in creasin g R .

To be p recise, we ca n est im ate the number o f in tersec-

t io n s o f the tra ck o f the random wa lk with a clu ster by

no tin g tha t th e num ber of step s the wa lker takes in side the

aggrega te is µ R2. The num ber of in tersect io ns of th is tra ck

with the fr actal aggregat e is th en of o rder q R 2. I f t his is to

be la rge enough to keep the wa lk er on the ed ge, we need

R2RD /R d µ RD 1 22 d to grow with R . Therefo re, a self-

co nsist en t D must sa t isfy D 1 2 2 d ³ 0, th a t is D ³ d 2 2.

I t is no t di� cu lt [52] to m ake th is bound tight er and sh ow

tha t D ³ d 2 1. T his bound on the fra cta l d im en sion has

been checked up to d 5 6 [50]. Thus the fa vo u rite technique

in ® eld theo ry and phase tran sit ion theory, an expansion

abou t an upper cr it ica l d im en sion , sim ply will not wo rk fo r

D LA .

8.1.2. Singularities at the tips. W e po in ted out above

tha t th e growth p robabilit y on the su rfa ce o f a D LA

aggrega te is a wildly va rying funct io n which has st rong

singu la rit ies near a ll o f the m any sh arp tip s o f the

clu st er . A theo ret ica l framework fo r th is a rray o f

singu la rit ies was given by Turkevich and Sch er [53].

They poin ted ou t tha t th e so lu tion o f the Lap lace

eq ua tio n nea r a sh arp po in t na tu ra lly gives rise to a

singu la rity in ­ u /­ n s : th e fa ct th at sha rp po in ts on

grounded conducto rs have large electr ic ® eld s is the

essen tia l poin t o f the o rd ina ry theory o f the ligh tn ing

rod. A D LA clu ster ha s m any sh arp po in ts. F o r examp le,

if we co nsider the leading tip (wh ich grows fast est) on a

D LA clu ster to be more o r less a wedge o f in cluded

angle b , th en in two d im en sion s st anda rd elec tro sta t ic

theory gives:

u µ X
a m 2 1,

a m 5 p /[2p 2 b ].
(17)

H ere X is th e d istance o f the observa tio n po in t from the

tip . F o r examp le, fo r a ¯ a t conducto r , b 5 0, we have an

inverse squa re-roo t singu la rity. N ow su ppose we in tegrate

eq ua tio n (17) over so me sm a ll d istance nea r the tip . The

tot al probab ility, wh ich gives the tip velocit y, is th en :

v µ (a /R )a m
, where we have m ade the na tu ra l assum p-

tio n tha t th e p robab ility must be m ade dim ension less by

the only ava ilab le length in the p rob lem , the rad ius, R .

Suppose we im agine add ing par t icles a t so me co nstan t

rat e. Then

dM /dt 5 (dM /dR )(dR /dt)

µ R
D 2 1v (18)

µ R
D 2 11 a m .
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Since dM /dt is co nstant we co nclude tha t the singu la rity

at th e fa stest growing tip obeys

D 5 a m 1 1 . (19)

Thus an a rb it r ary `wed ge angle’ gives rise na tur ally to a

non -int eger d im en sion fo r a D LA clu ster . U n fo rtunately,

no one has yet given a geometr ical a rgu men t fo r the

average angle a t the leading tip . W ork ing back ward s

from eq uat io n (20) u sing D 5 1.7 gives a b abou t eq ual

to the in ter io r angle of a regu la r pen tagon . F u rther , a m

sh ou ld be the top o f the f (a ) cu rve ment ioned above.

Th is r elat io n seems to be co rr ect [41]. A system a tic way

to ® nd D it self and the rest o f the sp ectrum is no t

eviden t p roceed ing in th is way.

8.2. Real-space methods and ® xed-scale transformations

A na tu ral way to try to r en orma lize the D L A process is to

use the ana logu e to rea l-space ren orma liza t ion techn iques

from phase tran sit io n theo ry. One o f the m ost in terest in g

att em p ts a long th is line is due to Barker and Ba ll [54]. In

this techn ique the cen tra l ob ject is th e ren o rma lized

e� ective no ise amp litude. They found tha t it slowly dr ift s

to a ® xed po in t , and they invest igated the ro le o f

an iso tropy.

P ietronero and co llaborato rs developed a rela ted schem e

ca lled the m ethod of ® xed -sca le tran sfo rm atio n s. I t is a

rea l-space method wher e a sm a ll system a t one sca le is

so lved essen tia lly exact ly, and the beh aviou r a t th e next

coa rse-grain ed scale est im a ted by assum ing tha t th ere is a

sca le-invar ia n t dynam ics and est im a ting the param eter s

from the ® xed -sca le so lu t io n . Th is met hod has been

reviewed exten sively recen tly [55], and I refer th e rea der

to th is art icle.

8.3. Branched-growth theory

H alsey and Leib ig [56] have given a theo ry wh ich fo cu ses on

t ip -sp lit t in g and the su bsequent co m pet it io n o f the daughter

t ip s a s the key to the D LA process. In the theo ry a t ip -sp lit t in g

p rocess is assum ed to occu r in su ch a way that the two

daugh ters are sligh tly d i� eren t in their in it ia l num bers and

p robability o f growth . These numbers ar e taken a s random

in it ia l co ndit io ns and averaged over Ð the id ea is th a t th ey

dep en d on m icro scop ic deta ils wh ich a re decoupled from the

subsequen t scaling. Then the branch develop s so that one or

the o ther o f the daugh ters win s and to ta lly screen s the o ther .

The two va riab les in the trea tm en t are the probab ility o f

growth o f the ® rst d augh ter b ranch no rm alized by the tota l

p robability fo r the b ranch to grow, x 5 p1 /pb , and the

number in the ® rst d ivided by the to tal number , y 5 n 1 /n b .

A ll o f the `init ia l co nd it io n s’ o f the la st par agraph a re nea r

x 5 0.5, y 5 0.5 since the b ranch es sta rt ou t exact ly

equ ivalen t and m icro scop ic no ise per tu rbs them a b it . A s

n b in creases with growth , th e no ise is neglected , and the

system ¯ ows in the phase p la ne (x, y) towa rd the ® na l po in ts

where one daugh ter wins the co mpet it ion and the other d ies,

(0, 0) o r (1, 1). In the la ngu age o f phase pla ne ana lysis, the

Figure 9. The Hastings± Levitov mapping. The map ZN takes
the unit circle in the w plane to an N-particle cluster in the z
plane. The map transforms the circle to a circle with a bump.
Thus ZN 1 1 5 N (u (w)) is the next step in the mapping. The size
of the bump must be adjusted as explained in the text.

Figure 10. A cluster generated by the Hastings± Levitov
method. The outline is the image of the boundary of the unit
circle under the map Z , and the positions where particles were
added are shown.
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daugh ter b ranch es ¯ ow a long the unst ab le m an ifo ld o f the

sadd le poin t at (1/2, 1 /2).
The m a in work in the theo ry is to ® gu re out an eq ua tio n

of mo tion fo r the ¯ ow, i.e. dx /d(ln n b), a nd thus the form

of the unstab le m anifo ld . Th is is done using a series o f

cleve r app roxima tio ns fo r the developm en t o f the p rob -

ab ility o f growth on the su rfa ce and , ® n ally, th e numer ica l

so lu t ion of a na sty nonlinear eq ua tio n.

Ther e a re so me very n ice fea tu res in th is app roach , and

it gives a rea so nab le va lu e fo r the fra cta l dim ension

» 1.66. T he sca ling law 2D 3 5 D 0 and the Tu rkevich±

Scher scaling law equa tion (19) a re bu ilt in exact ly. H a lsey

and co llabo ra to rs have sh own how to get m u lt ifra cta l

dim ension s and their ¯ uctuatio n s [46] u sing a s inpu t the

form of the unstab le man ifo ld . H owever, th ere seem to m e

to be severa l p rob lem s, th e ma in ones being that th e

in tera ct io n o f d i� eren t br anch es is no t trea t ed , and tha t

this is a `one-sho t ’ app roxima tion with no syst em a tic way

to im prove it .

8.4. Conformal maps

The ® n a l at tem p t a t a theo ry tha t I will d iscuss is much

less well developed than the two other s men tio ned above,

bu t it seems to m e to be very p rom ising, and to p rovide

rem arkable insigh ts in to the growth process wh ich co uld

lead to an ana lytic theory. I t was inven ted by H ast ings and

Levitov [57] and developed in severa l recen t paper s [58±

60].

The con fo rm al map method uses the Lapla cian growth

ver sion of D L A. It exp lo its th e fa ct th a t a very co nven ien t

way to so lve the L ap lace equa tion is to u se the classic

method of con fo rm al m app ing [61]. Take the clu ster to be a

grounded co nducto r in the co m plex z p lane, with a

probabilit y to grow a t a po in t on its su rfa ce propo rt io na l

to the ch a rge ther e: | Ñ u |, where u is t he poten t ia l with

bounda ry cond it io n s o f unit ¯ ux a t in ® n ity and u 5 0 on

the su rfa ce. W e ca n co nst ruct a co mp lex po ten tia l such tha t

Re [ (z )] 5 u . I f th e clu ster were m erely a two -d im en siona l

disc o f r ad iu s r o th en , from elemen ta ry elec tro sta t ics in two

dim ension s we have (z ) 5 ln (z /r o). I t is conven ient in

what fo llows to de® ne a new funct io n , h(z ) 5 e . C lea rly h

is lin ea r fo r la rge z fo r any clu ster (sin ce any sh ape looks

lik e a disc from far away). A lso |h | 5 1 on the cluster ,

because Re ( ) 5 0 th ere. N ow we de® n e a new (m a the-

ma tical) p lane, w such tha t w 5 h(z ); h is a conformal map
from the exter io r of the clu ster to the exter io r o f the un it

cir cle. I ts in verse funct io n Z(w ) is a co n fo rma l m ap which

takes the exter io r o f the un it circle in the w p lane to the

ext er ior o f the D LA clu ster in the z p lane, and obeys

Z ~ r ow , fo r la rge |w |. W e will fo cu s a tten tio n on Z .

N ow we ca n so lve the Lap lace eq ua tio n in the w plane

tr ivia lly, and transfo rm back to the z p lane. On the un it

cir cle | Ñ u | µ |d /dz | 5 |dh /dz | 5 1/|dZ /dw | so tha t th e

growth p robab ility is 1 /|Z ¢ |. In terva ls d h on the un it circle

in the w p lane co rrespond to in ter va ls o f ar c length ds with

eq ua l growth p robab ility in the z p lane. Thus the im age o f

the growing t ip s is most of the cir cle and the ® o rd s occupy a

tin y region . The most u sefu l cha racter izat io n o f the map is

the Lau ren t series:

Z(w ) 5 r ow 1
X

k 5 0

A k /w
k

. (20)

The co e� cien ts, A k , co n ta in lo ts o f very in t erest in g

in fo rma tio n .

A ll o f th is would be of no rea l in t erest if we co u ld no t

® n d the map . H owever we have two indep en den t ways to

do th is. The ® rst is t he o riginal H ast in gs±Levitov recu rsive

method . Suppose we know the map a t a certa in stage o f

growth: ZN 2 1. N ow we add a `pa rt icle’ by add ing to the

ou tline a bump of area ¸o in the z p lane. ZN 2 1 will

transform the un it cir cle to a circle with a bum p whose a rea

is tr an sfo rm ed : ¸N 5 ¸o /|dZN 2 1 /dw |2; see ® gu re 9. The

bum p ca n be taken to be o f the sam e ® xed sh ape and to

occu r a t an angle h N which is un ifo rm ly d ist r ib u ted in the

ma them a tica l p la ne (cf. th e previou s pa ragraph ). Suppose

we den o te by u ¸N , h N (w ). th e funct io n tha t m aps the un it

cir cle to the cir cle with a bump . T he recu rsion relat io n fo r

ZN (w ) is given by (see ® gu re 9):

ZN (w ) 5 ZN 2 1(u ¸N , h N (w )) . (21)

In p ract ice, we ch oose a random angle h N , ® n d ¸N , a nd

generat e any level o f map . Th is is a n ice method , bu t slow:

it takes o f o rder N 2 step s to genera te an N-p ar t icle clu ster

(see ® gu re 10).

The o ther way to get th e map [60] is to u se the or igina l

D LA m odel to grow the aggrega te. Then we stop a t stage N
and record where M r andom walk ers wou ld a tta ch to the

clu st er . Th is gives a set of po in ts z m . These are a t angle

h m » 2p (m /M ) in the w p lane, sin ce we a re samp ling the

probab ilit y, and eq ua l increm ent s o f probab ilit y co rre-

sp ond to eq ua l in crem en ts o f h . The A k are the F our ier

co e� cien ts of the funct io n z (h m ). W e have used th is

method to ® nd the m ap up to N » 106.

So fa r we have a numer ica l p rocedu re. H owever , it gives

rise to many in sigh ts and lead s to ana lyt ica l p rogress. F or

exam ple, in very recen t wo rk [60] we have sh own that the

growth zo ne o f P lishke and R acz [47] must sca le with the

rad iu s u sing on ly so me wea k assump tion s about the

mu lt ifr act al sp ectrum . W e used the fact th a t th e growth

zo ne can be rela ted to the am plitude, |A k |, o f th e Lauren t

co e� cien ts. The cr ossover s that a re so puzzling ca n be

related to the slow cro ssover o f the lowest mu lt ip o le

momen ts o f the p robability to their asym p tot ic sca ling

behaviou r. I t is very in terest in g to no te that th e phase o f the

A k ’ s en co de the mu lt ifr actal sp ectrum itself. T his a rea is in

rap id evolu tion .
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9. Summary

In th is in fo rma l review I have t r ied to give the rea der so m e

¯ avo ur fo r the p rogress tha t ha s been m ade in stud ies o f the

D LA model. There is an eno rm ous literatur e on the su b ject ,

bu t , odd ly enough , m any o f the most u sefu l in sigh ts have

no t pen et rat ed to the physics co mmun ity a t la rge. Th is is

un fo rtuna te. M any o f the in sigh ts and methods (p a rt icu -

la rly the numer ical techn iques) shou ld be usefu l ou tside o f

the D LA area , but are all t oo o ften not recogn ized , and

have to be red iscovered . M y pu rpose in wr it in g th is is to

try, in par t , to co rrect th a t situa t io n.
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