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4. Exercise sheet to the lecture “Statistical Physics Far from Equilibrium”

Exercise 7: Entropy production for the master equation

It was shown in the lectures that the entropy production σ for a continuous time Markov

chain governed by transition rates Γij is given by

σ =
1

2

∑

i,j

(ΓijPi − ΓjiPj) ln

[

ΓijPi

ΓjiPj

]

= σint + σext

where

σint =
1

2

∑

i,j

(ΓijPi − ΓjiPj) ln

(

Pi

Pj

)

is the internal entropy production of the system, and σext is the entropy flow to the environ-

ment. Using the master equation, show that indeed σint =
d
dt
Ssys, where

Ssys = −
∑

i

Pi lnPi

is the (Shannon) entropy of the system. This implies, in particular, that σint = 0 in a

stationary state.

Exercise 8: Equal probability of microstates and Bernoulli measure

For the one-dimensional asymmetric exclusion process with N particles on a ring of L sites it

has been shown that all
(

L
N

)

microstates are equally likely in the nonequilibrium stationary

state. Prove that this implies Bernoulli measure in the limit L,N → ∞ at fixed density

ρ = N/L, which means that in the infinite system each site is independently occupied or

vacant with probability ρ and 1−ρ, respectively. To this end, compute correlation functions

〈ηiηj〉, 〈ηiηjηk〉 etc. for the finite system, and take the limit L,N → ∞.

Exercise 9: Two particles on a ring of four sites

Consider the totally asymmetric exclusion process with two particles on a ring of four sites.

In the lectures the transitions among the 6 states of the system were illustrated in a graph.

Generalize this diagram to the case of discrete time dynamics (parallel update with proba-

bility π). Which new transitions appear? How does the diagram change in the deterministic

limit π → 1, and what does this imply for the stationary state in this case?



Exercise 10: Cellular automaton rule 184

Cellular automata (CA) are dynamical systems with discrete spatial structure evolving in

discrete time. Elementary CA in the sense of Wolfram1 are defined on a one-dimensional

lattice with binary variables on each site, and the state of a site at time t is a deterministic

(Boolean) function of the state of the site itself and its two neighbors at time t − 1. There

is a total of 28 = 256 such CA which can be completely classified. Here we consider rule 184

defined by

(000) → 0, (001) → 0, (010) → 0, (011) → 1, (100) → 1, (101) → 1, (110) → 0, (111) → 1

The sequence of final states is a binary representation of the number 184 = 0× 20+0× 21+

0× 22+1× 23+1× 24+1× 25+0× 26+1× 27. Rule 184 is the deterministic limit (π → 1)

of the discrete time asymmetric exclusion process (dTASEP): In one time step all particles

with a vacant neighbor site move simultaneously to the right.

a.) Identify the rule number of the deterministic dTASEP with all particles moving deter-

ministically to the left.

b.) Determine (by inspection or simulation) the attractor of CA 184 on a finite ring, i.e.,

the set of configurations that govern the dynamics for t → ∞.

Hint: Begin by considering the case of half filling (N = L/2) and show that, similar

to the ring of four sites examined in Exercise 9, the attractor consists of only two

configurations. The case of general N can then be described as a ’gas’ of defects moving

on the background defined by these two configurations.

c.) Based on the results of part b.), determine the average speed v of particles in the

stationary state and the corresponding stationary particle current J(ρ) = ρv, where

ρ = N/L is the particle density.

d.) Can you prove that rule 184 and its mirror image considered in part a.) are the only

non-trivial rules that conserve the number of 1’s?

1S. Wolfram, Rev. Mod. Phys. 55, 601 (1983); S. Wolfram, A new kind of science (2002)


