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Abstract  
The theory of phase-ordering dynamics, that is the growth of order through 

domain coarsening when a system is quenched frorrfthe homogeneous phase into 
a broken-symmetry phase, is reviewed, with the emphasis on recent developments. 
Interest will focus on the scaling regime that develops at long times after the quench. 
How can one determine the growth laws that describe the time dependence of  
characteristic length scales, and what can be said about the form of the associated 
scaling functions? Pm~icular attention will be paid to systems described by more 
complicated order parameters than the simple scalars usually considered, for 
example vector and tensor fields. The latter are needed, for example, to describe 
phase ordering in nematic liquid crystals, on which there have been a number of 
recent experiments. The study of topological defects (domain walls, vortices, strings 
and monopoles) provides a unifying framework for discussing coarsening in these 
different systems. 
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1. Introduction 
The theory of phase-ordering kinetics or ' domain  coarsening '  fol lowing a 

temperature quench from a homogeneous  phase into a two-phase region has a history 
going back more than three decades to the pioneering work of Lifshitz [ 1 ], Lifshitz and 
Slyozov [2] and Wagner  [3]. Since that time, many  excellent  reviews have appeared, 
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Figure 1. Magnetization of the Ising model in zero applied field as a function of temperature 
(schematic), showing spontaneous symmetry breaking at Tc. The arrow indicates a 
temperature quench, at time t = 0, from TI to TF. 

including those by Gunton et al. [4], Binder [5], Furukawa [6] and Langer [7]. In the 
present article, I shall not therefore attempt to cover the complete history of the field. 
Rather, I shall concentrate on some of the recent developments, over the past 5 years 
or so, which in my view are interesting and represent significant advances or new 
directions of  research, for example the recent interest in systems with non-scalar order 
parameters. The fundamental concepts and background material necessary for the 
understanding and appreciation of these new developments will, nevertheless, be 
discussed in some detail. It follows that, while this article does not aim to be a complete 
or comprehensive account, it does aspire to be self-contained and comprehensive to 
non-experts. By adopting a fairly pedagogical approach, I hope that the article may also 
serve as a useful introduction to the field. 

In order to keep the length of the article within reasonable bounds, I shall concentrate 
primarily on theoretical developments, although important results from experiment and 
simulations will be cited as appropriate. For the same reason, I apologise in advance 
to all those authors whose work has not been explicitly discussed. 

Systems quenched from a disordered phase into an ordered phase do not order 
instantaneously. Instead, the length scale of ordered regions grows with time as the 
different broken-symmetry phases compete to select the equilibrium state. To fix our 
ideas, it is helpful to consider the simplest, and most familiar, system: the ferromagnetic 
Ising model. Figure 1 shows the spontaneous magnetization as a function of 
temperature. The arrow indicates a temperature quench, at time t -- 0, f rom an initial 
temperature TI above the critical point Tc to a final temperature TF below Tc. At TF there 
are two equilibrium phases, with magnetization ___ M0. Immediately after the quench, 
however, the system is in an unstable disordered state corresponding to equilibrium at 
temperature TI. The theory of phase ordering kinetics is connected with the dynamical 
evolution of the system from the initial disordered state to the final equilibrium state. 

Part of the fascination of the field, and the reason why it remains a challenge more 
than three decades after the first theoretical papers appeared, is that, in the 
thermodynamic limit, final equilibrium is never achieved! This is because the longest 
relaxation time diverges with the system size in the ordered phase, reflecting the broken 
ergodicity. Instead, a network of domains of the equilibrium phases develops, and the 
typical length scale associated with these domains increases with time t. This situation 



360 A. J. Bray 

,I 

Figure 2. Monte Carlo simulation of domain growth in the d = 2 Ising model at T = 0 (taken 
from Kissner [8]). The system size is 256 X 256, and the snapshots correspond to 5, 15, 
60 and 200 Monte Carlo steps per spin after a quench from T = ~.  

is illustrated in figure 2, which shows a Monte Carlo simulation of a two-dimensional 
Ising model, quenched from TI = ~ to TF = 0. Inspection of the time sequence may 
persuade the reader that domain growth is a scaling phenomenon; the domain patterns 
at later times look statistically similar to those at earlier times, apart from a global 
change of scale. This 'dynamic scaling hypothesis'  will be formalized below. 

For pedagogical reasons, we have introduced domain growth in the context of  the 
Ising model and shall continue to use magnetic language for simplicity. A related 
phenomenon that has been studied for many decades, however, by metallurgists, is the 
spinodal decomposition of binary alloys, where the late stages of  growth are known as 
Ostwald ripening. Similar phenomena occur in the phase separation of fluids or binary 
liquids, although in these cases the phase separation is accelerated by the Earth's 
gravitational field, which severely limits the temporal duration of the scaling regime. 
The gravitational effect can be moderated by using density-matched binary liquids 
and/or performing the experiments under microgravity. All the above systems, 
however, contain an extra complication not present in the Ising ferromagnet. This is 
most simply seen by mapping an AB alloy onto an Ising model. I f  we represent an A 
atom by an up spin, and a B atom by a down spin, then the equilibrium properties of 
the alloy can be modelled very nicely by the Ising model. There is one important feature 
of  the alloy, however, that is not captured by the Ising model with conventional Monte 
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Carlo dynamics. Flipping a single spin in the Ising model corresponds to converting 
an A atom to a B atom (or vice versa), which is inadmissible. The dynamics must 
conserve the number of A and B atoms separately, that is the magnetization (or order 
parameter) of  the Ising model should be conserved. This will influence the form of the 
coarse-grained equation of motion, as discussed in section 2 and lead to slower growth 
than for a non-conserved order parameter. 

In all the systems mentioned so far, the order parameter (e.g. the magnetization of 
the Ising model) is a scalar. In the last few years, however, there has been increasing 
interest in systems with more complex order parameters. Consider, for conceptual 
simplicity, a planar ferromagnet, in which the order parameter is a vector confined to 
a plane. After a quench into the ordered phase, the magnetization will point in different 
directions in different regions of  space, and singular lines (vortex lines) will form at 
which the direction is not well defined. These 'topological defects'  are the analogue of 
domain walls for the scalar systems. We shall find that, quite generally, an 
understanding of the relevant topological defects in the system, combined with the 
scaling hypothesis, will take us a long way towards understanding the forms of the 
growth laws and scaling functions for phase ordering in a wide variety of systems. 

The article is organized as follows. The following section introduces most of the 
important concepts, presents dynamical models appropriate to the various phase-order- 
ing systems and analyses these models using simple physical arguments. Section 3 
broadens the discussion to more general phase-ordering systems, with non-scalar order 
parameters and introduces the key concept of  topological defects which, in later 
sections, will provide a unifying framework for analytical treatments. Section 4 
involves a temporary excursion to the realm of exactly soluble models. These models, 
although of interest in their own right, unfortunately lack many of the physical features 
of more realistic models. In section 5, approximate analytical treatments are presented 
for the more physical models introduced in sections 2 and 3. Finally, sections 6-8 
present some exact results for the short-distance behaviour and the growth laws for these 
systems and make some observations concerning universality classes for the dynamics 
of phase ordering. 

2. Dynamical models 
It is convenient to set up a continuum description in terms of  a coarse-grained 

order-parameter field (e.g. the magnetization density) ~b(x, t), which we shall initially 
take to be a scalar field. A suitable Landau free-energy functional to describe the ordered 
phase is 

F[q~] = Jddx [2/IV~bl 2 + V((~)], (1) 

where the potential V(q~) has a double-well structure, for example V(~b) = (1 - ~b2) 2. We 
shall take the minima of V(q~) to occur at q~ = + 1 and adopt the convention that 
V( -+ 1) = 0. The potential V(~b) is sketched in figure 3. The two minima of Vcorrespond 
to the two equilibrium states, while the gradient-squared term in equation (1) associates 
an energy cost with an interface between the phases. 

In the case where the order parameter is not conserved, an appropriate equation for 
the time evolution of the field ~b is 

0~b _ 8F 

at 8c~ 
= VZ~b - V'(q~), (2) 
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Figure 3. 

I 

-1 

v (,) I 

1 

Typical form of the symmetric double-well potential V(~b) in equation (2). The 
detailed functional form of V(~b) is not important. 

where V'(q~)------dV/dqb. A kinetic coefficient F, which conventionally multiplies the 
right-hand side of equation (2), has been absorbed into the time scale. Equation (2), a 
simple reaction-diffusion equation, corresponds to simple gradient descent, that is the 
rate of change in q5 is proportional to the gradient of the free-energy functional in 
function space. This equation provides a suitable coarse-grained description of  the Ising 
model, as well as alloys that undergo an order-disorder transition on cooling through 
Tc, rather than phase separating. Such alloys form a two-suhlattice structure, with each 
sublattice occupied predominantly by atoms of one type. In Ising model language, this 
corresponds to antiferromagnetic ordering. The magnetization is no longer the order 
parameter, but a 'fast mode' ,  whose conservation does not significantly impede the 
dynamics of the important 'slow modes'.  

When the order parameter is conserved, as in phase separation, different dynamics 
are required. In the alloy system, for example, it is clear physically that A and B atoms 
can exchange only locally (not over large distances), leading to diffusive transport of 
the order parameter, and an equation of motion of the form 

0~/) _ V 2  8F 
at a4~ 

= - v2[v24, - V'(~b)], (3) 

which can be written in the form of a continuity equation, 0tq5 = - V.  j, with current 
j = 2V(gF/rq~). In equation (3), we have absorbed the transport coefficient 2 into the 
time scale. 

Equations (2) and (3) are sometimes called the time-dependent Ginzhurg-Landan 
(TDGL) equation and the Cahn-Hilliard equation respectively. A more detailed 
discussion of them in the present context can he found in the lectures by Langer [7]. 
The same equations with additional Langevin noise terms on the right-hand sides are 
familiar from the theory of critical dynamics, where they are called model A and model 
B respectively in the classification of Hohenberg and Halperin [9]. 

The absence of  thermal noise terms in equations (2) and (3) indicates that we are 
effectively working at T = 0. A schematic renormalization group (RG) flow diagram 
for T is given in figure 4, showing the three RG fixed points at 0, Tc and ~ ,  and the 
RG flows. Under coarse graining, temperatures above Tc flow to infinity, while those 
below Tc flow to zero. We therefore expect the final temperature TF tO be an irrelevant 
variable (in the scaling regime) for quenches into the ordered phase. This can be shown 
explicitly for systems with a conserved order parameter [10, 11]. For this case the 
thermal fluctuations at TF simply renormalize the bulk order parameter and the surface 
tension of the domain walls; when the characteristic scale of the domain pattern is large 
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Figure 4. Schematic RG flow diagram, with fixed points at T = 0, Tc and ~.  All T >  Tc are 
equivalent to T =  ~ and all T <  Tc to T= 0, as far as large length-scale properties are 
concerned. 

compared with the domain wall thickness (i.e. the bulk correlation length in 
equilibrium), the system behaves as if it were T = 0, with the temperature dependence 
entering through T-dependent model parameters. 

In a similar way, any short-range correlations present at T~ should be irrelevant in 
the scaling regime, that is all initial temperatures are equivalent to TI = ~ .  Therefore 
we shall take the initial conditions to represent a completely disordered state. For 
example, one could choose the 'white-noise'  form 

(~b(x, 0)qS(x', 0)) = At (x  - x'),  (4) 

where ( . . . )  represents an average over an ensemble of  initial conditions, and A controls 
the size of the initial fluctuations in qS. The above discussion, however, indicates that 
the precise form of the initial conditions should not be important, as long as only 
short-range spatial correlations are present. 

The challenge of understanding phase-ordering dynamics therefore can be posed 
as finding the nature of the late-time solutions of deterministic differential equations 
such as equations (2) and (3), subject to random initial conditions. A physical approach 
to this formal mathematical problem is based on studying the structure and dynamics 
of the topological defects in the field qS. This is approach that we shall adopt. For scalar 
fields, the topological defects are just domain walls. 

2.1. The scaling hypothesis 
Although originally motivated by experimental and simulation results for the 

structure factor and pair correlation function [12-14], for ease of  presentation it is 
convenient to introduce the scaling hypothesis first, and then to discuss its implications 
for growth laws and scaling functions. Briefly, the scaling hypothesis states that there 
exists, at late times, a single characteristic length scale L(t) such that the domain 
structure is (in a statistical sense) independent of  time°when lengths are sca~ed by L(t). 
It should be stressed that scaling has not been proved, except in some simple models 
such as the one-dimensional Glauber model [15] and the n-vector model with n = 
[16]. However, the evidence in its favour in compelling (see, for example, figure 5). 

We shall find, in section 7, that the scaling hypothesis, together with a result derived 
in section 6 for the tail of  the structure factor, is sufficient to determine the form of L(t) 
for most cases of interest. 

Two commonly used probes of the domain structure are the equal time pair 
correlation function 

C(r, t) = (~b(x + r ,  t)~b(x, t)), (5) 

and its Fourier transform, the equal-time structure factor, 

S(k, t) = (q~k(t)q5 - k(t)). (6) 

Here angular brackets indicate an average over initial conditions. The structure factor 
can, of  course, be measured in scattering experiments. The existence of a single 
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Figure 5. Scaling functionf(x) for the pair correlation function of the d = 2 Ising model with, 
non-conserved order parameter (from [17]). The time t is the number of Monte Carlo steps 
per spin. 

characteristic length scale, according to the scaling hypothesis, implies that the pair 
correlation function and the structure factor have the scaling forms 

C(r, t) = 

S(k, t) = Ug(kL),  

(7) 

where d is the spatial dimensionality, and g(y) is the Fourier transform off(x) .  Note 
that f (0)  = 1, since (at T = 0) there is perfect order within a domain. 

At general temperatures T < Tc, f (0)  = M 2, where M is the equilibrium value of the 
order parameter. (Note that the scaling limit is defined by r >> 4, L >> ~, with r/L arbitrary, 
where ~ is the equilibrium correlation length.) Alternatively, we can extract the factor 
M 2 explicitly by writing C(r, t) = M2f(r/L). The statement that T is irrelevant then 
amounts to asserting that any remaining temperature dependence can be absorbed into 
the domain scale L, such that the function f(x) is independent of  T. 

The scaling forms (7) are well supported by simulation data and experiment. As an 
example, figure 5 shows the scaling plot forf(x)  for the two-dimensional Ising model, 
with x = r/t 1/2. 

For future reference, we note that the different-time correlation function, defined 
by C(r,t,t')= (~b(x + r,t)~b(x,t')), can also be written in scaling form. A simple 
generalization of equation (7) gives [18] 

C(r't't')=f(L ~ )  (8) 

where L and L'  stand for L(t) and L(t'). Especially interesting is the limit L >> L'  when 
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equation (8) takes the form 

\ L / \ L /  ' L>> (9) 

where the exponent f~, first introduced by Fisher and Huse [19] in the context of  
non-equilibrium relaxation in spin glasses, is a non-trivial exponent associated with 
phase-ordering kinetics [20]. (Note that our exponent ,~ is called 2 in [ 19].) It  has recently 
been measured in an experiment on twisted nematic liquid crystal films [21]. The 
autocorrelation function A(t) = C(O, t, t') is therefore a function only of the ratio L'/L, 
with A(t) ~ (L'/L) ~ for L >> L'.  

In the following sections, we explore the forms of the scaling functions in more 
detail. For example, the linear behaviour off(x) ,  for small scaling variable x in figure 
5, is a generic feature for scalar fields, both conserved and non-conserved. We shall see 
that it is a simple consequence of  the existence of 'sharp'  (in a sense to be clarified) 
well defined domain walls in the system. A corollary that we shall demonstrate is that 
the structure factor scaling function g(y) exhibits a power-law tail g(y) --y-Ca + 1) for 
y >> 1, a result known as the Porod law [22, 23]. In section 7 we shall show that this result 
and its generalization to more complex fields, together with the scaling hypothesis, are 
sufficient to determine the growth law for L(t). 

2.2. Domain walls 
It is instructive first to look at the properties of a flat equilibrium domain wall. From 

equation (2) the wall profile is the solution of the equation 

d2q~ 
dg 2 - V'(t~), (10) 

with boundary conditions ~b( _ ~ ) = _ 1, where g is a coordinate normal to the wall. 
We can fix the 'centre'  of  the wall (defined by ~b -- 0) to be at g = 0 by the extra condition 
~b(0) -- 0. Integrating equation (10) once, and imposing the boundary conditions, gives 
(d~b/dg) a = 2V(q~). This result can be used in equation (1) to give the energy per unit 
area of  wall, that is the surface tension, as 

o o  2 = dq~ [2V(q~)] 1/2. (11) t r=  dg 
- - o o  - - 1  

Note that, for scalar fields, the two terms in equation (1) contribute equally to the wall 
energy. 

¢P(91 

1' 

> g  

Figure 6. Domain-wall profile function ~b(g) (schematic). 
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The profile function ~b(g) is sketched in figure 6. Forg  ---> ___ ~ ,  linearizing equation 
(10) around q5 = + 1 gives 

1 ~ b ~ e x p  - [V"( + _ 1)]l/Zlg], g---> + o0, (12) 

that is the order parameter saturates exponentially away from the walls. It follows that 
the excess energy is localized in the domain walls, and that the driving force for the 
domain growth is the wall curvature, since the system energy can only decrease through 
a reduction in the total wall area. The growth mechanism is rather different, however, 
for conserved and non-conserved fields. 

2.3. Non-conserved  fields: the A l l en -Cahn  equation 
The existence of a surface tension implies a force per unit area, proportional to the 

mean curvature, acting at each point on the wall. The calculation is similar to that of 
the excess pressure inside a bubble. Consider, for example, a spherical domain of radius 
R, in three dimensions. I f  the force per unit area is F, the work done by the force in 
decreasing the radius by dR is 4rcFR2dR. Equating this to the decrease in surface energy, 
8rear dR, gives F = 2a/R. For model A dynamics, this force will cause the walls to 
move, with a velocity proportional to the local curvature. I f  the friction constant for 
domain-wall motion is q, then this argument gives q dR/dt = - 2 a / R .  For general 
dimension d, the factor 2 on the right is replaced by d -  1. 

It is interesting to see how this result arises directly from the equation of motion 
(2). We consider a single spherical domain of (say) q5 = - 1 immersed in a sea of  
~b = + 1. Exploiting the spherical symmetry, equation (2) reads 

0q~_a2q~ d - l O q ~  
F- V'(qS). (13) 

at O r  2 r Or 

Provided that the droplet radius R is much larger than the interface width ~, we expect 
a solution of the form 

~)(r, t) = f [ r  - R(t)]. (14) 

Inserting this in equation (13) gives 

0 _ - , , , + (  ~ - '  dR) , 
+ f - V ' ( f ) .  (15) 

r -~- 

The function f ( x )  changes from - 1 to 1 in a small region of width ~ near x = 0. Its 
derivative is therefore sharply peaked near x = 0 (i.e. near r = R(t)). Multiplying 
equation (15) b y f '  and integrating through the interface gives 

d - 1  dR 
0 =  R -~ d r '  (16) 

where we have u s e d f '  = 0 far from the interface, and V ( f )  has the same value on both 
sides of  the interface (in the absence of a bulk driving force, i.e. a magnetic field). 
Integrating equation (16) gives R2(t) = R2(0) - 2(d - 1)t, that is the collapse time scales 
with the initial radius at t -  R2(0). Equation (16) is identical with our previous result 
obtained by considering the surface tension as the driving force, provided that the 
surface tension a and friction constant t/ are equal. This we show explicitly below. 

The result for general curved surfaces was derived by Allen and Cahn [24], who 
noted that, close to a domain wall, one can write V~b = (O~/ag)tfl, where ~] is a unit vector 
normal to the wall (in the direction of increasing ~b), and so VZq~ = (02~/Og2)t + (Oc~/ 
Og)tV" ft. Noting also the relation ( a ¢ ] O t ) g  = - (OdplOg)t (O~,lOt)4~, equation (2) can be 
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recast as 

\Og/t\Ot/~b ~ g  , V ' ~ + k 0 g Z }  ' V'(q~). (17) 

On the assumption that, for gently curving walls, the wall profile is given by the 
equilibrium condition (10), the final two terms in equation (17) cancel. Noting also that 
(Og/Ot)o is just the wall velocity v (in the direction of increasing ~b), equation (17) 
simplifies to 

v =  - - V . O =  - K ,  (18) 

the Al!en-Cahn equation, where K--= V.  ,~ is d -  1 times the mean curvature. For 
brevity, we shall call K simply the curvature. An alternative derivation of equation (18) 
follows the approach used for the spherical domain, that is we multiply equation (17) 
by (049/Og)t and integrate (with respect to g) through the interface. This gives the same 
result. 

Equation (18) is an important result, because it establishes that the motion of the 
domain walls is determined (for non-conserved fields) purely by the local curvature. 
In particular, the detailed shape of the potential is not important; the main role of the 
double-well potential V(qS) is to establish (and maintain) well-defined domain walls. (Of 
course, the well depths must be equal, or there would be a volume driving force.) We 
shall exploit this insensitivity to the potential, by choosing a particularly convenient 
form for V(q~), in section 5. 

For a spherical domain, the curvature K is ( d -  1)/R, and equation (18) reduces to 
equation (16). Our explicit treatment of the spherical domain verifies the Allen-Cahn 
result, and, in particular, the independence from the potential of the interface dynamics. 

A second feature of equation (18) is that the surface tension a (which does depend 
on the potential) does not explicitly appear. How can this be, if the driving force on 
the walls contains a factor a? The reason, as we have already noted, is that one also 
needs to consider the friction constant rl per unit area of wall. The equation of motion 
for the walls in this dissipative system in r/v = - aK. Consistency with equation (18) 
requires that r /= a. In fact, q can be calculated independently, as follows. Consider a 
plane wall moving uniformly (under the influence of  some external driving force) at 
speed v. The rate energy dissipation per unit area is 

d E _  dg ~F Oq5 
dt ~ 549 Ot 

fc~ 2, 
= - d g _  ~ (19) 

_~ \ O t /  

using equation (2). The wall profile has the form ~b(g, t) = f ( g  - vt), where the profile 
function f will, in general, depend on v. Putting this form into equation (19) gives 

- -  v 2 dg = - -  O'V 2 ,  ( 2 0 )  

dt \ Og / 

where the definition (11) of  the surface tension a was used in the final step, and the 
profile function f ( x )  replaced by its v = 0 form to lowest order in v. By definition, 
however, the rate of energy dissipation is the product of the frictional force qv and the 
velocity: dE/dt = - q v  2.  Comparison with equation (20) gives q = a. We conclude that, 
notwithstanding some contrary suggestions in the literature, the Allen-Cahn equation 
is completely consistent with the idea that domain growth is driven by the surface 
tension of the walls. 
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2.4. Conserved fields 
For conserved fields the interfaces cannot move independently. At late times the 

dominant growth mechanism is the transport of  the order parameter from interfaces of 
high curvature to regions of  low curvature by diffusion through the intervening bulk 
phases. To see how this works, we first linearize equation (3) in one of the bulk phases, 
with say q~ ~ 1. Putting q5 = 1 + ~ in equation (3) and linearizing in q~ give 

0@ __ ~74(~ + V"(1)~72~. (21) 
Ot 

Since the characteristic length scales are large at late times, the ~74 term is negligible 
and equation (21) reduces to the diffusion equation, with diffusion constant D = V"(1). 
The interfaces provide the boundary conditions, as we shall see. However, we can first 
make a further simplification. Owing to the conservation law, the interfaces move little 
during the time that it takes the diffusion field q~ to relax. I f  the characteristic domain 
size is L, the diffusion field relaxes on a time scale tD ~ L z. We shall see below, however, 
that a typical interface velocity is of  order l/L2; so the interfaces only move a distance 
of order unity (i.e. much less than L) in the time tD. This means that the diffusion field 
relaxes quickly compared with the rate at which the interfaces move and is essentially 
always in equilibrium with the interfaces. The upshot is that the diffusion equation can 
be replaced by Laplace 's  equation V2q~ = 0 in the bulk. 

To derive the boundary conditions at the interfaces, it is convenient to work not with 
q~ directly, but with the chemical potential # = 6F/~c~. In terms of #, equation (3) can 
be written as a continuity equation 

a~b = _ V.  j, (22) 
Ot 

j = - V # ,  ( 2 3 )  

# = V'(~b) - Vzq~. (24) 

In the bulk, # and q~ are proportional to each other, because equation (24) can be 
linearized to give # = V"(1)q~ - Vzq~, and the ~ 72 term is again negligible. Therefore # 
also obeys Laplace 's  equation 

Vz# = 0 (25) 

in the bulk. 
The boundary conditions are derived by analysing equation (24) near an interface. 

As in the derivation of the Allen-Cahn equation, we consider surfaces of constant q~ 
near the interface and introduce a Cartesian coordinate system at each point, with a 
coordinate g normal to the surface (and increasing with increasing ~b). Then equation 
(24) becomes (compare equation (17)) 

# = V ' (4~) -  (Ock~ K -  {OZcP] (26) 
\Og]t  \Og2]t 

near the interface, where K = V .  ~ is the curvature. The value of # at the interface can 
be obtained (just as in our treatment of  the spherical domain in section 2.3), by 
multiplying through by (O~]Og)t, which is sharply peaked at the interface, and 
integrating over g through the interface. Noting that # and K vary smoothly through 
the interface, this gives the completely general relation 

# A~  = A V -  aK (27) 
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at the interface, where A ¢  is the change in ¢ across the interface, and AV is the 
difference in the minima of  the potential for the two bulk phases. In deriving equation 
(27), we have used (O~)[c3g)t---~O far from the interface and made the identification 
f dg (04)/Og) 2 = a, as in equation (11), with a the surface tension. Simplifying to the case 
where the minima have equal depth (we shall see that the general case introduces no 
new physics) and taking the minima to be at q5 = __+ 1 as usual give AV = 0 and A¢  = 2. 
Then equation (27) becomes 

aK 
# - 2 (28) 

This (or, more generally, equation (27)) is usually known as the Gibbs-Thomson 
boundary condition. Note that we have assumed that the order parameter takes its 
equilibrium value ( _+ 1) in both bulk phases. This is appropriate to the late stages of 
growth in which we are primarily interested. 

To summarize, equation (28) determines p on the interfaces in terms of the 
curvature. Between the interfaces, p satisfies the Laplace equation (25). The final step 
is to use equation (23) to determine the motion of the interfaces. An interface moves 
with a velocity given by the imbalance between the current flowing into and out of it: 

v A ¢ = j o u t - j i n  = _ [ 0 g ~ ] =  - - [~ .V#] ,  (29) 

where v is the speed of the interface in the direction of increasing qS, g is the usual 
coordinate normal to interface, [ . . .  ] indicates the discontinuity across the interface, and 
we have assumed as usual that q5 ~ +_ 1 in the bulk phases. 

To illustrate how equations (25), (28) and (29) are used, we consider again the case 
of a single spherical domain of negative phase (4) = - 1) in an infinite sea of positive 
phase (~b = + 1). We restrict ourselves to d = 3 for simplicity. The definition of # 
(equation (24)) gives # = 0 at infinity. Let the domain have radius R(t). The solution 
of equation (25) that obeys the boundary conditions # = 0 at infinity and equation (28) 
at r = R, and respects the spherical symmetry is (using K = 2/R for d = 3) # = - a/r 
for r >1 R. Inside the domain, the 1/r term must be absent to avoid an unphysical 
singularity at r = 0. The solution of  equation (25) in this region is therefore # = constant. 
The boundary condition (28) gives # = - aiR. 

To summarize, 

O" 
- - ~ ,  r<-R, 

p =  
(7 

r '  r>~R" 

(30) 

Using equation (29), with A~b = 2, then gives 

dR 1 [3#]  R + ~ _  = a 
dt - v = - ~ LOr3R-, 2R 2' (31) 

and hence g3(t)= R3(0) -  3at~2. We conclude that a domain of initial radius R(0) 
evaporates in a time proportional to e3(0). This contrasts with the R2(0) result obtained 
for a non-conserved order parameter. In the non-conserved case, of  course, the domain 
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v(~) 

Figure 7. Asymmetrical potential V(q~) for a conserved order parameter, showing the 
common-tangent construction that determines the compositions of the separated phases. 

simply shrinks under the curvature forces, whereas for the conserved case it evaporates 
by the diffusion of material to infinity. 

We now briefly discuss the case where the potential minima have unequal depths, 
as sketched in figure 7. Consider first a planar interface separating the two equilibrium 
phases, with order parameter values 4)1 and 4)2. Since no current flows, j = - V# = 0 
gives # = constant. From the definition (24) of  #, and the fact that V24) vanishes 
far from the interface, it follows that # = V'(4)1) = V'(4)2). On the other hand, the 
Gibbs-Thomson boundary condition (27) for a flat interface (K -- 0) gives # -- A V / A 4 ) .  

Combining these two results gives 

AV 
Vt(4)l) = V'(4)2) A4)' (32) 

leading to the common tangent construction, shown in figure 7, that determines 4)~ and 
4)2 as the points where the common tangent touches the potential. I f  one now repeats 
the calculation for a spherical drop, with a domain with 4) = 4)1 immersed in a sea with 
4) = 4)2, one obtains the equation of motion for the radius, d R / d t  = - 2a/(A4))2R 2, a 
simple generalization of equation (31). Henceforth, we shall consider only the case of 
degenerate minima. 

2.5. G r o w t h  l a w s  

The scaling hypothesis suggests intuitive derivation of the 'growth laws' for L(t), 
which are really just generalizations of  the calculations for isolated spherical domains. 
For model A, we can estimate both sides of  the Allen-Cahn equation (18) as follows. 
I f  there is a single characteristic scale L, then the wall velocity v ~ d L / d t ,  and the 
curvature K ~ 1 /L .  Equating and integrating gives L ( t )  ~ t 1/2 for non-conserved scalar 
fields. 

For conserved fields (model B), the argument is slightly more subtle. We shall 
follow the approach of Huse [25]. From equation (28), the chemical potential has a 
typical value # -- G/L  on interfaces and varies over a length scale of order L. The current, 
and therefore the interface velocity v, scale as IV#I - a / L  2, giving d L / d T  ~ a / L  2 and 
L ( t )  ~ (at) 1/3. A more compelling argument for this result will be given in section 7. We 
note, however, that the result is supported by evidence from computer simulations 
[25, 26] (which usually require, however, some extrapolation into the asymptotic 
scaling regime) as well as a RG treatment [10, 11]. In the limit that one phase occupies 
an infinitesimal volume fraction, the original Lifshi tz-Slyozov-Wagner  (LSW) theory 
convincingly demonstrates a t 1/3 growth. This calculation, whose physical mechanism 
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is the evaporation of  material (or magnetization) from small droplets and condensation 
onto larger droplets, will be discussed briefly in the following section. 

It is interesting that these growth laws can also be obtained using naive arguments 
based on the results for single spherical domains [7]. For non-conserved dynamics, we 
know that a domain of radius R collapses in a time of order R 2. Therefore, crudely 
speaking, after time t there will be no domains smaller than tl/2; so the characteristic 
domain size is L(t) ~ t ~/2. Of course, this is an oversimplification, but it captures the 
essential physics. For conserved dynamics, the same line of argument leads to t ~/3 
growth. This approach can be used rather generally, for a variety of  systems [27], and 
gives results which agree, in nearly all cases, with the exact growth laws that will be 
derived in section 7. 

2.6. The L i f sh i t z -S lyozov-Wagner  theory 
In their seminal work, Lifshitz and Slyozov [2], and independently Wagner [3], 

derived some exact results in the limit that the minority phase occupies a negligible 
volume fraction. In particular, they showed that the characteristic size of  the minority 
phase droplets increases as t 1/3. 

We begin by considering again a single spherical droplet of minority phase 
(q~ = - 1), or radius R, immersed in a sea of majority phase, but now we let the majority 
phase have order parameter q5 = 4)0 < 1 at infinity, that is the majority phase is 
supersaturated with the dissolved minority species. If the minority droplet is sufficiently 
large, it will grow by absorbing material from the majority phase. Otherwise it will 
shrink by evaporation as before. A critical radius Re separates these two regimes. 

With the convention that V( ± 1) = 0, the boundary condition (27) at r = R becomes 
(1 + qb0)# = V(q~0)- 2cr/R, while the boundary condition at infinity is # =  V'(~b0). 
Solving the Laplace equation for # with these boundary conditions gives 

f (V(qSo) 20- 1 r/> R, (33) V'(qS°)+\l-+~o V'(~b°)) R l+~bor' 

# =  V(~b0) 20- 1 
l+~b0 l+q~0R' r<~R. (34) 

Equation (29) gives the interface velocity, 

d R {  V(~bo) V'(~bo)~ 1 20- 1 (35) 
dt 2 l+ o/R (1+ o)2R 2 

Now consider the limit of small supersaturation, qS0 = 1 - e with e < 1. To leading 
non-trivial order in E, the velocity is 

dR -- ~-R ( l c d t  - 1 )  , (36) 

where Rc = 0-/V"(1)E is the critical radius. 
In the LSW theory, an assembly of drops is considered. Growth proceeds by 

evaporation of drops with R < Rc and condensation on to drops with R > R~. The key 
is to use the time-dependent supersaturation ~(t) as a kind of  mean field, related to the 
time-dependent critical radius via R~(t) = a/V"(1)E(t), and to use equation (36) with the 
time-dependent R~ for the dynamics of  a given drop. 

So far the discussion has been restricted to spatial dimension d = 3. However, a 
result of the form (36) can be derived (with a d-dependent numerical constant 



372 A.J .  Bray 

multiplying the right-hand side) for general d > 2. The next step is to write down a 
scaling distribution of droplet radii, 

n(R, t) = ~ +  l f , (37) 

obeying the continuity equation 

On 0 
~ + ~ [v(R)n(R)] = O, (38) 

where v(R) is just the velocity dRIdt. 
Suppose that the spatial average of the order parameter is 1 - c0. At late times the 

supersaturation e(t) tends to zero, giving the constraint 

f = 2Vaj ° dR Ran(R, t) = 2Va dxxaf(x), (39) ~.o 

where Va is the volume of the d-dimensional unit sphere. Equation (39) fixes the 
normalization of f(x).  A linear equation for f (x)  can be derived by inserting the 
scaling form (37) into the continuity equation (38) and using equation (36) for v(R), 
which we write in the form (valid for general d > 2) 

eta( 1 <40> 

where ~3 = t712. This procedure gives 

where Rc =-- dRc/dt a n d f '  ---- df/dx. A consistent solution requires that the Rc dependence 
drops out from this equation. This means that RzRc = ~dY, a constant, giving 

Re(t) -- (3~dTt) 1/3. (42) 

Integrating equation (41) then gives 

(x  dy 2 - y - 7( d + 1)y 3 
In [f(x)] = | j  y 7y 3 - y + 1 (43) 

It is clear that f (x)  cannot be non-zero for arbitrarily large x, or one would have 
the asymptotic behaviour f ( x ) ~  x -(d+ 1), and the normalization integral (39) would 
not exist. Therefore f (x)  must vanish for x greater than some value Xm~x, which must 
be the first pole of  the integrand on the positive real axis. The existence of such a pole 
requires 7 ~< ~7. Lifshitz and Slyozov argue that the only physically acceptable solution 
is 7 = 70 = 4,  corresponding to a double pole at Xmax = 3. The argument is as follows. 
In terms of the scaled radius x = R/Rc, equation (40) and (42) imply that 

-- 3Tt g(x), (44) 

the last equality defining the function g(x). The form of g(x) is sketched in figure 8, 
where the arrows indicate the flow of x under the dynamics (44). From figure 8 (a) it 

dt x x 2 Tx 
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g(X) r<~'o 

(a) 

X 

g(X) ~=vo 
3/2 

(b) 

X 

Figure 8. 

g(X} 'l' > ' ) '  o 

X 

(c) 

Sketch of the function g(x), given by equation (44), for different Y, where Y0 - 4. 

is clear that, for 7 < 70, all drops with x > Xl will asymptotically approach the size 
x2Rc(t), which tends to o~ with t. Therefore it will not be possible to satisfy the condition 
(39) which imposes the conservation of  the order parameter. Similarly, figure 8 (c) 
shows that, for 7 > 70, all points move to the origin and the conservation condition again 
cannot be satisfied. The only possibility is that 7 tends to 7o asymptotically from above 
(it cannot reach 7o in finite time; otherwise all drops with x > ~ would eventually arrive 
at x = 23- and become stuck, much like the case 7 < 7o). 

Evaluating the integral (43) with 7 = 7o = 4 gives the scaling function for the droplet 
size distribution: 

(45) 

for x < 3, and f(x) = 0 for x i> 3. The constant pre-factor is fixed by the normalization 

integral (39). 
Lifshitz and Slyozov have shown that the above scaling solution is obtained for 

generic initial conditions in the limit of  small volume fraction v of  the minority phase. 
The general-d form (45) for f(x) has been derived by Yao et al. [28]. Note that the 
method described above only works for d > 2; it is easy to show that the constant ~d 
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in equation (40), which sets the time scale for the growth via equation (42), vanishes 
linearly with d - 2 for d---) 2, reflecting the singular nature of  the Green function for 
the Laplacian in d = 2. The general expression in ~d = (d -- 1)(d - 2)0-/4. Working in 
the limit of  strictly vanishing v, Rogers and Desai [29] found the same scaling form 
(45) for d = 2, but with Rc -- (t/In t) 1/3. For small but non-zero v, Yao et al. [28] find that 
Rc ~ (t/lln V[) 1/3. The two results correspond to taking the limit v ~ 0 before [29] or after 
[28] the limit t---) ~ .  

Many groups have attempted, with varying degrees of  success, to extend the LSW 
treatment to non-zero v, either by expanding in v (actually, v 1/2) [30, 31], or by the use 
of physically motivated approximation schemes and/or numerical methods [28, 32-37]. 
When v is of  order unity, however, such that both phases are continuous, different 
techniques are required, discussion of which will be postponed to section 5. 

2.7. Binary liquids 
The phase separation of binary liquids is a phenomenon of considerable 

experimental interest. Model B is inappropriate for this system, since it takes no account 
of  the transport of  the order parameter by hydrodynamic flow. Here we briefly review 
the modifications to model B needed to describe binary liquids. 

The principal new ingredient is 'advection'  of  the order parameter by the fluid. The 
appropriate modification of equation (3) is 

04> + v -  Vq5 = 2 V2#, (46) 
Ot 

where v is the (local) fluid velocity, and we have reinstated the transport coefficient 2. 
The velocity obeys the Navier-Stokes equation which, with the simplification that the 
fluid is incompressible, reads 

0 - ~  + (v-  V)v = t/V2v - Vp - q~ V#, (47) 

where p is the pressure, t/is the viscosity, and the density p is constant. The final term 
in equation (47) arises from the free-energy change q~ 8p per unit volume that 
accompanies the transport of  a fluid region with order parameter ~b over a distance for 
which the change in the chemical potential is 5#: chemical potential gradients act as 
a driving force on the fluid. 

In the overdamped limit appropriate to most experimental systems, the left-hand 
side of  equation (47) can be set to zero. The velocity is then 'slaved to the order 
parameter '  [38, 39]. The resulting linear equation for v can be solved in Fourier space: 

1 
v~(k) = ~-~ [ - ik~p(k) + F~(k)], (48) 

where F = -  ~bV~. The incompressibility condition k . v ( k ) = 0  determines the 
pressure. Putting the result into equation (48) gives, with the summation convention 

for repeated indices, 

v~(k) = T~ (k )F~ (k ) ,  

1 
(49) 
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where T is the Oseen tensor. In real space (for d = 3), 

1 / r~r~\ 
= + 7 - )  " (50)  

Putting everything together gives the equation of motion in real space, 

O4) 
/~V2/2 --  f dr '  [V~b(r). T(r - r ' )  • V'~b(r')]#(r'), (51) 

Ot J 

where we recall that #(r) -- 6F/6~b(r). In deriving the final form (51), integration by parts 
(exploiting the transverse property, T~#(k)kfl = 0, of the Oseen tensor) was used to 
convert ~b(r') V '#( r ' )  to - #(r ')  V'~b(r') inside the integral. 

It should be emphasized that, as usual, thermal fluctuations have been neglected in 
equation (51). We have previously argued, on rather general grounds, that these are 
negligible at late times, because the coarsening is controlled by a strong coupling RG 
fixed point (see, in particular, the discussion in section 8). For binary liquids, however, 
a rather subtle situation can arise when the nominally dominant coarsening mechanism 
does not operate. Then thermal fluctuations do contribute. We shall enlarge on this 
below. 

We can use dimensional arguments to estimate the sizes of the two terms on the 
right-hand side of equation (51). Using/2 ~ ~r/L, T ~  lh lL  and Vq5 ~ 1/L gives 2~r/L 3 for 
the first ( 'diffusive') term and ahlL for the second ( 'advective') term. Advective 
transport of the order parameter therefore dominates over diffusion for L >> (2q) 1/2. To 
determine L(t) in this regime, we use the expression for the fluid velocity: 

v(r) = f dr'  [T(r - r ')-  V(b(r')]#(r'). (52) 

Using the same dimensional arguments as before, and also v ~ L/t, gives L(t) ~ at/tl, 
a result first derived by Siggia [40]. This result has been confirmed by experiments [41] 
and by numerical simulations [42-44]. Because the inertial terms are negligible 
compared with the viscous force here, we shall call this the viscous hydrodynamic (or 
just viscous) regime. 

Under what conditions is it correct to ignore the inertial terms on the left-hand side 
of (47)? Using dimensional arguments again, we see that these terms are of order pL/ t  2. 
Comparing this with the driving term q5 V/2 ~ (r]L 2 on the right (the viscous term ~/~TZv 
is of the same order in the viscous regime) and using the result derived above, t ~ ~IL/a, 
for this regime show that the inertial terms are negligible when L ~ qZ&rp. At sufficiently 
late times, when this inequality is violated, the inertial terms will therefore be important. 
In this inertial regime, L(t) is determined by equating the inertial terms, which scale as 
pL/t  z, to the driving term q5 ~7#, which scales a s  ~r]L 2 (and the viscous term is negligible) 
to give L ~  (~rt2]p) 113. The t a/3 growth in the inertial regime was first predicted by 
Furukawa [45]. 

To summarize, there are in principle three growth regimes for phase separation in 
binary liquids, after a deep quench, with the growth laws 

~.Gt) 1/3, 

rt  

L( t )~"  q 

L ~ (~])1/2,  (diffusive), (53) 

q2 
(2q) m ~ L ~ - - ,  (viscous hydrodynamic) (54) 

po- 

t/ 2 
L >> - - ,  (inertial hydrodynamic). (55) 

pa  
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The results basically follow from dimensional analysis. The inertial hydrodynamic 
regime has not, to my knowledge, been observed experimentally and we shall not 
consider it further. However, a t 2/3 regime has been observed at late times in simulations 
of  two-dimensional binary liquids [44, 46]. 

Siggia [40] has discussed the physical origin of  the linear growth in the 'viscous 
hydrodynamic'  regime. He argues that the essential mechanism is the hydrodynamic 
transport of  fluid along the interface driven by the surface tension. This mechanism, 
however, can only operate if  both phases are continuous. If, by contrast, the minority 
phase consists of  independent droplets (which occurs for volume fractions less than 
about 15%), this mechanism tends to make the droplets spherical but does not lead to 
any coarsening (it is easy to show, for example, that the hydrodynamic term in equation 
(51) vanishes for a single spherical droplet). In the absence of thermal fluctuations 
therefore the Lifshitz-Slyozov evaporation-condensation mechanism determines the 
growth even beyond the nominal cross-over length given above. Thermal fluctuations, 
however, facilitate a second coarsening mechanism, namely droplet coalescence driven 
by Brownian motion of the droplets. Again, Siggia has given the essential argument. 
The mobility # of a droplet of  size L is of  order lh lL;  so the diffusion constant is given 
by the Einstein relation as D = # k B T - -  kBT/qL, where kB is Boltzmann's  constant. The 
time for the droplet to diffuse a distance of order L (and to coalesce with another droplet) 
is t ~ L2/D ~ rlL3/kBT, which gives L ~ (kBTt/q) 1/3. 

The presence of two different mechanisms leading to the same growth exponent 
suggests a 'marginal operator' in the theory, and the RG treatment in section 8 lends 
support to this view. The RG approach also shows how, in this case, a nominally 
irrelevant variable (temperature) can affect the late-stage growth in a non-trivial way. 
From a physical point of  view, it seems plausible that the presence of competing 
mechanisms will lead to a late-stage morphology that depends on the ratio of  the 
amplitudes derived for the two mechanisms, that is that scaling functions will depend 
continuously on this ratio. This could be tested by numerical simulations, where the 
transport coefficient 2 and viscosity q can be independently varied. In real binary 
liquids, however, these coefficients are related, and the ratio of  amplitudes for the two 
mechanisms depends only on the volume fraction v (see [40] and the discussion in 
section 8.4). Note that, even without hydrodynamics, the scaling functions will depend 
on v, since the morphology does. The role of  the Lifshitz-Slyozov mechanism can be 
enhanced by going to small v, since the growth rate due to evaporation-condensation 
is independent off v for small v. By contrast, the coalescence rate increases with 
increasing v. To see this, we refine the argument given in the previous paragraph. (I 
thank Andrew Rutenberg for a useful discussion of this point.) 

Let R be a typical droplet radius. Then the droplet number density is n ~ v / R  3. The 
time for a droplet to diffuse a distance of order its radius is tg ~ R2/D. The volume swept 
out by the drop in time t (for t > tR) is of  order e 3 t / t n  ~ RDt.  In a 'coalescence t ime'  
tc the expected number of  drops in this volume is of  order unity, that is nRDtc ~ 1, giving 
t~ ~ RZ/vD ~ rIR3/vkB T, where we used D ~ kBT/qR in the last step. This implies that R 
grows with time as R ~ (vkBTt/rl) 1/3, a result first given by Siggia [40]. 

3. Topological defects 
The domain walls discussed in the previous section are the simplest form of 

topological defect and occur in systems described by scalar fields (for a general 
discussion of topological defects, see for example [47]). They are surfaces on which 
the order parameter vanishes and which separate domains of  the two equilibrium phases. 
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Figure 9. 

V(,~) 

/ 

The 'Mexican hat' potential V(~) for the O(n) model with n = 2. 

A domain wall is topologically stable: local changes in the order parameter can move 
the wall but cannot destroy it. For an isolated fiat wall, the wall profile function is given 
by the solution of equation (10), with the appropriate boundary conditions, as discussed 
in section 2.2 (and sketched in figure 6). For the curved walls present in the 
phase-ordering process, this will still be an approximate solution locally, provided that 
the typical radius L of  curvature is large compared with the intrinsic width (or core size) 

of  the walls. (This could be defined from equation (12) as ~ = IV"(1)] - 1/2, say.) The 
same condition, L >> ~, ensures that typical wall separations are large compared with 
their width. 

Let us now generalize the discussion to vector fields. The O(n) model is described 
by an n-component vector field @x, t), with a free-energy functional F[~]  that is 
invariant under global rotations of  ~b. A suitable generalization of equation (1) is 

F[6] 

d n where (~(~)2 means Ei = l Ea = 1 

( 
= Jd x 2 + (56) 

(3i~ba) 2 (i.e. a scalar product over both spatial and 
'internal' coordinates), and V(~) is the 'Mexican hat' (or 'wine bottle') potential, such 
as (1 - ~2)2, whose general form is sketched in figure 9. It is clear that F[~]  is invariant 
under global rotations of ~ (a continuous symmetry), rather than just the inversion 
symmetry (~b --~ - ~b, a discrete symmetry) of  the scalar theory. We shall adopt the 
convention that V has its minimum for q~2 = 1. 

For non-conserved fields, the simplest dynamics (model A) is a straightforward 
generalization of equation (2), namely 

dV 
3t - d ~ '  (57) 

For conserved fields (model B), we simply add another - V 2 in front of the right-hand 
side. 

Stable topological defects for vector fields can be generated, in analogy to the scalar 
case, by seeking stationary solutions of  equation (57) with appropriate boundary 
conditions. For the O(n) theory in d-dimensional space, the requirement that all n 
components of  q~ vanish at the defect core defines a surface of dimension d - n (e.g. 
a domain wall is a surface of dimension d - 1; the scalar theory corresponds to n = 1). 
The existence of such defects therefore requires that n ~< d. For n = 2 these defects are 
points ( 'vort ices ' )  for d = 2 or lines ( 'strings' or 'vortex lines') for d = 3. For n = 3, 
d = 3, they are points ( 'hedgehogs '  or 'monopoles ') .  The field configurations for these 
defects are sketched in figures 10(a)-(d) .  Note that the forms shown are radially 
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(a) (b) (c) 

(d) (e) 

Figure 10. Types of topological defect in the O(n) model: (a) domain wall (n = 1); 
(b) vortex (n = 2 = d); (c) string (n = 2; d = 3); (d) monopole or 'hedgehog' (n = 3 = d); 
(e) antivortex. 

symmetric with respect to the defect core; any configuration obtained by a global 
rotation is also acceptable. For n < d, the field ~ only varies in the n dimensions 
'orthogonal' to the defect core and is uniform in the remaining d - n  dimensions 
'parallel' to the core. 

For n < d, the defects are spatially extended. Coarsening occurs by a 'straightening 
out' (or reduction in typical radius of curvature) as sharp features are removed, and by 
the shrinking and disappearance of small domain bubbles or vortex loops. These 
processes reduce the total area of domain walls, or length of vortex line, in the system. 
For point defects (n = d), coarsening occurs by the mutual annihilation of  defect-anti- 
defect pairs. The antidefect for a vortex (antivortex) is sketched in figure 10 (e). Note 
that the antivortex is not obtained by simply reversing the directions of the arrows in 
figure 10 (b); this would correspond to a global rotation through n. Rather, the vortex 
and antivortex have different 'topological charges'; the fields rotate by 2n or - 2n 
respectively on encircling the defect. By contrast, an antimonopole is generated by 
reversing the arrows in figure 10 (d); the reversed configuration cannot be generated 
by a simple rotation in this case. 

For the radially symmetrical defects illustrated in figures 10 (b)-(d), the field ~ has 
the form ~(t) = ~f(r), where ~ is a unit vector in the radial direction and f (r)  is the profile 
function. Inserting this form into equation (57), with the time derivative set to zero, gives 
the equation 

d2f n -  l df n - 1  
dr 2 t - -  = r dr r2 f -  V ' ( f )  O, (58) 

with boundary conditions f ( 0 ) =  0, f (  ~ ) =  1. Of special interest is the approach to 
saturation at large r. Putting f (r )  = 1 - E(r) in equation (58) and expanding to first 
order in E yields 

n - l l  
e(r) -~ V"(1-----) r -5 '  r---) ~ .  (59) 

This should be contrasted with the exponential approach to saturation (equation (12)) 
for scalar fields. A convenient definition of the core size ¢ is t h r o u g h f ~  1 - ~2/rZ for 
large r. This gives ~ = [(n - 1)/V"(1)] u2 for n > 1. 
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3.1. Defect energetics 
Consider an isolated equilibrium defect of  the O(n) model  in d-dimensional space 

(with, o f  course, n ~< d). For  a radially symmetrical  defect, ~(r)  =f ( r )~ ,  the energy per 
unit core volume (e.g. per unit area for a wall, per unit length for a line, or  per defect 
for a point) is, from equation (56), 

E = S ~ f  d r r" - l (~ra l  fz  + ½1V fl2 + V(f) ) ,  (60) 

where Sn = 2rcn12/F(n/2) is the surface area of  an n-dimensionai sphere. 
For scalar fields (n = 1), we have seen (section 2.2) that the terms in [Vfl 2 and V(f) 

contribute equally to the wall energy. For n I> 2, the first term in equation (60) dominates 
the other two because, f rom equation (59), the three terms in the integrand fall of f  with 
distance as r -2, r -6  and V(f)  ~ V"(1)(1 _ f ) 2  --  r -4 respectively as r---~ ~ .  For n /> 2, 
therefore, the first term gives a divergent integral which has to be cut  off  as the system 
size L~ys, that is E ~ ln(Lsys/¢) for n = 2 and E --  L~y~ 2 for n > 2. Actually, the second 
and third terms give divergent integrals for n I> 6 and n/> 4 respectively, but  these are 
always subdominant compared with the first term. 

The above discussion concerns an isolated defect. In  the phase-ordering system the 
natural cut-off  is not Lsy~ but L(t), the characteristic scale beyond which the field of  a 
single defect will be screened by  the other defects. Of  particular interest are the 
dynamics  of  defect structures much smaller than L(t). These are the analogues o f  the 
small domains of  the scalar system. For d = n = 2, these are vortex-antivortex pairs; 
for d = 3, n = 2, they are vortex rings; for d = 3 = n, they are monopole-an t imonopole  
pairs. For  such a structure, the pair separation r (for point defects) or  ring radius r (for 
a vortex loop) provides the natural cut-off. Including the factor r d- ~ for the volume of  
defect core, the energy of  such a structure is 

d - 2  F f r  l n - ,  d>~n=2, 

E--lrd_2, ~ d>~n>2. 
(61) 

The derivative with respect to r o f  this energy provides the driving force - dE~dr for 
the collapse o f  the structure. Dividing by r d - n gives the force F acting on a unit volume 
of  core (i.e. per unit length for strings, per point for points, etc.)" 

F(r)-- r " -31n  , d > n = 2 ,  

r n-3, d ~ n > 2 .  

(62) 

In order to calculate the collapse time we need the analogue of  the friction constant 
q (see section 2.3) for vector fields. This we calculate in the next section. Before doing 
so, we compute  the total energy density e for vector fields. This can be obtained by 
putting r ~ L(t) in equation (61), and dividing by a characteristic volume L(t) d (since 
there will typically be of  order one defect structure, with size of  order L(t), per scale 
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volume L( Oa), 

I 2 (L(t)'~ 
L(t)-  In - -v- l ,  

I . L ( t )  - 2, 

d ~ n = 2 ,  

d ~ n > 2 .  
(63) 

For scalar systems, of course, • -  L(t)-  1 
As a caveat to the above discussion, we note that we have explicitly assumed that 

the individual defects possess an approximate radial symmetry on scales small 
compared with L(t). It has been known for some time (for example [48]), however, that 
an isolated point defect for d > 3 can lower its energy by having the field uniform 
(pointing 'left ' ,  say) over most of space, with a narrow 'flux tube' of field in the opposite 
direction (i.e. pointing 'right'). The energy is then linear in the size of the system, 
E -- Lsys~ a-  3, which is smaller than the energy, E -- L~y~ 2, of the spherically symmetric 
defect, for d > 3. A defect-antidefect pair with separation r, connected by such a flux 
tube, has an energy E ~ r i  d- 3, which implies an r-independent force for all d i> 3, in 

contrast with equation (62). 
How relevant are these considerations in the context of phase-ordering dynamics? 

These single-defect and defect-pair calculations treat the field as completely relaxed 
with respect to the defect cores. If  this were true, we could estimate the energy density 
for typical defect spacing L(t) as ~d- 3L(t)l - d for d > 3. However, the smooth variation 
(' spin waves')  of the field between the defects gives a contribution to the energy density 
of IVq~[ 2 -  L(t)-2, which dominates over the putative defect contribution for d > 3. 
Under these circumstances, we would not expect a strong driving force for point defects 
to adopt the flux-tube configuration, since the energy is dominated by spin waves. 
Rather, our tentative picture is of the point defects 'riding' on the evolving spin-wave 
structure for d > 3, although this clearly requires further work. Note, however, that these 
concerns are only relevant for d > 3; equation (62) is certainly correct for the physically 
relevant cases d ~< 3. 

3.2. Defect dynamics 
Here we shall consider only non-conserved fields. Using the methods developed in 

section 7, however, it is possible to generalize the results to conserved fields [27]. The 
caveats for d > 3 discussed in the previous section also apply here. 

The calculation of the friction constant q proceeds as in section 2.3. Consider an 
isolated equilibrium defect, that is a vortex for d = n = 2, a monopole for n = d = 3, a 
straight vortex line for n = 2, d = 3, etc. Set up a Cartesian coordinate system xl, . . . ,  Xd. 
For extended defects, let the defect occupy the (hyper)plane defined by the last d - n 
Cartesian coordinates and move with speed v in the Xl direction. Then ~ depends only 
on coordinates xl, ... ,xn, and the rate of change in the system energy per unit volume 

of defect core is 

f 6 v  d E _  dxl ... d x n - - "  - -  
dt J ~ ot 

(64) 

The defect profile has the form ~(xl . . . . .  xn) = f ( x l  - vt, X2 . . . . .  Xn), where the function 
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j~ depends on v in general. Putting this into equation (64) gives 
2 

dt \Oxa/ 

v2 f - -  d n r ( V ~ )  2 = - r / v  2, 
n 

- ( 6 5 )  

where the function f" has been replaced by its v = 0 form to lowest order in v, and q 
is the friction constant per unit core volume. The final expression follows from 
symmetry. It follows that q is (up to constants) equal to the defect energy per unit core 
volume. In particular, it diverges with the system size for n t> 2. For a small defect 
structure of size r, we expect the divergence to be effectively cut off  at r. This gives 
a scale-dependent friction constant 

f r " -21n  r ,  d > ~ n = 2 ,  

~/(r) ~ f , 2 ~ (66) 
kr  - , d > ~ n > 2 .  

Invoking the scaling hypothesis, we can now determine the growth laws for 
non-conserved vector systems. Equations (62) and (66) give the typical force and 
friction constant per unit core volume as F(L) and q(L). Then a typical velocity is 
v ~ dL/dt  ~ F(L)/q(L),  which can be integrated to give, asymptotically, 

r ( t )  1'2 
~ \ i ~ /  ' a = n = 2 ,  

L(t) -- / (67) 
[ t 1/2,  otherwise. 

The result for n = d = 2 was derived by Pargellis et al. [49], and checked numerically 
by Yurke et al. [50]. The method used here follows their approach (I am grateful to 
N. Turok for a useful discussion of this approach.). The key concept of  a 
scale-dependent friction constant has been discussed by a number of  authors [51 ]. A 
detailed analysis of  monopole-antimonopole annihilation, in the context of  nematic 
liquid crystals, has been given by Pisman and Rubinstein [52]. 

A more general and powerful method for deriving growth laws, valid for both 
conserved and non-conserved systems, is the subject of section 7. The results agree with 
the intuitive arguments presented so far, with the possible exception of  the case 
n = d = 2, for which evidence suggestive of  scaling violations will be presented. 

3.3. The Porod  law 
The presence of topological defects, seeded by the initial conditions, in the system 

undergoing phase ordering has an important effect on the short-distance form of the pair 
correlation function C(r, t), and therefore on the large-momentum form of the structure 
factor S(k, t). To see why this is so, we note that, according to the scaling hypothesis, 
we would expect a typical field gradient to be of  order IV~I - 1/L. At a distance r from 
a defect core, however, with ¢ ~ r ~ L, the field gradient is much larger, of  order 1/r 
(for a vector field), because ~ = ~ implies that (V~) 2 = (n - 1)/r 2. Note that we require 
r >> ¢ for the field to be saturated, and r ~ L for the defect field to be largely unaffected 
by other defects (which are typically a distance L away). This gives a meaning to short 
distances (4 ~ r ~ L), and large momenta (L-  1 ~ k ~ ~ - 1). The large field gradients 
near defects leads to a non-analytic behaviour at x = 0 of  the scaling functionf(x) for 
pair correlations. 
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We start by considering scalar fields. Consider two points x and x + r, with 
4 ~ r ~ L. The product ~b(x)q~(x + r) will be - 1 if  a wall passes between them, and 
+ 1 if there is no wall. Since r ~ L, the probability of  finding more than one wall can 
be neglected. The calculation amounts to finding the probability that a randomly placed 
rod of length r cuts a domain wall. The probability is of  order r/L; so we estimate 

C(r,t) ~ ( - -  1 ) ~ +  ( +  1) 

2r 
= 1 - - -  r ~ L. (68) 

L '  

The factor 2 in this result should not be taken seriously. 
The important result is that equation (68) is non-analytic in r at r = 0, since it is linear 

in r ---- I rl. Technically, of  course, this form breaks down inside the core region, when 
r < 4. We are interested, however, in the scaling limit defined by r -> 4, L ~> 4, with 
x = rlL arbitrary. The non-analyticity is really in the scaling variable x. 

The non-analytic form (68) implies a power-law tail in the structure factor, which 
can be obtained from equation (68) by simple power counting: 

1 
S(k,t) Lkd+ 1, kL>> 1, (69) 

a result known universally as the Porod law. It was first written down in the general 
context of  scattering from two-phase media [22]. Again, one requires k4 ~ 1 for the 
scaling regime. Although the k dependence of equation (69) is what is usually referred 
to as the Porod law, the L dependence is equally interesting. The factor 1/L is simply 
(up to constants) the total area of  domain wall per unit volume, a fact appreciated by 
Porod, who proposed structure factor measurements as a technique for determining the 
area of interface in the two-phase medium [22]. On reflection, the factor 1/L is not so 
surprising. For kL >> 1, the scattering function is probing structure on scales much 
shorter than the typical interwall spacing or radius of  curvature. In this regime we would 
expect the structure factor to scale as the total wall area since each element of  wall with 
linear dimension large compared with 1/k contributes essentially independently to the 
structure factor. 

This observation provides the clue to how to generalize equation (69) to vector (and 
other) fields [53, 54]. The idea is that, for kL >> 1, the structure factor should scale as 
the total volume of defect core. Since the dimension of the defects is d - n, the amount 
of defect per unit volume scales as L n. Extracting this factor from the general scaling 
form (7) yields 

1 
S(k,  t) Lnk d + n' kL >> 1, (70) 

for the O(n) theory, a generalized Porod law. 
Equation (70) was first derived from approximate treatments of the equation of 

motion (57) for non-conserved fields [55-58]. In these derivations, however, the key 
role of  topological defects was far from transparent. The above heuristic derivation 
suggests that the result is in fact very general (e.g. it should hold equally well for 
conserved fields), with extensions beyond simple O(n) models. The appropriate 
techniques, which also enable the amplitude of the tail to be determined, were developed 
by Bray and Humayun [54] and will be discussed in detail in section 6. 



Theory o f  phase-ordering kinetics 383 

3.4. Nematic liquid crystals 
Liquid crystals have been a fertile area for recent experimental work on the kinetics 

of  phase ordering, largely because of the efforts of  Yurke and coworkers [21,49, 59-  
61]. Here we shall concentrate on the simplest liquid crystal phase, the nematic. In a 
simple picture which captures the orientational degrees of freedom of  the nematic, the 
liquid crystal can be thought of as consisting of rod-like molecules (for example [62]) 
which have a preferential alignment with the 'director' n in the ordered phase. Because 
the molecules have a head-tail  symmetry, however, the free energy is invariant under 
the local transformation n--+ - n. As a result, the nematic is usually described by a 
tensor order parameter Q that is invariant under this local transformation, and has in 
the ordered phase the representation 

Qab = S(nanb -- lt~ab). (71) 

Note that Q is a traceless symmetric tensor. The simplest free-energy functional is one 
that is invariant under global rotations of  the field n(r). It has the form [62] 

FtO]= f d3x(½ Wr(lVol=)+2TrO2-3WrO3+4 (Tr@)2 ), (72) 

where we have retained only terms up to order Q4, and the lowest order term involving 
spatial gradients. (Note that Tr Q4 = ½(Tr Q2)2 for a 3 × 3 traceless symmetric tensor; 
so we do not include this term separately.) The presence of the cubic term, allowed by 
symmetry, leads to a first-order phase transition in mean-field theory [62]. In 
experimental systems the transition is weakly first order. 

The free-energy functional (72) is an idealization of  real nematics, in the spirit of 
the Lebwohl-Lasher,  lattice Hamiltonian HLL = -- J•(i,j)(ni" nj) 2, where ni is the local 
director at site i. Both models are invariant under global rotations of n, as well as 
local inversions n - +  - n. The gradient terms in equation (72) can be written, using 
equation (71), as (ignoring constants) £i. a(Ona/Oxi) 2, that is as (~Tn) 2, which continuum 
version of HLL.The overarrow on r/ here indicates that, in these models, the spatial 
and 'internal' spaces can be considered as distinct (much as in the O(n) model, where 
n and d can be different). In real nematics, however, these spaces are coupled. An 
appropriate gradient energy density is the Frank energy 

EF = Kl(V" n) 2 -}- g2(n  . V  X n)  2 --}- K3ln X (V >( n)l 2, (73) 

where the Frank constants K1, K2 and/(3 are associated with 'splay' ,  ' twist '  and 'bend'  
of  the director [62]. The isotropic models discussed above correspond to the case 
K1 = K2 = K3, the much-used equal-constant approximation. We shall limit our 
considerations exclusively to this case. 

In a similar spirit, we adopt the simplest possible dynamics, namely the purely 
relaxational dynamics of  model A. This captures correctly the non-conserved nature of 
the dynamics but ignores possible complications due to hydrodynamic interactions. 
Recent work comparing experimental results with simulations based on relaxational 
dynamics provides some justification for this approach [63]. The equation of motion 
is OQlOt = -8G[Q]ISQ,  where G[Q] = F[Q] - f d 3 x 2 ( x ) Q ( x )  and 2 is a Lagrange 
multiplier introduced to maintain the condition Tr Q = 0. Imposing the constraint to 
eliminate 2 gives 

OQ _ V2 Q _ rQ + w(Q 2 - ½I Tr Q2) _ uQTr  Q2, (74) 
ot 
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Figure 11. 

+1/2 -1/2 
Cross-section of +- {-string configurations for a nematic liquid crystal. 

where I is the unit tensor. This equation will be discussed in more detail in section 5.4. 
Owing to the extra local symmetry (compared with 0(3)  models) under n --> - n, 

nematic liquid crystals support a number of  defect types [47]. In the present context, 
the most important are string defects, or 'disclinations', in which the director rotates 
through + n on encircling the string, as sketched in figure 11. The + ½ strings are 
topologically stable in contrast with +- 1 string configurations (in nematics and the 0(3)  
model) which can be relaxed by smoothly canting the order parameter towards the string 
axis ( 'escape in the third dimension').  The presence of string defects (which have been 
observed by Yurke 's  group [59]), makes the nematic more akin to the 0(2)  model than 
to the 0(3)  model as far as its ordering kinetics are concerned. In particular, if  we make 
the natural assumption that the total string length decreases as L -  2, a Porod law of the 
form (70) with n = 2 is predicted. Scattering data were originally interpreted as being 
consistent with n = 3-like behaviour, that is an effective exponent d + n = 6.0 -+ 0.3 in 
equation (70) was observed [60], but it is not d e a r  whether the appropriate region of 
the structure factor tail was fitted [64]. Numerical simulations of a 'soft-spin'  version 
of the Lebwohl-Lasher  model [65] are fully consistent with a tail exponent of  5 [64]. 
We shall return to this point in section 5.4. 

4. Exact ly  soluble mode l s  
There are few exactly solved models of phase-ordering dynamics and, unfortu- 

nately, these models are quite far from describing systems of physical interest. 
However, the models are not without interest, as some qualitative features survive in 
more physically relevant models. In particular, such models are the only cases in which 
the hypothesized scaling property has been explicitly established. 

We begin by discussing phase ordering of a vector field in the limit that the number 
n of vector components of  the field tends to infinity. This limit has been studied, mostly 
for non-conserved fields, by a large number of  workers [16, 20,66-69].  (A rather 
complete discussion of growth kinetics in the large-n limit, for both conserved and 
non-conserved dynamics is contained in [67].) In principle, the solution is the starting 
point for a systematic treatment in powers of  1/n. In practice, the calculation of the 
O(1/n) terms is technically difficult [20, 69]. (Note that [69] corrects an error in [20].) 
Moreover, some important physics is lost in this limit. In particular, there are no 
topological defects, since clearly n > d + 1 for any d as n --> ~ .  As a consequence, the 
Porod law (70), for example, is not found. It  turns out, however, that similar techniques 
can be applied for any n after a preliminary transformation from the physical order 
parameter field ~ to a suitably chosen 'auxiliary field' ~ .  This is discussed in 
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section 5. The topological defects are incorporated through the functional dependence 
of ~ on rh, and the Porod law is recovered. 

4.1. The large-n limit: non-conserved f ie lds  
Although not strictly necessary, it is convenient to choose in equation (57) 

the familiar '~b 4' potential, in the form V(~p)= ( n -  (a2)2/4n, where the explicit 
n-dependence is for later convenience in taking the limit n + o~. With this potential, 
equation (57) becomes 

0 K =  
V2q~ + ~ _ ! (q~2)q~. (75) 

Ot n 

The simplest way to take the limit is to recognize that, for n --~ oo, (a2/n can be replaced 
by its average, to give 

0~b _ V2q5 + a(t)qS, (76) 
Ot 

a(t) = 1 - (q52), (77) 

where ~b now stands for (any) one of the components of ~. Equation (76) can 
alternatively be derived by standard diagrammatic techniques [20]. Equation (76) can 
be solved exactly for arbitrary time t after the quench. However, we are mainly 
interested in late times (i.e. the scaling regime), when the solution simplifies. After 
Fourier transformation, the formal solution of equation (76) is 

~bk(t) = qSk(0) exp [ - k2t + b(t)], (78) 

b(t) = dt' a(t ') ,  (79) 

giving 

db 
a(t) = ~ = 1 - A ~ exp [ -- 2kZt + 2b(t)], (80) 

k 

where equation (4) has been used to eliminate the initial condition. Since we shall find 
a posteriori  that a(t) ~ 1 at late times, the left-hand side of equation (80) is negligible 
for t ~ ~ .  Using Ek exp ( -- 2kZt) = (8rtt) - a/2 gives b(t) ~ (d/4) In (t/to), where 

to = A2 /~ /8~ .  (81) 

Therefore a(t) ~ d/4t for t ~ w, and the solution of equation (78), valid at late times, 
is 

/ t \  dig 

~bk(t) = ~b,(0)~0) e x p ( -  kz,). (82) 

Using equation (4) once more, we obtain the structure factor and its Fourier transform, 
the pair correlation function, as 

S ( k ,  t) = (8g t )  d/2 exp ( - 2k2t), (83) 

C(r,t) = exp ( - ~ t ) "  (84) 

The results exhibit the expected scaling forms (7), with length scale L(t) ~ t 1/2. Note that 
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the structure factor has a Gaussian tail, in contrast with the power-law tail (70) found 
in systems with n ~< d. It might be hoped, however, that the large-n forms (83) and (84) 
would be qualitatively correct in systems with no topological defects, that is for 
n > d + 1. These cases will be discussed in section 6. 

4.2. Two-time correlations 
Within the large-n solution, we can also calculate two-time correlations to test the 

scaling form (8). It turns out (although this becomes apparent only at O(1/n)) [20, 69] 
that there is a new non-trivial exponent associated with the limit when the two times 
are well separated. (A similar exponent has been introduced in the context of 
non-equilibrium critical dynamics by Janssen et al. [70].) 

From equation (82) it follows immediately that 

S(k, t, t') --= (~bk(t){b - k(t')) = [8rc(tt')l/2]a~2 exp [ - 12(t + t')], (85) 

{ 4tt' ~d14 r 2 
C(r,t,t')--=(~b(r,t)q%(0, t ' ) ) = ~ )  e x p [  4(t-+t ')]" (86) 

Equation (86) indeed has the expected form (8). In the limit t>> t', equation (86) 
becomes 

[4t'~ a!4 __ r 2 
C(r , t , t ' )  = ~ t  } e x p ( ~ )  

(L'~ Ih( r" ~ 
= \ - £ j  \ - i j '  

(87) 

(88) 

where the last equation defines the exponent 2 through the dependence on the later 
time t. Clearly, ,T = d/2 for n = :o. When the O(1/n) correction is included, however, 
an entirely non-trivial result is obtained [20, 69]. 

It is interesting to consider the special case where the earlier time t' is zero. Then 
C(r, t, 0) is just the correlation with the initial condition. This quantity is often studied 
in numerical simulations as a convenient way to determine the exponent 2. Within the 
large-n solution, equations (82) and (81) give, in Fourier and real space, 

S(k, t, 0) - [8rt(tto)m]d/Zexp ( - 120, (89) 

/ 4to ~ a/4 [ __ r 2 
C(r , t ,O)= ~-T-) exp ~ ~). (90) 

This is just what one gets by replacing t' by to in equations (85) and (86) (with to playing 
the role of a short-time cut-off), and then neglecting to compared with t. 

A related function is the response to the initial condition, defined by 

C(k, t) = / \Oq~k(O)/" (91) 

Within the large-n solution, equation (82) gives immediately 

( t la/4 
G(k, t) = \~0/ exp ( - 12t). (92) 

Comparing equations (89) and (92) and using equation (81) once more give the relation. 

S(k, t, 0) = AG(k, t). (93) 
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This is an exact result, valid beyond the large-n limit, as may be proved easily using 
integration by parts on the Gaussian distribution for { q~k(0) }. The general scaling form 
for G(k, t), namely 

G(k, t) = L~gR(kL), (94) 

defines a new exponent 2, equal to d/2 for n = ~ .  Since, however, the correlation with 
the initial condition has the scaling form C(r, t, O) = L -  Xf(r/L), the identity (93) gives 
immediatelyt  

= d - 2. (95) 

(The symbol I is also used for the transport coefficient in systems with conserved 
dynamics. This should not be a source of confusion, as the meaning will be clear from 
the context.) 

Before leaving this section, it is interesting to consider to what extent the results 
depend on the specific form (4) chosen for the correlator of the initial conditions. Let 
us replace the right-hand side of  equation (4) by a function A(Ix - x']), with Fourier 
transform A(k). Then A(k) will appear inside the sum over h in equation (80). The 
dominant k values in the sum, however, are of order t -  v2; so for late times we can 
replace A(k) by A(0), provided that the latter exists. The means that universal results 
are obtained when only short-range spatial correlations are present at t = 0. For 
sufficiently long-range correlations, however, such that A(k) diverges for k---)0, new 
universality classes are obtained. We shall return to the role of initial conditions, f rom 
a more general perspective, in section 8. 

4.3. The large-n limit: conserved fields 
For conserved fields, the calculation proceeds as before, but with an extra - V 2 on 

the right-hand side of  the equation of motion. Making as before, the replacement 
~92/n ~ (q52) for n---) ~ ,  where q5 is (any) one component of q~, one obtains 

0 ~  --  V4(~ --  a(t)~72q~, ( 96 )  
at 

with a(t) still given by equation (77). Transforming to Fourier space, the solution is 

~bk(t) = ~bk(0) exp [ -- k4t + kZb(t)]. (97) 

The function b(t), defined as in equation (79), satisfies the equation 

db 
a(t) = - -  = 1 - A ~ exp [ - 2k4t + 2kZb(t)]. 

dt k 
(98) 

This equation was solved by Coniglio and Zannetti [16], by first expressing the sum 
over k as a parabolic cylinder function and then taking the large-t limit. Here we shall 
take the large-t limit from the outset and recognize that the sum can then be evaluated 
using steepest descents. Just as for the non-conserved case, we can show a posteriori 
that db/dt ~ 1 at late times, so that this term can be dropped from equation (98). After 

? The exponent 2 defined here (and in earlier papers bythe present author) differs from that 
defined in [19] and in Mazenko's papers. Their 2 is our 2. 
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the change of variable k = [b(t)/t]lax, we obtain 

/b\a/2 r ~ 
l = ACd~t)  Jo x a - l d x e x p [ 2 f l ( x 2 - x 4 ) ] '  (99) 

where Ca is an uninteresting constant, and 

b2(t) 
fl(t) - (100) 

t 

Providing fl(t) --~ ~: for t = ~ (which can be verified a posteriori), the integral on the 
right of equation (99) can be evaluated by steepest descents. Including the Gaussian 
fluctuations around the maximum of the integrand at x = 1/2 m gives 

/fl\dl4 
l=cons tan tA f l -a / z~ t  ) exp ( f l ) ,  (101) 

with asymptotic solution 

d 
f l~ -~ ln t ,  t-+ o~, (102) 

justifying the use of the steepest-descents method for large t. Putting this result into 
equation (97) gives the final result for the structure factor [16] 

S(k, t) ~ t (d/4)4'(k/km) (103)  

- ~ ( d l n t ]  TM (104) 
km \8 t /  

q~(x) = 1 - (1 - x 2 )  2. (105) 

Here kin(t) is the position of the maximum in S(k, t). A slightly more careful treatment 
(retaining the leading subdominant term in equation (102)), gives an additional 
logarithmic pre-factor, of  order (In 0 (2 - d)/4, in equation (103), such that (asymptotically 

in time) •kS(k, t) = 1. 
Equation (103) is interesting because, in contrast with the non-conserved result (83), 

it does not have the conventional scaling form. Rather it exhibits 'multiscaling' [16]. 
In particular there are two, logarithmically different length scales km ~ and L = t TM. For 
simple scaling, these two scales would be the same. Furthermore, for fixed scaling 
variable, which can be written as k/km, the structure factor would vary as L(t) d, with a 
pre-factor depending on the scaling variable. In the multiscaling form (103), for fixed 
scaling variable, S(k, t ) ~  L do(k/kin), that is the exponent depends continuously on the 
scaling variable. 

After the discovery of multiscaling in the n ~ ~ limit, some effort was devoted to 
looking for similar phenomena at finite n, notably for scalar systems [71], but also for 
n = 2 [72, 73] and n = 3 [74]. However, no evidence was found for any departure from 
simple scaling for any finite n. At the same time, Bray and Humayun [75] showed, 
within the context of an approximate calculation based on an idea of Mazenko, that 
simple scaling is recovered asymptotically for any finite n. This result is discussed in 
detail in section 5. 

4.4. The one-dimensional Ising model 
An exceptionally simple system that can be solved exactly [15] is the Ising model 

in one dimension with Glauber dynamics. It is defined by the Glauber equation for the 
spin probability weight: 
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d p ( s ~  . . . . .  SN;  t )  = - -  P ( S 1  . . . . .  Su; t) ~_~ ( 1 -  S~t2nh (flhi) ) 

+ ~ , P ( S I  . . . . .  - S i  . . . . .  S N ; t ) ( l + S i t ? h ( f l h i )  I , (106) 
i 

\ 1 - .  / 

where fl = I/T, hi = J(Si-  l + Si + 1) is the local field at site i, and periodic boundary 
conditions Si + N = Si have been adopted. 

From equation (106), it is straightforward to derive the equation of  motion for the 
pair correlation function Cij(t) = (Si(t)Sj(t)), where the angular brackets indicate an 
average over the distribution P. After averaging also over the initial conditions, Cij 
depends only on the difference r = li -Jl  if the ensemble of  initial conditions is invariant 
under translations. Then one obtains 

d 
d t C ( r , t ) = C ( r +  l , t ) - 2 C ( r , t ) + C ( r - l , t ) ,  r4:0 ,  (107) 

For r = 0, one has trivially C(0, t) = 1 for all t. To solve for C in the scaling limit, 
it is simplest to take the continuum limit, when equation (107) reduces to the 
diffusion equation, OC/Ot = 02C/Or 2, with constraint C(0, t) = 1. A scaling solution 
obviously requires L(t) = t 1/2. Inserting C(r, t) = f ( r / t  1/2) in the diffusion equation gives 
f "  = - (x/2)f ' ,  which can be integrated with boundary conditions f(0)  = 1, f ( ~  ) = 0 
to give f ( x ) =  erfc (x/2), where erfc is the complementary error function. Thus the 
scaling solution is 

C(r, t) = erfc . (108) 

In particular, the solution exhibits the expected Porod regime 

C = 1 - r/(rct) 1/2 + O(r3113/2)  

at short distances. A more complete discussion can be found in [15]. 
The scalar TDGL equation (2) is also soluble in one dimension, in the sense that 

the scaling functions can be exactly calculated [76]. When L(t)>> 4, neighbouring 
domain walls interact only weakly, with a force of order exp ( - L/ i ) ,  leading to a 
logarithmic growth law L -- ~ Int. Moreover, in the limit L/~ ~ ~ ,  the closest pair of 
domain walls interact strongly compared with other pairs, so that the other walls can 
be treated as stationary while the closest pair annihilate. This leads to a simple recursion 
for the domain size distribution, with a scaling solution [76]. It is interesting that the 
fraction of the line which has never been traversed by a wall decays with a non-trivial 
power of the mean domain size [77]. A similar phenomenon (but with a different power) 
occurs for Glauber dynamics [78]. 

4.5. The one-dimensional X Y  model 
As our final example of a soluble model, we consider the case d = 1, n = 2, with 

non-conserved order parameter. The solution, first given by Newman et al. [68], is 
interesting for the 'anomalous' growth law obtained, namely L(t) ~ t TM. Here we shall 
give a more detailed discussion than appears in [68], emphasizing the scaling violations 
exhibited by, in particular, the two-time correlation function. In section 7, we shall 
present a general technique, developed by Bray and Rutenberg (BR) [79], for 
determining growth laws for phase-ordering systems. The scaling form (8) plays an 
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important role in the derivation. For the d = 1, n -- 2, model,  however,  our method fails 
to predict the correct t TM growth. The reason is precisely the unconventional  form (i.e. 
different f rom equation (8)) o f  the two-t ime correlation function for this system. 

It is simplest to work with ' f ixed-length'  fields, that is t~ 2 = 1, with Hamiltonian 
F=½fdx(Offo/Ox) 2. The constraint can be eliminated by the representation 
4~ = (cos 0, sin 0), where 0 is the phase angle, to give F=½fdx(OO]Ox) 2. The 
'model  A '  equation o f  motion, O010t = - OF~SO, becomes 

00 020 
at Ox 2' (109) 

that is a simple diffusion equation for the phase. In general dimensions, it is difficult 
to include vortices, which are singularities in the phase field, in a simple way. Such 
singularities, however,  are absent for d = 1. 

Equation (109) has to be supplemented by suitable initial conditions. It is convenient  
to choose the probability distribution for O(r, 0) to be Gaussian; in Fourier space 

~k 
0k(0)0- k(0)). (110) 

Then the real-space correlation function at t = 0 is readily evaluated using the Gaussian 
property o f  the { 0k(0) /: 

C(r, O) = (cos [O(r, O) - 0(0, 0)]) 

= exp [ - ½([0(r, 0) - 0(0, 0)]2)} 

( ~ e - c o s ( k r ) )  (111) 
= exp - flk " 

The choice flk = (~/2)/~ yields C(r, 0) = exp ( - Irl/~), appropriate to a quench from a 
disordered state with correlation length 4. 

The general two-time correlation function can be calculated in the same way [80]. 
Using fig = (~/2)/~, and the solution Ok(t) = Ok(O)exp ( - k 2 t )  of  equation (109), gives 

C(r, tt, t2) = (cos [O(r, tl) - 0(0, tz)]) 

= exp { - ½([0(r, tl) - 0(0, t2)]2)} 

( 1 
= exp - "~k ~-~ { [exp ( - k2h) - exp ( - k2tz)] 2 

211 - cos (kr)] exp [ - k2(ta + t2)]}). (112) + 

Since we shall find that r is scaled by (h + t2) TM, we can take kr '~  1 in the summand 
for the r values o f  interest, that is we can replace 1 - cos (kr) by (kr)2/2. Evaluation of  
the sums then gives 

1 r 2 _ (2t2)1/2)]. C(r, tl, t2) = exp [ - -~Ti~  (2(t  1 + t2)112 + 2(t l -k-t2)al2--(2t l)  a/2 (113) 
/.3 

For the special case t~ = t2 = t, equation (113) reduces to 

C(r, t, t) = exp [ - r2/2~(2~t)l/2], 

which has the standard scaling form (7), with growth law L(t) ~ t TM. This growth law 
is unusual; we shall show in section 7 that the generic form for non-conserved fields 
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is L(t)  ~ t u2, just as in the large-n result (84). Another, related feature of equation (113) 
is the explicit appearance of ¢, the correlation length for the initial condition. The large-n 
solution, for example, becomes independent of ¢ for L(t)  ~> ~. The most striking feature 
of equation (113), however, is the breakdown of  the scaling form (8) for the two-time 
correlations. It is this feature that invalidates the derivation of the result L(t)  ~ t 1/2 given 
in section 7. It is possible that a similar anomalous scaling is present in the c o n s e r v e d  
d = 1 X Y  model, for which simulation results [72, 74] suggest L(t)  ~ t ~/6, instead of  the 
t TM growth derived in section 7 assuming simple scaling for two-time correlations. 
Unfortunately, an exact solution for the conserved case in non-trivial. 

The explicit dependence of equation (113) on ¢ suggests an unusual sensitivity 
to the initial conditions in this system. A striking manifestation of  this is obtained 
by choosing initial conditions with a non-exponential decay of correlations. For 
example, choosing f l k -  Ikl = for small Ikl in equation (110) gives, via equation (111), 
C(r,  0) -- exp (constant Irl = -  1) for large Irl, provided that 1 < c~ < 3. The calculation of 
the pair correlation function is again straightforward. For example the equal-time 
function has a scaling form given by C(r,  t ) =  exp (constant r2/t ~3 -~)/2), implying a 
growth law L ( t ) ~  t ~3 -~)/4, but the two-time correlation still does not scale properly. 

An especially interesting case is ~ = 1, which generates power-law spatial 
correlations in the initial condition. Thus we choose fl~ = Ikl/  for  Ikl <--- A,  and flk = ~ 
for Ik[ > A, where A is an ultraviolet cut-off. Then the initial-condition correlator has 
the form C(r, O) ~ ( A r )  - ~/~ for A r  >> 1. The general two-time correlation function now 
has the conventional scaling form (8), with L(t)  ~ t ll2. Its form is 

r ~{  4tlt2 ~y/4~ 
C(r, tl, t2) = f ( ( q  + t 2 ) ~ / 2 ] \ ~ + ~ ) 2  } , (114) 

where f ( x )  is the equal-time correlation function. In particular, for t2 >> tt this gives 
C(r,  tl, t2) ~f (r / t~/2)  (4tl/t2)7/4~; so the exponent 2 defined by equation (9) is ~/2rt for this 
model. Also the large-distance behaviour of the equal-time correlation function is 
f ( x )  ~ x - ~ / ~ ,  exhibiting the same power-law decay as the initial condition. These two 
results are in complete agreement with the general treatment [81] of initial conditions 
with power-law correlations, given in section 8.3.1. 

5. Approximate theories for scaling functions 
While the determination of growth laws (i.e. the form of L(t)) has proved possible 

using fairly simple arguments (as in section 2.5), which can be made precise by the use 
of exact relations between correlation functions (section 7), or RG methods (section 8), 
the calculation of scaling functions, for example the pair correlation scaling function 
f ( x )  (see equation (7)), has been a long-standing challenge. In the previous section we 
have shown that this function can be calculated exactly in a number of  soluble models. 
With the exception of the 1 -  d Glauber model, however, the models lack the 
topological defects that play such an important role in realistic models. In particular, 
these defects are responsible for the power-law tail (70) in the structure factor. 

In this section we shall review some of  the approximate theories that have been put 
forward for the scaling function f ( x )  of  the pair correlation function. The most 
successful by far are theories for non-conserved fields. Even these, however, are not 
quite as good as has been believed, as we shall show. We shall propose a new approach 
which can in principle lead to systematically improvable calculations of scaling 
functions for non-conserved fields. For conserved fields the theory is in a less 
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satisfactory state. We shall try to give some indication of why this is so. Finally we 
emphasize that the discussion is limited throughout to the late-stage scaling regime. 

5.1. Non-conserved fields 

A number of  approximate scaling functions have been proposed for non-conserved 
fields, but in my view none of them is completely satisfactory. The most physically 
appealing approach for scalar fields is that of  Ohta, Jasnow and Kawasaki (OJK) [82], 
which starts from the Allen-Cahn equation (18) for the interfaces. Below we will review 
the OJK method, as well as an earlier approach by Kawasaki, Yalabik and Gunton 
(KYG) [83], and more recent work by Mazenko [84-86]. Finally we discuss in detail 
a new approach [52] which has the virtue that it can, in principle, be systematically 
improved. 

5.1.1. The O h t a - J a s n o w - K a w a s a k i  theory 

A common theme, introduced by OJK, in the approximate theories of  scaling 
functions is the replacement of  the physical field q~(x, t), which is + 1 everywhere 
except at domain walls, where it varies rapidly, by an auxiliary field re(x, t), which varies 
smoothly in space. This is achieved by using a non-linear function q~(m) with a 's igmoid'  
shape (such as tanh m). In the OJK theory, the dynamics of  the domain walls themselves, 
defined by the zeros of  m, are considered. The normal velocity of  a point on the interface 
is given by the Allen-Cahn equation (9), v = - K = - V-  n, where K is the curvature, 
and n = Vm/]Vm] is a unit vector normal to the wall. This gives 

- VZm + nanbVaVbm 
v = iVml (115) 

In a frame of reference comoving with the interface, 

dm = 0 =  0m + v .Vm.  (116) 
dt Ot 

However, since v is parallel to Vrn (and defined in the same direction), v .  Vm = v]Vrn]; 
s o  

1 Om 
v =  ]Vm I Ot (117) 

Eliminating v between equations (115) and (117) gives the OJK equation 

Om 
- -  = •2m -- nanbVaVhm. (1 18) 
Ot 

Since n = Vm/]Vm], this equation is nonlinear. To make further progress, OJK made 
the simplifying approximation of replacing nonb by its spherical average bah M, obtaining 
the simple diffusion equation 

Om 
- D V2m, (119) 

Ot 

with diffusion constant D = ( d -  1)/d. 
Provided that there are no long-range correlations present, we do not expect the 

form of the random initial conditions to play an important role in the late-stage scaling. 
A convenient choice is a Gaussian distribution for the field re(x, 0), with mean zero 



Theory of phase-ordering kinetics 393 

and correlator 

(re(x, 0)m(x', 0)) = Afi(x - x'). (120) 

Then the linearity of equation (119) ensures that the field m(x, t) has a Gaussian 
distribution at all times. Solving equation (119) and averaging over initial conditions 
using equation (120) give the equal-time correlation function 

(m(1)m(2)) - (8rcDt)a/2 exp -- 8Dt ' (121) 

where 1 and 2 represent space points separated by r. Of special relevance in what follows 
is the normalized correlator 

( r2 ) 
(m(1)m(2)) = exp - ~  (122) 

7(12) --= (m( 1 )2)1/2(m(2)2 ) 1/2 

The generalization to different times is straightforward [88] and will be given explicitly 
below. 

To calculate the pair correlation function of the original field ~b, we need to know 
the joint probability distribution for m(1) and m(2). For a Gaussian field this can be 
expressed in terms of the second moments of m: 

[ 1 (m(1)Z+m(2)22~rem~l)em(2!l/2) ] (123) 
P(m(1),m(2)) = N e x p  2(1 - y 2) \S0(1) S0(2) to0~xlo0k~)] / J '  

where 7 = ~(12), and 

S0(1) = (m(1)2), S0(2) = (m(2)2), N- -  (2rt)- 1[(1 - 72)S0(1)S0(2)] -1/2 (124) 

Note that equation (123) is a general expression for the joint probability distribution 
of a Gaussian field, with 7 defined by the first part of (122). Now 1 and 2 represent 
arbitrary space-time points. For the special case where m obeys the diffusion 
equation (119), y is given by 

[ 4tit2 ~a/4 ( r2 ) 
Y = ~(tl + t2) 2} exp 4D(tl + t2) ' (125) 

a simple generalization of equation (122). 
The pair correlation function is given by C(r, t) = (q~(m(1))qS(m(2))). In the scaling 

regime, one can replace the function qS(m) by sgn (m), because the walls occupy a 
negligible volume fraction. In a compact notation, 

2 
C(12) = (sgn [re(l)] sgn [m(2)]) = - sin 1 (7). (126) 

72 

The Gaussian average over the field m required in equation (126) is standard (for 
example [89]). Equations (122) and (126) define the OJK scaling function for 
equal-time pair correlations. Note that (apart from the trivial dependence through D) 
it is independent of the spatial dimension d. We shall present arguments that it 
becomes exact in the large-d limit. The OJK function fits experiment and simulation 
data very well. As an example, we show the function f(x) for the d = 2 scalar theory 
in figure 12. 

The general two-time correlation function is especially interesting in the limit ta >> t2 
that defines (see, for example, equation (88)) the exponent 2. Since 7 ~ 1 in this limit, 
equation (126) can be linearized in 7 to give C(r, t~, t2) -- (4tl/t2) a/4 exp ( - rz/4Dt2), that 
is ,~ = d/2 within the OJK approximation. 



394 A. J. Bray 

w 
u,... 

0"8 

0'6 

0'4 

1 I, 

\ 
q~ 

"% 

\ 
% 

o 

~. HAZENKO 

• OJK 

o t=160 lM 
C I 

o 1"=320/  

~t 

ro,.~., 

0 1 2 3 /+ 
x = rl t112 

Figure 12. Scaling function f (x)  for the non-conserved d = 2 Ising model, showing Monte 
Carlo data (MC) from figure 5, and the approximations of OJK [82] and Mazenko [85]. 
The scaling lengths L(t) for the theoretical curves were chosen to give the same slope as 
the data in the linear Porod regime at small x (from [90]). 

5.1.2. The Kawasak i -Ya lab ik -Gun ton  method 
An earlier approach, due to KYG, building on still earlier work of  Suzuki [91 ], was 

based on an approximate resummation of  the direct perturbation series in the 
nonlinearity, for the quartic potential V(q~) = ¼(1 - q~2)2. The equation o f  motion (2) for 
this potential is 

0A = V2~b q- ~b - g~b 3, (127) 
Ot 

with g = 1. The basic idea is to treat g as small, to expand in powers of  g, to extract 
the leading asymptotic (in t) behaviour of  each term in the series and to set g = 1 at the 
end. However,  an uncontrolled approximation is made in simplifying the momentum 
dependence o f  each term (the expansion is performed in Fourier space). After setting 
g = 1, the final result can be expressed in terms of  the mapping 

m 
qS(m) - (1 + m2) 1/2" (128) 

It is found that m obeys the equation 

Om 
- -  = ~ 7 2 m  + m ,  (129)  
0t 

instead of  equation (119), which gives an exponential growth superimposed on the 
diffusion. After the replacement qS(m)+ sgn (m), however,  this drops out; the OJK 
scaling function (126) is recovered, with 7 given by equation (122) (but with D = 1). 

The nature o f  the approximation involved can be clarified by putting equation (128) 
into equation (127) (with g = 1) to derive the exact equation satisfied by m: 

- 3 mlVml2 Om V2m + m -  (130) 
Ot 1 -k m 2 " 
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In contrast with a claim made in [83], there is no reason to neglect the final term. On 
a physical level, the fact that this approach gives the correct growth law L(t) ~ t 1/2 seems 
to be fortuitous (see the discussion in section 7). In particular, the crucial role of the 
interfacial curvature in driving the growth is not readily apparent in this method. By 
contrast the OJK approach, while giving the same final result, clearly contains the 
correct physics. 

Despite its shortcomings, the KYG method has the virtue that it can be readily 
extended to vector fields [55, 92]. Equation (129) is again obtained, but with m replaced 
by a vector auxiliary field rh, with ~ = rfi/(1 + rfi2) 1/2. At late times, ~ --> i~, a unit 
vector, almost everywhere and C(12) = (~(1) .  ~(2)}. Taking Gaussian initial condi- 
tions for rh, the resulting scaling function is [55], with 7 again given by equation (122) 
(but with D = 1), 

n'~[ (_n+l 1"~12F(1 1 n+2 ) 
C ( 1 2 ) = ~  B 2 ' 2 ] J  \ 2 ' 2 ;  2 ;72 ' (131) 

where B(x, y) is the beta function and F(a, b; c; z) the hypergeometric function 2F1. The 
same scaling function was obtained independently by Toyoki [56]. We shall call it the 
Bray-Puri-Toyoki  (BPT) scaling function. The result (122) for Y implies L(t) ~ t 1/2 for 
all n within this approximation. 

Both equations (119) and (129) suffer from the weakness that (for scalar fields) the 
width of the interface changes systematically with time. Since (b(m) is linear in m for 
small m, and IVqS[ is fixed (by the interface profile function) in the interface, we expect 
([Vml 2) = constant. Equations (119) and (129), however, give ([Vml 2) - - t  -(a+2~/2 and 
(IVml 2) - exp (2t)/t (d+ 2~/2 for this quantity, corresponding to increasing and decreasing 
interface widths respectively. Oono and Puri [89] showed that this unphysical feature 
can be eliminated by introducing an extra term h(t)m in equation (119). Since this term 
vanishes at the interfaces, where m = 0, its inclusion does not change the underlying 
physics. Fixing h(t) by the requirement (IVml2} = constant gives h(t) --~ (d + 2)/4t at late 
times. The scaling function (126), however, is unaffected by the presence of the extra 
term. In section 5.2 we shall find that the Oono-Puri result arises naturally within a 
systematic treatment of  the problem. 

5.1.3. The Mazenko method 
In an interesting series of papers, Mazenko [84-86] has introduced a new approach 

that deals with the interface in a natural way. This approach combines a clever choice 
for the function ~b(m) with the minimal assumption that the field m is Gaussian. 
Specifically qS(m) is chosen to be the equilibrium interface profile function, defined by 
(compare equation (10)) 

~b"(m) = V'(qb), (132) 

with boundary conditions ~b( _ w ) = -+ 1, qS(0) = 0. The field m then has a pl~ysical 
interpretation, near walls, as a coordinate normal to the wall. Note that this mapping 
transforms a problem with two length scales, the domain scale L(t) and the interface 
width 4, into one with only a single length Scale, namely L(t) (figure 13). With the choice 
(132) for ~b(m), the TDGL equation (2) becomes 

04b = V2q~ - qS"(m). (133) 
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Figure 13. Spatial variation (schematic) of the order parameter ~b and the auxiliary field m, 
defined by equation (132). 

Multiplying by tk at a different space point and averaging over initial conditions gives 

2a-arC(12) = V2C(12) - (q~"(m(1))c~(m(2))).  (134) 

So far this is exact. In order to simplify the final term in equation (134), Mazenko 
assumes that m can be treated as a Gaussian field. Then the final term can be expressed 
in terms of C(12) itself as follows, exploiting the Fourier decomposition of ~b(rn) and 
the Gaussian property of m [85]: 

(~b"(m(1))~b(m(2))) = ~ ~bk, q~k2( -- kZ)(exp [iklm(1) + ik2m(2)]) 
kl, k2 

= ~] ,k:~bk2(_k2)exp(k2So(1) ~So(2) k lk2Co(12) )  
kt,kz 2 2 

aC(12) 
- -  2 (135) 

a s o ( 1 )  ' 

where So(l) and So(2) are given by equation (124) and Co(12)= (m(1)m(2)). The 
derivative in equation (135) is taken holding So(2) and Co(12) fixed. Since, from the 
definition (122), 7(12) = Co(12)/[So(1)So(2)] 1/2, the general result (126) for Gaussian 
fields implies that 

0C(12) dC(12) 0y(12) 
2 - 2  

0So(1) d?(12) 0So(l) 

where 

dC(12) 
= a(t)y(12) d T~ ] ~ '  (136) 

1 
a(t)  - - -  - (re(l) 2) x. (137) 

So(l) 
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Putting it all together, and suppressing the arguments, the final equation for C is 

dC 
½0tC = VZC + a(t)~ -d~ 7 . (138) 

Using equation (126) for C(7) gives 7dC/d7 = (2/~)tan [(rc/2)C]. Then equation 
(138) becomes a closed nonlinear equation for C. For a scaling solution, one requires 
L(t)  ~ t 1/2 and a(t) = 2/2t  for large t in equation (138), so that each of  the terms scales 
as l / t  times a function of the scaling variable r/ t  1/2. Setting C(t, t) = f ( r / t  ~/2) gives the 
equation 

2 7z 
0 = f " + (  d-x l + 4 ) f ' + ~ t a n ( 2 f )  (139) 

for the scaling function f ( x ) .  The constant 2 is fixed by the requirement that the 
large-distance behaviour of C be physically reasonable [85]. Linearization of  equation 
(139) (valid for large x) leads to two linearly independent !arge-x solutions with 
Gaussian and power-law tails. The constant 2 is chosen to eliminate the 'unphysical' 
power-law term. 

It is straightforward to adapt this approach to nonconserved vector fields [57, 58]. 
A significant simplification is that, for Gaussian fields, the joint probability distribution 
for rh(1) and rh(2) factors into a product of  separate distributions of the form (123) for 
each component. This results is an equation of form (138) for any n, but with the 
function C(7) given by equation (131) for general n instead of  equation (126). Again, 
a(t) = 2/2t, with 2 chosen to eliminate the power-law tail in the scaling function f ( x ) .  
The values 2 for various n and d are given in the table. 

It is interesting that the 'unphysical' power-law tails in real space become physical 
when sufficiently long-range spatial correlations are present in the initial state. This will 
be shown using RG arguments [81 ] in section 8.3.1. It also emerges within the Mazenko 
treatment [90]. 

The general two-time correlation function C(r,  tl, tz) can also be evaluated within 
this scheme [57, 58]. It is given by a simple generalization of equation (138), namely 

dC 
OqC = V2C + a(ta)]) ~ ,  (140) 

with a(tO = 2/2t~. This equation simplifies for tl >> t2, because C is then small and 
the linear relation between C and 7 for small C (see equation (131)) implies that 

dC/d 7 = C, that is 

2 
Ot~C = V2C + ~11 C, tl >> t2. (141) 

Exponent 2 within the Mazenko theory. 

2 

d n = l  n = 2  n = 3  n = 4  

1 0 0.301 0.378 0.414 
2 0 - 7 1 1  0.829 0.883 0-912 
3 1.327 1-382  1-413 1-432 
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This linear equation can be solved by spatial Fourier transform. Choosing an initial 
condition at tl = ~t2, with ~ >> 1 to justify the use of  equation (141) for all tl/> ~t2 gives 

( t l )  ~12 
- -  exp [ - k2(tl - ~t2)] S(k, c~t2, t2). (142) S(k, tl, t2) = \~t2/ 

Imposing the scaling form S(k, c~t2, t2) = t~/Zg(kZt2), with g(0) = constant, and Fourier 
transforming back to real space gives, for t~ >> ~t2, 

/+  \ ( d - 2 ) / 2  ( r z ) 
C(12) = constant \{'z}tl/ exp - ~11 " (143) 

The constant cannot be determined from the linear equation alone; it is, of  course 
independent of  c~. 

Comparison of equation (143) with the general form (88) shows that ,~ = d - 2, that 
is the parameter 2 of  the Mazenko theory is precisely the exponent 2 associated with 
the response function G(k, t) (equation (94)), related to 2 by equation (95). This 
connection was first pointed out by Liu and Mazenko [93]. The values of  2 obtained 
(table) are in reasonable agreement with those extracted from simulations 
[17, 19, 68, 94]. For example, for the scalar theory in d = 2 simulations [17, 19, 93] give 
2 ~ 0.75 (argued to be ¼ exactly in [19]), compared with 0.711 from the table. 

To summarize, the virtues of the Mazenko approach are 

(1) only the assumption that the field m is Gaussian is required, 
(2) the scaling function has a non-trivial dependence on d (whereas, apart from the 

trivial dependence through the diffusion constant D, equations (122), (126) and 
(131) are independent of  d) and 

(3) the non-trivial behaviour of  different-time correlation functions [20] emerges 
in a natural way [93]. 

In addition, the OJK result (126) and its generalization (131) are reproduced for d ~ ~ ,  
while the exact scaling function (108) of the 1 - d Glauber model is recovered from 
equation (139) in the limit d----~ 1 [95]. In practice, however, for d i> 2 the shape of the 
scaling functionf(x) differs very little from that of  the OJK function given by equations 
(126) and (122), or its generalization (131) for vector fields [58]. All these functions 
are in good agreement with numerical simulations. The Mazenko function for n = 1, 
d = 2 is included in figure 12, while the BPT results for vector fields are compared with 
simulations in figures 14 and 15 later. The Mazenko approach can also be used, with 
some modifications, for conserved scalar [86] and vector [75] fields. 

To conclude this section we note that the crucial Gaussian approximation, used in 
all these theories, has recently been critically discussed by Yeung et al. [97]. By explicit 
simulation they find that the distribution P(m) for the field m at a single point is flatter 
than a Gaussian at small m. In section 6 we shall show that the joint distribution 
P(m(1),m(2)) can be calculated analytically when Im(1)l, Im(2)l and r are all small 
compared with L(t). The result is non-Gaussian but is consistent with the Gaussian form 
(123) in the limit d ~ o0. Below, we present evidence that the Gaussian approximations 
becomes exact for d---~ ~ .  Finally we note that very recent work by Mazenko [98] 
presents a first attempt to go beyond the Gaussian approximation. 

5.2. A systematic approach 
All the treatments discussed above suffer from the disadvantage that they invoke 

an uncontrolled approximation at some stage. Very recently, however, a new approach 
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has been developed [87] which recovers the OJK and BPT scaling functions in leading 
order but has the advantage that it can, in principle, be systematically improved. 

5.2.1. Scalar fields 
For simplicity of presentation, we shall begin with scalar fields. The TDGL equation 

for a non-conserved scalar field qS(x, t) is given by equation (2). We recall that, 
according to the Allen-Cahn equation (18), the interface motion is determined solely 
by the local curvature. It follows that the detailed form of the potential V(~b) is not 
important, a fact that we can usefully exploit; the principal role of  the double-well 
potential is to establish and maintain well-defined interfaces. 

Following Mazenko [85] we define the function qS(m) by equation (132) with 
boundary conditions qS( + ~ ) = ___ 1. We have noted that ~b(m) is just the equilibrium 
domain-wall profile function, with m playing the role of the distance from the wall. 
Therefore the spatial variation in m near a domain wall is completely smooth (in fact, 
linear). The additional condition ~b(0) = 0 locates the centre of the wall at m = 0. 
Figure 13 illustrates the difference between ~b and m for a cut through the system. Note 
that, while ~b saturates in the interior of domains, rn is typically of  order L(t), the domain 
scale. Rewriting equation (2) in terms of m and using equation (132) to eliminate V' 
give 

qb"(m) 
dim = V2m - qS'(m) (1 - IVmr). (144) 

For general potentials V(~b), equation (144) is a complicated nonlinear equation, 
not obviously simpler than the original TDGL equation (2). For reasons discussed in 
section 2.3, however, we expect the scaling functionf(x) to be independent both of the 
detailed form of the potential and of  the particular choice of the distribution of initial 
conditions. Physically, the motion of the interfaces is determined by their curvature. 
The potential V(q~) determines the domain wall profile, which is irrelevant to the 
large-scale structure. 

Similarly, the initial conditions determine the early-time locations of the walls, 
which should again be irrelevant for late-stage scaling properties. For example, in the 
Mazenko approximate theory, both the potential and the initial conditions drop out from 
the equation of the scaling function f(x). 

The key step in the present approach is to exploit the notion that the scaling function 
should be independent of the potential (or, equivalently, independent of the wall profile) 
by choosing a particular V(q~) such that equation (144) takes a much simpler form 
(equation (148)). Specifically we choose the domain-wall profile function qS(m) to 
satisfy 

49"(m) = - mgp'(m) (145) 

This is equivalent, via equation (132), to a particular choice of potential, as discussed 
below. First we observe that equation (145) can be integrated, with boundary conditions 
qS( _ ~ )  = _ 1 and qS(0) = 0 to give the wall profile function 

[2\1/2 ( m f ~ )  ( m ) 
q S ( m ) = ~ )  J0 d x e x p ~ -  = e r f  ~T/~ , (146) 

where erf (x) is the error function. Also equation (132) can be integrated once, with the 
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zero o f  potential defined by V( ___ 1) = 0, to give 

1 1 
V ( ( ~ )  = 1 ( ~ t ) 2  = _ exp ( - m 2)  = - exp { - 2 [ e f t -  1 ( ~ ) ] 2 } ,  (147) 

where e f t -  1 (x) is the inverse function o f  erf(x). In particular, V(~b) ~ 1/n - q~2/2 for 
4~:¢ 1, while V(4~)~ 1(1 - ~2)21 In (1 - ~b2)l for (1 - ~b 2) ¢ 1.t 

With the choice (145), equation (146) reduces to the much simpler equation 

Otm = Vain + (1 - ]~7ml2)m. (148) 

This equation, al though still non-linear, represents a significant simplification o f  the 
original T D G L  equation. It is clear, however,  on the basis of  the physical arguments 
discussed above, that it retains all the ingredients necessary to describe the universal 
scaling properties. 

We now proceed to show that the usual OJK result is recovered by simply replacing 
IVml 2 by its average (over the ensemble o f  initial conditions) in equation (148), and 
choosing a Gaussian distribution for the initial conditions. In order to make this 
replacement in a controlled way, however,  and to facilitate the eventual computat ion 
o f  corrections to the leading order results, we systematize the treatment by 
attaching to the field m an internal 'colour '  index ~ which runs from 1 to N, and 
generalize equation (148) to 

Otmc~ = ~2mc~ q- 1 - N I ~ iVmal2 ms. (149) 
/ / = 1  

Equation (148) is the case N = 1. The OJK result is obtained, however,  by taking the 
limit N---~ w,  when N-1Z~=I[Vm~I 2 may be replaced by its average. In this limit, 
equation (148) becomes (where m now stands for one o f  the ms) 

Otm = V2m + a(t)m, (150) 

a(t) = 1 - <lVml2>, (151) 

a self-consistent l inear equation for re(x, t). 
It is interesting that the replacement o f  IV,,[ 2 by its average in equation (148) 

is also justified in the limit d - - )oo ,  because ]Vm[ 2 =Zai=l(Om/Oxi) 2. I f  m is a 
Gaussian random field (and the self-consistency of  this assumption follows from 
equation (150); see below) then the different derivatives Om/Oxi at a given point x 
are independent random variables, and the central limit theorem gives, for d--~ ~ ,  
IVml = ----)d((Om]Oxi) 2) = (IVml2), with fluctuation o f  relative order l / d  1/2. While this 
approach is not so simple to systematize as that adopted above, it seems clear that the 
leading order results become exact for large d. 

As discussed above, we shall take the initial conditions for m to be Gaussian, with 
mean zero and correlator (in Fourier space) 

(mk(0)m - k'(0)) = Abk, k', (152) 

representing short-range spatial correlations at t = 0. Then m is a Gaussian field at all 

t Equation (147) only fixes V(~b) for ~ b 2 ~  1. Note that, for T = 0, q~2(x, 0)~< 1 everywhere 
implies that ~b2(x, t) ~< 1 everywhere; so qS(x, t) does not depend on the form of V(~b) for q~2 > 1. 
Of course, for stability against thermal fluctuations the points ~b = _+ 1 must be global minima 
of V(q~). 
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times. The solution of  equation (150) is 

mk(t) = mk(0) exp [ -- k2t + b(t)], (153) 

b(t) = dt' a(t'). (154) 

Inserting this into equation (151) yields 

db 
a(t) ---- - -  = 1 - A ~ k2exp ( - 2k2t + 2b). (155) 

dt k 

After evaluating the sum, one obtains, for large t (where the dbldt term can be 
neglected), exp (2b) ~- (4t /Ad) (8~t) d/2, and hence a(t) -~ (d + 2)/4t. This form for a(t) 
in equation (150), arising completely naturally in this scheme, reproduces exactly the 
Oono-Puri [89] modification of the OJK theory, designed to keep the wall-width finite 
as t---~ ~ ,  which was discussed in section 5.1.2. 

The explicit result for mh(t), valid for large t, is 

/ 4t \ m 
ink(t) = mk(0) ~ )  (8rot) a/4 exp ( -- ~t) ,  (156) 

from which the equal-time two-point correlation functions in Fourier and real space 
follow immediately: 

(mh( t)m - k( t) ) = d ( 87~t)a/2 exp ( - 2/fit), (157) 

4t 
(m(1)m(2)) = ~ exp ( - ~ t ) '  (158) 

where 1 and 2 are the usual shorthand for space-time points (r~, t) and (rz, t), and 
r = ]rl- r21. 

We turn now to the evaluation of the correction function of the original fields q~. 
Since, from equation (158), m is typically of order t m at late times it follows 
from equation (146) that the field 4) is saturated (i.e. 4) = +- 1) almost everywhere at 
late times. As a consequence, the relation (146) between q~ and m may, as usual, be 
simplified to q~ = sgn (m) as far as the late-time scaling behaviour is concerned. Thus 
C(12) = (sgn (re(l)) sgn (m(2))). The calculation of this average for a Gaussian field m 
proceeds just as in the OJK calculation. The OJK result, given by equations (126) and 
(122), (with D = 1) is recovered. The present approach, however, makes possible a 
systematic treatment in powers of l lN. The work involved in calculating the next term 
is comparable to that required to obtain the O(l/n) correction to the n = ~ result for 
the O(n) model [20, 69]. 

5.2.2. Vector fields 
For vector fields, the TDGL equation is given by equation (57), where V(~) is the 

usual 'Mexican hat' potential with ground-state manifold ~2= 1. This time we 
introduce a vector field rh(x, t), related to q5 by the vector analogue of  equation (132), 
namely [57, 58] 

aV 
~7~ = ~ ,  (159) 

where V~ means Z~=]O2/Om] for an n-component field. We look for a radially 
symmetrical solution of equation (159), ~(rfi)= ~g(p) ,  with boundary conditions 
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g(0) = 0, g ( ~  ) = 1, where p = Irhl and ~ = fn/p. Then the function g(p) is the defect 
profile function for a topological defect in the n-component field, with p representing 
the distance from the defect core [57, 58]. In terms ofrh, the TDGL equation for a vector 
field reads 

02~Oa Vmb'Vmc -- V~a. (160) Za Omb O~a Ombot -- Zb ambOgga V2mb + ~ Omb Om--~ 

Just as in the scalar theory, we can attach an additional 'colour' index c~ ( = 1 . . . . .  N) 
to the vector field rh, such that the theory in the limit N---) ~ is equivalent to replacing 
Vmb'Vmc by its mean, (IVmble)tb¢ in equation (160). Noting also that (IVmbl 2) is 
independent of b from global isotropy, equation (160) simplifies in this limit to 

O~)a arab 
Omb 0~--- ~ Oqb"V2mb--Omb V2~ba(1 - (IVmll2))' (161) 

where  ml is any component of  rh. Finally, this equation can be reduced to the linear 
form (150), with m replaced by rh, through the choice 2 Vm(~a = - -  Zb(Ofpa[Omb)mb or, 
more compactly, V2~ = - (rh. Vm)~, to determine the function q~(rfi). Substituting the 
radially symmetric form q~ = thg(p) gives the equation 

g . +  n - - l + p ) g ,  n--1 
( ~ -  p2 g = 0, (162) 

a generalization of equation (145), for the profile function g(p), with boundary 
conditions g (0 )=  0, g(o~)= 1. The solution is linear in p for p---)0, while 
g(p) ~ 1 - (n - 1)/2p 2 for p --~ to. The potential V(q~) corresponding to this profile 
function can be deduced from equation (159), although we have been unable to derive 
a closed-form expression for it. Note that we are making here the natural assumption 
that scaling functions are independent of the details of the potential for vectors fields, 
as well as for scalar fields. 

For the vector theory, equation (150) and ( 151) hold separately for each component 
of the field. Taking Gaussian initial conditions, with correlator (120), yields a(t) 
( d +  2)/4t again, giving equation (158) for each component. The final step, the 
evaluation of the two point function C(12) = (@1).  6(2)), proceeds exactly as in the 
KYG treatment of section 5.1.2: since Irhl scales as t ~/2 we can replace the function @rh) 
by rh at late times. Then C(12)= (~(1) .  ~(2))  in the scaling regime. The required 
Gaussian average over the fields rh(1) and rh(2) yields the BPT scaling function (131). 
Again, it can be systematically improved by expanding in I/N. 

5.2.3. The Porod tail 
It is easy to show [55-58] that equation (131) contains the singular term of order 

r n (with an additional logarithm for even n) that generates the Porod tail (70) in the 
structure factor. This feature was effectively built into the theory through the mapping 
q~(/h). Specifically, the singular part of equation (131) for 7 ~ 1 is [99] 

ny [ (n + 2 1 )  ]2 F((n + 2)/2)F(-- n/2) ];2)n/2. 
Csing - 2rt B 2 ' /.2(1/2) (1 - (163) 

Using y = exp - r Z / g t ) =  1 -  r2/gt + ... for r~  t 1/2 and simplifying the beta and 
gamma functions give 

1 / . 2 ( (n  + 1 ) /2 ) /" (  - n/2) r" 
Csing = (164) rt /"(n/2) ( 4t) n/z" 
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It will be interesting to compare this result with the exact short-distance singularity 

derived in section 6. 
In figures 14 and 15, we compare the BPT scaling function with numerical 

simulation results [100, 101], both for the pair correlation function C(r, t) and the 
structure factor S(k, t). Since the defect density p scales as L n, a natural choice for the 
scaling length L is p -  1/n. Note that p can be measured independently in the simulation; 
so using rp TM as scaling variable provides a direct zero-parameter test of the scaling 
hypothesis itself. For the scalar systems, the scaling variable r(1 - ~b 2) was employed 
[101]; because 1 - ~b 2 is non-zero only near domain walls, (1 - q52) is equal to p, up 
to a time-independent constant. 

The resulting scaling plots (figure 14) provide very good evidence for scaling except 
for d = 2 = n where clear scaling violations are apparent; the data drift to the right with 
increasing time, that is they are 'undercollapsed'.  In this case we can apparently make 
the data scale, however, by plotting against r/L(t) with L(t) chosen independently at each 
time t to provide the best data collapse. The collapse is then as good as for any of the 

other systems. 
The theoretical curves in figure 14 are the BPT function (131), which reduces to 

the OJK scaling function for n = 1. In making the fits, 7 was replaced by 
exp [ - c~r2/L(t) 2] with the scale factor ~(n, d) adjusted to give the best fit by eye. 

The structure factor plots of figure 15, on a log-log scale, confirm the existence of 
the Porod tail (70) in the data. On the logarithmic scale, the poor scaling of the d = 2 = n 
data against rp ~/2 is reflected in a slight spreading of  the data at small k in the 
corresponding structure factor plot. We do not show the structure factor plots for n = 1; 
the existence of the Porod tail for scalar systems is implicit in the linear short-distance 
regime in the real-space plots. 

It should be noted that the real-space correlation function (131) is independent of 
the space dimensionality d. The d dependence of the structure factor enters only through 
the process of Fourier transformation. Within the BPT theory, therefore, the Porod tail 
is obtained for any n and d. The same feature is present in the structure factor computed 
using the Mazenko method [57, 58]. In section 6, however, we shall show that the Porod 
tail is a direct consequence of  the presence of stable topological defects in the system 
and, furthermore, that the amplitude of the tail can be evaluated exactly in terms of 
density of  defect core. Since stable defects are only possible for n <~ d, the Porod tail 
obtained from the BPT function (131) for n > d is an artefact of the approximations 
invoked. This scenario is consistent with our claim that the BPT function actually 
represents an exact solution in the limit d ~ oo. In this limit, of  course, the condition 

n ~< d is always satisfied! 

5.2.4. External fields; thermal noise; quenched disorder 
Remarkably, the systematic approach can be readily extended to treat the situation 

where a general (space- and/or time-dependent) external field is present and/or the initial 
conditions contain a bias. This also allows the effects of thermal fluctuations to be 
incorporated to a limited extent. For simplicity we shall treat only scalar fields. 

Consider the following equation of motion: 

O~b _ VZq5 _ Vr(qS) + h(x, t)V~(~). (165) 
Ot 

Here V0(q~) is the usual symmetrical double-well potential sketched in figure 3, 
while Vl(qS) has the sigmoid sketched in figure 16(a). The full potential 
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Figure 14. Scaling plots for the pair correlation function of  non-conserved systems with an 
O(n)-symmetric vector order parameter, plotted against rp  TM where p is the defect density 
(proportional to (1 - q52) for n = 1). The data are taken from [100]. In (d), the length scale 
L(t) was chosen independently at each time to give the best collapse. The solid curves are 
'best fits by eye '  of  the BPT prediction [55, 56]. 
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Figure 15. The log-log scaling plots of the structure factor for non-conserved systems with an 
O(n)-symmetrical vector order parameter. The data are taken from [ 100]. The solid curves 
are the Fourier transforms of the corresponding curves in figure 14. The data exhibit the 
expected k (d+n) tails for large kL(t). 
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Figure 16. Schematic forms of (a) the potential Vl(~b) and (b) the total potential V(~b) used to 
incorporate external fields into the systematic approach (section 5.2.4). The broken lines 
indicate parts of the potential that are irrelevant to the dynamics described by equation 
(170). 

V((b; x, t) = V0(~b) - h(x, 0V1(49) has (for given x and t) the asymmetric  double-well  
form shown in figure 16 (b), with the right-hand min imum lower for h > 0. 

As in our treatment o f  the case h = 0, we can exploit the insensitivity o f  the domain 
growth to specific details o f  the potential to choose especially convenient  forms for V0 
and V1. This rests on the physical truth that the motion of  an interface depends only on 
the local curvature K and the local field. To see this, consider again equation (17) for 
the interface motion, this time for a general potential V(q~). Multiplying through by 
(049lOg)t, integrating over g through the interface and using (1 1) give the local velocity 
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of  the interface as 
AV 

v =  - K + - - ,  (166) 
a 

instead of  equation (18), where  AV is the potential  difference across the interface. The 
essential  point  is that the interface mot ion depends on the external field only through 
AV. This gives us a great  deal of  flexibility in the choice of  V~(~b), since all that matters 
is the potential  difference be tween  the min ima  of  V(q~). For example ,  we can choose 
the min ima  to remain at 4) = - 1, as in figure 16 (b). 

With  these insights, we  now change variables to the auxiliary field m, with 
~b = q~(m). Then  equation (165) becomes  

4~' am ~ -  = qS' VZm + ~b"lVml 2 - V~(qS) + h(x, t)V~(qb), (167) 

where ~b' - dq~/dm, etc. Simplifications analogous to those that led to equation (148) 
are achieved through the choices 

Vt(~b) = ~b"= - m~b', (168) 

V[(~b) = q~', (169) 

which give immedia te ly  

Otto = VZm + (1 - IVml2)m + h(x, t), (170) 

a s imple extension of  equation (148). 
The  fight-hand side o f  equation (168) gives (with the appropriate boundary  

conditions) the usual error funct ion profile (146), while the lef t-hand side leads to the 
previous fo rm (147) for V0(q~). Integrat ing equation (169) gives, with the boundary  
condition V~(0) = 0, the result 

2f0. 1 = 1__/2 erf  [21/2 e f t_  Vl(~b) = - d t e x p  ( - t 2) = ~ e f t (m)  1 (~b)]. (171) 
7~ 

Again, this only  defines VI(0)  for - 1 ~< q5 ~< 1, but this is the only region we require 
for the T = 0 dynamics .  

The  difference V~(1) - VI( - 1) is 2/rtl/2; so the difference between the min ima  of  
the full potential,  V = Vo - hVl, is - 2h/rc ~/2, corresponding to an effect ive magnet ic  
field heff = h/Tt 1/2 as far as the interface dynamics  are concerned. 

5.2.4.1. External fields~initial bias. As a simple application o f  equation (170), 
consider the case h(x,  t) = h, representing a uniform t ime-independent  magnet ic  field. 
In order to solve the equation, we take the same limit (d ~ ~ ,  or number  N of  ' colours '  
large) as in section 5.2, enabling the replacement  of  IVml 2 by its mean.  Additionally,  
we al low for  a bias (m(0)) = m0(0) in the (Gaussian) initial conditions, while the other 
Fourier  components  (k ~ 0) o f m  still satisfy equation (152). Then the equations for the 
k :~ 0 components  of  m, and the self-consistency condition, are unchanged by  the field; 
a(t) = 1 - IVml 2 and b(t) = f~dt'  a(t') are the same as for h = 0. The  equation for the 
k = 0 componen t  is dmo/dt + a(t)mo = h, with solution 

f2 too(t) = too(O) exp [b(t)] + h dt '  exp [b(t) - b(t ')].  (172) 

Inserting the result e x p b  ~ (4t]Ad)l/E(8gt) d/4, valid for  large t, f rom section 5.2 gives, 
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for large t, 

" 4  - 1 / 2  h~tdt,( t~(d+2)/4 
m°( t )=m°(O) (~d)  (8~t)d/4+ ~to \~7} , (173) 

where to ~ (Ad) 2/(d + 2) is a short-time cut-off (to allow for the breakdown, at short times, 
of  the form used for b(t)). 

Exploiting the Gaussian property of m (which now has a non-zero mean given by 
equation (173)), we can calculate the expectation value of the original field ~b: 

(~b) = (sgn (m)) = err ~ . ( 2 ( m ~ ) , / 2 } ,  (174)  

where (m2)c--= (m 2) - ( m )  2 is the second cumulant of  m. It is given by the same 
expression, equation (158) with 1 ~ 2, as for h = 0: (m2)c = 4t/d. So, 

,{  no(O) / d\ 1/2 ~" ( t  ~(d+ 2)/4~ 
(~))=erl t~(87t t )d14+hts- t )  Jtodt'\t 7] I" (175) 

The time dependence of the mean order parameter (qS) depends on d. Consider the 
argument of  the error function. The initial bias m0(0) gives a contribution of order t a/4 
for any d, but the contribution from the external field h scales as t u2 for d < 2 (when 
times t' of order t dominate the integral in equation (175)), as t 1/2 In (t/t0) for d = 2, and 
as t a/4 for d > 2 (when the integral is dominated by times near the lower cut off). Thus 
for large t, the external field dominates over the initial bias for d ~< 2, whereas for d > 2 
both terms are of the same order. For an arbitrary time-dependent field h(t), the final 
term in the argument of  the error function is simply (dl8t)~/2f[ o dt' h(t ')(t/t ')  (d+ 2)/4. This 
shows that the field becomes less important at late times and, for d > 2, a constant field 
has all its effect at early times or order to. For d ~< 2, a constant field continues to have 
an effect at late times. 

One can make exact statements [102] about the 'initial growth' regime, where 
(qr) ~ 1. The main modification is that l d/4 ( = Z a/2) is replaced by L 2, where 2 is the 
exponent in the scaling form (94) for the response to the initial condition. This result 
is essentially obvious from the definition (91) of  the response function. The cross-over 
(in d) between the two regimes no longer occurs at d = 2, but at the dimension where 
2 = 1 [102]. The virtue of equation (175) is that it gives the complete time dependence, 
from the initial regime to final saturation ((~b) = 1). 

5.2.4.2. Thermalfluctuations. Thermal fluctuations can be included, to some extent, 
within the present formalism by choosing h(x, t) to be a Gaussian white noise, with 
mean zero and correlator ( h ( x , t ) h ( x ' , t ' ) ) = 2 D r ( x - x ' ) f ( t - t ' ) .  The original 
equation of motion (165) may be recast using equations (168) and (169) as 
O~b/Ot = V2~b - V~(q~) + [2V0(~b)]U2h(x, t). Recall that V0(~b) vanishes in the bulk phases: 
V0( --- 1) = 0. The noise in the 4) equation therefore also vanishes in the bulk phases, 
differing from zero only in the interfaces. Consequently, this noise will be effective in 
thermally roughening the interfaces, but will be incapable of  nucleating bubbles of  
stable phase from a metastable state, or thermally exciting reversed regions within a 
domain. 

5.2.4.3. Quenched disorder. Quenched random fields are generated by a time 
independent, spatially random field h(x). Again, in the original q5 variable the field is 
multiplied by [2V0(~b)] u2, and so is active only at the interfaces. Since driving forces 
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due to the field act only at the interfaces, this way of including a random field is perfectly 
adequate. Unfortunately, however, our leading order approximation of  replacing I Vml 2 
by its average misses the important interface pinning effects induced by the disorder; 
so this term has to be kept in full. A detailed discussion of quenched disorder, using 
RG concepts, is given in section 8.3.2. 

5.3. Higher-order correlation functions 
Until now we have focused exclusively on the pair correlation function C(r, t) and 

its Fourier transform, the structure factor S(k, t). These primarily probe the spatial 
correlations in the sign, or direction (for vector fields), of  the order parameter. However, 
one can also study the spatial correlations in the amplitude of the order parameter [53]. 
This is worthwhile for two reasons. In certain systems, such as superconductors and 
superfluids, the (complex scalar) order parameter ~9 does not directly couple to 
experimental probes. Rather, such probes couple to 1~912, and any scattering experiment, 
for example, measures the Fourier transform of <lq,(1)121 ,(2)12>. The second reason to 
study these correlation functions is that the simultaneous calculation of two different 
correlation functions provides an exacting test of  theory. This is because plotting one 
correlation function against another provides an 'absolute'  (i.e. free of  adjustable 
parameters) prediction [101]. Tested this way, the predictions of the Gaussian theories 
of the OJK and BPT (or Mazenko) type are not quite as impressive as they at first seem. 

In this section we shall be concerned specifically with the normalized correlation 
function 

( [ 1  - t ~ ( 1 ) 2 ] [ 1  - t ~ ( 2 ) 2 ] )  
C4(12) -- (1 -- t~(1)2)(1 - q~(2) 2) ' (176) 

where the 1 in the parentheses represents the saturated (i.e. equilibrium) value of t~ 2. 
The function Ca(12) can be evaluated using any of  the Gaussian field methods discussed 
above [53]. For definiteness, we adopt the 'systematic approach' of  section 5.2.. The 
details of  the calculation are qualitatively different for scalar and vector fields. 

5.3.1. Scalar fields 
In terms of  the Gaussian auxiliary field m the numerator in equation (176) is given 

by 

C~ = fdm(1)fdm(2)P(m(1), m(2))[1 - qS(m(1))2][1 - qS(m(2))2], (177) 

where P is the probability distribution (123). Since 1 -  q52(m) approaches zero 
exponentially for scalar fields, the integrals are dominated by values of  m(1) and m(2) 
close to zero (i.e. within an interfacial width of  zero). The variation in P with m(1) and 
m(2), on the other hand, is set by the length scales r and L(t), which are both large in 
the scaling limit. Defining the interfacial width ~ by ~ = f dm[  1 - ~ ( m )  2] gives, in the 
scaling limit, 

~2 
C4 u = ¢2P(0, 0 ) -  [2n(1 -72) ]  1/2' (178) 

while the normalized correlator Ca is 

C4 = (1 - 72) - 1/2 (179) 

Here we recall that 7------7(12) is the normalized correlator (122) of  the field m. In 
particular, ~(0) = 1 and ~( ~ ) = 0. Using 7 = 1 - constant r2/t for r ~ t 1/2, we see that 
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C4 ~ L/r for r ~ L ~ t 1/2. This result will be derived using elementary arguments in 
section 6.4. Note that the 1/r dependence at small r implies a power-law tail 
S4(k) - Lk- (d- 1~, in the Fourier transform of C4. 

By eliminating 7 between Ca and the pair correlation function C = (2/rt) s in-  ~ 7 
(see equation (126)), we obtain the 'absolute' relation 

C4 --  c o s  (180) 

between the two correlation functions, with no adjustable parameters. We emphasize 
that equation (180) is a prediction of all Gaussian theories, which differ only in the 
relation between 7 and the scaling variable x=-- r/t 1/2. Thus a test of equation (180) is 
a test of the Gaussian assumption itself. 

In figure 17 we show 1/C4 plotted against C, where C4 and C were measured 
simultaneously in 'cell dynamics' simulations [103] in d = 2 and d = 3 [100]. Also 
shown is the prediction (180). It is clear that the agreement is much poorer than that 
obtained by fitting C alone (see figure 14). The agreement is significantly better, 
however, for d = 3 than for d = 2, consistent with our claim in section 5.2 that the 
Gaussian assumption becomes exact for d ~ ~ .  

5.3.2. Vector fields 
The first step is a simple generalization of equation (177) to vector fields: 

c~= f dth(1) f dfft(2)P(fft(1),fft(2))[l-(o(th(1))z][1-~p(th(2))2], (181) 

where P is a product of separate factors (123) for each component (since rh is assumed 
to be Gaussian). The subsequent analysis is different from the scalar case, however, 
because for vector fields q~(rfi) 2 approaches its saturated value of unity for Irhl ~ ~ only 
as a power law. To see this we recall that the function ~(rh) is defined as the equilibrium 
profile function for a radially symmetric topological defect. The amplitude equation 
satisfies equation (58) with f---~ I~[ and r----~ [rh[. From equation (59) we obtain directly 

4 2 
(182) 

where 42 = 2(n - 1)/V"(1). We shall use this to define the core size ~ for topological 
defects in vector fields. 

Inserting equation (182) in equation (181), we see that for n > 2  the factors 
1 - ~ ( / ~ / ) 2  do not, in contrast with scalar fields, converge the integral at small [rh[ 
(i.e. at I, 1- 4). Instead, the integrals are converged in this case by the probability 
distribution P, which sets a typical scale L(t) for [tfi[. This justifies the use of  the 
asymptotic form (182) in the scaling limit: 

~4f  j d,-fi(1) ( drh(2) . . . . . .  
C4 u j rh(2)). (183) ~ rtmt l ), 

It is now a straightforward matter to evaluate the rh integrals [53]. Dividing by the 
large-distance limit (corresponding to 7 = 0) gives the normalized correlator (176) as 

Ft. 2 

where F is again the hypergeometric function 2F1. 
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Figure 17. An 'absolute test' for theories of  non-conserved dynamics based on an assumed 
Ganssian auxiliary field. Here C and C4 are the pair correlation functions for the order 
parameter and its square, the latter normafizcd by its large-distance limit (equation (176)). 
The data are for a scalar order parameter in dimension (a) d = 2 and (b) d = 3. The solid 
curve (independent of d) is the prediction of  Gaussian theories based on the OJK or 
Mazenko approaches. The broken lines give the predicted short-distance behaviour (see 
[100] and section 6). 
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For 7--~ 1, Ca has a short-distance singularity proportional to ( 1 -  72) ~n-4)/2 
(L[r)4 - n (with logarithmic corrections for even n). It follows that the Fourier transform 
has the power-law tail $4 -- L 4 -nk-ca + n- 4) [53], for n > 2. 

For the special case n = 2, one has to be more careful, as the integral (183) is 
formally logarithmically divergent at small Ifi(1)l, Ifi(2)l, and has to be cut off at Ifil - 4. 
A careful analysis [53] shows that C4 u exhibits logarithmic scaling violations in this case. 
However, in the scaling limit r ~ ~ ,  L(t)---) ~ with r/L(t) fixed, the extra logarithm 
cancels in the normalized correlator C4, and equation (184) is recovered, but with 
logarithmic corrections to scaling [53,100]. 

Equation (184) simplifies for physical (i.e. integer) values of n, giving (1 - 72) - 1 
for n = 2 and [sin - 1 (7)]/7(1 - 72) 1/2 for n = 3. As for the scalar theory, one can eliminate 
7 between equations (184) and (131) to obtain a parameter-free relation between C4 and 
C that may be used as an absolute test of the Gaussian assumption. Figure 18 shows 
data for 1/C4 plotted against 1 - C ,  from cell-dynamics simulations [100], and the 
corresponding predictions of the Gaussian theory. It can be seen that the Gaussian 
theory is again rather poor but, as for the scalar theory, it improves with increasing d, 
once more in accord with our argument that it becomes exact for large d. 

5.3.3. Defect -defec t  correlations 
As a final example, we consider the correlation functions of the defect density itself. 

In terms of the auxiliary field fit, the defect density is p(x) = 6(m(x))J, where J is the 
Jacobian between the field fi and the spatial coordinate x, for example J = IVml for 
scalar fields. A significant simplification is achieved by choosing Mazenko' s definition 
of fi, near defects, as a coordinate normal to the defect. Then J = 1 holds identically 
at defects, giving simply p = 6(fi). Making now the Gaussian approximation for m, the 
one-point distribution function is 

P(fi) =(2rcS0) n/2exp(-~--~0)' (185) 

where So = (m 2) is mean-square value of one component  of fi. Equation (158) gives 
So = 4t/d. The mean defect density is therefore 

( d ]  n/2 
p~e~ uss' = (6(m)) = P(0) = \~-~/  . (186) 

The superscript 'Gauss l '  indicates that this is one way to calculate pdef within the 
Gaussian approximation. An alternative approach, pursued by Liu and Mazenko [104], 
is to retain the Jacobian explicitly. This gives a different result, because J = 1 at defects 
is true for the exact fi ,  but not for the Gaussian approximation. With the Jacobian 
retained, the calculation has not been completed for general d and n. 

With J = 1, the pair correlation function is also trivially evaluated: 

(p(1)p(2))  = P(O,O) = ~ (1 - 72) -"~2, (187) 

where we used equation (123) for P(O,O). In the short-distance limit r ~ t  ~/2, this 
becomes 

{ d ~  n'~ 
(p(1)p(2))___) r .p~ef \ ~ /  ' r ~ t ( t ) .  (188) 

Again, the short-distance behaviour can be evaluated exactly (see section 6.4), and 
the r -  ~ short-distance behaviour recovered from simple geometrical arguments, which 
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Figure 18. Sameasfigure l7, butforvectorfields: (a)d= 2 =n, (b)d= 3, n= 2; (c)d= 3=n.  
The solid curves are the predictions of the Gaussian theories. The data are taken 
from [ 100]. 

exclude, however, point defects (i.e. n = d ) .  This failure to capture the correct 
short-distance behaviour for point defects is another weakness of the Gaussian 
approximation. 

5.4. Nematic liquid crystals 
We have not succeeded in applying the systematic approach to the equation of 

motion (74) for nematics. Application of the KYG method (see section 5.1.2), however, 
is relatively straightforward [64]. For orientation purposes, we first recall the use of  the 
KYG method for vector fields [55]. Recall that, in the scaling regime, the relation 
between the order parameter field ~ and the auxiliary field rh can be simplified to ~ = ~ ,  
a unit vector, and that rfi may be taken to satisfy the diffusion equation Oin = V2rh. As 
was stressed in section 5.1.2, this approach is somewhat ad hoc and is not even 
guaranteed to yield the correct time dependence for L(t). In practice, however, it gives 
good results for scaling functions since it builds in, through the zeros of rh, the 
correct topological defects. Therefore we adopt this as a reasonable first attempt. It turns 
out that, for nematics, we do in fact recover the correct growth L -- t 1/2, as shown in 
section 7. 

The first step is to introduce the (traceless symmetric) tensor auxiliary field m, 
satisfying the diffusion equation. The only tricky part is to determine the mapping Q(m), 
between the auxiliary field and the order parameter, analogous to ~b(m) -- sgn (rn) for 
scalar fields and t~(rh) = th for vector fields. The key observation is that these latter 
results simply represent the mapping from an initial value of m to the nearest minimum 
of the potential or, equivalently, they describe the attractors of  the dynamics (74) for 
a spatially uniform initial state. It is easy to show [64] that, for a nematic, an equivalent 
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procedure is the following. The director n at a given space-t ime point 1 is obtained as 
the eigenvector with largest eigenvalue of  the tensor m(1) obtained by evolving the 
diffusion equation Otm ---- ~72m forward f rom a random initial condition. The physical 
tensor Q(1) then has elements Qab(1) = S[na(1)nb(1) -- 6~b/3], where S is an arbitrary 
amplitude that has the value 3 for the particular coefficients in the equation of motion 
(74). The pair correlation function is then obtained as 

C(12) = 2(Tr [Q(1)Q(2)]), (189) 

where the factor ] normalizes (for S = 3) the correlation function to unity when points 
1 and 2 are the same. The average in equation (189) is over  the (Gaussian) joint 
probability distribution for re(l) and m(2), which can be deduced from the diffusion 
equation for m and the assumed Gaussian initial conditions. 

The results for the pair correlation function and scaled structure factor are shown 
in figure 19, together with the simulation data of  Blundell and Bray [65], and the 
experimental structure factor data of  Wong et al. [61]. The inset in figure 19 (a) shows 
that the real-space scaling function f ( x )  has the short-distance behaviour 
f ( x )  = 1 + ax  z In x - bx 2 + . . . .  This is the same short-distance form as the 0(2)  model 
and leads to the same k-5  tail in the structure factor, reflecting the presence of line 
defects (disclinations). The fit to the simulation data (with the length scale L(t)  adjusted 
at each time) is good. Remarkably, the BPT function (131) for n = 2 fits just as well, 
and indeed the simulation data for the two systems are essentially indistinguishable. 
This provides a dramatic illustration of the central role played by the topological defects; 
the nematic might naively be regarded as more like an n = 3 than an n = 2 system. 

The theoretical curve in figure 19 (b) represents the 0(2)  theory, as this was simpler 
to obtain, by numerical Fourier transform of the analytical result for the real-space 
scaling function, than the Fourier transform of the nematic correlation function, which 
had to be generated numerically [64]. Again the agreement is quite good. The data of 
Wong et  al. can be shifted by an arbitrary amount, both horizontally and vertically, but 
we were unable to collapse it precisely on to the analytical result or simulation data. 
In addition, experimental data have not yet reached the asymptotic k -  5 regime expected 
on the basis of  the string defects present. A line of  slope - 5 is included as a guide to 
the eye. 

5.5. Conserved  f ie lds  
We have seen that the OJK scaling function (126) and its generalization (131) to 

vector fields provide a very good description of the pair correlation function for 
non-conserved  fields, subject to the caveat that the scale length L(t)  is fitted when 
comparing with data. Furthermore, we have argued that the Gaussian approximation 
for the auxiliary field rh is exact in certain limits and provides a starting point for a 
systematic treatment. 

For conserved fields, the theory is less well developed. The most naive approach, 
for example, does not even give the correct growth law L(t)  ~ t 1/3 (for scalar fields). One 
can still attempt to make progress by introducing an auxiliary field m but, in contrast 
to non-conserved fields, there is no evidence for any simple limit in which the theory 
for rn becomes tractable. 

To put the difficulties into context, we start with scalar fields, and recall that the 
chemical potential # satisfies the Laplace equation (25), with boundary conditions (28) 
imposed at the interfaces. The interfaces act as sources of  the field #. To see this we 
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Figure 19. (a) Real-space pair correlation function for a nematic liquid crystal within the 
equal-constant approximation, calculated using the KYG approach as described in the text. 
The scaling variable x is r/(8t) u2. The data are the Monte Carlo simulations from [65], with 
L(t) fixed from the best fit to the theory. The inset shows the short-distance behaviour of 
the theory, showing a leading x 2 ln x singularity. (b) The log-log plot for the scaled 
structure factor of a nematic liquid crystal. The solid curve shows the 0(2)  theory, and 
the points the simulation data from [65], with L(t) chosen as in (a). Experimental data from 
[61] are shown on the left, arbitrarily positioned; they can be moved left or right and up 
or down. The straight line is a guide to the eye, with a slope of - 5. 

integrate  ~72~ over a vo lume e lement  dV enclos ing an interface surface e lement  dS. 
Using  equat ion (29) g ives  a source dens i ty  - 2 v ( r ) f ( m ( r ) ) ) V m ( r ) ] ,  where  v is the 
interface ve loc i ty  (measured  in the di rect ion of  increas ing qb) and re(t) is an auxi l iary  
field whose zeros define the interfaces (so that 6(m(r))lVm(t)l  gives the vo lume densi ty  
of  interfacial  area). Our  usual  choice for the field m, defined by equat ion (132), gives  
[Vm I = 1 at interfaces.  This  g ives  the Poisson equat ion 

V2# = - 2v(r) f (m(r)) ,  (190) 
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with solution (for d = 3) 

#(r) = ~-~ ~ dr' , , ~ - - ~  v(r )6(m(r )). (191) 

The Gibbs-Thomson boundary condition gives # = - a K / 2  at an interface, where 
K = V .  n = V2m is the interface curvature. Using equation (117) (with ]Vm] = 1) for the 
interface velocity in equation (191), and the Gibbs-Thomson boundary condition for 
#, gives 

o" 2 1 ~ dr '  Om(r') . . . . . .  
~V m = ~ _  ]r--~r'] Ot oLrnLr )) 

_ 1 ( dr'  0 
{sgn [m(r')] } (192) 

4~ J I r ~ r ' l  at 

at interfaces. The same result could be obtained directly from the Cahn-Hilliard 
equation 0t~b = ~72# by operating on both sides by the inverse Laplacian and setting 
# = - ~K/2 = - (a/2)V2m on the interfaces. 

For non-conserved fields, the extension of the interface equation away from the 
interfaces (as in, for example, the OJK theory) is a mathematical convenience which 
does not change the underlying physics of interfaces moving under their local curvature. 
For conserved fields, however, the interface dynamics are non-local and the extension 
of equation (192) away from interfaces in non-trivial. Any extension should satisfy the 
following criteria. 

(a) The equation reduces to equation (192) at interfaces. 
(b) The chemical potential satisfies V2# = 0 except at interfaces. 
(c) V# is discontinuous at interfaces, the normal component of the discontinuity 

generating the interface velocity as in equation (29). 
(d) The conservation of  the order parameter should be preserved. 

Unfortunately, it is very difficult to construct an approximate theory that satisfies 
all these criteria, and I am not aware of any successful attempts. In addition, a good 
theory would ideally incorporate two further features. 

(e) The structure factor should vanish as k 4 for k---~0 (see section 5.5.2). 
( f )  The short-distance expansion of the real-space scaling function should contain 

(after the leading 1) only odd powers of r, the so-called Tomita [96], sum rule 
deriving from the smoothness of the interfaces. 

A number of approximate theories have been proposed which satisfy a subset of 
these requirements. The theories of  Ohta and Nozaki [105], Tomita [106] and Yeung 
et al. [97] all involve a Gaussian approximation for the correlator of the auxiliary field 
m. The correct t 1/3 growth is obtained, and the scaling functions describe the real-space 
simulation data [43] very well out to reasonable values of the scaling variable but violate 
the conservation law. A recent attempt by Kramer and Mazenko [107] and Mazenko 
[ 108] corresponds to an off-interface extension of equation (192) in which the left-hand 
side replaced by - # = (a/2)(V2m + u~/L),  with u a constant. The real-space scaling 
function is obtained by multiplying through by ~b at a different space point, and 
averaging both sides with the usual Ganssian assumption for m. The resulting scaling 
function has the desired k 4 small-k form in Fourier space, although this behaviour does 
not have the same origin as in the derivation of this form in section 5.5.2. The real-space 
fit is not as good as earlier theories. In addition, the chemical potential (rather than its 
gradient) is discontinuous at interfaces. 
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Yeung et al. [97] have critically analysed approximation schemes based on a 
Gaussian assumption for m. Using data of Shinozaki and Oono [43] for the pair 
correlation function C(r, t) in d = 3 to infer a value for the normalized correlator of m, 
namely y = sin (7tC/2) (see equation (126)), they found that the Fourier transform 7~ 
would have to be negative at small k to fit the data. However, this is impossible since 
7k >~ 0 by definition. Yeung et al. concluded that no Gaussian theory could adequately 
describe the data, at least for scalar fields in d = 3. Nevertheless, we conclude this 
subsection by considering the approach of Mazenko for conserved fields, which is 
explicitly built on a Gaussian assumption for m. This is especially interesting for vector 
fields, since it allows us to make contact with the large-n calculation of section 4.3. The 
reader may recall that the exact solution of Coniglio and Zannetti [16] for conserved 
fields with n = o0 exhibits a novel multiscaling behaviour. A natural question is whether 
this behaviour survives at finite n. Employing the Mazenko approach, we find 
multiscaling behaviour for n strictly infinite, but conventional scaling for any finite n 

[75]. 

5.5.1. The Mazenko method for  conserved vector fields 
A naive application of the Mazenko technique to the Cahn-Hilliard equation (3) and 

its generalization to vector fields, yields, in complete analogy to equation (138), 

l O G _ _  ~72 (~72C-I-a(t)y d~TC ) (193) 
2 0 t  

with a(t) still defined by equation (137). The only difference between equation (138) 
and (193) is the extra - V 2 on the right-hand side. The form (193) is obtained for any 
n, with the function C(7) given by equation (131). 

If  we seek a scaling solution of equation (193), of the form C(r, t) =f(r/L(t)),  it is 
immediately clear that consistency requires a(t) ~ 1 ] L ( t )  2 and L(t) ~ t TM. We shall show 
in section 7 that this is the correct growth law for n > 2, while there is a logarithmic 
correction L ( t ) ~  (tln t) TM, for n = 2 (and d > 2). For n = 1, however, equation (193) 
fails to give the correct t 1/3 growth. The reason is clear. Taking q5 to be a sigmoid function 
of a Gaussian field from the outset overlooks the vital role of the bulk diffusion field 
in transferring material between interfaces. Recognizing this fact, Mazenko [86] writes 
q~ as a superposition of 'ordering' and 'diffusing' components, ~b = if(m) + q~, with m 
a Gaussian field. It is then possible to construct a consistent theory with t 1/3 growth [86], 
although the results do not agree well with simulations [109]. 

Here we shall concentrate on vector fields with n > 2, for which equation (193) does 
give the correct t TM growth. For general n this equation can be solved numerically for 
the scaling functionf(x)  [110]. Somewhat surprisingly, the solution for d = 3, n = 2, 
is very close to the simulation data of Siegert and R a t  [73], despite the (logarithmically) 
wrong growth law. For large n, however, we can make analytical progress and 
contribute to the debate on the possibility of  multiscaling for finite n. 

For large n equation (193) is simplified as follows. Expanding equation (131) to first 
order in 1/n gives C = y - y(1 - 72)/2n + O(n 2), and so 7 dC/dy = C + C 3/n + O(n - 2). 
Putting this in equation (193) gives 

I OC_  ~ 7 4 C _ a ( t ) V 2 ( c + C ~ ) ,  (194) 
2 0 t  

correct to O(l/n). The solution of this equation is very different for n strictly infinite 

than for n large but finite. 
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For n = oo, the C3/n  terln can be dropped and the resulting linear equation solved 
by Fourier transformation to give 

S(k, t) = S(k, 0) exp [ - 2k4t + 2k2b(t)] (195) 

for the structure factor, where b(t) = f~ dt' a(t'). This result is identical with the exact 
result obtained by Coniglio and Zannetti [ 16] in the same limit (compare for example, 
equation (97)) and leads to same multiscaling form (103). 

For n finite, we try scaling forms consistent with the expected t TM growth, namely 
S ( k ,  t) = td/4g(ktl/4), a(t) 2 -A/2 =qmlt , and C(r , t )=f(r / t l /4) ,  where f(x) is the Fourier 
transform of g(q) and qm is a constant. Using these in equation (194) gives 

dedg (dq + 8q 3 - 8 q 2 q ) g  + qB(q), (196) 

8 2 
B(q) = ~qm (f3)q, (197) 

n 

where (f3)q indicates the Fourier transform o f f (x )  3. Note that g(0) = 0 must hold for 
a conserved order parameter; otherwise S(k,0) would grow as L(t) d, violating the 
conservation law. Integrating equation (196) with initial condition g(0) = 0 gives 

g(q) = q - d e x p  ( --  2q  4 + 4qEq 2) d q '  q,d+ 1B(q, ) e x p  ( 2 q  '4 --  4 q 2 q ' 2 ) .  (198) 

The constant qm is fixed by the condition f (0)  = 1, that is ~,qg(q) = 1. For very large 
n we find a posteriori that qm is large. Then g(q) is strongly peaked near q = qm, 
justifying a steepest-descent evaluation of  the sum over q. For q near qm the integral 
in equation (198) is dominated by q '  values of  order q~ 1, giving [75] 

for q near qm. Using this form in Eqg(q) = 1 and evaluating the sum by steepest descents 
gives 

d _ 
1 = 2-(d+5)(27t)l/2KaF(1 +~)qm(d+4)exp(2qa)B(O), (200) 

where Kd = 2/(4rOd/2F(d/2). Using this to eliminate B(0) from equation (198) gives the 
desired scaling solution, valid for qm 1 ,z~ q ~< qm, 

4 2 - d  g(q) -- Kd(2r01/2 qmq exp [ -- 2(q 2 -- q2)2]. (201) 

In the limit qm ~ ~ ,  the width of the peak at q = qm vanishes as qm 1; so in this limit 
we can write 

g(q) --~ Kd l q l -  d6( q _ qm), qm --) or .  (202) 

The final step is to use equation (197) with q = 0 to obtain a second relation (in addition 
to equation (200)) between B(0) and qm. From equation (197), B(0) = (8qE/n)f ddx f ( x )  3. 
Using equation (202) for g(q) givesf(x)  = A(qmX), whereA(y) = constant Jv(y)/y v, with 
v = (d - 2)/2, and hence 

8 2 f n  c°nstantq2~ d B ( 0 ) =  qm ddxA(qmX)3= . (203) 
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Putting this in equation (200) gives l=cons tantqm2~d+l~exp(2q4) /n ,  giving 
qm "~ [(Inn)~2] TM for large n. This in turn implies a characteristic length scale 
L(t) ~ (t/ln n) TM. 

To summarize, we have shown that, within the Mazenko approximation, scaling 
solutions are obtained for any finite n. Only for n strictly infinite is the multiscaling form 
(103) of  Coniglio and Zannetti recovered. Note that the amplitude of the t TM growth 
depends in a singular way on n (as (lnn)-1/4) for n--~ ~ ,  that is our result is 
non-perturbative in l /n  and could not be obtained by expanding around the large-n 
solution. The scaling solution is obtained when the limit t--4 ~ is taken at fixed n. 

5.5.2. The small-k  behaviour o f  the structure fac tor  
One slightly unsatisfactory aspect of  the above treatment is that it does not recover 

the correct small-q behaviour (indeed, the same shortcoming afflicts the scalar version 
of the calculation [86]). For q ~ 0, equation (198) gives g(q)--~ B(O)q2l(d + 2). There 
are compelling arguments, however, for a q4 behaviour at small q [18, 111-114], 
strongly supported by numerical simulations [43], as well as experiment [115], for a 
scalar order parameter. Here we discuss both scalar and vector fields. We begin by 
deriving an inequality for the small-q behaviour, using an approach based on that of  
Yeung [ 111 ]. 

We recall that the equation of motion for conserved fields takes the form 0t~b = V2#, 
where # is the chemical potential. Multiplying through by q~ at a different space point, 
averaging and Fourier transforming give 

1 0S(k) _ k2(#kq~ - k) 
2 at 

~< kz[S(k)] l / 2 ( # k #  - k) 1/2, (204) 

where the final line follows the Cauchy-Schwartz inequality. Now we impose scaling: 
S(k) =Ldg(kL).  Since # - 1 / L  for scalar fields, the analogous scaling form is 
(#k#-k)  = Ld-Zg~(kL). Putting these into equation (204) and using L - - t  1/3 for scalar 
fields give 

dg(q) + qg ' (q) <~ constant qZ[g(q)g~(q)]m. (205) 

For q ~ 0 one expects g(q) ~ q~ and g~(q) --~ constant, because # is not a conserved field. 
Then equation (205) gives the inequality 6 ~ 4. An approximate treatment which gives 
the expected q4 small-q behaviour has been proposed by Kramer and Mazenko [107]. 

For vector fields, it is shown in sections 7 and 8 that L(t) ~ t TM provided that n > 2 
(see section 7 for discussion of n -- 2). This suggests that the (vector) chemical potential 
scales as fi ~ 1 / f f  for n > 2, which gives equation (205) again and 6/> 4 as before. 

It is easy to show, using an argument of Furukawa [18, 112], that the lower bound 
for 6 implied by Yeung's  argument is realized, that is c5 = 4. Integrating the equation 
of motion Otff)k = - -  k 2 # k  gives qSk(t) --- qSk(0) - k2f~ dtl #k(tl). This yields 

S(k, t) = - S(k,  0) + 2(q~k(t)q~ - k(0)) + k 4 dtl dt2 (#k(t~)#- k(t2)). (206) 

It is clear that the first two terms on the right must be negligible in the scaling 
regime; otherwise Yeung's  inequality would be violated! It is simple, however, to 
show this explicitly. In the scaling limit (k ~ 0, L ~ m with kL fixed), S(k, t) increases 
as L a. Therefore the timeqndependent first term on the right of  equation (206) 
is certainly negligible. Now consider the second term. The autocorrelation 
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function A(t)=--(qb(x,t)qb(x,O)) decreases as A ( t ) - - L ( t )  -~. This implies that 
(~bk(t)~b - k(0)) = L a- ~a(kL), where a(q) is a scaling function. Since this term grows less 
rapidly than L a, it also is a negligible contribution to S(k, t) for large L. It follows that 
the structure-factor scaling function g(q) is obtained entirely from the final term in 
equation (206). It vanishes as  q4 because /~ is not a conserved field; so (#k#-k)  is 
non-zero at k = 0, as discussed above. Furukawa has gone slightly further and shown 
explicitly that this final term is indeed of order L a. Inserting the two-time scaling form 
(for scalar fields) (#k( t l )#  - k(t2)) = L d- 2g~(kLl, L21LO (a natural generalization of the 
equal-time scaling form given above), using L ~ ?/3, and evaluating the double time 
integral by power counting, gives S(k, t) --  k4t 2 + (d- 2 ) / 3  ~ k4L d + 4 as required. 

Finally we note that Tomita [113] has given a rather general argument for the k 4 
behaviour based on the isotropy of the scaling functions. 

5.6. Binary liquids 
The equation of motion appropriate to binary liquids, equation (51), was derived 

in section 2.7 for the case where the inertial terms in the Navier-Stokes equation can 
be neglected. Equation (51) leads to an asymptotic linear growth L(t) ~ t. Here we shall 
discuss how one might attempt to calculate an approximate scaling function for pair 
correlations in this regime. 

In the regime where L(t) ~ t, the 'advective'  term in equation (51) dominates the 
'diffusive' term 2 V2# on the right-hand side; s o w e  shall discard the latter. In the spirit 
of  the 'systematic approach' of  section 5.2, we introduce an auxiliary field m defined 
by equation (132), with the additional choice (145), corresponding to a convenient 
choice of  the potential V(~b). Then the chemical potential # can be expressed as 

6F 
-= g~  : v '(4,) - v% 

= - qS'(m)[V2m + (1 - IVml2)m]. (207) 

Expressing the equation of motion (51) in terms of  m, and using equation (207) for # 
gives 

0m(r)0t - f dr '  lYre(r)- T(r - r ' ) -  V'm(r')][c~'(m(r '))]a{v'am(r ') 

+ [1 -IV'm(r')12]m(r')}. (208) 

Now we recall that [qS'(m)] 2 acts very much like a delta function on the interfaces. The 
result (compare equation (11)) a = f dm (d~b/dm) 2 for the surface tension leads to the 
identification (dqS/dm) 2 = ar(m).  Using this in equation (208) gives 

0re(r) f - o- dr '  [Vm(r)- T(r - r ' ) .V 'm(r ' ) ]~i (m(r ' ) )  V'2m(r'). (209) 
Ot 

With the identification qS(r)= sgn [m(r)] this equation can be rewritten as an 
equation for ~b, by multiplying both sides by 6(m(r)): 

aq~(r) ~ f at - - 2  dr '  [ V ( ~ ( r ) . T ( r -  r')'V'~(r')]V'Zm(r'). (2 ]0 )  

This equation could serve as a convenient starting point for approximate treatments 
of  the pair correlation function C(r,t). Note, however, that equation (210) is 
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fundamentally nonlinear, and approximate scaling functions that capture the correct 
physics are difficult to construct. The correct growth law is, nevertheless, built into 
equation (210); simple power counting (remembering that m scales as L(t)) gives 
immediately L(t) ~ athl, as required. 

In the above discussion, the field m was taken to have zero mean, corresponding 
to a critical quench. An off-critical quench can be handled in similar fashion by allowing 
rn to have a non-zero mean [116]. An outstanding challenge is to devise an approximate 
treatment which includes the 'switching off '  of  the linear growth at small volume 
fractions, when the minority phase is no longer continuous, and to properly incorporate 
thermal fluctuations in this regime (see the discussion in section 2.7). 

6. Short-distance singularities and Porod tails 
In the previous section, various approximate treatments of  correlation functions 

were discussed. In this section we show that exact statements can be made about the 
short-distance behaviour or, more precisely, the short-distance singularities, of these 
functions. In particular, the qualitative arguments of  section 3.3 can be made precise 
[54], and the amplitude of the k -  ca + n) Porod tail obtained in terms of the density Pdef 
of defect core which scales as L -  n. The basic result is a generalization of equation (68), 
in which the leading singular contribution to C(r, t) is a term of  order [tl n for n odd (or 
n real, in a continuation of the theory to real n), and [r[" In Jr[ for n even. This in turn 
implies a power law tail k -<d+n) in S(k, t). 

We first illustrate the method for the case of  point defects (n = d). The extension 
to the general case n ~< dis relatively straightforward. Next we discuss the short-distance 
singularities of  some higher-order correlation functions, namely the function Ca defined 
by equation (176), and the defect--defect correlation function. We also calculate the 
Porod tails in the corresponding structure factors. Finally, we compute for scalar fields 
the joint probability distribution P(m(1), m(2)) of  the auxiliary field m of section 5, in 
the limit where Im(a)[, Im(2)l and the distance r = Irl - r2l are all small compared with 
L(t). We find that the distribution is not Gaussian, except perhaps for d - -  to. 

6.1. Point defects (n = d) 
Consider the field ~ at points x and x + r in the presence of  a point defect at the 

origin. We consider the case where Ixl, Ix + r[ and Irl are all small compared with a 
typical interdefect distance L, but large compared with the defect core size 4- Then the 
field at the points x and x + t is saturated in length (i.e. of unit length) and not 
significantly distorted by the presence of other defects. Moreover, the field can be taken, 
up to a global rotation, to be directed radially outwards from the origin, as illustrated 
in figure 10. Thus 

q~(x)" q~(x + r) = x .  (x + r) 
JxJlx + rJ" (211) 

With r held fixed we average equation (211) over all possible relative positions of  the 
point defect, that is over all values of  x within a volume of order L" around the pair 
of  points, with the appropriate probability density pd~e. Focusing on the singular part 
of the correlation function we obtain 

(L , /x-(x+r) ) 
Csi~g(r,t)=pdefJ d x ~ l ~ + r  { analy t ic te rms . ,  (212) 

The analytic terms in equation (212) serve to converge the x integral at large Ix[, and 
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allow us to extend the integral over all space. We include as many terms in the expansion 
of (211) in powers of t as are necessary to ensure the convergence of the integral. When 
n is even, there is a residual logarithmic singularity. This case can be retrieved from 
the general n result by taking a suitable limit (see below). 

At this point, two comments are in order. Firstly, by taking the field to be directed 
radially outwards from the origin, we seem to be limiting ourselves to defects and 
excluding antidefects. The antidefect of a point defect, however, can be generated (up 
to arbitrary rotations), by 'inverting' ( ~ i - - ~ -  q~i) an odd number of  Cartesian 
components of  the vector ~. Reference to figure 10 (a) shows immediately that, for 
n = 2 = d for example, the antivortex can be generated from the vortex by this 
construction. Clearly, however, the scalar product ~(1)-~(2) required for the 
evaluation of Csing is invariant under this operation. Secondly, we seemed to need the 
assumption that the field near a given defect is not significantly distorted by the presence 
of other defects. This is not strictly necessary. Any distortion generated by the other 
defects provides an analytic background field that does not affect the contribution of 
the given defect to the singular part of C. (I am grateful to M. Zapotocky for a useful 
discussion of this point.) 

The integral (212) (extended over all space) is evaluated in [54]. The result is 

Csing = nrt n/z- 1B n + 1 n + 1 F -- pdeelr I 
2 ' 2 

(213) 

where F(x)  is the gamma function, and B(x,  y) = F ( x ) F ( y ) / F ( x  + y) is the beta function. 
Note that the dependence on Irl can be extracted simply by a change in variable in 
equation (212). 

The pole in the F( - n/2) factor for even values of  n signals a contribution of the 
form I rl" In ([rl/z) to Csing for those cases. We shall discuss these cases explicitly when 
we have the result for general n ~< d. 

6.2. The general  case  (n ~< d) 
For n < d the defects are spatially extended, but the analysis is only slightly more 

complicated. The defect defines a surface, or subspace, of dimension d - n  in the 
d-dimensional space. On the length scales of interest (small compared with L(t)), the 
defect is effectively 'flat' (walls) or 'straight' (lines), etc., and the vector t~ can be taken 
to lie in the n-dimensional subspace orthogonal to the defect (the 'orthogonal 
subspace'). The vector r can be resolved into components r± and rll lying in this subspace 
and in the (d - n)-dimensional subspace of the defect respectively. Now consider the 
points x and x + r, where x lies in the orthogonal subspace, with the origin of x lying 
on the defect (see figure 20 for the case d = 3, n = 2). Then equation (211) has the same 
form, but with r replaced by r± on the right-hand side. Proceeding as for point defects, 
the integration over the n-dimensional vector x, with r fixed, gives 

Csing = nrt n/2- 1B n + 1  n + 1 r -- Pdef[l'±[ 
2 ' 2 

(214) 

where Pdef is, as usual, the density of defect core. 
The final step is to take the isotropic average of equation (214) over the orientations 

of r, that is to compute ([r±] n) where the angular brackets indicate an isotropic average. 
For generality, and because we shall need it later, we compute (1 r±] ~) for general c~. To 
do this we set up generalized polar coordinates with the first d - n polar axes in the 
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Figure 20. 

x__÷L 

r / ! r , ,  

x 

Coordinate system employed for the calculation of the amplitude of the Porod tail 
for d =  3, n = 2 .  

subspace of the defect. Then 
d-n 

Ir±l = r  ~I  Isin0L 
i=1 
d-n \J0~/2 )/(f;12 ) 1-I (~ dOi( SinOi)~+d-l-i dOi(sinOi)d-l-i < i t ± l = > =  r • i=1 

= r ~ F(d/2)F((~ + n)/2) (215) 
F(n/2)F((c~ + d)/2)" 

Using equation (215) with ~ = n to perform the isotropic average of equation (214) 
gives the final result for the singular part of  the correlation function, valid for all n ~< d: 

Csing = 7~n/2 1 F ( -  n/2)F(d/2)F2((n + 1)/2)Pdeflr[n ' (216) 
F((d  + n)/2)F(n/2) 

which reduces to equation (213) for n = d. 
We remarked in the previous section that for even n the leading singularity is of  

the form r" In r. The precise result can be extracted by setting n = 2m + e, with m an 
integer, letting e go to zero, and picking up the term of order unity. The leading pole 
contribution, proportional to  e - l ( r 2 )  m, is analytical in Irl and therefore does not 
contribute to Csing. The O(1) term (in the expansion in powers of e) generates the 
logarithmic correction from the expansion of  ltl 2m + E. This gives, for even n, 

Csing = --(4)7~n/2-1(--1)n/2F(d/2)FZ((n+l)/2) 
F( (d + n)/2)FZ(n/2) p~efr" In r. (217) 

It turns out that the Fourier transform S(k, t) of  Csing(r, t) has the same form for even, 
odd and real n; so we shall not need to consider the even-n case separately. 

We can now compare the exact result (216) with the equivalent result (164) obtained 
within the Gaussian theory for non-conserved fields. Equating these provides another 
way of estimating the defect density within the Gaussian theory, namely 

pGe~USS2 _ 1 F((d  + n)/2) (218) 
(4~t) "/2 F(d/2) 

Comparing this with equation (186), we see that the two estimates differ for general 
d, but agree for d ~ ~ .  This is another indication that the Gaussian approximation 
becomes exact in this limit. 

6.3. The structure fac tor  tail 
It remains to Fourier transform equation (216) to obtain the tail of  the structure 

factor. Although the Fourier transform of equation (216) by itself does not technically 
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exist (because the required integral does not converge),  the fol lowing method gives the 
la rge-momentum tail correctly, as may be checked by back-transforming the result. Of  
course, the Fourier t ransform of  the complete correlation function C(t, t) does exist, 
since C(r, t) vanishes at infinity. 

Simple power  counting on equation (216) gives immediately the power- law tail 
S(k, t ) ~  k -~a+n~. To derive the ampli tude we employ the integral representation 

F ( - 2 ) l t l n = f o ~ d U u - n / 2 - 1 [ e x p ( - u r 2 ) - a n a l y t i c t e r m s ] ,  (219) 

where analytic terms indicates, once more, as many  terms in the expansion of  
exp ( - ur e) as are necessary to converge the integral. These terms will not  contribute 
to the tail of  the Fourier transform and can be dropped once the transform has been taken. 
The Fourier t ransform of  equation (219) is therefore 

fo f l d u  u - n/2-1 d d r  e x p  ( - urZ - i k  . r)  = na/2 d u  u - ( d  + n ) / 2 - 1 e x p  --  ~ 

aO 

a/2 [ d + n \ [ 2 \ d + n  
r t - - y - ) t - d  • (220) 

Inserting the remaining factors f rom equation (216) gives the final result 

S(k, t) = 1 (4rt)¢ d + n~/2 F2(( n + 1)/2)F(d/2) Pa~f 
rt F(n/2) k a + "" (221) 

We note that this expression is smooth as n passes through the even integers. The 
generality of  the result should be noted; it is independent of  any details of  the dynamics,  
for example whether the order parameter  is conserved or non-conserved,  and holds 
independently o f  whether the scaling hypothesis  is valid. We  note that, as well as 
providing an exact result against which to test approximate theories, equation (221) can 
also be used to determine the defect density experimentally from scattering data. 

Measurements o f  the tail amplitude in numerical simulations are in good agreement 
with equation (221) for  both scalar [54] and vector [ 100] fields. As an example, we show 
in figure 21 the results for the cases n = d = 2, n = d = 3, and n = 2, d = 3 [100]. It is 
interesting that in all cases the asymptotic  behaviour is approached f r o m  above. For a 
scalar order parameter (n = 1), the leading correction to equation (221) has been 
calculated by Tomita [96]. It  is a term of  order k -  ca + 3~, associated with the curvature 
o f  the interfaces and obtained f rom a short-distance expansion o f  the form C(¢) = 
1 - ar  + br 3 - . . . .  The absence o f  an r 2 term leads to the Tomita [96] sum rule for the 
structure factor, f o  dk [k d ÷ 1S(k) - A] = 0, where A is the amplitude o f  the Porod tail. 

The discussion has so far been restricted to the cases n ~< d, where singular 
topological defects exist. What  can be said about the structure factor tail for n > d? 
The case n = d + 1 may  be complicated by  the presence of  topological  textures [117]. 
For n > d +  1, preliminary numerical studies for nonconserved dynamics [118] 
suggest that the structure-factor scaling function g(y) has a stretched-exponential tail, 
g(y) ~ exp ( - y~), with 6 ~ 1 for d = 1, n = 3, and 6 ~ ½ for d = 2, n = 4. Similar studies 
by Toyoki  were analysed in terms of  a power- law tail g(y) ~ y-X, with X > d + n, but 
are also consistent with stretched exponential decay [119]. In contrast with n ~< d, the 
tail behaviour for n > d may be different for conserved and non-conserved dynamics.  
Recent  results for conserved dynamics  [74] suggest a stretched-exponential form but 
with 6 ~ 1.7 for both d = 2, n = 4 and d = 1, n = 3, while 6 ~ 2.7 for d = 1, n = 2. 
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Figure 21. Simulation data from figure 15 replotted to reveal the amplitude A(n, d) of the Porod 
q - n  >. tail, defined by S(k, t) ~ A(n, d)paef/k a for kL(t) >> 1. The horizontal broken lines are the 

prediction of equation (221) for the asymptotic limit. 

6.4. Higher-order correlation functions 
We consider first the correlation function C4, defined by equation (176), o f  the 

square o f  the order parameter. We concentrate here on the numerator C N, defined by 

C N = ([1 - ~(1)2][1 - ~(2)2]). (222) 

For n ~< d, the presence o f  topological defects leads to a singular short-distance 
behaviour that can be evaluated in direct analogy to that of  the usual pair correlation 
function C. As in the approximate calculation o f  C4, using Gaussian auxiliary field 
methods, in section 5.3, we have to distinguish between scalar and vector fields. 

6.4.1. Scalar fields 
For scalar fields, 1 - 4 2 is sharply peaked near domain walls. It is convenient  to 

introduce the auxiliary field m defined as in the Mazenko approximate theory, but not 
assumed to be Gaussian! W e  recall that the function qS(m) represent the equilibrium 
domain wall profile, with m the coordinate normal to the wall. S i n c e  (/)2 saturates to 
unity within a width o f  order ¢ o f  the wall, we can use, for the calculation of  scaling 
functions, 

1 -- q~Z(m) = ~6(m), (223) 

where we have used our usual definition of  the wall width ~ = f ~  ~ dm [1 - q ~ 2 ( m ) ] .  
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Figure 22. Relative positions of points 1 and 2 for the small-r limit of (74(12). 

Putting equation (223) in equation (222) gives 

C4U(1,2) = ¢2(6(m(1))f(m(2))) (224) 

= ~ZP(1,2) (225) 

= ~2p(1 t2)P(2). (226) 

Here we have used the fact that the wall area density (area per unit volume) 6(m)[Vm I 
can be simplified to 6(m) since [Vm[ = 1 at interfaces from the definition of m as a 
coordinate normal to the interface. In equation (225), therefore, P(1,2)  indicates the 
joint probability density to find both 1 and 2 in an interface. In the final equality, P(l]2) 
is the probability density to find 1 in an interface given that 2 is in an interface. Clearly 
P(2) = p, the average wall density. For r ~ L(t), P(l12) is dominated by cases where 1 
and 2 lie in the same wall, which can be regarded as flat on this scale, as illustrated in 
figure 22. For general d, P(112) = Sa-  l/Sar, where Sa = 2na/ZlF(d/2) is the surface area 
of  a d-dimensional sphere of  unit radius. Assembling everything in equation (226) gives 

2 Sd-1, 
CU4 -+ ~ P Sff-ar ~ "~ r '~ L(t). (227) 

This result breaks down when r becomes comparable with ~, since it is no longer 
adequate to neglect the thickness of the walls. The small-r behaviour (227) implies the 
power-law tail S4(k, t ) ~  k - (d -  1) for the corresponding structure factor, valid when 
k~ ~ 1 ~ kL(t). 

To obtain the normalized correlation function C4, we divide equation (227) by its 
large-r limit (1 - 492)2. However, 

(1 - 492) = ~(6(m)) = ~p, (228) 

giving 

C4 ~ S a - ~ ,  ~ ~ r ~ L(t), (229) 
adpr 

from which the wall width ¢ has dropped out. The exact result for the tail of  the 
corresponding structure factor is obtained by Fourier transformation. Inserting the 
expression for Sd gives 

P 

This could be measured by small-angle scattering in a situation where all the scattering 
was from the interfaces. The d = 3 result has been derived by Onuki, together with the 
leading correction, of  relative order l l(kL) 2 [120]. 
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A heuristic derivation o f  the k - (d-  1) tail, based purely on scaling, proceeds as 
follows [53]. Since (1 - tk 2} ~ p ~ 1/L, C~ has the scaling form C~ = L -  2f(r/L), giving 
S~4 = L d-  2g(kL) but, for kL >> 1, the scattering intensity should scale as the defect 
density, that is as 1/L. This requires g(y)  ~ y -  ~d- ~) for  y >> 1. This argument can be 
generalized to vector fields, as we shall see. 

It is interesting that equation (229) can be combined with equation (216) (with n = 1) 
to obtain an exact relation, valid at short distances, between the two correlation 
functions [100]. For n = l, equation (216) implies the short-distance behaviour 

2 r (d l2 )  
C(t, t) = 1 - =1/2 F((d  + 1)/2) pr. (231) 

Eliminating or  between equations (229) and (231) yields 

C4 ~ - r~ F( (d  - 1)12)F((d + 
_ 2 F2(d12) 1)/2) (1 - C), (232) 

valid at short distances (i.e. ~ ~ r ~ L(t)). Let  us compare  this exact result with equation 
(180), obtained using Gaussian auxiliary field methods. For short distances, when C is 
close to unity, equation (180) becomes C4-1 _- (r~/2)(1 -- C). This has the same form as 
equation (232), but with a different coefficient o f  1 - C. However,  the exact coefficient 
approaches the 'Gaussian '  value of  rt/2 in the limit d - +  m, consistent with our argument 
that the auxiliary field m is indeed Gaussian in this limit. 

6.4.2. Vector f ields 
For vector fields, (/~2 s a t u r a t e s  to unity only as an inverse power  o f  the distance f rom 

a defect, and the representation (223) is no longer appropriate. Instead, equation (59) 
(see also equations (182)) implies that 

1 - ~2__+~ (233) 

when the distance r f rom the core satisfies ~ ~ r ~ L(t). The calculation of  the singular 
part o f  C N, due to the presence of  defects, then follows that of  the usual pair correlation 
function C: 

C ~ s i n g = ~ 4 p d e f f d % ( ] x l 2 l x l  j_12t, (234) 

where t± is the usual component  o f  r in the plane perpendicular to the defect, and the 
angular brackets indicate an isotropic average over  the orientations o f  r. Evaluating the 
x integral first gives 

C4Ling = ~4pdef~n/2 / ' (2  - -  n/2)r2(n/2 - 1) <1 r± I n -  4}. ( 2 3 5 )  
F(n - 2) 

Using equation (215), with c~ = n - 4, gives (after some algebra) 

N C 4 s i n g  = __ ~4pdef~n/2 F(n/2 1)F(1 n/2)F(d/2) r ~-  4 (236) 
F((d  + n - 4)/2) 

This result gives the singular part of  C N for all n > 2. The poles in the numerator 
at even-n signal additional factors o f  In r (actually In (r/L)), as in the calculation o f  C. 
The amplitude o f  the logarithm can be extracted by setting n = 2m + E, with m an 
integer, letting e go to zero and picking up the term of  order unity. This gives, for even 
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n greater than 2, 

N r n -- 4 In r. (237) C 4 s i n g  = __ 4~4paef( _ ~)n/2 F(d/2) 
(n - 2)F((d + n - 4)/2) 

This singular short-distance behaviour implies, as usual, a power- law tail in Fourier 
space, S4(k, t) -- k-ca + n -  4~ for n > 2, in agreement with the prediction of  the Gaussian 
theories (section 5.3 and [53]). Again, there is a heuristic argument for this [53]). The 
result ( ( 1 -  ~ 2 ) ) _  1/L 2 for n > 2 suggests the scaling f rom C~ = L 4f(r/L), with 
Fourier transform L ~- 4g(kL). Extracting the expected proportionality to Pdef - -  L -  n for 
kL >> 1 generates the required k -  ~d +,  - 4 )  tail. 

The case n = 2 is more  complicated, owing to an additional pole in equatign (236). 
The same technique, however,  can be used. We  put n = 2 + E in equation (236), let E 
go to zero and pick up the term of  order unity. The result is 

In 2 r 
N d > n = 2. (238) C 4  sing = ~4pdefT~(d -- 2) ---~-, 

For  d = 2, we must  set d = 2 in equation (236) before taking E to zero. This gives 

4 In r 
C 4 L i n g  = 2 ~  pdee-r T ,  d = n = 2. (239) 

The corresponding structure factor (the Fourier transform of  C~4sing has a large- 
momentum tail o f  the f o r m  [~4pdef In 2 (k~)]/k ~- 2. These results have been discussed in 
more detail in [100]. In particular, it is shown that the result for d = n = 2 is inconsistent 
with a conventional  scaling form. 

6.4.3. Defect -de fec t  correlations 
The short-distance behaviour o f  the defect-defect  correlation functions, introduced 

in section 5.3.3, may  also be determined exactly, at least for extended defects. The 
argument i s a  simple extension of  that used to calculate C4 for scalar fields. From the 
first part o f  equation (187), the correlator (p(1)p(2)) is just the joint probability density 
P(0, 0) for points 1 and 2 both lying on a defect. Clearly P(0, 0) = pdefP(211), in the usual 
notation but, for r ~ L, P(211) is dominated by cases where 1 and 2 are in the same defect 
(provided that the defects are spatially extended, i.e. n < d). An obvious generalization 
o f  equation (227) gives 

Sd-n 
(p(1)p(2)) = P d e f - -  Sd rn 

P d e f  F(d/2) (240) 
rtn/2r ~ F( (d  - n)/2)" 

This result differs f rom equation (188), obtained using the Gaussian approximation, but 
approaches it in the limit d ~ ~ ,  as we have by now come to expect. In the exact result 
(240), the amplitude of  the r - "  divergence vanishes for point defects (n = d), an 
important physical feature that is missing f rom the Ganssian approximation (188). 

6.5. The probability distribution P(m(1), m(2)) 
To conclude this section on short-distance behaviour,  we compute  the exact form 

of  P(m(1), m(2)) for scalar fields, valid for Im(1)[, Im(2)l and r all much smaller than 
L(t), and show explicitly that it is not Gaussian. Technically, the regime in which we 
are working corresponds to taking the limit L(t) ~ ~ with [m(1)l, Im(2)[ and r fixed but 
arbitrary. This situation is illustrated in figure 23, where the domain wall can be regarded 



Theory of  phase-ordering kinetics 433 

Figure 23. 

m(2) 

mill 1 

Calculation of  the short-distance l imi t  of P(m(t), m(2)). 

as flat in the limit of interest. The identity P(m(1), m(2)) = P(m(1))P(m(2)lm(1)), where 
P(xly) indicates a conditional probability, gives 

P(m(1), m(2)) = p(~(m(2) -- re(l) - rcos 0)), (241) 

where the angular brackets indicate an isotropic average over 0, and we have used 
P(m(1)) = p, the wall density, for In(l)[ ~ L. Carrying out the angular average (with 
weight proportional to sin d 20) gives 

P(m(1) ,m(2) )=[B(1 ,d -21)] - Ip  (a (m(2)~2m(1))2)(d-3)/2, (242) 

for Ira(l) -- m(2)[ ~< r, and P = 0 otherwise. Clearly P(m(1), m(2)) is not Gaussian for 
general d. However, it approaches a Gaussian for large d, as we now show. 

It is clear from equation (242) that, in the limit d---) ~,  P(m(1),m(2)) vanishes 
except when Im(1) - m(2)[/r is of order 1/d l/2. Therefore we define 

dl/2[m(1) -- m(2)] 
A - (243) 

r 

Now the large-d limit can be taken at fixed A. Taking d large in the beta function too 
gives 

--~ ( d ~ a/2 P exp - ~ -  d ~ oo (244) P(m(1),m(2)) \ ~ /  r ' " 

Let us compare this result with that of  the systematic approach, which we argued is exact 
for large d, by evaluating equation (123) in the same limit. Equation (158) gives 
So = 4t/d and 7 = exp(  - r2/8t). Inserting these in equation (123) and taking the limit 
t--) w, with r,m(1) and m(2) held fixed, give 

exp(- /  24,, P(m(1), m(2)) -- 47zrtm 

Equations (244) and (245) agree if p = (d/8~t) 1/2, which is just equation (186). We 
conclude that the exact result (242) is consistent with the Gaussian approximation in 
the limit d - +  ~ ,  but not for any finite d. 

7. Growth  laws 
The exact short-distance singularities derived in the previous section, together with 

the scaling hypothesis, provide a basis for deriving exact growth laws for all 
phase-ordering systems with purely dissipative dynamics. 

Although the growth laws for both non-conserved and conserved scalar systems, 
and conserved fields in general, have been derived by a number of methods, there has 
up until now been no simple general technique for obtaining L(t). In particular, the 
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growth laws for non-conserved vector fields have, until recently, been somewhat 
problematic. Here we describe a very general approach, recently developed by BR [79], 
to obtain L(t) consistently by comparing the global rate of energy change with the energy 
dissipation from the local evolution of  the order parameter. This method allows the 
explicit derivation of growth laws for O(n) models, but the results can also be applied 
to other systems with similar defect structures. 

The BR approach is based on the dissipation of energy that occurs as the system 
relaxes towards its ground state. The energy dissipation is evaluated by considering the 
motion of topological defects, when they exist. The defect contribution either dominates 
the dissipation or gives a contribution that scales with time in the same way as the total 
dissipation. The global rate of  energy change, computed from the time derivative of the 
total energy, is equated to the energy dissipation from the local evolution of the order 
parameter. For systems with a single characteristic scale L(t), this approach 
self-consistently determines the time-dependence of L(t). 

7.1. A useful identity 
We begin by writing down the equation of motion for the Fourier components q~k: 

Ot(bk = - k ~ OF 0q~ --~" (246) 

The conventional non-conserved (model A) and conserved (model B) cases are / t  = 0 
and # = 2 respectively. (Elsewhere in this article, the symbol # has been used for the 
chemical potential; the meaning should be clear from the context.) 

Integrating the rate of  energy dissipation from each Fourier mode, and then using 
the equation of motion (246), we find 

= - f k (247) 

where e =  (F) /V is the mean energy density, and fk is the momentum integral 
f d~k/(2rt) a. We shall relate the scaling behaviour of  both sides of  equation (247) to that 
of  appropriate integrals over the structure factor S(k, t) and its two-time generalization. 
Either the integrals converge and the dependence on the scale L(t) can be extracted using 
the scaling form (7) (or its two-time generalization (8)), or the integrals diverge in the 
ultraviolet and have to be cut offa t  km= -- 1/~, corresponding to a dominant contribution 
from the core scale. It is just this small-scale structure that is responsible for the 
generalized Porod law (70) for the structure factor, and the time dependence of any 
integrals controlled by the core scale can be extracted from a knowledge of the defect 
structure. 

7.1.1. The energy integral 
To see how this works,  we first calculate the scaling behaviour of the energy density 

E which is captured by that of  the gradient term in equation (1): 

= f k2Ldg(kL), (248) 
Jk 
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where we have used the scaling form (7) for the structure factor. For n > 2 the integral 
is ultraviolet convergent, and a change in variables yields E -- L-2.  For n ~< 2, when the 
integral is ultraviolet divergent, we use the Porod law (70) and impose an ultraviolet 
cut-off at k- -  1/4, to obtain [56] 

[ L-n~ n-2, n < 2 ,  

e - -~L-21n  (-L~, (249) \4/  n=2,  

~L -2, n > 2 .  

We see that the energy is dominated by the defect core density Pdef -- L -  n for n < 2, 
by the defect field at all length scales between ~ and L for n = 2, and by variations in 
the order parameter at scale L(t) for n > 2. 

7.1.2. The dissipation integral 
We now attempt to evaluate the right-hand side of equation (247) in a similar way. 

Using the scaling hypothesis for the two-time function, 

(Ok(t)" ~ -  k(t')) = k dg(kL(t), kL(t')), (250) 

which is the spatial Fourier transform of equation (8), we find that 

02 
(O,~k" 0,~ ,) = ~ t=t,(~k(t )" ~ - , ( t ' ) )  

= L2L d- 2h(kL), (251) 

where L =- dL/dt. 
When the momentum integral on the right of equation (247) is ultraviolet convergent 

we obtain, using equation (251), d e / d t - - -  LZL ~-2. If, however, the integral is 
ultraviolet divergent, it will be dominated by the behaviour of  the integrand near the 
upper limit; so we need to know the form of the scaling function h in equation (251) 
for kL >> 1. It turns out that, in general, the large-kL form is quite complicated, with many 
different cases to consider [27]. However, we need only the result for those cases where 
the dissipation integral requires an ultraviolet cut-off; otherwise simple power counting 
is sufficient. For those cases, one additional assumption, which can be verified a 
posteriori, yields a simple and rather general result (equation (259) below). 

7.2. Evaluating the dissipation integral 

7.2.1. An illustrative example 
To see what difficulties arise, and how to circumvent them, it is instructive to 

consider a scalar field. We want to calculate (OtOk OtO - k) in the limit kL >> 1. It is clear 
that 0t~b is appreciably different from zero only near interfaces. Since dd~/dt = 0 in a 
frame comoving with the interface, we have, near an interface, Or4) = - v .  V~b, where 
v is the interface velocity. In real space, therefore, 

(OtO(1)OtO(2)) = ([v(1) ~ VqS(1)][v(2). VqS(2)]) (252) 

The large-kL behaviour in Fourier space is obtained from the short-distance (r ~ L) 
behaviour in real space. For r ~ L, the points 1 and 2 must be close to the same interface. 
For a typical interface, with radius of curvature of order 1/L, the speed v is slowly 
varying along the interface. Furthermore, the interface may be regarded as 'flat' for the 
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calculation o f  the short-distance correlation, just  as in the derivation o f  the Porod law. 
It follows that the averages over the interface velocity and position can be carded  out 
independently, giving 

(O,~(1) O,q~(2)) = d (v2)(V ~(1)" Vq~(2)). (253) 

Fourier transforming this result gives 

= k2S(k,t), kL>> 1 

(254) ( Ot~bkOt(~ - k) (V2) 

( L-~g~, k L ~ l ,  

where the Porod result (69) was used in the final line. We shall see that equation (254) 
requires a careful interpretation. 

The next step is to evaluate (v2). Since the characteristic interface velocity is L, we 
expect (v 2) ~ L 2. This assumes, however,  that the average is dominated by ' typical '  
values. This, as we shall see, is the key question. Consider a small spherical domain 
o f  radius r in a non-conserved system. The interface velocity (see equation (16)) is 
v ~  1/r. For a conserved system, equation (31) gives v - - l / r  2. Thus the relation 
v(r) ~ 1/r z-  1 where z = 2 and 3 for non-conserved and conserved systems respectively 
(and the growth law is L ~ t l/z) covers both cases. The fact that v diverges at small r 
raises the possibility that (v 2) is dominated by small domains. The domain-size 
distribution function n(r) has the scaling form n(r)= L-(d+l~f(r/L) (in order that 
f d r n ( r ) - - L  -d, consistent with scaling). The important small-x behaviour o f  the 
function f (x)  can be determined as follows. Consider a small time interval At. The 
domains that will have disappeared after this time interval are those with radius smaller 
than r A t ~  (At) 1/z. The number  o f  such domains is of  order L -(d+ 1)fOA'drf(r/L). The 
requirement that this be linear in At forces f (x)  -- x z - l for x --~ 0. Using v -- r -  (z - 1) we 
can estimate the contribution to (v 2) f rom short scales: 

( v 2 ) ~ ( f ~ d r r d - l n ( r ) v 2 ( r ) ) / ( f ~ d r r d - ~ n ( r ) )  

- - ( f f f  d r r d - z ) / l f f  drrd+z-2. (255) 

The integral in the denominator  converges at short scales, giving a result o f  order 
L d + z- J. For non-conserved fields (z = 2), the numerator converges for all d > 1, giving 
L d- 1 for the numerator,  and (v 2} ~ IlL 2. Since L ~ IlL for this case, we have (v z) ~ L 2 
as expected. For  conserved fields (z = 3), however,  the numerator  only converges at 
short scales for d > 2. For  those cases, one again finds (v 2) -- L 2. For d = 2, however,  
the numerator is o f  order In (L/!). This gives (v 2) - - L - 4 1 n  (L/i) ,  that is there are 
contributions f rom all scales, and (v 2) --  L 2 no longer holds. Putting this into equation 
(254) gives 

9 In (L/i)  kL >> 1, (d = 2, conserved). (256) ( a tq~kO,q~-k )  " L s k  , 

We shall now show that this result is wrong! 
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The factor 1/L in equation (254) represents the total interfacial area density; equation 
(254) implies that interfaces contribute additively to (OtC~kOtC~ - k). In the derivation of 
equation (254), however, we explicitly assumed that only interfaces of  typical 
curvature, of  order 1/L, contribute. For a piece of interface of  local curvature 1/R, the 
condition that the interface be regarded as locally flat on the scale 1/k requires that 
kR >> 1 and not simply that kL >> 1. For fixed k >> 1/L, sharply curved interfaces, with 
R <. 1/k, do not  contribute to the Porod  tail. This means that, as far as the computation 
of the large-kL behaviour is concerned, there is an effective short-distance cut -o f fa t  1/k; 
only interfaces with radius of  curvature R >> 1/k should be included. For the calculation 
of the usual Porod tail in (~bktk - k) this makes no difference, because interfaces with 
R <~ 1/k make a negligible contribution to the total interfacial area as kL--~ oo. For the 
calculation of  (Ot49kOtq~ - k), however, it can make a big difference, because of the extra 
factor of v 2 inside the average. This means that, in evaluating (rE), 1/k rather than ~ is 
the appropriate short-distance cut-off. Applying this to conserved scalar fields in d = 2 
gives (v 2) -- L - 4 In (kL), and 

In (kL) kL >> 1, (d = 2, conserved), (257) (a,4,ka,~-k) Lsk,  

instead of equation (256). 
The final step is to insert equation (257) into the dissipation integral (247), with 

d = 2 = #. One immediately sees that the integral is ultraviolet convergent; the L 
dependence can be extracted trivially by a change of variable, d e / d t -  - 1/L 4. So we 
did not actually need the asymptotic form of (Ot~)kOt~) - k)  after all (except to show that 
the dissipation integral is ultraviolet convergent)! Note that the final result 
d e / d r -  - 1/L 4 is consistent with e ~  1/L (equation (249) with n = 1) and the result 
L ~ 1/L 2 for conserved (i.e. # = 2) scalar fields. 

There is, however, one last complication. Equation (257) is still not quite correct! 
This is because the expression v(r) ~ 1/r 2 for the velocity of a small drop (i.e. with r ~ L) 
breaks down for d = 2 owing to the singular nature of the Green function for the 
Laplacian. For this case one finds instead [27] v(r) ~ 1/r 2 In (L/r).  Using this gives 
f i n a l l y  (Otf~kOt~) - k )  ~ { In [In (kL)] }lLSk for kL >> 1, instead of  equation (257). This does 
not alter, of course, the conclusion that the dissipation integral is ultraviolet convergent 
and can therefore be evaluated simply by a change of  variable. 

7.2.2. The way  f o r w a r d  
We have gone through this one case in some detail, because we can extract from 

it a general principle that avoids treating every case separately (although this can be 
done [27]). The central point, given extra emphasis by the discussion above, is that we 
only need to know the asymptotics of (a,q~k" a,~ - k) in those cases where the dissipation 
integral is ultraviolet divergent. The main result (with exceptions that can be 
enumerated) is that in all such cases the 'naive '  estimates, obtained by using (v 2) -- L 2, 
are correct. 

To make further progress we introduce the additional assumption, which can be 
checked aposter ior i ,  that the dissipation is dominated by the motion of  defect structures 
of 'characteristic scale' L(t). By the 'characteristic scale' we mean the typical radius 
of curvature for extended defects (n ~< d), or the typical defect separation for point 
defects (n = d). That is, we are assuming that the dissipation is dominated by the motion 
of typical defect structures, and not by the disappearance of small domain bubbles and 
small vortex loops, or by the annihilation of defect-antidefect pairs. I f  the latter were 
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true, the dissipation would be dominated by structure at the core scale, and the 
arguments given below would fail. We recall that, for the case d = 2 = # discussed 
above, the final k integral for the dissipation was convergent, implying that the dominant 
k-values are of order ilL, and the worries about the possible importance of small-scale 
structure were ultimately groundless. If  the final k integral were ultraviolet divergent, 
and the large-kL limit of (0tqSk" 0t~ - k) had important contributions from short scales, 
then the dissipation would be dominated by structure at the core scale, violating our 
assumption. Therefore, when our assumption holds, either (0t~k" 0t~ - k) is dominated 
by defect structures of scale L, or the final integral is ultraviolet convergent, or 

both. 
For the required cases where the final integral is ultraviolet divergent, the large-kL(t) 

limit of equation (251) can be extracted from the physical or geometrical arguments 
used to obtain the generalized Porod law (70). According to our assumption, we can 
treat the defects as locally flat (or well separated, for point defects) for kL >> 1. From 
equation (251), we are interested in the behaviour of the two-time structure factor 
S(k, t, t ') ~- (qbk(t) • ~ - k(t')), in the limit that the two times are close together. In the limit 
kL >> 1, this will be proportional to the total density L -  n of  defect core. Introducing 
L = [L(t) + L(t')]/2 and A = [L(t) - L(t')]/2, we obtain 

1 
p ____) (~k(t)" q~- k(t )) ~ a(kA), kL >> 1, (258) 

where consistency with the Porod law for t = t' requires a(0) = constant. Using this in 
equation (251) gives 

L 2 

(0t~k'0,q~ k) Lnk d+._2, kL>> 1. (259) 

This reduces to equation (254) for n = 1 (with (v 2) -- L2). It should be stressed that we 
are not claiming that equation (259) is a general result, only that it is valid when we 
need it, i.e. when the dissipation integral (247) requires an ultraviolet cut-off. There are 
three possibilities: 

(a) The integral is ultraviolet convergent, its dependence on L( t \can  be extracted 
by a change in variable, and the large-kL behaviour of (0t~bk" 0t~b- k) is not 

required. 
(b) The integral is ultraviolet divergent, but the dissipation is still dominated by 

structures of scale L(t). Then we can use equation (259). 
(c) The dissipation has significant contributions from structures with local 

curvature (or spacing) of order the core scale. Then one cannot treat the 
contributions from different defect core elements as independent, equation 
(259) no longer holds, and the present approach is not useful. 

For the moment  we shall proceed on the assumption that (a) and (b) obtain. We shall 
show that these possibilities cover nearly all cases. Examples of when (c) holds will 
also be given. These include the physically interesting case d = n = 2. 

7.3. Results 
Putting equation (259) into the dissipation integral (247) shows that the integral is 

ultraviolet convergent for kL >> 1 when n + # > 2. Otherwise the integral is dominated 



Theory o f  phase-ordering kinetics 439 

by k near the upper cut-off 1/4. This gives 

[ L2L-n~n+~ -2, 

fkk-~<O,4;k" O,~-k)~J L 2 L - ' l n  ( ~ ) ,  

I, L2L~ - 2, 

n + # < 2 ,  

n + # = 2 ,  

n + # > 2 .  

(260) 

The final step is to equate the dissipation rate (260) to the time derivative of the 
energy density (249), as required by equation (247), and to solve for L(t). The results 
are summarized in figure 24, as a function ofn and #, for systems with purely short-range 
interactions. The two straight lines separating regimes of different behaviour are the 
lines n = 2 and n + # = 2 at which the energy and dissipation integrals change their 
form. Note that conservation of the order parameter (which applies in a global sense 
for any # > 0) is irrelevant to the growth law for # < 2 - n. where n is treated here as 
a continuous variable. At the marginal values, logarithmic factors are introduced. The 
growth laws obtained are independent of the spatial dimension d of the system. 

For non-conserved fields (# = 0), we find that L -- t 1/2 for all systems (with d > n 
or n > 2 ) .  Leading corrections in the n = 2 case are interesting; the lnL factors 
in equations (249) and (260) will in general have different effective cut-offs, of the 
order of the core size 4. This leads to a logarithmic correction to scaling, 
L ~ tl/2(1 + O(1/ln t)), and may account for the smaller exponent (about 0.45) seen in 
simulations of 0(2) systems [ 100, 121, 122]. Note that, for non-conserved scalar fields, 
the energy (249) and the dissipation (260) have the same dependence on the core size 

(i.e. both contain a factor ~ - 1); so this dependence cancels from L(t). The fact that 
the correct t 1/2 growth is obtained from naive power counting on the linear terms in the 
equation of motion should therefore be regarded as fortuitous. For example, with 
long-range interactions, this cancellation or errors no longer occurs, and naive power 
counting gives an incorrect result for nonconserved scalar fields [79, 123]. 

For conserved fields (# > 0), our results agree with an earlier RG analysis [10, 11], 
with additional logarithmic factors for the marginal cases n = 2 and n + # = 2. Note that 
the conservation law is only relevant for n + #/> 2. Therefore, for vector fields (n I> 2), 
any # > 0 is sufficient to change the growth law while, for scalar fields (n = 1), the 
conservation law is irrelevant for # < 1, in agreement with the RG analysis [11] and 
earlier work of Onuki [ 124]. 

Siegert and Ra t  [73] have performed extensive simulations for n = 2, d = 3 and 
# = 2. In their original paper they fitted L(t) to a simple power and obtained a growth 
exponent slightly larger than ¼. Recently, however, Siegert [ 125] has shown that a very 
much better fit is obtained when the predicted logarithmic correction is included. 

7.3.1. Exceptional cases (n = d ~< 2) 
In what cases is our key assumption, that dissipation is dominated by the motion 

of defect structures of characteristic scale, L, correct? Certainly, for any n > 2, the 
energy density (249) itself (and hence dissipation) is dominated by variations at scale 
L(t). Therefore we limit the discussion to the case n ~< 2. 

For n ~< 2, the energy density is proportional to the defect core volume (with an extra 
factor In (L / i )  for n = 2; see equation (249)), but we shall show that, in general, 
dissipation is still dominated by defect structures with length scales of order L. To see 
this, we investigate the contribution to the energy dissipation from small-scale 
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structures (e.g. small domains, vortex loops or defect-antidefect  pairs): 

de _ f= dt Ot dl n(l,  t )e( l )  

= - d l  O l j ( l ,  t ) e ( l )  

f ~ 0e (261) = j ( i ) e ( ¢ )  + d l j ( 1 )  ~ ,  

where n(l, t) is the number  density of  defect features o f  scale l, e(l) ~ l a - "  is the energy 
of  a defect feature (with an extra In ( l / i )  factor for n = 2), and j( / ,  t) is the number  flux 
of  defect features. We have used the continuity equation, Otn + O~j = 0 to obtain the 
second line of  equation (261), and the t dependence has been suppressed in the final 
line. The total number  N, of  defect features scales as N - - L  d, and s o N  does not 
change significantly over times smaller than L/L.  Since defects vanish only on the core 
scale, we have N = j ( i ) .  It follows that j ( / )  has a finite non-zero short-distance limit 
of  order N - -  - L/L  a + 1. We can use this to examine the convergence (at short-distance) 

o f  the final integral in equation (261). 
For d > n ,  the integral in equation (261) is well behaved at small l, because 

E(l) ~ l d - "  (e(l) ~ 1 a - "  In ( l / i )  for n = 2), and the integral dominates the j ( i )E(i)  term. 
The integral can be estimated by setting j ( l ) ~ j ( i )  and introducing a large-distance 
cut-off  at l -- L. This gives d~d'c - - j ( i ) L  ~ -"  ~ - L/L" + 1 ( × In ( L / i )  for n = 2). This 
is just  what  one gets f rom differentiating equation (249) (for the cases n ~< 2 considered 
here), verifying the consistency of  the calculation. 

For d = n and n < 2, however,  e(l) ~ Constant, since the (point) defects interact only 
weakly through the tails o f  the defect profile. (The one physical example is the d = 1 
scalar system.) The leading contribution to the energy of  a defect pair is just the core 
energy of  the individual defects, and dissipation is dominated by the j(~)E(~) term in 
equation (261), which describes the annihilation o f  defect pairs. Since the dissipation 
occurs at separations l ~ ~ ~ L, the derivation o f  equation (259) no longer holds. Since 
the energy of  a defect pair depends only weakly on the separation for l >> L, the system 
will be disordered, with an equilibrium density o f  defects at any non-zero temperature. 
At  T = 0, we expect slow growth that depends on the details o f  the potential V(~b) [126]. 
These cases, including the d = 1 scalar system, are at their lower critical dimension and 
are beyond the scope of  the simplified approach presented here (see [126] for a fuller 

discussion). 
The two-dimensional  planar system (n = d = 2) is a special case. The logarithm in 

the energy of  a vortex pair, ~ ~ In (l/~), leads to a logarithmically divergent integral 
in equation (261), i.e. vortex pairs with separations between ¢ and L contribute 
significantly to the energy dissipation. In this case equation (259), which depends on 
the fact that the k L  >> 1 limit is a single-defect property, is again questionable. As a result 
the present method cannot address this case. Indeed, the contributions to the dissipation 
f rom all length scales suggest a possible breakdown of  scaling. 

7.3.2. Sys t ems  w i thou t  de fec t s  
Since systems without topological defects ( n > d +  1) will have convergent  

momentum integrals for kL  >> 1, we obtain L -- t 1/(2 + u) for these cases. We can also apply 
this result to systems with topological textures (n = d + 1), even though the appropriate 
Porod law is not known. Since defects with n > d must be spatially extended and without 



Theory o f  phase-order ing kinetics 441 

Figure 24. 
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Time dependence of the characteristic scale L(t) for systems with purely dissipative 
dynamics. Exceptional cases are discussed in the text. 

a core, they will have a smaller large-k tail to their structure factor S(k, t) than any defects 
with cores. So, for n > 2, when the energy dissipation clearly occurs at length scales 
of order L(t) (see equation (249)) and the momentum integrals for defects with cores 
converge, our results should apply ([27] contains a fuller discussion of  this point). 
Consequently the results in figure 24 will apply for any system, apart from those systems 
explicitly excluded above. 

Of course, all this is subject to the caveat that the two-time structure factor exhibits 
the scaling form (251), on which the whole of this section is built. One explicit 
counter-example is the d = 1, n = 2, system discussed in section 4.5, for which equation 
(251) explicitly fails. As a result, the growth law characterizing equal-time correlations 
is not  L ~ t 1/2, as suggested by figure 24, but L ~ t TM. Indeed one can use the two-time 
result (113) to calculate (Ot~k" 0t(~- k) explicitly for this system [80] and show that it 
is consistent with L ~ t TM growth. 

7.3.3. Other  sys tems 
The strength of  this approach is that it can be applied to systems with more 

complicated order parameters than n-component vectors, provided that they have purely 
dissipative dynamics. Then an equation of the form (247) can be written down. The 
details of the energy functional (1) are unimportant. ¢ The important ingredients are the 
existence of an 'elastic energy', associated with spatial gradients of the order parameter, 
the conservation law (if any), characterized by #, and the defect structure if any. The 
derivation is independent of  the initial conditions, and so, for example, applies equally 
to critical and off-critical quenches as long as the system scales at  late times. We simply 
choose a Porod law (70) to represent the dominant defect type, which is the one 
responsible for the asymptotic tails of the structure factor scaling function, namely that 
with the smallest n. When the energy density is dominated by defects, that is when 
the energy integral (248) is ultraviolet divergent, the relation (248) between the energy 
density and the structure factor, shows that the 'dominant' defects will also be those 

? Of course, this means that the present approach will not address systems with a 
potential-dependent growth law, for example d = n for n < 2. We also do not address quenches 
in which thermal noise is essential, such as systems with static disorder (see, however, section 
8.3.2) or quenches to a T> 0 critical point. 
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which dominate the energy density. As examples, we consider nematic liquid crystals 
and Potts models. 

In bulk nematic liquid crystals, the 'dominant '  defects (in the above sense) are 
strings, giving a Porod tail (70) with n = 2, which with no conservation law implies 
that L ~ t a/2, consistent with recent experiments [60, 61] and simulations [65]. 

The q-state Potts model has q equivalent equilibrium phases, which give rise to 
q(q - 1)/2 different types of  domain wall. These can be indexed aft, where ct, fl = 1 . . . .  q, 
are the phases separated by the wall. Three domain walls of type ~tfl, ct 7 and fly can meet 
at a point (d = 2) or line (d = 3), which represents a new type of defect. It is clear, 
however, that the Porod tail and energy density are dominated by the walls, so that the 
Potts model behaves as an n = 1 system. As a result, L( t )  ~ t 1/2 and t 1/3 for non-conserved 
and conserved order parameter respectively. Recent numerical results [127,128] 
support these predictions, after initial suggestions that the growth was slower. The t ~/3 

growth for conserved systems is also predicted by the RG approach of section 8. 
It should be emphasized that the classification of nematic liquid crystals and Potts 

models as 'n = 2-like' and 'n = l-l ike'  respectively pertain only to the Porod tails and 
the growth laws. As far as scaling functions (e.g. for pair correlations) are concerned, 
these systems belong to their own universality classes. Similarly, for off-critical 
quenches of  conserved systems, the growth law is independent of the volume fractions 
of the phases, but the scaling functions are not. 

8. Renormalization group results 
As with any other scaling phenomenon, it is tempting to try to apply RG concepts 

to the late stages of phase ordering. The basic idea is to associate the scaling behaviour 
with a fixed point of  the equation of motion under a RG procedure consisting of a 
coarse-graining step combined with a simultaneous rescaling of length and time. Such 
a procedure, if successful, would indeed provide a first-principles derivation of  the 
scaling behaviour itself, which has, up to now, been lacking (except for specific soluble 
models discussed in section 4). 

Underlying such an idea is the schematic RG flow for the temperature, depicted in 
figure 4. The critical point Tc corresponds to a fixed point of  the RG transformation. 
At temperatures above (below) Tc, coarse graining the system leads to a system which 
is more disordered (ordered), corresponding to a system at a higher (lower) temperature. 
This schematic flow is indicated by the arrows in figure 4. It follows from this that a 
quench from any T >  Tc to any T <  Tc should give the same asymptotic scaling 
behaviour. Any short-range correlations present at the initial temperature will become 
irrelevant when L( t )  >> 40, where ~0 is the correlation length for the initial condition. A 
different universality class is obtained, however, when the initial condition contains 
sufficiently l ong-range  (power-law) spatial correlations, for example following a 
quench from Tc. Such cases will be discussed below. It follows from the previous 
section that the initial conditions canno t  affect the growth law (provided that they still 
yield scaling behaviour). 

According to figure 4, asymptotic scaling is controlled by the zero-temperature (or 
s t rong-coup l ing)  fixed point, justifying the neglect of thermal noise in the equations of  
motion. We shall see below how this works out in practice. A classification of systems 
according to the role of  thermal noise has been given by Lai et al. [129]. In some 
systems, such as the Cahn-Hilliard systems considered in this section, thermal noise 
can simply be neglected. For kinetic Ising models (with conserved dynamics), where 
freezing occurs for T strictly zero, the temperature modifies the bare transport 
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coefficient 2, but in a scale-independent way that does not change the growth law. In 
systems with quenched disorder, however, there is a scale-dependent renormalization 
of the kinetic coefficients that leads to logarithmic growth with T-dependent amplitudes. 
This case will be discussed in detail in section 8.3.2. 

The idea of using RG methods in this context is not new (for example [129, 130]), 
but in practical applications the RG framework has been exploited mostly in the 
numerical context via, for example, the Monte Carlo RG [131]. 

The difficulty with applying the RG to phase ordering is that, owing to the absence 
of a convenient small parameter, analogous to E = 4 - d for critical phenomena, one 
cannot obtain explicit RG recursion relations. However, one can still make some 
progress. For conserved fields, a very simple and general result taken over from critical 
phenomena can be used to determine growth exponents exactly [10, 11], without the 
need to construct explicit RG recursion relations for the entire set of  parameters 
specifying the equation of motion. Without such explicit recursion relations, of course, 
the very existence of a fixed point has to be taken on trust. This is tantamount to 
assuming the validity of the scaling hypothesis ab initio, and inferring the existence of 
an underlying RG fixed point. This is the approach that we shall adopt. It will take us 
surprisingly far. 

8.1. The renormalization group procedure 

8.1.1. Equation o f  motion 
We start by recalling the Cahn-Hilliard equation (3) for a conserved order 

parameter, generalized to vector fields. Introducing the transport coefficient 2 explicitly 
on the right-hand side (we have previously absorbed 2 into the time scale) gives 

Ot " (262) 

Next we Fourier transform, and divide through by 2k 2. For generality, and anticipating 
future requirements, we shall write the equation in the form 

± + ±] oA 
2k u F /  Ot - 6~ k t- ~k(t). (263) 

Here we have replaced ~ by the more general k ~, as in section 7, and included on the 
left-hand side a term (1/F)O(gk/Ot appropriate to non-conserved dynamics, which is 
recovered in the limit 2--~ ~ .  For any finite 2, however, the order parameter is 
conserved by the dynamics (263). We include the extra term because it will in any case 
be generated (along with many other terms) after one step of the RG procedure. 

A Gaussian white-noise term ~k(t), representing thermal noise, has also been 
included in equation (263). We require that the canonical distribution be recovered in 
equilibrium, that is P[~] ~ exp ( - F[~p]/T). The usual fluctuation-dissipation relation 
fixes the noise correlator 

where i , j  = 1 . . . . .  n indicate Cartesian components in the internal space. We have 
argued previously that thermal noise is irrelevant. The RG approach shows this 
explicitly. 
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8.1.2. The coarse-graining step 
One RG step consists of the following four stages: 

(a) The Fourier components tkk(t) for the 'hard' modes with A / b  < k <  A are 
eliminated by solving equation (263) for the time evolution of these modes, 
and substituting the solution into the equation of motion for the remaining 
'soft' modes with k <  A/b.  Here A -- 1/4 is an ultraviolet cut-off, and b is the 
RG rescaling factor. 

(b) A scale change is made, via the change of variable k = k'/b, in order to reinstate 
the ultraviolet cut-off for the soft modes to its original value A. Additionally, 
time is rescaled via t = bZt '. The requirement, imposed by the scaling 
hypothesis, that the domain morphology is invariant under this procedure, fixes 
z as the reciprocal of the growth exponent, that is L(t) ~ t l/z. Finally, the field 
~k(t) for k < AIb  is rewritten as 

q~k(t) = ~k'/b(bZt ') = b¢ ~ ' (  t '). (265) 

The scaling form (7) for the structure factor becomes S(k, t) = ¢//~g(ktl/~). From 
the definition of  S and equation (265), 

S(k, t) = b2¢(t~,(t') • t~'- k'(t')) = baCt'd/Zg(k't 'I/z) = ba¢-dtd/Zg(ktl/z), (266) 

from which we identify that ( = d/2. 
(c) The new equation of  motion for the soft modes is interpreted in terms of a 

rescaled transport coefficient 2' and free energy F' .  In addition, terms not 
originally present in equation (263) will be generated, and must  be included 
in subsequent RG steps. Similarly, one must allow for a more general structure 
for the thermal noise than equation (264). Finally, the distribution P0({ q~k(0)} 
of initial conditions will also be modified by the coarse graining. 

(d) Scaling behaviour is associated with a fixed point in which both the equation 
of motion and P0 are invariant under the RG procedure. In particular the 
fixed-point free energy is that appropriate to the strong-coupling fixed point, 
which is attractive for systems below Tc. Note also that the fixed distribution 
P0 contains the scaling morphology. 

8.1.3. Renormalization group recursion relations 
Unfortunately, the above procedure cannot be carried out explicitly, owing to the 

absence of  a small parameter and remains largely a 'gedanken RG'.  (Cardy [132] has 
however, developed a perturbative RG treatment for a system described by the TDGL 
equation with potential V(~b) = g~b4.)  Nevertheless, on the assumption that a fixed point 
exists (equivalent to assuming scaling), the recursion relations for the transport 
coefficient 2 and the temperature T can be written down exactly. This is sufficient to 
determine z and to test the stability of the non-conserved fixed point against the 
conservation constraint. These results agree with those in section 7. In addition, 
however, we can also identify universality classes, clarify the role of the initial 
conditions in determining the large-scale structure and make strong predictions about 
the effects of quenched disorder. All of these are beyond the scope of the methods of 
section 7. In this sense, the two approaches are complementary. 

The observation that enables further progress is that the 1/2k ~ term in the equation 
of motion (263) is singular at k -- 0. Since no new large-distance singularities can be 
introduced by the elimination of small length-scale degrees of freedom, it follows that 
the coarse-graining step (a) of the RG does not contribute to the renormalization of 1/2 
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in equation (263). (By contrast it can, and does, contribute to the renormalization of 
1/F [11], which is a non-singular term in equation (263).) As a result, 1/2 is changed 
only by the rescaling step (b). Exactly the same argument at the critical point [9, 133] 
leads to the identity z = 4 - q between the dynamic critical exponent z and the static 
critical exponent t/. It is important to recognize that the latter result is non-perturbative 
and is not restricted to the conventional Wilson-Fisher fixed point. 

Since the strong-coupling fixed point is attractive (see figure 4), the free-energy 
functional scales up at this fixed point, F[{~k' /b}] = bYF[{~bk'}], where the exponent y 
can be determined by elementary arguments. Using this and equation (265) in equation 
(263) gives the coarse-grained equation of motion 

b~+,_ z 1 +b~_ z 1 0 ~ , + . . .  = _ b y _ ~ _ _ . l "  ~kvb(bZt,) ' (267) 
2k '~ ~ (1 + . . . )  + . . .  Ot' b~'-  k' 

where. . ,  indicates terms generated by the coarse-graining step. Dividing through by 
b y-  c, to restore the right-hand side to its previous form, gives 

1 0~b~¢ + , . .  ( / b 2 ~ + # - y - z  + b 2 ~ - y - z l  (1 + . . . ) +  - I- ~k,(t ), (268) 
6F 

2k'" F "'" Ot' 6~'-  k' 

where the new noise term is 

~ , ( t ' )  = b c-y~k,/b(bzt'), (269) 

with correlator 

( ~ i ( t ~ ) ~ k , (  2))=b2~-2y-z2T6o6(t{ --t~) b ~ ' 2 ~ + ~ ( 1  + ...) . (270) 

The absence of contributions to the l12k '~ terms, either in the equation of motion 
or the noise correlator, from the coarse-graining step, means that the recursion relations 
for 1/2 and T can be written down exactly: 

t 

T' = b - YT. (272) 

The T equation is just what one would expect. Since the free-energy functional scales 
up as b y at the strong-coupling fixed point, rewriting the equation of motion, as in 
equation (268), in a form in which the free-energy functional is unchanged is equivalent 
to scaling temperature down by a factor b - Y. At the same time, the transport coefficient 
2 renormalizes as in equation (271). This last equation determines the growth exponent 
for all cases in which the conservation constraint is relevant, in a sense to be clarified 
below. 

8.2. Fixed points and  exponents 
In the strong-coupling phase (i.e. for T <  Tc), T flows to zero under repeated 

iteration of the RG procedure, implying that y > 0 in equation (272). I f  the dynamical 
fixed point controlling the late-stage scaling regime is described by a non-zero value 
of 1/2 (i.e. when the conservation law is relevant), then equation (271) implies that 

z = 2~ + # -- y = d + # - y, (273) 

where we inserted the value ~ = d/2 at the last step. Equation (273) is exact, given the 
scaling assumption underlying the RG treatment. 
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It is interest ing to cons ider  the same argument  at the cri t ical  f ixed point.  
Then T ' =  T =  Tc impl ies  that y = 0 and z = 2(  + #. The  structure factor scal ing 
relat ion reads,  for  this case, S(k, t )=  L 2- "g(kL)= t ~2- "~/Zg(ktl/z); so the analogue o f  
equat ion (266) fixes ( = (2 - q)/2, and z = 2 +/~ - r/. Fo r  # = 2, this is the fami l ia r  
result  z = 4 - q for  mode l  B [9, 133], which  we stress is an exact  non-per turba t ive  result.  
Equat ion (273) is jus t  the genera l iza t ion o f  this resul t  to the s t rong-coupl ing f ixed point.  

To de termine  y for the s t rong-coupl ing fixed point,  we coarse-gra in  the sys tem on 
the scale L(t). On this scale the sys tem looks  comple te ly  disordered;  so the excess  energy 
per  degree o f  f reedom (i.e. per  vo lume L(t) d) is of  the order  o f  the local  excess  energy 
densi ty  at that scale, that is o f  order  L( t )  y. The excess  energy dens i ty  on the or iginal  
scale therefore decreases  as e - - L ( t )  y-  d. Compar ing  this with the resul t  (249) for • 

obta ined in sect ion 7 gives  

d - n ,  n ~ 2 ,  
y = (274) 

d - 2 ,  n>~2.  

Note,  however ,  the extra  logar i thm in equat ion (249) for n = 2. 
For  the usual  scalar  (n = 1) and vec tor  (n/> 2) fields, equat ion (274) gives  the 

usual  results  y = d - 1 and y = d - 2 respect ive ly ,  famil iar  f rom statics; b d- 1 is jus t  the 
energy cost  o f  a domain  wall  o f  l inear  d imens ion  b, whi le  b e - 2 is the energy cost  of  
impos ing  a s low twist  o f  the vector  field over  a region o f  size b d. The extra  logar i thm 
in equat ion (249) for  n = 2 is due to the vort ices,  which  domina te  over  s low ' sp in -wave '  
var ia t ions for this case. As  an amusing  aside, we note that  equat ion (274) gives  the 
' l ower  cri t ical  d imens ion '  dr, be low which  long-range  order  is not  poss ib le  for T >  0, 
for the cont inuat ion o f  the theory to real  n. Since the exis tence o f  an ordered  phase 
requires  y > 0, we have d~ = n for n ~ 2 and d t =  2 for n />  2. The resul t  for  n < 2 recovers  
the known results  for n = 1 (the scalar  theory)  and n = 0 (the se l f -avoid ing  walk).  

Insert ing equat ion (274) into equat ion (273) gives  the final resul t  for z: 

~ n + / ~ ,  n~<2,  (275) 
z =  t 2 + # ,  n~>2.  

These  results  agree with those der ived  in sect ion 7, which are summar ized  in figure 24. 
Fo r  scalar  mode l  B (n = 1; # = 2) we recover  the usual  t 1/3 L i f s h i t z - S l y o z o v  growth,  
whi le  for vector  mode l  B with n > 2 we obtain t TM growth. At  the c ross -over  value  n = 2, 
there is an extra  logar i thm that the R G  method  does  not  see (since it de termines  only 
the growth exponent), but  which  is captured  by our previous  approach  (sect ion 7). 

Compar i son  o f  equat ion (273) with figure 24 shows that equat ion (273) is not  val id  
be low the l ine n + # = 2. H o w  do we see this within the R G  approach?  Recal l  that to 
der ive  equat ion (273) we have to assume that 1/)~ is non-zero at the fixed point,  that 
is that the conservat ion constraint  is relevant, in the R G  sense. Cons ider  now the f ixed 
point  o f  the non-conserved system, with 2 = ~ in the equat ion o f  mot ion  (263). Let  
the cor responding  value of  z be Znc. NOW introduce the conservat ion  law through an 
inf ini tesimal  1/)~. The recurs ion relat ion (271) then gives  

t 

( 2 ) =  bZc-Znc(~), (276) 

where  zo = 2(  + # - y is the value o f  z (equation (273)) at the conserved  f ixed point.  
Equat ion (276) shows immedia t e ly  that  1/2 i terates to zero for  zc < Znc, that is the 
conservation law is irrelevant when z~ < Znc. Since  L ( t ) ~  t l/z, this means  that the 
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conserved system cannot exhibit faster growth than the non-conserved system. This is 
intuitively reasonable; an additional constraint cannot speed up the dynamics. There is 
an interchange of stability of  RG fixed points when zc = Znc, the fixed point with the 
larger z being stable. It follows that z = max (z~, Znc), with Z~ given by equation (273) 
in general and by equation (275) for the O(n) model. Since z = 2 for the non-conserved 
O(n) model (see 7), this interchange of stability accounts for the crossover line n + # = 2 
in figure 24. (We note that the same reasoning implies a similar interchange of stability, 
and the result z = max (zc, Zn~), at the critical fixed point [134].) 

The generality of  equation (273) deserves emphasis. For any system with purely 
dissipative conserved dynamics, one only needs to insert the value of y, which can be 
determined from the energetics as in the derivation of equation (274) for the O(n) model. 
As an example, consider again the q-state Potts model. The energy density is dominated 
by domain walls, so the energy density scales as E -  1/L ~ L y-a, giving y = d -  1 just 
as for the Ising model. Therefore, the usual Lifshitz-Slyozov t 1/3 growth is obtained for 
# = 2. Of course, we already obtained this result in section 7. Recent numerical studies 
[128] confirm this prediction. 

As a second example we note that, in agreement with our findings in section 7, the 
growth law is independent of  the nature of  the initial conditions (which played no role 
in the derivation), provided that scaling is satisfied. A case of  experimental interest is 
a conserved scalar field; the t 1/3 Lifshitz-Slyozov growth is obtained for all volume 
fractions of the two phases. By contrast, the scaling functions can depend on the form 
of the initial conditions. This should not be too surprising, since the fixed-point 
distribution for the initial conditions contains the scaling morphology. This will be 
discussed in detail in section 8.3.1. 

8.3. Universality classes 
The present RG approach cannot, unfortunately, determine z,c, since it rests on the 

fact that 1/2 is non-zero at the fixed point, nor can it explicitly pick up the logarithms 
on the boundary lines n = 2 and n + # = 2 of figure 24. So does it have any advantages 
over the seemingly more powerful energy scaling approach of section 7? The answer 
is an unequivocal yes. The reason is that the RG identifies universality classes as well 
as exponents. As an example, consider a scalar n = 1 system with # < 1. The energy 
scaling method tells us that L ( t ) ~  t 1/2, as for non-conserved dynamics, but tells us 
nothing about correlation functions. The RG, by contrast, tells us that, when the 
conservation is irrelevant, not only the exponents but also all correlation scaling 
functions are the same as those of the non-conserved system, that is for # < 1 the scalar 
system is in the non-conserved universality class. 

At first this result seems paradoxical; in the scaling form for the structure factor 
S(k,t) =Ldg(kL), the scaling function g(x) has a non-zero value at x =  0 for 
non-conserved dynamics whereas, for conserved dynamics, g(x) must vanish at x = 0. 
So how can a system with conserved dynamics be in the non-conserved universality 
class? To understand this, one needs to remember that the scaling limit is defined by 
k---~0, L---~ ~ ,  with kL fixed but arbitrary. Onuki has argued that, for # <  1, 
S(k, t) ~ k2"L d÷2 for k---~ 0 [124]. If  we imagine plotting S(k, t) in scaling form, that is 
g(x) = L-dS(k ,  t) against x = kL, then Onuki's small-k form gives a g(x) of order unity 
when x -- L 1 - 1/~, which is vanishingly small as L ~ ~ for # < 1. In other words, on 
a scaling plot the region of kL where the non-conserved scaling function is inaccurate 
shrinks to zero as L ~ ~ .  
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8.3.1. The role o f  the initial conditions 
To what extent do the scaling functions depend on the probability distribution for 

the initial conditions? The RG answers this question [81]. New universality classes are 
obtained when sufficiently long-ranged (power-law) spatial correlations are present 
immediately after the quench. These could either arise 'physically' ,  as in a quench from 
Tc, or be put in 'by hand' as initial conditions on the T--  0 dynamics. 

Consider initial conditions with a Ganssian probability distribution of variance 

(¢[(0)~ j- k(0)) = A(k)60, (277) 

We recall the definitions, introduced in section 4.2, of  the response to and correlation 
with the initial condition: 

t" - / Oc~k(t) \ (278) G(k, 

C(k, z) = (~(z)~ z_ k(0)) (279) 

respectively, where C(k, t) is a shorthand for the two-time structure factor S(k, t, 0). The 
Gaussian property of { ~bk(0)} means that these two functions are related by 

C(k, t) = A(k)G(k ,  t), (280) 

a trivial generalization of equation (93) that can be proved using integration by parts. 
The RG treatment proceeds as in section 8.1.2. The only additional feature is that 

the scaling form (94) for G(k, t) implies that the initial condition ~k(0) acquires an 
anomalous scaling dimension related to the exponent 2. (The exponent 2 should not be 
confused with the transport coefficient; the meaning should be clear from the context.) 
Therefore we write, analogous to equation (265) for the rescaling of the field at late 
times, 

~k(0) = ~k'/o(0) = bX~'(0) (281) 

for the rescaling of the initial condition. This gives, analogous to equation (266), 

\ O~p'k,(O) I = be - xt';Jzglc(k't' l/z) = b ¢- x - at~ZgR(ktl/z), (282) 

from which we identify Z = ~ - 2. The scaling of the equal time structure factor gives, 
as before, ( = d12; so Z = d/2 - 2. 

Under the RG transformation, the correlator A(k) of the initial condition becomes 
b2X(q~i(0)qS'-ik,(0)) = A ( k ' / b ) +  ..... where ... indicates the contribution from the 
coarse-graining step of the RG. So the new correlator A ' ( k ' ) =  (qS~!(0)q~'-/k,(0)) is 
given by 

] A ' ( k ' ) = b  2~-d A ~ + . . . .  (283) 

Consider now the case where A(k) has a piece corresponding to long-range 
(power-law) correlations: 

A(k) = ASR + ALRk -~, (284) 

with 0 < a < d. Then the real-space correlations decay as r - (d - ~). From equation (283) 
we can deduce the recursion relations for the short- and long-range parts of  the 
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t o t 

Figure 25. Long-range contribution to the structure factor, for long-range correlations in 
the initial conditions. The open circle represents the initial condition correlator, 
equation (277), while the external legs represent the response function (278). 

correlator: 

AiR ---- b 22 -d(AsR d- ...), (285) 

A~R = b 2~ - d+ ~rALR. (286) 

Note that the long-range part ALR, being the coefficient of  a singular (as k --~ 0) term, 
picks up no contributions f rom coarse graining; equation (286) is exact. 

At  the fixed point, both the equation o f  motion and the initial condition distribution 
must be invariant under the RG transformation. It follows f rom equation (286) that the 
long-range correlations are irrelevant at the 'short-range fixed point '  (i.e. ALR iterates 
to zero) if tr < o-c, where 

ac = d - 22SR, (287) 

and 2SR is the value o f  2 for purely short-range correlations. When  a > o'c, the invariance 
o f  AER at the ' long-range fixed point '  fixes 2 = 2ca = (d - tr)/2, an exact result. Thus 
there is an exchange of  stability o f  fixed points when tr = trc. The determination o f  2SR 
itself is non-trivial, since it requires computat ion o f  the terms represented by ... in 
equation (285). 

For  a > o'c, the scaling behaviour belongs to a new universality class, in which the 
growth exponent is unchanged but the scaling functions, for example gR(x), depend 
explicitly on tr. Note that the function C(k, t), the correlation with the initial condition, 
depends on tr for any tr > 0 through the k -  ~ term in the pre-factor A (k) in equation (280). 
Thus, in the scaling region, 

C(k, t) = AERk-'~L'~gg(kL). (288) 

Summing this over k gives the autocorrelation function 

a( t )  -- (~(r,  t)" t~(r, 0)) ~ L - ( d -  o -  ~) (289) 

In the long-range regime, where 2 = (d - tr)/2, this gives A(t) ~ L -  ca ~)/2. Consider, as 
an example, the two-dimensional Ising model  quenched f rom the equilibrium state at 
To  Then o- = 2 - q = 7. Measurements o f  2 for the same model  quenched f rom T = ~ ,  
with non-conserved dynamics,  give 2SR ~ 0.75 [17, 19], as do experiments on twisted 
nematic liquid crystals, which are in the same universality class [21]. Therefore 
o-> d -  2J, SR and this system is in the long-range universality class. It follows that 
A(t) ~ L  -1/8~ t-1/16, which has been confirmed by numerical simulations [81,90].  

The scaling function g(x) for the equal-time structure-factor also has a different form 
in the long-range regime. For  any a > 0, S(k, t) has a long-range contribution SLR(k, t) 
varying as k -  ~ at small k. It is given by figure 25, where the open circle represents A(k) 
and the lines are exact response functions. Thus SEa(k, t) ~- A L R k - ~ G ( k ,  t)G( - k, t). 
Using the scaling form (94) for G gives SEa(k, t )  -~ A E a k  - ~L2~[gR(kL)]2. Comparing this 
with the general scaling form S(k, t) = Ldg(kL), we see that, when tr < trc (i.e. in the 
short-range regime), SER is negligible in the scaling limit (k--~ 0, L--~ ~ ,  with kL fixed) 
and so does not contribute to the scaling function. Since the long-range correlations are 
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irrelevant in this case, the scaling function is identical with that for purely short-range 
correlations. 

For ~r > ~rc, the contribution SLR survives in the scaling limit, and the full scaling 
function is long ranged, g ( x ) ~  x - °  for x--~ 0. In real space, this means that the 
equal-time correlation function decays with the same power law as the initial-condition 
correlator, that is C(r, t ) ~  (L / r )  a ~ for r >> L. For the two-dimensional Ising model 
quenched from To, the predicted (L / r )  TM decay has been seen in simulations [90]. 

8.3.2. S y s t e m s  w i th  q u e n c h e d  d i sorder  

The influence of quenched disorder on the motion of interfaces and other defects 
is of  considerable current interest in a variety of contexts. The new ingredient when 
quenched disorder is present is that the defects can become pinned in energetically 
favourable configurations. At T = 0 this leads to a complete cessation of growth. For 
T >  0, thermal fluctuations can release the pins but, in general, growth is much slower 
than in 'pure '  systems, typically logarithmic in time. 

To see how logarithms arise, consider a single domain wall in a system with 
quenched random bonds. The typical transverse displacement of the wall over a length 
l, due to disorder roughening, is of order l ~, while the typical fluctuation of the wall 
energy around its mean value is of  order l X. These exponents are related by the scaling 
law [135] Z = 2~ + d - 3, which can be obtained by estimating the elastic energy of the 
deformed wall as l a -  l(l~]l)2, and noting that the pinning and elastic energies should be 
comparable. The barrier to domain motion can be estimated by arguing [ 135-138] that 
the walls move in sections of  length l, where 1 is the length scale at which the walls 
'notice'  their curvature, that is the disorder roughening l c should be comparable with 
the distortion, of  order 12/L(t), due to the curvature of walls with a typical radius L(t)  
of curvature. This gives 1 -  L 1/(2 -if) and an activation barrier of  order l X ~ L z/~2 ~) 

(assuming that the energy barr iers  scale in the same way as the energy f l uc tua t ions  
between local equilibrium positions of the wall). Equating this barrier to T gives a 
growth law 

L(t)  ~ ( T  In t )  (2 - ~)/z. (290) 

For d = 2, the exponents ff and Z are exactly known [139]: ~ = 2 and Z = ½, giving 
L(t)  ~ ( T I n  04. A number of  attempts to measure L(t)  in computer simulations have been 
made [140-142], but it is difficult to obtain a sufficiently large range of (lnt) 4 for a 
convincing test of  the theoretical prediction. Recent experimental studies of  the 
two-dimensional random-exchange Ising ferromagnet RbzCu0.g9Co0.11F4, however, 
suggest that L(t)  ~ (ln t) ~/* with ~k = 0-20 + 0.05 [143], consistent with the theoretical 
prediction ~ = ¼. 

Perhaps of  greater interest than the growth law itself is the universality class for the 
sca l ing  f unc t ions .  It can be argued [ 19] that, since L >> l -- L 1/~2 c) for L--~ ~ (note that 

< 1 for a system above its lower critical dimension; otherwise disorder-induced 
roughening would destroy the long-range order), on length scales of  order L the driving 
force for domain growth is still the interface curvature; the pinning at smaller scales 
serves merely to provide the (scale-dependent) renormalization of the kinetic coefficient 
responsible for the logarithmic growth. This leads to the conclusion [ 19] that the scaling 
functions should be identical with those of  the pure system, a prediction that is supported 
by numerical studies [141,142]. The same prediction can be made for systems with 
random-field (i.e. local symmetry-breaking) disorder [19] and is supported by recent 
simulations [144]. 
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It is interesting that the argument leading to equation (290) makes no reference to 
whether the order parameter is conserved or not. The time taken to surmount the pinning 
barriers dominates all other time scales in the problem. The argument outlined above 
suggests a scale-dependent kinetic coefficient F ( L ) ~  exp ( - L  x/(2 n~/T). Putting this 
into the usual non-conserved growth law L ~ [F(L)t] m gives L -- [T In (t/LZ)] z/(2 - ~, 
which reduces to equation (290) asymptotically, since ln L ~ In t for t--+ m. For 
conserved dynamics, the same argument just gives t/L 3 instead of t /L 2 inside the 
logarithm, and equation (290) is again recovered asymptotically. 

While this physically based argument is certainly plausible, the RG makes a more 
powerful prediction; not only are the growth laws the same for conserved and 
non-conserved dynamics, but also they belong to the same universali ty  class! This 
means, inter alia, that they have the same scaling funct ions!  To see this, we simply note 
that, since the f luctuat ions in the free energy, 6F ~ L x, are asymptotically negligible 
compared with the mean, ( F ) ~  L a-  t (provided that the system supports an ordered 
phase at infinitesimal T), the strong-coupling exponent y is given by the same expression 
y = d -- 1 as in the pure system. (Alternatively, and equivalently, the extra length of  
domain wall owing to disorder roughening of the interfaces in a volume L a scales as 
L d-  3 + zc ~ L d - 1) It follows from equation (273) that, prov ided  that  the conservat ion 
law is relevant,  the growth law is L(t) ~ t 1/3 ( f o r  # = 2) as in the pure system. Since, 
however, equation (290) shows that L(t) grows more slowly than t 1/3 for the 
non-conserved system, our previous arguments show that the conservation law is 
irrelevant  for systems with quenched disorder. Therefore conserved and non-conserved 
systems are in the same universality class. 

Numerical simulations [ 145,146] allow us in principal to test this prediction. They 
certainly show logarithmic growth, but with an insufficient range of  L for a definitive 
test of  equation (290). The most striking conclusion of the RG is that the scaling 
functions are those of  the non-conserved system. For example, a scaling plot for the 
structure factor, that is a plot of L -  aS(k, t) against kL should give a non-zero intercept 
at kL = 0. For any fixed L, o f  course, the conservation law requires that S vanish at k = 0, 
but in the scaling limit (k ~ 0, L--~ c~, with kL fixed) the region of small k where the 
conservation law is effective should shrink to zero faster than 1/L as L--~ oo. There are 
indeed indications of  this in the small-k data of Iwai and Hayakawa [ 146], but the range 
of L explored is not sufficiently large to reach the true scaling limit. Indeed, this will 
always be difficult with growth as slow as in equation as (290). 

8.4. The renormalizat ion group f o r  binary liquids 
As a final application of the RG approach, we return to phase separation in binary 

liquids. The new element here is that the temperature T, although formally irrelevant, 
can enter scaling functions in cases where the minority phase consists of disconnected 
droplets, when the nominally dominant linear growth due to hydrodynamic flow is 
absent. 

The analysis parallels that of model B, but including the extra hydrodynamic term 
of equation (51). In order to discuss the role of  temperature, we have to include the 
thermal noise explicitly. The presence of the hydrodynamic term in equation (51) 
implies, via the fluctuation-dissipation theorem, that the noise correlator takes the form 
[381 

(¢(r, t)~(r', t ')) = - 22TV26(r - r ' ) f ( t  - t ') 

+ 2TV~b(r) • T(r - r ' ) -  V'~b(r')6(t - t '). (291) 
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Carrying out the RG step as before, the recurrence relations for 2 and the viscosity ~/ 
(implicit in the Oseen tensor (50)) become 

P 

(-~) = b3-Z (-~) , (292) 

Equation (292) is the same as equation (271) with ( = d / 2  and y =  d - 1  inserted 
explicitly. The renormalization of the noise again gives equation (272), which we 
display again for convenience (with y -- d - 1): 

T' = b l - d T .  (294) 

It is clear that the conventional conserved fixed point, 2 = 2", which has z = 3, is 
unstable against the introduction of hydrodynamics, since I/r/ (which measures the 
strength of the hydrodynamic interaction) scales up as b 2 at this fixed point. Rather, the 
'hydrodynamic fixed point ' ,  with r /=  ~/*, must have z = 1, recovering the dimension- 
analytical result obtained in section 2.7. At this fixed point, 2 scales to zero, that is bulk 
diffusion of the order parameter is irrelevant at the largest scales. Temperature is also 
irrelevant, as expected. 

The physical arguments of  section 2.7 [38, 40], however, show that the linear growth 
(i.e. z = 1), which is a consequence of hydrodynamic flow along interfaces, is possible 
only when the minority phase is continuous. What happens if the minority phase 
consists of  isolated droplets? Then z > 1, and the relevant fixed point must be 17" = 0. 
Let us consider the usual conserved (model B) fixed point in this light. This fixed point, 
with 2 = 2* non-zero and finite, has z -- 3, that is t 1/3 growth. At this fixed point the 
recursion relations for ~/and T are r/' = b -2 r / and  T' = b 1 -dT. Therefore ~/and T both 
flow to zero, but their ratio remains fixed (for d = 3). Note that the ratio T/r 1 is exactly 
what appears in the hydrodynamic part of  the noise correlator (291). This means that, 
while the temperature is technically irrelevant, the hydrodynamic part of  the noise 
cannot be discarded; it is just this part which drives the Brownian motion of  the droplets 
that is responsible for coarsening by droplet coalescence. The ratio Thl is a marginal 
variable; so in principle we expect scaling functions to depend on it, reflecting the 
relative importance of  evaporation-condensation and droplet coalescence to the 
coarsening (see, however, the discussion below). 

To be more precise, we can use dimensional arguments to construct the important 
variables. The effect of  thermal fluctuations on scales slhaller than the correlation 
length ~ can be incorporated through the surface tension o- (which scales F) and the 
equilibrium order parameter M (which scales ~b). The length scale associated with the 
Lifshitz-Slyozov mechanism is then [11,25] L(t) = (2at~M2) 1/3, while the dimension- 
less marginal variable is kBTM2/a2~l. The general form for L(t) is therefore 
L(t)=(2at/M2)l/3f(kRTM2/a2rl), where f (x )  is a cross-over function with 
f (0 )  = constant. For large x, one must havef (x)  -- x 1/a so that L(t) is independent of  2, 
giving L ( t ) ~  (kBTt#l) 1/3 in this regime, in agreement with the Brownian motion 
argument of  section 2.7. Note that the function f also depends implicitly on the volume 
fraction v of  the minority phase. 

This marginal behaviour is specific to d = 3. For general d, equations (293) and 
(294) give (T/rl) ' =  bz-d(Thl). So for d > 3  the ratio T/rl is irrelevant at the 



Theory of  phase-ordering kinetics 453 

Lifshitz-Slyozov fixed point, and the evaporation-condensation mechanism dominates 
asymptotically for all T <  Tc, giving unique scaling functions for a given volume 
fraction. For d < 3, on the other hand, T/q is relevant at the Lifshitz-Slyozov fixed 
point. The dynamics is therefore controlled by a 'coalescence fixed point', with T/q 
fixed, implying that z = d, and 2 is an irrelevant variable. This agrees with the d = 2 
result Of San Miguel et al. [147]. To summarize, for d >  3 the Lifshitz-Slyozov 
mechanism dominates and L - - t  1/3, for d <  3 coalescence dominates and z - - d ,  
that is L - - t  TM, while for the physically relevant case d = 3 both mechanisms 
operate and marginal behaviour is expected such that, even for a given volume 
fraction, scaling functions will depend continuously on the dimensionless ratio 
kBTM2/tr);rl. 

It is important to note, however, that in the above discussion the transport coefficient 
2 in the equation of motion (51), and the viscosity ~/appearing in the Oseen tensor (50), 
have been treated as independent variables. While they can certainly be treated as 
independent in numerical simulations, in real binary liquids they are related [40]. 
Linearizing equation (51) around one of the bulk phases gives equation (21) as in 
model B dynamics (the hydrodynamic term in equation (51) drops out at linear order). 
Inserting the transport coefficient on the right-hand side (it was absorbed into the time 
scale in equation (21)) gives a bare diffusion constant Do = 2V"(1)-~ 2/¢ 2, where 

is the interface thickness. The diffusion constant for a drop of size L is 
D(L) ~ Do~/L~ #kaT--kBTIqL, using the Einstein relation, and the usual relation 
#(L) ~ 1/qL for the mobility. This gives 2 r / -  kBT~. Using also tr--M2/~, which 
follows from equation (11), for the surface tension gives the cross-over variable 
x as kBTM2/a2q ~--1. A more careful calculation [40] shows that the evaporation- 
condensation and droplet coalescence mechanisms both lead to a mean droplet size R(t) 
given by R 3= k(kBT/5rcq)t, with k = 0.053 for the Lifshitz-Slyozov mechanism and 
k = 12v for the droplet coalescence mechanism. 

Effectively two-dimensional binary liquid systems can be achieved using the 
Hele-Shaw geometry, where the fluid is confined between parallel plates. The no-slip 
boundary conditions mean that the Navier-Stokes equation (47) simplifies, and the 
results are different from those obtained by simply putting d = 2 in the previous 
paragraph, which correspond to using 'free' boundaries. In the Hele-Shaw geometry, 
V2V is dominated by the t e rm 02v]dz 2, owing to the rapid variation in v perpendicular 
to the plates (the z direction). This leads to the Darcy law form of the Navier-Stokes 
equation (the inertial terms can be neglected owing to the frictional effect of the 
boundaries): 

d 2 
v = ~ ( - Vp - ~b V#), (295) 

where d is the plate spacing and v(x, y) is now the velocity averaged over the z direction. 
Using the incompressibility condition V- v = 0 to eliminate p yields an equation of  the 
form (50), but with the Oseen tensor replaced by its Hele-Shaw equivalent 

HS d2 
(296) 

Our starting point for the RG analysis is therefore equations (47) and (291), with the 
Oseen tensor T replaced by T ns. 
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Coarse graining in the x - y  plane, holding the plate spacing d fixed, gives the 
recurrence relations 

2' = b z -  32, 

q, = b 3 - Zq, (297) 

T'  = b - i T ,  

which have the same form as equations (292)-(294), with the extra factor b 2 in the q 
equation corresponding to the extra factor of  k 2 in T Hs. Equations (297) still have the 
Lifshitz-Slyozov fixed point 2 = 2", with z = 3 and T irrelevant, but now q (or the 
product 2q) is marginal, suggesting again a continuous family of  universality classes 
reflecting the relative importance of bulk diffusion and hydrodynamic flow. In their 
numerical studies of  critical quenches in the Hele-Shaw geometry, Shinozaki and Oono 
[148] verify the t 1/3 growth and find that the scaling functions do indeed depend 
systematically on the value of 2q (and propose essentially the same explanation). 

For any off-critical quench, fluid flow along the interfaces terminates when the 
droplets of  minority phase become circular. Eventually, the Lifshitz-Slyozov 
mechanism dominates the coarsening, with L ( t ) ~  t 1/3 still, but unique scaling 
functions for a given volume fraction. In this geometry the ratio T/q, representing 
the hydrodynamic noise, flows to zero at the Lifshitz-Slyozov fixed point, 
(T/q) '  = b z 4(T/q); so droplet coalescence is subdominant asymptotically in time. If  the 
transport coefficient 2 is sufficiently small, however, the coalescence fixed point, with 
z = 4 so that T/q is fixed, will dominate the coarsening for a range of times, giving 
L(  t ) ~ ( T t l q  ) TM. 

This result may be derived heuristically by extending to the Hele-Shaw geometry 
the argument given in the final paragraph of section 2.7. For droplets of  size R with areal 
number density n ~ v /R 2, where v is the volume fraction, the 'coalescence time' is given 
by the same expression, tc ~ R2/vD, as in the bulk case. In the Hele-Shaw geometry, 
however, the mobility of a droplet of  size R is / , -  d/qR2; so the Einstein relation 
D = kBT# for the diffusion constant gives t c - q R 4 / v d k B T .  This implies a time 
dependence R ~ (vdksTt /q)  TM for the typical radius of  a drop. Comparing this with the 
Lifshitz-Slyozov growth, R ~ (2at~M2) u3, shows that the cross-over from coalescence 
dominated to Lifshitz-Slyozov dominated regimes occurs when R ~ vdkBTM2/q2a .  

This length is just vd times the dimensionless cross-over variable x that we identified 
in the discussion of bulk binary liquids. For real binary liquids (as opposed to computer 
simulations) we have seen that x is of  order unity; so the cross-over length is set by the 
product vd of the volume fraction and the plate spacing. Since this product is obviously 
less than d, it follows that a t TM coalescence regime (which requires R >> d) should be 
unobservable in real binary liquids. 

9. Summary 
In this article I have reviewed our current understanding of the dynamics of  phase 

ordering and discussed some recent developments. The concept of  topological defects 
provides a unifying framework for discussing the growth laws for the characteristic 
scale and motivates approximate treatments of the pair correlation function. 

The most important consequence of the presence of topological defects in the system 
is the generalized Porod law, equation (70), for the large-kL tail of  the structure factor. 
This power-law tail, whose existence has long been known for scalar systems, has 
recently been observed in computer simulations of  various vector systems 
[100, 122, 149]. It should be stressed that the form of the tail-depends only on the nature 
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of the dominant topological defects. In nematic liquid crystals, for example, the 
presence of disclinations [47], or ' 1 strings', implies a structure factor tail described 
by equation (70) with n = 2 [64], that is a k -  5 tail for bulk systems. This tail has been 
seen in simulations [64, 65] and is not inconsistent [64] with experimental results 
[60,61]. 

The Porod law (70), together with the scaling hypothesis, leads to a powerful and 
general technique for deriving growth laws [79]. The results are summarized in figure 
24. Again, the technique is more general than the simple O(n) models to which it has 
been applied here. Nematic liquid crystals, for example, are described by the 
non-conserved dynamics of a traceless symmetric tensor field. However, the presence 
of dominant string defects implies the same growth law as for the 0(2)  model, namely 
L(t) ~ t ~/2, consistent with the simulations [65] (allowing for the predicted logarithmic 
corrections to scaling) and experiment [60, 61]. 

The dominant role of topological defects also motivates approximate treatments of 
the pair correlation scaling functionf(x) [55-58, 82], and the systematic treatment [87] 
discussed in section 5. All these theories lead to the same scaling function (131), with 
the OJK scaling function (126) corresponding to the special case n = 1. The form (131) 
is a direct consequence of the nonlinear mapping ~(rh), with q~ --) ~ for ~ ,  and 
the Gaussian distribution assumed for the field r~. The OJK-type theories [55, 56, 82, 87] 
and the Mazenko-type theories [57, 58, 85, 86] differ only in the equation for 7, the 
normalized pair correlation function for rh. 

These approximate scaling functions all give good fits to experimental and 
simulation data (see for example figures 14 and 15). However, there is one important 
caveat. When fitting data to theoretical scaling functions, it is conventional to adjust 
the scale length L(t) for the best fit. An absolute test can, however, be obtained by 
calculating two different scaling functions and plotting one against the other [ 101 ]. For 
example, the normalized correlator (176) of  the square of  the field can also be calculated 
within Gaussian theories of the OJK or Mazenko type [53]. The result depends only 
on 7, the normalized correlator of the Gaussian auxiliary field. Eliminating 7 between 
C(12) and C4(12) gives an absolute prediction for the function Ca(C). When this 
prediction is compared with simulation results, however, the agreement is found to be 
rather poor (figure 17); C and Ca can be fitted separately, as functions of  r/L(t), by 
choosing the scale length L(O independently for each fit but not simultaneously. 
However, the agreement improves with increasing d, in agreement with the idea that 
these theories based on a Gaussian auxiliary field become exact at large d [87]. Including 
the 1/N correction in the systematic approach of section 5.2 will presumably improve 
the fit at fixed d. Mazenko [98] has recently introduced an alternative way of  including 
non-Gaussian corrections and finds improved agreement with the simulation results. 

The calculation of scaling functions for conserved fields is a significantly greater 
challenge, especially for scalar fields, where even obtaining the correct t 1/3 growth law, 
within an approximate theory for the pair correlation function, is not straightforward. 
Mazenko [86] has extended his approximate theory to conserved scalar fields, but the 
agreement with high quality simulation data is not as good as for non-conserved fields 
[ 109]. There is an additional complication that a naive application of Mazenko' s method 
gives t TM growth, which Mazenko argues corresponds to surface diffusion only. In order 
to recover the t TM growth he has to add an additional term to incorporate the effect of 
bulk diffusion. For conserved vector fields, the naive Mazenko approach gives the 
expected t TM growth (see figure 24), but without the logarithmic correction expected for 
n = 2. The approximate analytical treatment [75, 110] (presented in section 5.5.1) of the 
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equation for C(12), valid for n>> 1, gives good agreement with scaling functions 
extracted from simulations [73]. A systematic approach for conserved fields, 
generalizing the treatment of section 5.2, would be very welcome, although it is far from 
straightforward. An even greater challenge is to develop good approximate scaling 
functions for binary liquids. 

To summarize, we have focused on the role of topological defects as a general way 
of deriving, through the Porod law (70) and the scaling hypothesis (represented by 
equations (7) and (8)) the forms of the growth laws for phase ordering in various 
systems. The study of such defects also motivates, through the mapping to an auxiliary 
field that varies smoothly through the defect, approximate theories of scaling functions. 
For non-conserved fields, such methods are, in principle, systematically improvable 
(section 5). One of  the challenges for the future is to try to develop comparable methods 
for conserved fields. 

From a wider perspective, phase-ordering dynamics are, perhaps, the simplest 
example of a scaling phenomenon controlled by a strong-coupling RG fixed point 
(figure 4). It may not be too much to hope that techniques developed here will find useful 
applications in other branches of physics. 
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