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Problems in Advanced Statistical Physics

Problem 16: Correlations and boundary effects for the Ising chain

a.) Calculate the partition function for the Ising chain in zero magnetic field for free and

fixed (++ and +−) boundary conditions, and show that it reduces to the result for

periodic boundary conditions when the system size L becomes large compared to the

correlation length.

b.) Derive the spin-spin correlation function for nonzero magnetic field, and verify the

relation ξ−1 = ln(λ1/λ2).

Problem 17: Solid-on-solid approximation for the Ising domain wall

Consider a domain wall in the two-dimensional Ising model which runs on average along

the x-axis of the lattice. In the solid-on-solid (SOS) approximation configurations with

overhangs are neglected, so that the domain wall can be represented by an integer-valued

height function y = h(x). For a lattice of linear size L the energy of such a configuration is

then

HSOS = 2JL+ 2J
L∑

x=1

|h(x+ 1)− h(x)|. (1)

The mean orientation of the domain wall can be fixed by imposing “helical” boundary con-

ditions h(L + 1) = h(1) + L tan(θ), where θ is the angle between the domain wall and the

x-axis.

The expression (1) can be viewed as the energy of noninteracting slope variables u(x) =

h(x+ 1)− h(x) subject to the global constraint

h(L+ 1)− h(1) =
L∑

x=1

u(x) = L tan(θ), (2)

corresponding to a “canonical” ensemble for the “particle numbers” u(x). For actual com-

putations it is convenient to use a grand-canonical ensemble where the energy of a slope

configuration is given by

H
(gc)
S0S = 2JL+ 2J

L∑

x=1

|u(x)|+ µ
L∑

x=1

u(x) (3)



and the mean orientation is determined by the slope chemical potential µ.

Compute the domain wall free energy per unit length γSOS(θ, T ) from (3), and compare to

the exact expressions1

γ(0, T ) = 2J + kBT ln[tanh(βJ)], γ(π/4, T ) =
√
2kBT ln[sinh(2βJ)] (4)

obtained by taking into account all configurations. Determine the temperature(s) at which

γ and γSOS vanish. What kind of bound on the Ising critical temperature do you expect the

SOS-approximation to provide?

Problem 18: Toom’s CA

In the two-dimensional Ising model, phase coexistence is possible only along the line h = 0 in

the (T, h)-plane. In 1980, Andrei Toom devised an Ising-like stochastic cellular automaton

in which phase coexistence occurs in an extended two-dimensional region of the analogous

parameter plane2.

The model is defined on the square lattice and a spin σx,y = ±1 is associated with each

site (x, y) ∈ Z
2. In the deterministic limit (corresponding to temperature T = 0) each spin

evolves in discrete time by taking on the majority value among itself and its northern and

eastern neighbor, i.e.

σx,y(t+ 1) = sgn[σx,y(t) + σx+1,y + σx,y+1]. (5)

To mimick the effects of temperature and magnetic field, the rule (5) is obeyed only with

probability 1− p− q; otherwise the spin at time t+1 is set equal to 1 (−1) with probability

p (q). Thus temperature corresponds roughly to p+ q and magnetic field to p− q (for p = q

the dynamics is symmetric under σx,y → −σx,y).

To understand the robustness of phase coexistence in this model, investigate (by inspection

or simulation!) the time evolution of a droplet (of convex initial shape) of (+)-spins inside

a sea of (–)-spins, under the deterministic rule (5). Show that the droplet disappears in a

time that is proportional to its linear extent, and show that the same is true for a droplet of

(–)-spins inside a sea of (+)-spins. This behavior is not changed by a small amount of noise,

and therefore both phases remain stable for generic (small) values of p and q.

1C. Rottman and M. Wortis, Phys. Rev. B 24 6274 (1981).
2A.L. Toom, in Multicomponent random systems, ed. by R.L. Dobrushin (New York, 1980); G. Grinstein, IBM

J. Res. & Dev. 48 (2004), available on the course web page.


