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Problems in Advanced Statistical Physics

Problem 27: The Glauber-Ising chain

The transition rate for a spin flip in the one-dimensional Glauber-Ising model at zero external

field is defined by1

Γ(σi → −σi) =
1

2
[1−

γ

2
σi(σi+1 + σi−1]. (1)

a.) Determine the coefficient γ such that the rates (1) satisfy detailed balance with respect

to the Ising energy.

b.) Consider a chain with periodic boundary conditions. Use the master equation to derive

the closed set of equations

dGi,j

dt
= −2Gi,j +

γ

2
[Gi+1,j +Gi−1,j +Gi,j+1 +Gi,j−1] (2)

for the equal time spin-spin correlation function Gi,j(t) = 〈σi(t)σj(t)〉, where i 6= j. For

i = j we obviously have Gi,i(t) = 1 independent of t.

c.) If the ensemble of initial conditions is translationally invariant, so that Gi,j only depends

on r = |i− j|, then this property is preserved under the dynamics, and (2) reduces to

dGr

dt
= −2Gr + γ[Gr+1 +Gr−1]. (3)

Show that the stationary solution of (3) agrees with the equilibrium pair correlation

function for the Ising chain.

d.) Now consider (3) at zero temperature2. To extract the behavior of the correlations at

long times and large distances, approximate the difference equation (3) by a partial

differential equation. Show that this equation has a solution of the scaling form

G(r, t) = G(r/tn),

and determine the domain growth exponent n as well as the scaling function G. Show

that the behavior of the scaling function near the origin is consistent with Porod’s law,

which states that the scaling function G has a cusp singularity at zero, 1 − G(x) ∼ |x|

for x→ 0.

1R.J. Glauber, J. Math. Phys. 4, 294 (1963).
2A.J. Bray, J. Phys. A 22, L67 (1989).



e.) The two-time correlation function G
(2)
r (t, t′) = 〈σi(t)σi+r(t

′)〉 satisfies an equation sim-

ilar to (3), which reads at T = 0

dG
(2)
r

dt
= −G(2)

r +
1

2
(G

(2)
r+1 +G

(2)
r−1), (4)

and it is assumed that t > t′. As in part d.), solve (3) in the continuum approximation

using the initial condition G(2)(r, t′, t′) = G(r, t′). Evaluate the resulting expression for

r = 0, and thus obtain the autorcorrelation function

A(t, t′) = G(2)(0, t, t′) =
2

π
sin−1

(

√

2t′

t+ t′

)

. (5)

Show that A(t, t′) ∼ (t′/t)λn for tÀ t′, and find the autocorrelation exponent λ.

Problem 28: Droplet dynamics in the Allen-Cahn equation

Here we want to derive the dynamics of a shrinking droplet directly from the Allen-Cahn

equation for the order parameter. The droplet is described by a radially symmetric solution

φ(r, t) of the form

φ(r, t) = Φ(r −R(t)), (6)

where Φ(x→ ±∞) = ±φ0, and the transition from −φ0 to φ0 occurs on the scale ξ around

x = 0. Insert (6) this into the d-dimensional Allen-Cahn equation expressed in polar coordi-

nates, and show that in the limit R À ξ, where Φ′(x) reduces to a δ-function at x = 0, the

droplet radius satisfies the equation

dR

dt
= −

d− 1

R

as announced in the lectures.

Problem 29: Zipf’s law for random texts

Zipf’s law states that the number N(x) of distinct words that occur with frequency x in

a text is proportional to x−α, where α ≈ 2. Here we consider random texts, which are

random uncorrelated sequences consisting of m different letters and one space sign which

separates different words. All letters occur with equal probability q, and the space sign with

probability qs = 1 − mq. Clearly in this model all words of the same length l occur with

the same probability. Show that both the probability of occurrence of a given word, and the

number of distinct words of length l depend exponentially on l, and deduce from this the

power law N(x) ∼ x−α. Investigate the behavior of α for large m and small qs.


