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8. Exercise sheet to the lecture “Statistical Physics Far from Equilibrium”

Exercise 18: Roughening in the Edwards-Wilkinson equation with different initial conditions

In the lectures the mean squared displacement of the interface position in the one-dimensional

Edwards-Wilkinson equation was computed, with the asymptotic result

G(0, t− t′) = 〈[h(x, t)− h(x, t′)]2〉 = 4√
π

D√
ν

√

|t− t′|. (1)

Both t and t′ were assumed to be in the stationary state, t, t′ → ∞ at finite t− t′.

Here we want to consider instead the early time regime starting from a flat initial condition,

h(x, 0) ≡ 0. Following the steps outlined in the lectures, compute the variance of the height

〈h(x, t)2〉 as a function of time and show that the result is of the same form as (1), but with

a different numerical prefactor. Interpret your finding.

Exercise 19: Stationary roughness of finite one-dimensional interfaces

In this exercise we consider one-dimensional interfaces of Edwards-Wilkinson type supported

on a finite ‘substrate’ of length L with periodic boundary conditions. This implies that

the allowed wave numbers of the spatial Fourier coefficients of the height fluctuations are

kn = 2π
L
n, n ∈ Z, and a function f(x) is represented through its Fourier coefficients

f̂n ≡ f̂(kn) according to

f(x) =
1

L

∑

n∈Z

e−iknz f̂n.

a) Show that the correlation function of the Fourier coefficients of spatio-temporal white

noise ζ(x, t) is given by

〈ζ̂n(t)ζ̂n′(t′)〉 = LDδn,−n′δ(t− t′). (2)

b) Use the result (2) to derive the amplitude 〈|ĥn|2〉 of the Fourier coefficients of the height

fluctuations in steady state, t → ∞. By summing over n, show that the stationary

variance of the interface fluctuations is given by

W 2(L) ≡ 〈[h− h̄]2〉 = D

6ν
L

where h̄ = L−1
∫ L

0 dx h(x) is the spatial average of the height. Hint:
∑

∞

n=1
1
n2 = π2

6



Problem 20: From the Wiener path integral to directed polymers

The Wiener process w(t) is defined by the transition probability P (w, t|w0, t0) for the path

to be at w at time t, given that it was at w0 at time t0, which satisfies the diffusion equation

∂

∂t
P (w, t|w0, t0) =

1

2

∂2

∂w2
P (w, t|w0, t0), (3)

with the initial condition P (w, t0|w0, t0) = δ(w − w0).

a.) Solve Eq. (3) and show that

〈w(t)〉 = w0, 〈(w(t)− w0)
2〉 = t− t0. (4)

b.) Since the Wiener process is a Markov process, the joint n-point probability density for

the path to visit the positions wk at times tk, k = 1, ..., n is given by

P (wn, tn;wn−1, tn−1; . . . ;w1, t1;w0, t0) =

(

n−1
∏

i=0

P (wi+1, ti+1|wi, ti)

)

p(w0, t0), (5)

where p(w0, t0) denotes the probability density of the initial condition. Show that as

n → ∞ and max(ti+1 − ti) → 0 with tn = t fixed, the transition probability can be

formally written as

P (w, t|w0, t0) =

∫ w(t)=w

w(t0)=w0

Dw exp

(

−1

2

∫ t

t0

(

dw(t′)

dt′

)2

dt′

)

(6)

where the quantity Dw (to be identified by the calculation) represents the path measure.

c.) In b.), we used the solution of the Eq. (3) to derive Eq. (6). Actually, we can arrive at

the same conclusion without solving the equation. Let tk = ǫk + t0 (k = 0, . . . , n) with

ǫ = (t− t0)/n (n is very large). First show that

P (wk+1, tk+1|wk, tk) =

(

1 +
ǫ

2

∂2

∂w2
k+1

+O(ǫ2)

)

δ(wk+1 − wk) = (7)

1

2π

∫

dqk exp
(

iqk(wk+1 − wk)−
ǫ

2
q2k

)

+O(ǫ2).

Then integrating out the qk’s and using the Markov property in Eq. (5), derive Eq. (6).

d.) Following the methodology of c.), write down the formal solution of the diffusion equa-

tion with a multiplicative noise ζ(w, t):

∂

∂t
P (w, t|w0, t0) =

1

2

∂2

∂w2
P (w, t|w0, t0) + P (w, t|w0, t0)ζ(w, t). (8)

The solution can be interpreted as the partition function of a directed polymer in a ran-

dom enviroment. Further, the Cole-Hopf transformation, h(w, t) = ln [P (w, t|w0, t0)],

relates solutions of Eq. (8) to solutions of another well known problem. Which one ?


