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Problems in Advanced Statistical Physics

Problem 10: Detailed balance and reversibility

A continuous time Markov chain on a finite set of states i = 1, ..., C satisfies detailed balance

iff

γijP
∗

i = γjiP
∗

j (1)

where γij is the transition matrix and P ∗

i the stationary distribution. We will assume in the

following that the Markov chain is ergodic, in the sense that every state can be reached from

every other state through a sequence of transitions with nonzero rates.

It is often necessary to check for the presence or absence of detailed balance in situations

where the stationary distribution P ∗

i is not explicitly known. To this end consider a closed

loop

L = (i1 → i2 → i3 → ...→ iN → i1)

in state space along with its time-reversed partner L̄ = (i1 → iN → iN−1 → ... → i2 → i1).

Take the product of the transition rates along the loop,

π(L) ≡
N∏

k=1

γikik+1

with iN+1 ≡ i1, and show that (1) holds if and only if π(L) = π(L̄) for all possible loops. Note

that this requires in particular to construct (at least in principle) the stationary distribution

P ∗

i from the rates.

Problem 11: Shocks in the viscous Burgers equation

The one-dimensional Burgers equation

∂φ

∂t
+ λφ

∂φ

∂x
= ν

∂2φ

∂x2
(2)

was originally introduced as a model problem for fluid turbulence1. In that context λ = 1

because of Galilean invariance, and ν > 0 is the kinematic viscosity.

The inviscid Burgers equation with ν = 0 describes the behavior of the asymmetric exclusion

process in the hydrodynamic limit. It was shown in the lectures that the inviscid equation

1J.M. Burgers, The Nonlinear Diffusion Equation (Riedel, Boston 1974).



generically develops shock discontinuities from smooth initial conditions. Here we want to

investigate how the viscosity regularizes the shocks.

Show that (2) admits stationary traveling wave solutions of the form

φ(x, t) = Φ(x− V t), (3)

where the shape function is asymptotically constant, limξ→−∞Φ(ξ) = φL and limξ→∞Φ(ξ) =

φR. Find a first integral of the ordinary differential equation for Φ(ξ) and use it to determine

the velocity V in terms of the boundary values φL and φR. Then compute the function Φ(ξ)

explicitly and show that the solution reduces to a discontinuous shock in the limit ν → 0.

Problem 12: Cellular automaton rule 184

Cellular automata (CA) are dynamical systems with discrete spatial structure evolving in

discrete time. Elementary CA in the sense of Wolfram2 are defined on a one-dimensional

lattice with binary variables on each site, and the state of a site at time t is a deterministic

(Boolean) function of the state of the site itself and its two neighbors at time t − 1. There

is a total of 28 = 256 such CA which can be completely classified. Here we consider rule 184

defined by

(000)→ 0, (001)→ 0, (010)→ 0, (011)→ 1, (100)→ 1, (101)→ 1, (110)→ 0, (111)→ 1

The sequence of final states is a binary representation of the number 184 = 0× 20 +0× 21 +

0 × 22 + 1 × 23 + 1 × 24 + 1 × 25 + 0 × 26 + 1 × 27. Rule 184 is a deterministic version of

the asymmetric exclusion process with p = 1: In one time step all particles with a vacant

neighbor site move simultaneously to the right. Correspondingly rule 226 describes particles

moving deterministically to the left.

a.) Identify all elementary CA that conserve the number of 1’s, and show that rules 184

and 226 are the only nontrivial examples.

b.) Determine (by inspection or simulation) the attractor of CA 184 on a finite ring, i.e., the

set of configurations that govern the dynamics for t→∞. Deduce that the stationary

particle current is given as a function of density by the expression

J(ρ) = min(ρ, 1− ρ). (4)

The cusp singularity at ρ = 1/2 signals a phase transition. What is a suitable order

parameter characterizing the transition?

c.) Consider the (inviscid) hydrodynamic equation associated with the current (4). Inves-

tigate the behavior of the characteristics. Under what conditions and on which time

scale do shocks form from a smooth initial density profile?

2S. Wolfram, Rev. Mod. Phys. 55, 601 (1983); S. Wolfram, A new kind of science (2002)


