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I. HISTORICAL INTRODUCTION

It has long been understood that physics and the notio
information are intimately related—indeed, information
the lifeblood of all science. In a very real sense the differ
tial equations of physics are simply algorithms for proce
ing the information contained in initial conditions. Data o
tained by experiment and observation, sense perceptions
communication either are, or contain information formi
the basis of our understanding of nature. Yet, an unamb
ous clear-cut definition of information remains as slippery
that of randomness, say, or complexity. Is it merely a se
data? Or is it itself physical? If the latter, as Einstein on
commented upon the ether, it has no definite spacetime
ordinates. While most physicists would agree that the o
valid means of knowing the physical world is by obtainin
information through observation and measurement, a gen
definition of the term is elusive, even though much effort h
been devoted to the task without reaching any definite c
clusions~Refs. 14, 15!.
The difficulty is somewhat similar to that of attempting

explain the origin and meaning of inertia to beginning s
dents. While the term can seem a bit obscure in its mean
there is no ambiguity in defining inertial mass as its meas
and the concept becomes scientifically useful. Similarly,
general notion of information becomes a scientific one o
if it is made measurable. This was first done in a tentat
way by Nyquist~Ref. 1! in 1924, and then quite clearly b
Hartley ~Ref. 2! in 1928. Hartley was interested in the tran
mission of information in telegraphy and telephony, and c
cluded that a proper quantitative measure of the informa
in a message~symbol sequence! is the logarithm of the num-
ber of equivalent messages thatmight have been sent. Fo
example, if a message consists of a sequence ofk choices
466 Am. J. Phys.65 ~6!, June 1997
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made fromn symbols at each selection, then the number
equivalent messages isnk and transmission of any one o
these conveys an amount of informationk log n. Implicit
here is a presumption that all messages are equally likel
Quite appropriately, modern information theory had

origins in the theory of communication, though this is on
one of the threads in the tapestry. From these heuristic
ginnings there developed an elegant and complete theor
1948, produced almost simultaneously by Norbert Wie
~Ref. 3! and Claude Shannon~Ref. 4!. Wiener’s contribution
first appears in his bookCybernetics, the scope of his inter-
ests indicated by the subtitle ‘‘control and communication
the animal and the machine.’’ Influenced by John von Ne
mann, he introduces as a measure of the information ass
ated with a probability density functionf (x) the quantity

E
2`

`

f ~x! log2 f ~x!dx, ~1!

and applies it to a theory of messages in various syste
The similarity of this expression to some encountered in s
tistical mechanics did not escape Wiener’s attention.
At virtually the same time, Shannon realized that the ba

problem in sending and receiving messages was astatistical
one, and he extended Hartley’s ideas to situations in wh
the possible messages were not all equally probable~though
they are presumed to constitute an exhaustive and mutu
exclusive set, so that the probabilities sum to unity!. If mes-
sages are composed of an alphabetA with n symbols having
probabilities of transmission (p1 ,...,pn), the amount of in-
formation in a message is defined as
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H~A![2K(
i51

n

pi log pi , ~2!

whereK is a positive units-dependent constant. Shannon
rived at this expression through arguments of common se
and consistency, along with requirements of continuity a
additivity. Because information is often transmitted in strin
of binary digits~0’s and 1’s!, it is conventional in commu-
nication theory to take the logarithm to the base 2 and m
sureH in bits. ThusH quantifies the average information p
symbol of input, measured in bits. Note that if the symb
are equally probable then, because( i pi51, eachpi51/n
and we regain Hartley’s result of maximum information.
however, one symbol is transmitted with unit probability
follows thatH(A)50 and no information is contained in
message whose content is known in advance.
One might object that there is indeed information in th

latter event, but it is simply not useful. It is not the intent
the definition~2! to judge usefulness, however, nor is the
anymeaningto be attributed to a piece of information. S
annon originally thought of naming his measure ‘‘unce
tainty,’’ but von Neumann urged him to call itentropy~per-
haps accounting for the Greek letterH!, arguing that a
similar expression already existed in statistical mechan
Thus was unleashed a flood of mischief that has yet to a
completely.
With this measure of the information required to estim

which message had been sent, Shannon laid the founda
of the modern mathematical theory of communication. I
communication channel~e.g., a telephone line! is noise-free,
then one can expect the output message to reproduce f
fully the input. This is rarely the case, so one is led to int
duce as well an output alphabetB with m symbols. The
properties of the noisy channel can be described by co
tional probabilitiesp( i u j ), in terms of which one defines th
mutual information

H~B;A![(
i
piF(

j
p~ j u i !log2S p~ j u i !

pj
D G>0. ~3!

It is this quantity, which reduces toH(A) in a noiseless
channel, that Shannon employed to state one of the m
important results of his theory. Thecapacity Cof a commu-
nication channel is the maximum rate, in bits per second
which information can be transmitted from input to output.
is then a theorem that, with suitable coding and decod
information can be transmitted without error at any rate up
and includingC, and any attempt to transmit at a rate beyo
capacity inevitably results in errors. Formally,C is propor-
tional to the maximum ofH(B;A) over all possible input
probability distributions$p%. As an example, for a single
channel with additive white Gaussian noise having pow
spectrumS, bandwidthB, and signal powerP, the capacity
is

C5B log2S 11
P

SBDbits/s. ~4!

Finally, to send messages of the kind under discuss
here it is necessary to encode them explicitly in some o
mal way, such as in sequences of minimum-length bits. W
the noiseless coding theoremShannon and others showe
that the mean length of these sequences is not only bou
below byH(A), but can be brought arbitrarily close to it. I
467 Am. J. Phys., Vol. 65, No. 6, June 1997
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this sense, then,H(A) can also be interpreted as the me
number of bits required to code the output ofA with an ideal
code.

A. The second thread

Prior to exploring applications to physical problems ou
side the realm of communication theory, it is useful to pau
and examine a second developmental path toward a theo
information. The noted similarity of the Wiener–Shann
information measure to earlier expressions in statistical m
chanics is much more than coincidence. Well over a cent
ago Ludwig Boltzmann’s search for a theoretical express
to match Clausius’s thermodynamic entropyS5rdQ/T led
him to relate entropy to probability. In the form later adopt
by Planck in 1906, he suggested in his great paper of 1
the well-known expression

S5k logW, ~5!

wherek is Boltzmann’s constant, andW is roughly the num-
ber of a priori equally probable microscopic states of th
system compatible with the thermodynamic state. In class
mechanics it is a phase volume, and in quantum theory
the measure of a manifold in Hilbert space. Rather tha
probability, as Planck’s abbreviation forWahrscheinlichheit
implies,W is actually a multiplicity factor, which can be
factor in a probability, of course. Indeed, Boltzmann took
his example the multinomial coefficient and derived the e
pression analogous to Eq.~2!, in which pi is replaced by the
frequency of particle occupation of cells in phase space.
The point here is that the theoretical entropy provide

measure of ourlack of information about the specific micro
scopic state of the system~which must be changing continu
ally in any event!. It is not certain how far Boltzmann’s
thoughts proceeded in linking Eq.~5! with information con-
tent, but it is quite clear that he knew something to be
volved beyond the basic laws of physics. He writes~Ref. 16!,
‘‘The Second Law can never be proved mathematically
means of the equations of dynamics alone.’’ Rather, con
vation of information occurs only in reversible process
whereas irreversibility reflects a loss of information and
consequent increase in entropy. It seems remarkable
what Boltzmann understood so well over a century ago
still found puzzling by some today.
Unfortunately, these similarities led a number of writers

jump immediately to the conclusion that Shannon’s meas
~the negative of Wiener’s! was in fact identical to the ther
modynamic entropy—a step even Boltzmann declined
take without proof. Chief among the advocates of this le
was Brillouin ~Refs. 5, 17!, who coined the termnegentropy
for Shannon’s measure. The desire to make such an iden
cation is understandable; but making it is lamentable,
cause it was not at all justified at this point on the basis
communication theory alone. The missing link was to
found several years later.

B. A third thread

In his classic thermodynamics book of 1871 Clerk Ma
well introduced his famous ‘‘demon’’ in an attempt to clarif
the notions of irreversibility and the second law of therm
dynamics~Ref. 19!. He envisioned ‘‘... a being whose facu
ties are so sharpened that he can follow every molecule in
course...,’’ and inadvertantly inaugerated a vast industry
467W. T. Grandy, Jr.
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demonology that survives to the present day. The idea
that this demon could divide the volume by means of a p
tition containing a shutter, and then open and close the s
ter so as to accumulate fast molecules on one side and sl
ones on the other, thereby violating the second law.~He had
actually discussed the idea in private communications
early as 1867.! Although an interesting and provocative to
at the time, the work of Boltzmann and Willard Gibbs, a
its subsequent development in this century, has demonstr
that the very need and rationale for statistical mechanic
the complete lack of the kind ofmicroscopiccontrol envi-
sioned by Maxwell’s hypothetical demon. Were we able
exercise such control and follow the microscopic trajector
there would be little need for probability theory in our ana
sis of a many-body system. From the contextual discuss
surrounding introduction of the demon, it’s clear that Ma
well, too, appreciated this point.
These observations notwithstanding, the demon and

implications have been, and continue to be taken seriou
and an extensive literature has accumulated~Ref. 22!. And,
as might be expected from so much effort, some of the
cussion has actually led to important insights, beginning w
Leo Szilard’s famous analysis of a one-molecule~!! gas in
1929 ~Ref. 20!. Briefly, Szilard~as demon! divides the vol-
ume of a cylinder into two parts by means of a partition a
makes an observation as to which part the molecule oc
pies; the partition is now employed as a piston that is
lowed to expand under the pressure of the single mole
until the gas fills the entire volume, the temperature be
maintained by immersion in a heat bath; if the original p
tition was into equal parts, we find from Eq.~5! that the
entropy decrease is justk log 2, corresponding to a binar
choice, and if the system is run cyclically one can contin
to extract energy from it. But Szilard recognizes that there
a price for this operation in the form of acquiring the need
information to locate the molecule, and thus the entropy
crease is compensated with that represented by this info
tion increase.~He didn’t get it quite quite right, however
because it is thediscardingof previous information at the
end of each cycle that actually causes the entropy incre
In this respect Maxwell’s original scenario possibly illu
trates the point more transparently: after a fast or slow m
ecule is admitted to one side or the other that information
discarded by the demon, thereby providing an entropy
crease.! This is perhaps the firstexplicit relation made be-
tween physical entropy and information. It is amusing
note that, had Szilard consideredn choices rather than 2, h
would have discovered Hartley’s information measure.
As noted above, following Shannon’s work Brillouin~Ref.

21! introduced the notion of negentropy in an attempt
cement the entropy–information relationship, but with
rigorous justification. He took the stance that the dem
needed a light source to see the molecules, and it was
source that restored the entropy balance and ‘‘exorcized’’
demon. This position was dissected and severely critici
later by Jauch and Ba´ron ~Ref. 18!, although it appears tha
many others were also skeptical from the beginning.

II. THE PHYSICAL CONNECTION

The principal rigorous connection of information theory
physics came somewhat indirectly, with the realization
Edwin Jaynes that Shannon had actually uncovered a fu
mental element of probability theory~Ref. 31!. Namely, the
468 Am. J. Phys., Vol. 65, No. 6, June 1997
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measure of Eq.~2! can be interpreted as describing a pro
erty of any probability distribution. Whereas Shannon env
sioned the set$pi% asgivenin communication theory, Jayne
turned the interpretation around to utilize available inform
tion to determinethe probabilities. In this sense, theentropy
of a probability distributionon an exhaustive set of mutuall
exclusive alternatives (A1 ,...,An) is defined as the func
tional

S~P1 ,...,Pn!52K(
i51

n

Pi ln Pi , K.1. ~6!

In this form S represents the uncertainty in a probabili
distribution as to which of the alternatives is realized. T
entropy of Eq.~6! provides a quantitative measure of ju
how much information is required to remove this unce
tainty.
A short digression is in order here to point out th

Khinchin also clearly understood in 1953 that Shannon’s
tropy was a fundamental element of probability theory~Ref.
6!. He writes, ‘‘There is no doubt that in the years to com
the study of entropy will become a permanent part of pro
ability theory;...’’ He applied information theory in this sens
to Markov chains in some detail, but does not seem to h
taken the probability theory connection much further.
Jaynes went on to enunciate aprinciple of maximum en-

tropy ~PME!, which can be phrased as follows~Ref. 31!: The
distribution$Pi% that maximizesS subject to constraints im
posed by the available information is the least biased
scription of what we know about the set of alternativ
$Ai%. The PME is a rule for rational inference that provides
variational procedure for constructing prior probabiliti
based on given evidence. On the one hand, if that evide
implies nothing more than the alternatives are equally pr
able, the only constraint is that( iPi51 and maximization of
S yields the uniform distribution$1/n,...,1/n%. In this event
Smax5k ln n, the missing information is maximal, and on
can make no definite predictions. On the other hand,
evidence may indicate that one alternative is certain, ren
ing all others impossible, in which caseS50 and there is no
uncertainty whatsoever. The bulk of scientific inference l
somewhere in between, where one must generally cope
incomplete information. In all but the most trivial problem
of science one rarely has sufficient information to construc
unique probability assignment in the same sense that de
ration of an honest coin unambiguously assigns (1

2,
1
2) to the

possible choices. The PME removes this ambiguity by ma
mizing the uncertainty subject to whatever information ac
ally is available—it renders the distribution as uniform
possible. A direct proof that any choice of information me
sure other than~6! will lead to inconsistencies if pursued fa
enough, and that the PME is essentially unique, was su
quently provided by Shore and Johnson~Ref. 38!.
As an aside, we note a slight generalization of Shanno

measure introduced by Kullback~Ref. 7!:

H5K(
i
Pi ln~Pi /Pi

0!, K.0,

which is interpreted as the entropy of the set$Pi% relative to
the set$Pi

0%, and sometimes called the cross-entropy. It
useful when part of the initial information consists of a set
prior probabilities, and it provides for a straightforward ge
eralization to continuous distributions, since there can be
468W. T. Grandy, Jr.
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ambiguity regarding the basic measure on the space of a
natives.
There is no logical reason at all to associateS with any

physical quantity at this point, and the PME is first and fo
most a rule of probability theory. But if one applies th
theory to physical problems it is expected to take on phys
~and maybe experimental! meaning, in the same way math
ematical symbols do in any other theory. If it is applied
any other area of probable reasoning it takes on an appro
ately significant meaning there. In making such applicatio
however, it is first necessary to express the available in
mation in the form of mathematically well-defined co
straints, and this procedure may not always be transpare
In his 1957 papers~Refs. 31, 32! Jaynes made the com

pelling application to statistical mechanics and thermo
namics, having noted that the constraints provided by m
roscopic information could be expressed as expecta
values. He also observed that this was just the problem G
had solved long ago in deriving his ensembles by minimiz
his ‘‘average index of probability of phase’’ subject to co
straints on average total energy, or that plus average
particle numbers~Ref. 33!. Gibbs gave no explanation fo
why this particular function should be minimized, but th
procedure is exactly what we call the PME.
With this interpretation of Shannon’s information me

sure, along with the PME, Jaynes and others have clar
considerably the foundations of statistical mechanics, re
ing it ultimately to a problem of information in a way tha
seems to have been appreciated implicitly by the found
over a century ago. That is,Smeasures the amount of info
mation about the microstate conveyed by data on ma
scopic thermodynamic variables. For equilibrium syste
the entropy~6! and the probabilities become equivalent
the canonical ensemble of Gibbs, withK being identified
with Boltzmann’s constantk. Because the canonical en
semble is known to predict experimental values, one
now safely relate the theoretical~maximum! entropy to the
experimental entropy of Clausius. Quantum mechanic
one employs the density matrixr and von Neumann’s form
of the entropy

S52k ~r ln r!. ~7!

Maximization ofS subject to available information yields th
least-biased probability assignment over the quantum st
of the system. Since the theoretical functionS in the form~7!
is invariant under unitary transformation, it is often argu
that this expression cannot describe the second law.
Jaynes~Ref. 35! later demonstrated that, in fact, it is just th
property that allows one to derive the second law, which
statement aboutexperimentalentropy.
A large portion of the subsequent involvement of inform

tion theory with problems of physics stems from t
maximum-entropy formalism. In addition, there have be
numerous other uses of information-theoretic concepts
physics not directly related to the PME, many of which a
noted below. Prior to surveying these applications, thou
there is another path emanating from the Wiener–Shan
formulation that requires explication.

A. An algebraic interpretation

At roughly the same time that Jaynes was developing
PME the Russian mathematician A. N. Kolmogorov realiz
that Shannon’s information theory could be developed
several other ways~Refs. 104, 105!. He noted that not all
469 Am. J. Phys., Vol. 65, No. 6, June 1997
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applications need pertain to events with only a probability
realization, but that the notions of entropy and informati
could be formulated for individual variables as well. That
we can inquire about the information conveyed by one ob
about another. For example, one can consider the comb
torial aspects of binary sequences directly, and the inform
tion content of such sequences is not represented adequ
in terms of Shannon’s entropy. Rather, it is desirable
quantify directly the information content of a sequence
corded in the memory of a computer, say. This line of re
soning led to an algorithmic approach through the introd
tion of recursive functions, and eventually to a formal theo
of complexity. Similar ideas were developed at almost
same time by Solmonoff~Ref. 106! and Chaitin~Ref. 107!.
Briefly, theKolmogorov complexity, or algorithmic infor-

mation contentK(x) of a string x is the lengthl of the
shortest programp executed on a universal computerU that
will yield x,

K~x!5 min
U~p!5x

l ~p!. ~8!

Subsequent developments were applied primarily to attem
to define randomness rigorously, and to a study of comp
able functions. A functionf (s) is computableif there is a
Turing machine described by anM (s) assigning finite binary
strings to finite binary strings that reaches a final~or ‘‘halt-
ing’’ ! state such thatf (s)5M (s). The functionK(s) is un-
computable. This field of study is now known asalgorithmic
information theory, and recent years have seen a number
more direct applications to physics.
Kolmogorov initiated yet another approach to informati

measures in 1958~Ref. 65!, which was found independentl
by Sinai at about the same time~Ref. 66!. The idea is to
extend Shannon’s entropy to the theory of dynamical s
tems. One considers thedynamicalShannon entropy per uni
time h of a map, say, and defines theKolmogorov–Sinai
entropy S, or metric entropy as the supremum ofh over all
possible partitions of the phase space. The KS entropy
turned out to be very useful in nonlinear dynamics, for it c
be related directly to the Lyapunov exponents of the syst
In fact, it is sometimes used todefinechaos as arising when
the KS entropy is positive. Hence, the KS entropy provide
measure of the information lost per unit time as the syst
trajectories diverge from almost identical initial condition
That is, information on the orbit is lost likeenS asn→` in
an iteration—or information on initial conditions is gained
the orbit makes more significant digits in these conditio
important.

III. GENERAL INFORMATION THEORY

A. Journals

Almost every physics journal will contain articles wit
information-theoretic connections when appropriate, such
Physical Review Aand Journal of Statistical Physics. The
following journals are either devoted to information theo
or regularly contain applications of interest:
Acta Informatica
Cybernetica
Cybernetics and Systems
IEEE Transactions on Information Theory
Information and Computation
I.R.E. Professional Group on Information Theory
Open Systems and Information Dynamics
469W. T. Grandy, Jr.
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B. Historical works
1. ‘‘Certain Factors Affecting Telegraph Speed,’’ H. Nyquist, Bell. Sy
Tech. J.3, 324–346~1924!. ~I!

2. ‘‘Transmission of Information,’’ R. V. L. Hartley, Bell. Syst. Tech. J
7, 535–563~1928!. ~I!

3. Cybernetics, N. Wiener~MIT, Cambridge, MA, 1948!. ~A!
4. ‘‘A Mathematical Theory of Communication,’’ C. E. Shannon, Be
Syst. Tech. J.27, 379–423~1948!. Reprinted, along with a semi
popular essay by Warren Weaver, inThe Mathematical Theory of
Communication, C. E. Shannon and W. Weaver~University of Illinois
Press, Urbana, 1949!. ~A!

5. Science and Information Theory, L. Brillouin ~Academic, New York,
1956!. ~A!

6. Mathematical Foundations of Information Theory, A. I. Khinchin
~Dover, New York, 1957!. ~A!

7. Information Theory and Statistics, S. Kullback~Wiley, New York,
1959!. ~A!

8. Claude Elwood Shannon, Collected Papers, edited by N. J. A. Sloane
and A. D. Wyner~IEEE, New York, 1993!. ~I!

C. General theory
9. Foundations of Information Theory, A. Feinstein ~McGraw-Hill,
New York, 1958!. A classic and much-quoted treatise.~A!

10. On Measures of Information and Their Characterizations, J. Aczel
and Z. Daroczy~Academic, New York, 1975!. ~A!

11. Entropy and Information in Science and Philosophy, L. Kubat and
J. Zeman~Elsevier, Amsterdam, 1975!. ~I!

12. Relative Information: Theories and Applications, G. Jumarie
~Springer-Verlag, Berlin, 1990!. ~A!

13. Elements of Information Theory, T. M. Cover and J. A. Thomas
~Wiley, New York, 1991!. A particularly accessible introduction.~I!

The following two books are general discussions attemp
to adduce the definition and meaning of information.
14. The Meaning of Information, D. Nauta~Mouton, The Hague, 1972!.

~E!
15. The Nature of Information, P. Young~Praeger, New York, 1987!. ~E!

IV. PHYSICAL APPLICATIONS

In this section we categorize the major applications of
formation theory to physical systems and provide the ma
references defining the interface. General works relating
formation to physics are noted, and then the major contri
tions stemming from utilization of the maximum entrop
principle are surveyed. We next provide a sampling of
literature describing information-theoretic methods in va
ous subfields of physics, the aim being to provide examp
of how specific disciplines have adapted this tool. Finally
few fields have been singled out for more detailed discuss
because they are areas in which information-theoretic id
are playing a principal role in very active current researc

A. General physics
16. ‘‘On Certain Questions of the Theory of Gases,’’ L. Boltzmann, Natu

51, 413–415.~1895!. A semi-popular article explaining many of hi
views on this subject.~E!.

The following two articles provide point and counterpoi
regarding physical interpretation of Shannon’s entropy.
17. ‘‘Physical Entropy and Information. II,’’ L. Brillouin, J. Appl. Phys

22, 338–343~1951!. ~I!
18. ‘‘Entropy, Information and Szilard’s Paradox,’’ J. M. Jauch and J.

Báron, Helv. Phys. Acta45, 220–232~1972!. ~I!

The next four items provide rather complete coverage of
Maxwell demon issues.
19. Theory of Heat, J. C. Maxwell~Longmans Green, London, 1871!. ~I!
20. ‘‘Ü ber die Entropieverminderung in einem thermodynamischen Sys

bei Eingriffen intelligenter Wesen,’’ L. Szilard, Z. Phys.53, 840–856
~1929!. Translated as ‘‘On the Decrease of Entropy in a Thermo
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namic System by the Intervention of Intelligent Beings,’’ A. Rapopo
and M. Knoller, Behav. Sci.9, 301–310~1964!. ~I!

21. ‘‘Maxwell’s Demon Cannot Operate: Information and Entropy. I,’’ L
Brillouin, J. Appl. Phys.22, 334–347~1951!. ~I!

22. Maxwell’s Demon: Entropy, Information, Computing, edited by H.
S. Leff and A. F. Rex~Princeton U.P., Princeton, and Adam Hilge
Bristol, 1990!.
Contains a very thorough survey of the literature on Maxwell’s dem
~I!

These four entries discuss a number of issues concerning
relations between information and physics as they develo
from Shannon’s work.
23. Considerations sur la theorie de la transmission de l’information et

sur son applications a certains domaines de la physique, A. Blanc-
Lapierre~Institut Henri Poincare´, Paris, 1953!. ~I!

24. ‘‘An application of information theory: Longitudinal measurabilit
bounds in classical and quantum physics,’’ C. D’Antoni and P. Sc
zano, Found. Phys.10, 875–885~1980!. ~A!

25. ‘‘On relations between information and physics,’’ P. Kovanic, Pro
Control Info. Th.13, 383–399~1984!. ~I!

26. Information and the Internal Structure of the Universe: An explo-
ration into information physics , T. Stonier ~Springer-Verlag, Lon-
don, 1990!. ~I!

An interesting side issue in these relations is found in
27. ‘‘Mathematical model of information communication in physics teac

ing process,’’ S. Liren and S. Xinping, J. Sys. Sci. Sys. Eng.2, 363–
369 ~1993!. ~E!

Proceedings of three recent conferences provide a b
overview of current research in the interplay between phys
and information.
28. Symposium on the Foundations of Modern Physics, edited by P.

Lahti and P. Mittelstaedt~World Scientific, Singapore, 1993!. ~A!
29. Complexity, Entropy and the Physics of Information, edited by W.

H. Zurek ~Addison-Wesley, Redwood City, CA, 1990!. ~A!
30. Physical Origins of Time Assymetry, edited by J. J. Halliwell, J.

Pérez Mercador, and W. H. Zurek~Cambridge U.P. Cambridge, 1994!.
~A!

B. Maximum entropy

The principle of maximum entropy originated in the la
century with Gibbs and was re-constructed in its mode
broader form by Jaynes. Because of their interests it w
natural that the first major application was to statistical m
chanics and the derivation of classical thermodynamics.
original papers in the modern sequence are
31. ‘‘Information Theory and Statistical Mechanics,’’ E. T. Jaynes, Ph

Rev.106, 620–630~1957!. ~A!
32. ‘‘Information Theory and Statistical Mechanics. II,’’ E. T. Jayne

Phys. Rev.108, 171–190~1957!. ~A!
33. Elementary Principles in Statistical Mechanics, J. W. Gibbs~Ox

Bow, Woodbridge, CT 1981; first published, in 1902!. ~I!
34. ‘‘Foundations of Probability Theory and Statistical Mechanics,’’ E.

Jaynes, inDelaware Seminar in the Foundations of Physics, edited
by M. Bunge~Springer-Verlag, Berlin, 1967!, pp. 77–101.~A!.

35. ‘‘Gibbs vs. Boltzmann Entropies,’’ E. T. Jaynes, Am. J. Phys.33,
391–398~1965!. ~I!

These last four papers are reprinted, along with others, i
36. E. T. Jaynes: Papers on Probability, Statistics and Statistical Phys-

ics, edited by R. D. Rosenkrantz~Reidel, Dordrecht, Holland, 1983!.
~A!

A twentieth-anniversary conference was held in 1978:
37. The Maximum Entropy Formalism, edited by R. D. Levine and M.

Tribus ~MIT, Cambridge, MA, 1979!. ~A!
38. ‘‘Axiomatic Derivation of the Principle of Maximum Entropy and th
470W. T. Grandy, Jr.



on

ist
s
e

-

st

.
ev

dis

ap
sis

d
n-
m
re

ct

n-

ull

s,
f

n

a
b
o
ro
re
e-

,

o

al-
of
Li-
-
ing
ar-
ar-
the
ub-
ing

d

k-
of

.

in
.

.

lo-
S.

h,

R.

.

-

i,

L.

es

ng:
lo,

,

Principle of Minimum Cross-Entropy,’’ J. E. Shore and R. W. Johns
IEEE Trans. Inf. Th.IT-26, 26–37~1980!. A consistency proof of the
PME. ~A!

A number of textbooks and monographs developing stat
cal mechanics based on Jaynes’s ideas have appeared
1957, the following group being somewhat comprehensiv
39. Thermostatics and Thermodynamics, M. Tribus ~Van Nostrand,

Princeton, 1961!. ~I!
40. Concepts in Statistical Mechanics, A. Hobson~Gordon and Breach,

New York, 1971!. ~I!
41. Atoms and Information Theory, R. Baierlein~Freeman, San Fran

cisco, 1971!. ~I!
42. Foundations of Statistical Mechanics, Volume I: Equilibrium

Theory, W. T. Grandy, Jr.~Reidel, Dordrecht, Holland, 1987!. ~A!
43. Foundations of Statistical Mechanics, Volume II: Nonequilibrium

Phenomena, W. T. Grandy, Jr.~Reidel, Dordrecht, Holland, 1988!.
~A!

Representative applications to more specific problems in
tistical mechanics are given in the following articles.
44. ‘‘Dissipative evolution, initial conditions, and information theory,’’ A

N. Proto, J. Aliaga, D. R. Napoli, D. Otero, and A. Plastino, Phys. R
A 39, 4223–4229~1989!. ~A!

45. ‘‘Maximum-entropy approach to classical hard-sphere and hard-
equations of state,’’ D. Wang and L. R. Mead, J. Math. Phys.32,
2258–2262~1991!. ~A!

In his 1975 Ph.D. thesis John Burg introduced the first
plication of maximum-entropy techniques into data analy
in the context of geophysical time series~Ref. 46!, though he
had reported the idea about 8 years earlier. This opene
entirely new and rich area for the use of informatio
theoretic methods applied to physical problems. A short ti
later there followed an imaginative adaptation to image
construction by Gull and Daniell~Ref. 47!, and various au-
thors began applying these methods to general spe
analysis.
46. ‘‘Maximum Entropy Spectral Analysis,’’ J. P. Burg, Ph.D. thesis, Sta

ford University, 1975.~A!
47. ‘‘Image reconstruction from incomplete and noisy data,’’ S. F. G

and G. J. Daniell, Nature272, 686–690~1978!. ~A!
48. ‘‘On the Rationale of Maximum-Entropy Methods,’’ E. T. Jayne

Proc. IEEE70, 939–952~1982!. This contains a lucid explication o
Burg’s method for applying the PME to time series analysis.~A!

49. Nonlinear Maximum Entropy Spectral Analysis Methods for Sig-
nal Recognition, C. H. Chen~Research Studies Press, Chichester, E
gland, 1982!. ~A!

50. Nonlinear Methods of Spectral Analysis, edited by S. Haykin
~Springer-Verlag, New York, 1983!. ~A!

For the past 15 years annual international workshops h
been conducted on maximum-entropy methods, primarily
not exclusively in data analysis, and the proceedings v
umes constitute an excellent source for these and nume
other applications. Here is the first, along with the most
cent~the entire list can be found on Kluwer’s WWW hom
page, http://kapis.www.wkap.nl/!.
51. Maximum Entropy and Bayesian Methods in Inverse Problems,

edited by C. R. Smith and W. T. Grandy, Jr.~Reidel, Dordrecht, Hol-
land, 1985!. ~A!

52. Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico
1995, edited by K. M. Hanson and R. N. Silver~Kluwer, Dordrecht,
Holland, 1997!. ~A!

In addition, an excellent tutorial volume in the application
maximum entropy methods is
53. Maximum Entropy in Action , edited by B. Buck and V. A. Macauley

~Clarendon, Oxford, 1991!. ~A!
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C. Physics subfields

Maximum-entropy methods have found application in
most every subfield of physics, and in many other areas
science. For example, the Colorado Alliance of Research
braries~CARL! databaseUnCoverscans some 17 000 jour
nals, and since 1988 cites almost 500 articles apply
maximum-entropy techniques in more than 100 different
eas of research. While it is not possible to list all those
ticles here, the following references provide examples of
use of general information-theoretic ideas in various s
fields of physics, as well as a few earlier works incorporat
maximum entropy.

1. Acoustics
54. ‘‘Structural Information Theory of Sound,’’ T. W. Barrett, Acustica36,

271–281~1976!. ~A!

2. Atmospheric physics
55. ‘‘A Statistical Description of Coagulation,’’ J. M. Rosen, J. Colloi

Interface Sci.99, 9–19~1984!. ~A!

3. Chemistry and chemical physics
56. ‘‘Studies in Chemical Dynamics: Information Theory and the Franc

Condon Model,’’ C. L. Vila, Ph.D. thesis, Massachusetts Institute
Technology, 1978.~A!

57. ‘‘Application of Information Theory in Chemical Physics,’’ S. B
Sears, Ph.D. thesis, University of North Carolina, 1980.~A!

58. Information Theory in Analytical Chemistry , K. Echschlager
~Wiley, New York, 1994!. ~A!

59. ‘‘An Information-Theoretical Estimate of the Exchange Parameter
X Alpha Theory,’’ K. B. K. Raju, P. S. V. Nair, and K. D. Sen, Chem
Phys. Lett.170, 89–93~1990!. ~A!

4. Condensed matter
60. ‘‘Maximum Entropy in Condensed Matter Theory,’’ D. Drabold and G

Jones, inMaximum Entropy and Bayesian Methods, Laramie,
Wyoming, 1990, edited by W. T. Grandy, Jr. and L. H. Schick~Klu-
wer, Dordrecht, Holland, 1991!, pp. 79–92.~A!

61. ‘‘Statistical Geometry. I. A Self-Consistent Approach to the Crystal
graphic Inversion Problem,’’ S. W. Wilkens, J. N. Varghese, and M.
Lehmann, Acta Cryst. A39, 47–60~1983!. ~A!

5. Geophysics
62. ‘‘The Maximum Entropy Approach to Inverse Problems,’’ E. Rietsc

J. Geophys.42, 489–506~1977!. ~A!
63. ‘‘Detection of the 11-Year Sunspot Cycle Signal in Earth Rotation,’’

G. Currie, Geophys. J. R. Astron. Soc.61, 131–140~1980!. ~A!

6. Mathematical physics
64. ‘‘Maximum Entropy in the Problem of Moments,’’ L. R. Mead and N

Papanicolaou, J. Math. Phys.25, 2404–2417~1984!. ~A!

7. Nonlinear dynamics
65. ‘‘A new metric invariant of transitive dynamical systems,’’ A. N. Kol

mogorov, Dokl. Akad. Nauk SSSR119, 861–864~1958!. ~A!
66. ‘‘On the concept of entropy for a dynamic system,’’ Ya. G. Sina

Dokl. Akad. Nauk SSSR124, 768–771~1959!. ~A!
67. ‘‘Kolmogorov entropy and numerical experiments,’’ G. Benettin,

Galgani, and J. M. Strelcyn, Phys. Rev. A14, 2338–2345~1976!. An
application to the He´non–Heiles model that explicates its properti
based on numerical studies.~A!

68. ‘‘Short Paths and Information Theory in Quantum Chaotic Scatteri
Transport Through Quantum Dots,’’ H. U. Baranger and P. A. Mel
Europhys. Lett.33, 465–470~1996!. ~A!

69. Chaos in Dynamical Systems,E. Ott ~Cambridge U.P., Cambridge
1993!. ~A!
471W. T. Grandy, Jr.
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70. Thermodynamics of Chaotic Systems, C. Beck and F. Schlo¨gl ~Cam-
bridge U.P., Cambridge, 1993!. ~A!

8. Nuclear physics
71. ‘‘Information and estimation in nuclear measurements,’’ J. K. Vaur

Nucl. Instrum. Methods99, 373–378~1972!. ~A!
72. ‘‘Information Theory and Statistical Nuclear Reactions, I. Gene

Theory and Applications to Few-Channel Problems,’’ P. A. Mello,
Bereyra, and T. H. Seligman, Ann. Phys.~N.Y.! 161, 254–275~1985!.
~A!

73. ‘‘Information Theory and Statistical Nuclear Reactions. II. Man
Channel Case and Hauser–Feshbach Formula,’’ W. A. Friedman
P. A. Mello, Ann. Phys.~N.Y.! 161, 276–302~1985!. ~A!

9. Optics
74. ‘‘Information Theory in Holography,’’ D. Gabor, inOptical and

Acoustical Holography, edited by E. Camatini~Plenum, New York,
1972!, pp. 23–40.~I!

75. Optics and Information Theory, F. T. S. Yu~Wiley, London, 1976!.
~A!

76. ‘‘Information Theory Applied to Solar Radiation Concentrators,’’ R.
Patera, Ph.D. thesis, University of Miami, 1979.~A!

10. Quantum mechanics
77. ‘‘The Information Gain by Localizing a Particle,’’ V. Majernik, Acta

Phys. Acad. Sci. Hung.25, 331–340~1983!. ~A!
78. ‘‘Uncertainty in Quantum Measurements,’’ D. Deutsch, Phys. R

Lett. 50, 631–633~1983!. ~A!
79. ‘‘Entropic Formulation of Uncertainty for Quantum Measurements

M. H. Partovi, Phys. Rev. Lett.50, 1883–1885~1983!. ~A!
80. ‘‘Information and quantum nonseparability,’’ B. W. Schumacher, Ph

Rev. A 44, 7047–7052~1991!. ~A!
81. ‘‘Quantum Measurements and Information Theory,’’ K. E. Hellwi

Int. J. Theor. Phys.32, 2401–2412~1993!. ~A!

11. Spacetime physics
82. Information Theory Applied to Space–Time Physics, H. F. Harmuth

~World Scientific, Singapore, 1992!. ~I!

D. Physics of computation

Information processing by computers has become on
the hallmarks of our age. Because computation, no ma
how abstract, is fundamentally a physical process, it is ine
tably governed by the laws of physics, and these relati
ships have been studied by physicists and computer scien
in a number of contexts over the past 20 years or more.
Principal concern has focused on energy consumptio

the computational process, and on questions of revers
and irreversible computation. In particular, the question
minimal energy requirements has produced a lively deb
that continues at present. The following references sum
rize the developments over the past two decades, and co
references to all the original papers.
83. ‘‘Physics and Computation,’’ T. Toffoli, Int. J. Theor. Phys.21, 165–

175 ~1982!. ~I!
84. ‘‘Conservative Logic,’’ E. Fredkin and T. Toffoli, Int. J. Theor. Phy

21, 219–253~1982!. ~I!
85. ‘‘The Thermodynamics of Computation—a Review,’’ C. H. Benne

Int. J. Theor. Phys.21, 905–940~1982!. ~I!
86. ‘‘Information is Physical,’’ R. Landauer, Phys. Today44, 23–29, May

~1991!. ~I!
87. ‘‘Minimal Energy Requirements in Communication,’’ R. Landaue

Science272, 1914–1918~1996!. ~A!
472 Am. J. Phys., Vol. 65, No. 6, June 1997
,

l

nd

.

.

of
er
i-
-
sts

in
le
f
te
a-
ain

The following articles take issue with the arguments abo
by Bennett and Landauer. Each article is followed by rejo
ders from these authors and others.
88. ‘‘Dissipation in Computation,’’ W. Porod, R. O. Grondin, D. K. Ferry

and G. Porod, Phys. Rev. Lett.52, 232–235~1984!. ~A!
89. ‘‘The Computer and the Heat Engine,’’ O. Costa de Beaurega

Found. Phys.19, 725–727~1989!. ~A!
90. ‘‘Letter to the Editor,’’ E. Biedermann, Phys. Today43 ~11!, 122

~1990!. ~A!

E. Black hole physics

As is common knowledge, gravitationally collapsing o
jects of sufficient mass are doomed to form black ho
~BHs!, defined by an event horizon within which resides t
singularity of the general relativistic equations. All inform
tion about the initial state of the object is radiated aw
during the collapse and, remarkably, the general station
solution depends on only three externally observable par
eters: massM , angular momentumJ, and chargeQ of the
BH. This scenario is encapsulated in John Wheeler’s phr
that ‘‘A black hole has no hair.’’
Building upon a general proof by Stephen Hawking th

the BH surface area cannot decrease in any process~Ref. 91!,
Jacob Bekenstein recognized the similarity to the manda
increase of entropy in thermodynamics, and the relation
Shannon’s information measure~Ref. 92!. A BH can be cre-
ated in a number of ways, leading to a number of poss
internal configurations corresponding to the same set of
ternal parameters. One then defines the BH entropy as a m
sure of the inaccessibility of this information. Note carefu
that this entropy refers to an equivalence class of BHs,
has nothing to do with thermal entropy inside the BH. Aft
careful consideration Bekenstein found this entropy to be

SBH5~ 1
2 ln 2!~kc3/4p\G!A

.~1.4631048 erg K21 cm22!A, ~9!

wherek is Boltzmann’s constant,G is the gravitational con-
stant, andA is the surface area of the BH. This is an eno
mous number, but appropriate to the maximum entropy o
massive collapsing object.
All this is relatively straightforward and provides an inte

esting example of the role of information theory in gene
relativity. To an outside observer the original information
not missing, it simply resides inside the BH and can be
scribed by a pure state. But in 1974 Hawking made the t
oretical discovery, by means of an appropriate blending
quantum mechanics and general relativity, that BHs can
diate away their energiesthermally ~Refs. 93, 94!. One can
think of this as pair creation in the presence of a stro
gravitational field, with one member going down the ho
and the other moving off to infinity. Consequently, as the B
evaporates two related contradictions emerge: the final t
mal state is amixedstate, in contradiction of the quantum
theorem that a pure state cannot evolve to a mixed state;
all the information encapsulated within the BH somehow
lost forever when the BH finally disappears. This is the B
information paradox.
Attempts at a resolution now constitute a very active a

of research in general relativity and quantum field theory.
this time there are essentially three separate views:~1! gravi-
tational effects introduce an additional uncertainty over a
above Heisenberg’s into quantum physics;~2! the Hawking
radiation may not be completely thermal, but actually carr
472W. T. Grandy, Jr.
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away the information;~3! it is possible that the BH does no
evaporate completely and the information remains withi
Planck-scale (;10233-cm) remnant. These three lines
thought are explored in the references below.
Subsequently Bekenstein developed BH thermodynam

a bit further~Ref. 96! by utilizing the principle of maximum
entropy to verify a generalized, intrinsically quantum seco
law. This asserts that BH entropy plus ordinary entropy
terior to BHs never decreases. Note that this is a theore
statement of a statistical law that goes beyond ordinary t
modynamics.
The following papers provide some of the original liter

ture connecting BHs to information theory.
91. ‘‘Gravitational Radiation from Colliding Black Holes,’’ S. W. Hawk

ing, Phys. Rev. Lett.26, 1344–1346~1971!. ~A!
92. ‘‘Black Holes and Entropy,’’ J. D. Bekenstein, Phys. Rev. D7, 2333–

2346 ~1973!. ~A!
93. ‘‘Black hole explosions?,’’ S. W. Hawking, Nature248, 30–31~1974!.

~A!
94. ‘‘Breakdown of predictability in gravitational collapse,’’ S. W. Hawk

ing, Phys. Rev. D14, 2460–2473~1976!. ~A!
95. ‘‘Particle Creation by Black Holes,’’ S. W. Hawking, Commun. Math

Phys.43, 199–220~1975!. ~A!
96. ‘‘Statistical black-hole thermodynamics,’’ J. D. Bekenstein, Phys. R

D 12, 3077–3085~1975!. ~A!
97. ‘‘Black-hole thermodynamics,’’ J. D. Bekenstein, Phys. Today33 ~1!,

24–31~1980!. ~I!

A selection of articles representing current research on
information paradox follows.
98. ‘‘How Fast Does Information Leak Out from a Black Hole?,’’ J. D

Bekenstein, Phys. Rev. Lett.70, 3680–3683~1993!. ~A!
99. ‘‘Quantum mechanics, common sense, and the black hole informa

paradox,’’ U. H. Danielsson and M. Schiffer, Phys. Rev. D48, 4779–
4784 ~1993!. ~A!

100. ‘‘Spacetime information,’’ J. B. Hartle, Phys. Rev. D51, 1800–1817
~1995!. ~A!

101. ‘‘Lectures on black holes and information loss,’’ T. Banks, Nucl. Ph
~Proc. Suppl.! 41, 21–65~1995!. A review article.~A!

102. ‘‘Black hole evolution,’’ L. Thorlacius, Nucl. Phys.~Proc. Suppl.! 41,
245–275~1995!. A review article.~A!

103. ‘‘Black holes, Hawking radiation, and the information paradox,’’ G.
Hooft, Nucl. Phys. B~Proc. Suppl.! 43, 1–11~1995!. A review article.
~A!

F. Algorithmic information theory

Kolmogorov’s development of an information measure
problems of symbol-sequence type was followed by num
ous mathematically oriented applications in computer s
ence and to models of randomness, many of these by Ch
~Ref. 110!. During the past decade, however, various mod
of physical systems have been analyzed with these tools,
are noted below. Efforts to relate such ‘‘microscopic’’ entr
pies to Shannon’s measure and thermodynamic entropy
been made, and remain an area of current research. T
approaches to the many-body problem are close in philo
phy to that of Boltzmann’sH function andH theorem. It is
not yet clear whether such microscopic functions will suf
the same fate asH—namely, that they become unrelated
thermodynamic entropy in any system with substantial
tential energy~Ref. 109!.
104. ‘‘Three Approaches to the Quantitative Definition of Information,’’ A

N. Kolmogorov, Probl. Inf. Trans.1, 3–11~1965!. ~A!
105. ‘‘Logical Basis for Information Theory and Probability Theory,’’ A. N

Kolmogorov, IEEE Trans. Inf. Th.IT-14, 662–664~1968!. ~I!
106. ‘‘A Formal Theory of Inductive Inference. I, II.,’’ R. J. Solmonoff

Inform. Control7, 1–22, 224–254~1964!. ~A!
107. ‘‘On the length of programs for computing binary sequences,’’ G.
473 Am. J. Phys., Vol. 65, No. 6, June 1997
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Chaitin, J. Assoc. Comput. Mach.13, 547–569~1966!. ~A!
108. ‘‘Microscopic and macroscopic entropy,’’ K. Lindgren, Phys. Rev.

38, 4794–4798~1988!. ~A!
109. ‘‘Violation of Boltzmann’s H-theorem in real gases,’’ E. T. Jayne

Phys. Rev. A4, 747–750~1971!. ~I!
110. Algorithmic Information Theory , G. J. Chaitin~Cambridge U.P.,

Cambridge, 1987!. ~A!
111. ‘‘Thermodynamic cost of computation, algorithmic complexity and t

information metric,’’ W. H. Zurek, Nature341, 119–124~1989!. ~A!
112. ‘‘Algorithmic treatment of the spin-echo effect,’’ S. Lloyd and W. H

Zurek, J. Stat. Phys.62, 819–839~1991!. ~A!
113. ‘‘Complexity in quantum systems,’’ A. Crisanti, M. Falcioni, and A

Vulpiani, Phys. Rev. E50, 138–144~1994!. An application of infor-
mation complexity to a spin-

1
2 particle in a magnetic field, where th

Shannon entropy vanishes.~A!
114. ‘‘Information entropy, chaos and complexity of the shell-model eige

vectors,’’ V. Zelevinsky, M. Horoi, and B. A. Brown, Phys. Lett. B
350, 141–146~1995!. ~A!

115. ‘‘Algorithmic Complexity of a Schwarzschild Black Hole,’’ V. D.
Dzhunnshaliev, Russ. Phys. J.38, 317–319~1995!. ~A!

116. ‘‘Algorithm complexity of a protein,’’ D. T. Gregory, Phys. Rev. E54,
R39–R41~1996!. ~A!

117. An Introduction to Kolmogorov Complexity and Its Applications,
M. Li and P. Vitányi ~Springer-Verlag, Berlin, 1993!. ~A!

G. Quantum information theory

While von Neumann surely had some inkling of the p
tential interrelations between quantum mechanics and in
mation @witness his expression~7!#, the first direct connec-
tion with the new information theory appears to be that giv
by Jerome Rothstein in 1951~Ref. 118!. He envisions future
development of an intimate relation between communicat
and measurement theories, which only began to be real
in the last decade.
Subsequently, von Weizsa¨cker proposed a theory ofur

objects~in the German sense of ‘‘primitive’’!, information
atoms characterized as one bit of potential information~Ref.
119!. Its adherents consider this to be a quantum theory
information and, though it has not been developed very fa
is indeed a precursor of more recent work in quantum theo
We also finds traces of information-theoretic concepts o
fundamental level in Hugh Everett’s many-worlds interpr
tation of quantum mechanics~Ref. 120!, wherein the notion
of an operator is utilized in conjunction with an analog
Shannon’s information measure to explicate the meas
ment process.
Quantum generalizations of Shannon’s expression~4! for

channel capacity began to appear in the early sixties,
shortly later quantum bounds on information storage cap
ity were obtained. Much of this work is summarized in th
review article by Bekenstein and Schiffer~Ref. 122!, who
also obtain new results on channel capacity.
In 1973 Kholevo proved a truly fundamental theorem

quantum communication theory~Ref. 121!, which estab-
lishes an upper bound on transmitted information in terms
the quantum entropy~7! when expressed in terms of bits
Armed with this theorem, Caves and Drummond~Ref. 123!
have provided a general proof of the quantum-mechan
wideband, single-channel capacity upper bound for a lin
bosonic channel, as well as presented an up-to-date revie
this field of quantum limits. For convenient reference w
state their result:

CWB5
p

ln 2
A2P

3h
bits/s, ~10!
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in terms of input powerP and Planck’s constant. We haste
to add, however, that this result was derived as early as 1
by Lebedev and Levitin~Ref. 124!, who provide a thermo-
dynamic derivation of the narrowband capacity as well.
excellent introduction to the various issues of channel cap
ity is provided by Pendry~Ref. 125!, who also gives a rathe
general thermodynamic derivation of Eq.~10!.
The preceding results are basically straightforward gen

alizations of classical information theory in a direction
have been expected. Only in recent years have the full
plications of a purely quantum theory of information start
to emerge, based on the magic of coherent superpositio
Classically, the two Boolean states 0 and 1 can be s

down a channel one bit at a time. A similar representat
can be created with a quantum-mechanical 2-state sys
employing a fixed pair of orthogonal states—for example
spin-12 system with statesu↑&, u↓&. These systems are appr
priately referred to asqubits, for they can also exist as su
perpositions, a state that might be considered a ‘‘rando
bit. Things become more interesting when apair of qubits is
considered. Possible basis vectors are the direct-pro
statesu↑&1u↑&2 , u↓&1u↓&2 , for example. But multiparticle su
perposition can also lead toentangled states, as Schro¨dinger
called them, such as the singlet

uc&5~ u↑&1u↓&22u↓&1u↑&2)/&. ~11!

Some striking features of entangled states were first
cussed in the famous Einstein–Podolsky–Rosen pape
1935, arising because these states cannot be factored
direct products of two single-particle states inany represen-
tation.
It has been possible for a number of years now to prod

and study entanglement in the laboratory using photon po
izations ~Ref. 126!, but only relatively recently have th
properties of these states been exploited in the developm
of quantum information theory. For example, in a sche
first suggested by Bennett and Wiesner~Ref. 129!, a pair of
qubits can be employed to communicate between two pa
in such a way that 2 bits of information are transmitted
manipulating onlyoneof the two particles. The past year ha
seen the first experimental realization of this form of qua
tum communication~Ref. 128!, in which data were encode
as 0’s, 1’s, and 2’s because the photon pair can actu
represent three states. This unit is called atrit (;1.58 bit).
Entanglement has also been employed to prove the po

bility of quantum teleportation, another example of quantum
nonlocality ~Ref. 130!. An unknown quantum state is tele
ported from one place to another by clever interaction w
an entangled EPR-type pair. For the moment this opera
appears beyond present technology.
Rather than bits, the fundamental units of quantum inf

mation theory are qubits, and we might expect the quan
entropyS(r) of Eq. ~7! to appear in aquantum coding theo
remanalogous to that of classical information theory. Sch
macher~Ref. 131! has shown that this is indeed the case, a
thatS(r) describing an ensemble of states is just the m
number of qubits required to encode these states in an i
coding scheme. One might expect this coding theorem
play a significant role in the potential applications of qua
tum information theory described below.
118. ‘‘Information, Measurement, and Quantum Mechanics,’’ J. Rothste

Science114, 171–175~1951!. ~I!
119. Die Einheit der Natur, C. F. Von Weizsa¨cker ~Hanser, Mu¨nchen,

1971!. ~A!
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120. The Many-Worlds Interpretation of Quantum Mechanics, edited by
B. S. DeWitt and N. Graham~Princeton U.P., Princeton, 1973!. ~A!

121. ‘‘Bounds for the Quantity of Information Transmitted by a Quantu
Communication Channel,’’ A. S. Kholevo, Probl. Inf. Trans.9, 177–
183 ~1973!. ~A!

122. ‘‘Quantum Limitations on the Storage and Transmission of Inform
tion,’’ J. D. Bekenstein and M. Schiffer, Int. J. Mod. Phys.1, 355–422
~1990!. ~A!

123. ‘‘Quantum limits on bosonic communication rates,’’ C. M. Caves a
P. D. Drummond, Rev. Mod. Phys.66, 481–537~1994!. ~A!

124. ‘‘The Maximum Amount of Information Transmissible by an Electro
magnetic Field,’’ D. S. Lebedev and L. B. Levitin, Sov. Phys. Dokl.8,
377–379~1963!. ~A!

125. ‘‘Quantum limits to the flow of information and entropy,’’ J. B. Pen
dry, J. Phys. A: Math. Gen.16, 2161–2171~1983!. ~A!

126. ‘‘Multiparticle interferometry and the superposition principle,’’ D. M
Greenberger, M. A. Horne, and A. Zeilinger, Phys. Today46 ~8!,
22–29~1993!. ~I!

127.‘‘Quantum Information and Computation,’’ C. H. Bennett, Phys. Tod
48 ~10!, 24–30~1995!. ~I!

128. ‘‘Dense Coding in Experimental Quantum Communication,’’ K
Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, Phys. Rev. Le
76, 4656–4659~1996!. ~A!

129. ‘‘Communication via One- and Two-Particle Operators on Einstei
Podolsky–Rosen States,’’ C. H. Bennett and S. Wiesner, Phys. R
Lett. 69, 2881–2884~1992!. ~A!

130. ‘‘Teleporting an Unknown Quantum State via Dual Classical a
Einstein–Podolsky–Rosen Channels,’’ C. H. Bennett, G. Brassard
Crespeau, R. Jozsa, A. Peres, and W. Wooters, Phys. Rev. Lett70,
1895–1899~1993!. ~A!

131. ‘‘Quantum coding,’’ B. Schumacher, Phys. Rev. A51, 2738–2747
~1995!. ~A!

Next, and finally, we consider two specific potential applic
tions of quantum information theory. They are exciting
contemplate for no other reason than the stimulus they g
to experimental work at the very foundations of the quant
theory. Those who continually struggle to make sense
quantum mechanics—which, to one degree or another,
cludes most physicists—can but encourage these activitie
is also possible that the work will eventually enhance o
technology.

1. Quantum cryptography

Throughout history the use of secret codes in both gove
ment and commerce has attracted substantial interest an
sources. Most of the security of any code resides in itskey,
which in its absolutely secure realization is a pseudo-rand
sequence of bits as long as the message itself, and is
carded after a single use. This is the so-calledone-time pad.
But the key is also the achilles heel of the code, for it m
be transmitted from sender to receiver without being co
promised. Modern cryptographers have generally circu
vented the issue. The present paradigm for secure encryp
is public key cryptography, which is a 2-key system, one
enciphering and one for deciphering. The first is made pu
by the potential receiver, who keeps secret the latter,
both keys are needed for deciphering an encrypted mess
The present standard realization of this scheme is the
called RSA algorithm based on keys that are products
large prime numbers~*200 digits!. Security is provided by
the ~present! extreme difficulty in factoring large numbers i
a reasonable time. While the scheme has never been bro
one difficulty is that it has never been proven to be unbre
able. Another is that in practice the scheme has now b
shown to be vulnerable to timing attacks. That is, by m
suring the amount of time a computer takes to perform p
vate key operations it is possible to find the secret key, an
a computationally inexpensive way. Thus, public key dis
474W. T. Grandy, Jr.
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bution is subject to both technological and mathematical
vances, one extreme example of which is noted below.
this reason, new methods of secure information transfer
being explored, and one very promising scheme is tha
quantum cryptography, which in turn employs some fun
mental features of quantum information theory.
In 1984 Bennet and Brassard, building on an earlier id

of Wiesner, proposed an alternative to public key cryptog
phy that re-introduces the one-time pad, but provides an
solutely secure means of distributing a key~Ref. 132!. The
scheme relies on transmitting polarized photons, and on
uncertainty principle. That is, anyone eavesdropping
transmission of the key bits does not know the polarizat
in advance, so must obtain precise values of two n
commuting observables to find out. But any such attemp
eavesdropping~interfering with the system! can be detected
in which case the transfer is abandoned and re-attem
until a secure channel is obtained. Transmission of polari
photons via an optical fiber has progressed to the point
an effort this past year was successful over a distance of
km ~Ref. 139!, so that the scheme can no longer be thou
impractical. Similar programs have also been advocated
ing entangled states to transfer the key~Ref. 136!, encoding
by two non-orthogonal states~Ref. 137!, and finally with two
orthogonal states~Ref. 138!. All of these schemes have bee
proved secure only fornoiselesschannels. Just very recentl
has a protocol been developed and proved secure in the
ence of both noise and an eavesdropper~Ref. 141!.
This field is changing so rapidly that we include here,

the most part, only papers and reviews that are relativ
recent. The first three articles are excellent reviews and c
tain complete references to the~short! historical path,
whereas the remainder provide a selection of key cur
research efforts.
132. ‘‘Quantum Cryptography,’’ C. H. Bennett, G. Brassard, and A.

Ekert, Sci. Am.267, ~4!, 50–57~1992!. ~I!
133. ‘‘Quantum cryptography,’’ R. J. Hughes, D. M. Alde, P. Dyer, G. G

Luther, G. L. Morgan, and M. Schauer, Contemp. Phys.36, 149–163
~1995!. ~A!

134. ‘‘Quantum cryptography: How to beat the code breakers using qu
tum mechanics,’’ S. J. D. Phoenix and P. D. Townsend, Conte
Phys.36, 165–195~1994!. ~A!

135. ‘‘Information theoretic limits to quantum cryptography,’’ S. M. Barne
and S. J. D. Phoenix, Phys. Rev. A48 ~4!, R5–R8~1993!. ~A!

136. ‘‘Quantum Cryptography Based on Bell’s Theorem,’’ A. K. Eker
Phys. Rev. Lett.67, 661–663~1991!. ~A!

137. ‘‘Quantum Cryptography Using Any Two Nonorthogonal States,’’
H. Bennett, Phys. Rev. Lett.68, 3121–3124~1992!. ~A!

138. ‘‘Quantum Cryptography Based on Orthogonal States,’’ L. Goldenb
and L. Vaidman, Phys. Rev. Lett.75, 1239–1243~1995!. ~A!

139. ‘‘Quantum cryptography over 23 km in installed under-lake telec
fibre,’’ A. Muller, H. Zbinden, and N. Gisin, Europhys. Lett.33 ~4!,
335–339~1996!. ~A!

140. ‘‘Security against eavesdropping in quantum cryptography,’’ N. L
kenhaus, Phys. Rev. A54, 97–111~1996!. ~A!

141. ‘‘Quantum Privacy Amplification and the Security of Quantum Cry
tography over Noisy Channels,’’ D. Deutsch, A. Ekert, R. Jozsa,
Machiavello, S. Popescu, and A. Sanpera, Phys. Rev. Lett.77, 2818–
2821 ~1996!. ~A!

2. Quantum computing

Less imminent of realization, but equally fascinating
contemplate is a computer operating on quantum-mechan
principles—possibly the ultimate information processor. R
chard Feynman appears to be the first to have entertaine
utilization of such a machine, in 1982, while pondering ho
to simulate quantum processes computationally~Refs. 142,
475 Am. J. Phys., Vol. 65, No. 6, June 1997
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143!. At about the same time both Paul Benioff~Ref. 144!
and David Deutsch~Ref. 145! laid out the principles and
studied models of quantum-mechanical computers, and
the past several years possible realizations have been
scribed~Refs. 146, 148!.
But, Feynman’s idea aside, what are the possibly pract

reasons for building a quantum computer? Speed for o
incredibly massive parallel processing for another. That
such a computer can accept input states representing a c
ent superposition of many different possible inputs a
evolve them into a superposition of outputs—computation
simply a sequence of unitary transformations. The first re
istic example was provided by Peter Shor in 1994~Ref. 153!,
who developed an algorithm that exploits the quantum m
tiplicity of paths to factor large numbers~n digits! in poly-
nomial time (;n2), which classical computers cannot d
(expn1/3). Following this result, Lov Grover has recent
constructed a search algorithm for quantum computers
requiresAn steps to searchn entries~Ref. 160!.
While these results have stimulated a great deal of th

retical work in this field, perhaps more important is the a
sociated experimental effort toward creating the gates
circuitry a quantum computer would require. By studyin
simple gate operations we are starting to learn much m
about quantum mechanics itself, via experiments w
trapped ions~Ref. 148, 151!, single-atom-photon interaction
in small cavities~Ref. 150!, and Rydberg atoms in supercon
ducting cavities~Ref. 159!.
As important as this work is, however, the difficulties

actually realizing a quantum computer remain enormous
not overwhelming. Recent experimental work has sur
made the construction of quantum-logic gates feasible.
combining a large number of gates requires maintenanc
quantum coherence on a very large scale throughout a c
puter. Macroscopic quantum effects such as superfluidity
superconductivity involve only asingle quantum state,
whereas quantum computation involves coherent superp
tion of huge numbers of states. While this decoherence p
lem is immense, some progress has been booked by de
oping appropriate error-correcting codes. These concerns
spelled out in more detail in two recent articles~Refs. 152,
156!.
All of these problems are under intense scrutiny and c

stitute an exciting area of current research that is describe
the following references.
142. ‘‘Simulating Physics with Computers,’’ R. P. Feynman, Int. J. The

Phys.21, 467–488~1982!. ~A!
143. ‘‘Quantum Mechanical Computers,’’ R. P. Feynman, Found. Phys.16,

507–531~1986!. Originally appeared in Optics News~February 1985!,
pp. 11–20.~A!

144. ‘‘Quantum-Mechanical Models of Turing Machines that Dissipate N
Energy,’’ P. Benioff, Phys. Rev. Lett.48, 1581–1585~1982!. ~A!

145. ‘‘Quantum Theory: The Church-Turing Principle and the Univers
Quantum Computer,’’ D. Deutsch, Proc. R. Soc. London, Ser. A400,
97–117~1985!. ~A!

146. ‘‘A Potentially Realizable Quantum Computer,’’ S. Lloyd, Scienc
261, 1569–1571~1993!. ~A!

147. ‘‘Quantum-Mechanical Computers,’’ S. Lloyd, Sci. Am.273~4!, 140–
145 ~1995!. ~I!

148. ‘‘Quantum Computations with Cold Trapped Ions,’’ J. I. Cirac and
Zoller, Phys. Rev. Lett.74, 4091–4094~1995!. ~A!

149. ‘‘Maintaining coherence in quantum computers,’’ W. G. Unruh, Phy
Rev. A 51, 992–997~1995!. ~A!

150.‘‘Measurement of Conditional Phase Shifts for Quantum Logic,’’ Q.
Turchette, C. J. Hood, W. Lange, H. Mabushi, and H. J. Kimble, Ph
Rev. Lett.75, 4710–4713~1995!. ~A!

151. ‘‘Demonstration of a Fundamental Quantum Logic Gate,’’ C. Monro
475W. T. Grandy, Jr.
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D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland, Phy
Rev. Lett.75, 4714–4717~1995!. ~A!

152. ‘‘Is Quantum Mechanics Useful?,’’ R. Landauer, Philos. Trans. R. S
A 353, 367–376~1995!. ~A!

153. ‘‘Algorithms for Quantum Computation: Discrete Logarithms and Fa
toring,’’ P. W. Shor, inProceedings of the 35th Annual Symposium
on the Foundations of Computer Science, edited by S. Goldwasse
~IEEE Computer Society, Los Alamitos, CA, 1994!, pp. 124–134. An
expanded version of this paper entitled ‘‘Polynomial-Time Algorithm
for Prime Factorization and Discrete Logarithms on a Quantum C
puter,’’ is available on the Los Alamos National Laboratory e-pr
archive: http://xxx.lanl.gov/archive/quant-ph/?9508027. Very recen
it has been shown that this algorithm must be supplemented with
exponentially efficient error-correction algorithm~Ref. 158!. ~A!

154. ‘‘Semiclassical Fourier Transform for Quantum Computation,’’ R.
Griffiths and C.-S. Nin, Phys. Rev. Lett.76, 3228–3231~1996!. Pre-
sents an improved method for performing Fourier transforms in Sh
algorithm.~A!

155.‘‘Information, Physics, and Computation,’’ S. C. Kak, Found. Phys.26,
127–137~1996!. Questions the notion that quantum computers as c
rently conceived can simulate quantum physics.~A!

156. ‘‘Quantum Computing: Dream or Nightmare?,’’ S. Haroche and J.-
Raimond, Phys. Today49~8!, 51–52 ~1996!. A thoughtful critique
questioning the feasibility of constructing a viable quantum compu
in the foreseeable future. A response by C. Monroe and D. Winela
along with a reply by Haroche and Raimond, appears as a Letter to
Editor in Phys. Today49~11!, 107–108~1996!. ~I!

157. ‘‘Quantum computation and Shor’s factoring algorithm,’’ A. Ekert an
R. Jozsa, Rev. Mod. Phys.68, 733–753~1996!. An excellent and up-
to-date review.~A!

158. ‘‘Quantum computers and dissipation,’’ G. M. Palma, K. A. Suomine
and A. K. Ekert, Proc. R. Soc. London, Ser. A452, 567–584~1996!.
~A!

159. ‘‘From Lamb Shift to Light Shifts: Vacuum and Subphoton Cavi
Fields Measured by Atomic Phase Sensitive Detection,’’ M. Brune
Nussenzveig, F. Schmidt-Kaler, F. Bernadot, A. Maali, J. Raimo
and S. Haroche, Phys. Rev. Lett.72, 3339–3342~1988!. ~A!

160. ‘‘A fast quantum mechanical algorithm for database search,’’ L.
Grover,Proceedings of The 28th ACM Symposium on Theory of
Computing „STOC… ~ACM, Philadelphia, 1996!, pp. 212–218.
~Available on the LANL WWW e-print archive: http://xxx.lanl.gov
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archive/quant-ph/?9605043. Similarly, ‘‘A fast quantum mechanical
gorithm for estimating the median,’’ L. K. Grover, September 1996,
also available as e-print quant-ph/?9607024.! ~A!

3. Quantum information theory on the World Wide Web

The field has become so active that there are a numbe
Web sites devoted exclusively to topics in quantum inform
tion theory. Be warned, though, that individual and gro
homepages are not always current. The preprint archi
however,are kept up-to-date.
Quantum Computation/Cryptography at Los Alamos
http://qso.lanl.gov/qc/
Quantum Computation and Cryptography at Oxford
http://eve.physics.ox.ac.uk/QChome.html
Laboratory for Theoretical and Quantum Computing, Un

verité de Montreal
http://www.iro.umontreal.ca/labs/theorique/index–en.html
Quantum Computation at IBM
http://www.research.ibm.com/xw-quantuminfo
Tutorial on Quantum Computation
http://chemphys.weizmann.ac.il//˜schmuel/comp/
comp.html
Quantum Computing at Australia National University
http://aerodec.anu.edu,au/˜qc/index.html
Quantum Information Page
http://vesta.physics.ucla.edu/˜smolin
Quantum Computation Archive
http://feynman.stanford.edu/qcomp/

In addition, many current preprints in the field can be fou
at the Los Alamos preprint archive:
http://xxx.lanl.gov/archive/quant-ph/

Numerous other preprint servers can be accessed from
ICTP ‘‘one-shot’’ server in Trieste:
http://www.ictp.trieste.it/indexes/preprints.html
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