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Problems in Advanced Statistical Physics

Problem 21: The Fisher-Kolmogorov equation

The one-dimensional Fisher-Kolmogorov equation

∂φ

∂t
=
∂2φ

∂x2
+ φ(1− φ) (1)

was suggested by R.A. Fisher as a model for the spread of an advantageous gene in a
population1, and subsequently analyzed by Kolmogorov, Petrovsky and Piskunov. It is
a paradigm for front propagation with many applications in biology, chemistry and physics2.
In applications, the field φ is usually restricted to 0 ≤ φ ≤ 1.

a.) Stationary homogeneous solutions of (1) are obviously φ ≡ 0 and φ ≡ 1. Show that
the solution φ = 1 is stable while φ = 0 is unstable. To see this, linearize (1) around
a homogeneous state φ0, φ(x, t) = φ0 + ε(x, t), and look for solutions of the linearized
problem of the form

ε(x, t) ∼ exp[iqx+ ω(q, φ0)t]. (2)

The homogeneous state is unstable if ω(q, φ0) > 0 for some q.

b.) Show that (1) can be written in the form of a time-dependent Ginzburg-Landau equa-
tion, as introduced in Problem 20, and determine the corresponding Landau free energy
f(φ). What is the thermodynamic interpretation of the instability of the state φ = 0?

c.) Using the mechanical analogy of Problem 20 c.), show that (1) possesses traveling wave
solutions

φ(x, t) = Φ(x− V t), (3)

with 0 ≤ Φ ≤ 1 and boundary conditions limz→∞Φ = 0, limz→−∞Φ = 1, for all

velocities V ≥ Vmin > 0, and determine the minimal speed Vmin. This is in contrast to
the field-driven interfaces in Problem 20 c.), where the speed is uniquely determined.

d.) The degeneracy of the front speed in (3) implies that the actual speed must depend
on the initial condition. The full theory of the Fisher-Kolmogorov equation and related
systems3 shows that spatially localized initial conditions typically lead to propagation
of the interface at the linear spreading speed V ∗, which is defined as the speed at which
points of constant φ propagate under the linear dynamics obtained by linearizing (1)
around the unstable state φ = 0. Find the general solution of the linear equation, and
determine V ∗. Show that V ∗ = Vmin, i.e. the front selects the minimal speed.
Hint: Consider the transformation φ(x, t) = etu(x, t).

1R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics 7, 353 (1937).
2J.D. Murray, Mathematical Biology (Springer, 2002).
3W. van Saarloos, Phys. Rep. 386, 29 (2003).



Problem 22: Phase fluctuations in the XY-model

In the lectures the following expression was derived for the phase correlation function of the
XY-model in the spin wave (=low temperature) approximation:

〈(ϕ(~r)− ϕ(0))2〉 =
1

V

∑

~q

(1− cos(~q · ~r))
kBT

g|~q|2
, (4)

where the sum runs over discrete wave vectors ~q consistent with (e.g.) periodic boundary
conditions at the boundaries of the d-dimensional domain of volume V .

a.) Evaluate (4) exactly in one dimension. Note that in this case the small scale cutoff Λ
can be sent to infinity, and make use of the series

∞
∑

n=1
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=
π2
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πx

2
+
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4
.

b.) In two dimensions evaluate (4) approximately by converting the sum into an integral
and computing the latter for the circular domain |~q| ≤ Λ. Make use of the identity

∫

2π

0

dθ cos(x cos θ) = 2πJ0(x)

and of the properties of the zero’th order Bessel function J0 to show that indeed (4)
diverges as (kBT/πg) ln(rΛ) for large r.

Problem 23: Fluid interfaces under gravity

a.) Show that in the presence of gravity, the capillary wave free energy of a fluid interface
(say, between a liquid and its vapor) takes on the form

F =

∫

d2~x

[

1

2
γ(∇h)2 +

1

2
αh2

]

(5)

and determine the coefficient α in terms of the gravitational acceleration g and the mass
density difference ∆ρ of the two fluid phases.

b.) Compute the height difference correlation function C(~x) from (5), and show that the
logarithmic divergence derived in the lectures saturates for |~x| À ξc, where ξc =

√

γ/α
is the capillary length. The limiting value

W 2 ≡ lim
|~x|→∞

C(~x) (6)

is a possible definition for the interfacial width W induced by the capillary waves.
Estimate ξc and W 2 for water at room temperature (γ = 0.073N/m, ∆ρ = 103kg/m3).

c.) Investigate the behavior of ξc and W on approaching the critical point. Use the critical
exponents of Landau theory. In particular, use the result of Problem 20 a.) for the
behavior of the interface free energy γ near Tc. Compare the behavior of ξc and W
with that of the bulk correlation length ξ, which determines the intrinsic width of the
interface.


