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Problems in Advanced Statistical Physics

Problem 7: Equal probability of microstates and Bernoulli measure

For the one-dimensional asymmetric exclusion process with N particles on a ring of L sites
it has been shown that all ( ﬁ,) microstates are equally likely in the nonequlibrium stationary
state. Prove that this implies Bernoulli measure in the limit L, N — oo at fixed density
p = N/L, which means that in the infinite system each site is independently occupied or
vacant with probability p and 1 — p, respectively. To this end, compute correlation functions
(ninj), (minjnk) etc. for the finite system, and take the limit L, N — oco. Also compute the

leading finite size correction to the stationary particle current.

Problem 8: Single file diffusion

Here we want to establish the anomalous diffusion law® (Xq(t)2) ~ t'/2 for a tagged particle
in the one-dimensional Langmuir lattice gas, where X((¢) denotes the position of a particle
that resides at the origin at time ¢ = 0. We work in the continuum setting. The key relation
is
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Xo(t) ~ - [ ds j(0.5) (1)
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for long times, where p is the mean density in the system and j(0,¢) is the particle current

through the origin at time ¢.

We decompose the density p(z,t) = p+ ¢(z,t) into the mean density and a fluctuating part

¢(x,t), which satisfies the diffusion equation
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Use this to derive the time evolution of the intermediate structure function

S(k,t) = (d(k, t)d(~k,0)) 3)
where brackets refer to the thermal equilibrium state and
Sk, t) = / dx ez, ). (4)
You should find
S(k,t) = e "*PIUS(k, 0) = Lp(1 — p)e FFPI, (5)

'S. Alexander, P. Pincus, Phys. Rev. B 18, 2011 (1978)



In the continuum limit the equal time density correlation function is (¢(z,t)p(x’,t)) =
p(1 — p)o(xz — 2’), and hence S(k,0) = Lp(1 — p), where L is the system size.

To compute the mean square displacement (X2), use (1) to relate it to the correlation
function of the current j(0,¢). The latter can then be obtained from the density correlation
function (5) using the fact that j = —D9d¢/dx. The calculation is simplified by introducing

the particle counting function

Nt = | " dy oy, 1), (6)

which satisfies the relations j(0,¢) = ON/0t and ¢(z,t) = ON/Ox. Finally, examine how

(Xo(t)?) behaves in the low density limit p — 0, and provide an interpretation.

Problem 9: The zero range process

In the zero range process (ZRP)? an unlimited number n; = 0, 1,2, ... of particles can occupy
each site i« = 1,.., L of the one-dimensional lattice with periodic boundary conditions (a
ring). A particle at site ¢ jumps to the right (i — ¢ + 1) with probability p and to the
left (i — ¢ — 1) with probability 1 — p at a rate which is a function ~(n;) of the number
of particles at the site of origin with 7(0) = 0. There is no dependence on the occupancy
of the target site (= zero range interaction). The ZRP has the remarkable property that
the stationary distribution is a product measure for a broad class of functions y(n), i.e. the

stationary weight of a configuration {ni,...,np} is of the form

L

Problni,...,ng] ~ H f(ng). (7)

i=1

a.) In the symmetric case p = 1/2 use the condition of detailed balance to show that
n
fn) ~ [T~ (8)
k=1

You may ignore the constraint of constant total particle number N = Z{;l n;, i.e. work

in a “grand-canonical” setting.

b.) Write down the master equation for the asymmetric case and show that the product

measure (7, 8) remains stationary also when p # 1/2.

c.) Under what conditions on the rate function (n) is the single-site probability distribu-

tion (8) normalizable?
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