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7. Exercise sheet to the lecture “Statistical Physics Far from Equilibrium”

Exercise 16: Growth shapes, Legendre transforms and the Wulff construction

We consider a one-dimensional interface described by a height function h(x, t). On the

macroscopic scale the evolution equation reads

∂h

∂t
= V

(

∂h

∂x

)

(1)

where V (u) denotes the inclination-dependent growth velocity. We are interested in ‘droplet’

solutions of the form h(x, t) = tg(x/t). Inserting this ansatz into (1) yields the differential

equation

g(z)− zg′(z) = V (g′(z)). (2)

a) Assume that the second derivative of V has a definite sign, V ′′(u) > 0 or V ′′(u) < 0

everywhere. Then show that the solution of (2) is

g(z) = min
u

[V (u) + uz] if V ′′ > 0 (3)

g(z) = max
u

[V (u) + uz] if V ′′ < 0 (4)

and in both cases g′′(z)V ′′(u(z)) = −1, where u(z) is the value of u at which the

extremum on the right hand side of (3,4) occurs.

b) Apply (4) to the discrete time, deterministic version of the single step model (the

growth model equivalent of CA 184, see Exercises 10 and 12). Interpret the result in

terms of the microscopic dynamics.

c) For the polynuclear growth model (to be defined later in the lectures) the inclination-

dependent growth velocity has the form

V (u) = c
√

u20 + u2 (5)

with constants c > 0 and u0. Compute the corresponding growth shape g(z) and sketch

the functions V (u) and g(z).

d) Instead of describing the interface shape in terms of the height function g(z), we may

introduce a polar representation r(ϕ) through

g(z) = r(ϕ) cosϕ, z = r(ϕ) sin(ϕ). (6)

Similarly we introduce the normal growth velocity Vn(ϑ) through

Vn(ϑ) = V (− tanϑ) cosϑ. (7)



The angles ϕ and ϑ are defined on the interval [−π
2 ,

π
2 ] and are measured relative to

the h-axis. Show that in this representation the Legendre transform (3) is equivalent

to the Wulff construction1

r(ϕ) = min
ϑ

Vn(ϑ)

cos(ϕ− ϑ)
. (8)

Exercise 17: Minimal energy paths on the square lattice

It was shown in the lectures that the single step model can be mapped onto an optimization

problem for directed paths in a random energy landscape. The key object of interest is the

ground state energy

E(i, j) = min
ω

E(ω) = min
ω

∑

(k,l)∈ω

ǫkl (9)

where the ǫkl < 0 are exponentially distributed random variables with mean 〈ǫkl〉 = −1, and

the minimum is taken over all directed paths ending at (i, j).

a) For paths ending on the diagonal the mapping yields the result

〈E(n, n)〉 = −4n = 2〈E(ω)〉 (10)

where 〈E(ω)〉 = −2n is the mean energy of such paths (note that each path passes

through 2n sites). How does this compare to what you would get if all the
(

2n
n

)

paths

ending at (n, n) were independent?

Hint: You may assume that, for large n, the path energies are Gaussian random vari-

ables with mean −2n and variance 2n. The expected value of the minimum of N

independent Gaussian random variables of mean µ and variance σ2 is µ − σ
√
2 lnN .

Finally, use Stirling’s approximation to evaluate
(

2n
n

)

for large n.

b) Now we generalize the result (10) to arbitrary endpoints. To be specific, compute the

ground state energy per unit length

e(φ) = lim
i,j→∞

E(i, j)

i+ j
(11)

as a function of the angle φ that the mean path direction encloses with the diagonal,

φ = arctan[ j−i
j+i

].

Hint: Use the known growth shape h(x, t) = tg(x/t) = 1
2 [1 + (x/t)2] together with the

relations h = i+ j, x = i− j to derive a quadratic equation for e.

1G. Wulff, Z. Kristallogr. Mineral. 34 (1901) 449.


