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Problem 7: Equal probability of microstates and Bernoulli measure

For the one-dimensional asymmetric exclusion process with N particles on a ring of L sites

it has been shown that all
(L
N

)

microstates are equally likely in the nonequlibrium stationary

state. Prove that this implies Bernoulli measure in the limit L,N → ∞ at fixed density

ρ = N/L, which means that in the infinite system each site is independently occupied or

vacant with probability ρ and 1−ρ, respectively. To this end, compute correlation functions

〈ηiηj〉, 〈ηiηjηk〉 etc. for the finite system, and take the limit L,N → ∞. Also compute the

leading finite size correction to the stationary particle current.

Problem 8: Single file diffusion

Here we want to establish the anomalous diffusion law1 〈X0(t)
2〉 ∼ t1/2 for a tagged particle

in the one-dimensional Langmuir lattice gas, where X0(t) denotes the position of a particle

that resides at the origin at time t = 0. We work in the continuum setting. The key relation

is

X0(t) ≈
1

ρ̄

∫ t

0

ds j(0, s) (1)

for long times, where ρ̄ is the mean density in the system and j(0, t) is the particle current

through the origin at time t.

We decompose the density ρ(x, t) = ρ̄+ φ(x, t) into the mean density and a fluctuating part

φ(x, t), which satisfies the diffusion equation

∂φ

∂t
= D

∂2φ

∂x2
. (2)

Use this to derive the time evolution of the intermediate structure function

S(k, t) = 〈φ̂(k, t)φ̂(−k, 0)〉 (3)

where brackets refer to the thermal equilibrium state and

φ̂(k, t) =

∫

dx eikxφ(x, t). (4)

You should find

S(k, t) = e−|k|
2D|t|S(k, 0) = Lρ̄(1− ρ̄)e−|k|

2D|t|. (5)

1S. Alexander, P. Pincus, Phys. Rev. B 18, 2011 (1978)



In the continuum limit the equal time density correlation function is 〈φ(x, t)φ(x′, t)〉 =

ρ̄(1− ρ̄)δ(x− x′), and hence S(k, 0) = Lρ̄(1− ρ̄), where L is the system size.

To compute the mean square displacement 〈X2
0
〉, use (1) to relate it to the correlation

function of the current j(0, t). The latter can then be obtained from the density correlation

function (5) using the fact that j = −D∂φ/∂x. The calculation is simplified by introducing

the particle counting function

N(x, t) =

∫ x

0

dy φ(y, t), (6)

which satisfies the relations j(0, t) = ∂N/∂t and φ(x, t) = ∂N/∂x. Finally, examine how

〈X0(t)
2〉 behaves in the low density limit ρ̄→ 0, and provide an interpretation.

Problem 9: The zero range process

In the zero range process (ZRP)2 an unlimited number ni = 0, 1, 2, ... of particles can occupy

each site i = 1, .., L of the one-dimensional lattice with periodic boundary conditions (a

ring). A particle at site i jumps to the right (i → i + 1) with probability p and to the

left (i → i − 1) with probability 1 − p at a rate which is a function γ(ni) of the number

of particles at the site of origin with γ(0) = 0. There is no dependence on the occupancy

of the target site (= zero range interaction). The ZRP has the remarkable property that

the stationary distribution is a product measure for a broad class of functions γ(n), i.e. the

stationary weight of a configuration {n1, ..., nL} is of the form

Prob[n1, ..., nL] ∼
L
∏

i=1

f(ni). (7)

a.) In the symmetric case p = 1/2 use the condition of detailed balance to show that

f(n) ∼
n
∏

k=1

γ(k)−1 (8)

You may ignore the constraint of constant total particle number N =
∑L

i=1
ni, i.e. work

in a “grand-canonical” setting.

b.) Write down the master equation for the asymmetric case and show that the product

measure (7, 8) remains stationary also when p 6= 1/2.

c.) Under what conditions on the rate function γ(n) is the single-site probability distribu-

tion (8) normalizable?

2F. Spitzer, Adv. Math. 5, 246 (1970); M.R. Evans, T. Hanney, J. Phys. A 38, R195 (2005).


