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Solutions in Advanced Statistical Physics

Solution 1: The Langmuir lattice gas

a.) isothermal compressibility

P(N,V) = (J‘Q

)pNa — )N S (N) =V, (N = (N))) = Vp(1— p) = (AN)?
Hence
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b.) Poisson distribution

P(N+1,V) Vp 1-% Vp

P(N,V) N+11-p N+1

Hence P(N +1,V) = lP(N V) = = MP(O V). By normalization
b - N+ 1 Y - - (N+ 1)' Y N y Y
P(0,V) =eVr.

c.) Using Stirling’s formular N! ~ NNe=N/27N,
P(N,V)~exp[VInV —(V—-N)In(V —=N)-=NInN+ Nlnp+ (V- N)In(1 — p)]
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The maximum of s,(n) occurs at n = p because
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and P(N,V) ~ 7—2;2(7171)) exp(—%( ) )




Solution 2: Shannon entropy

a.) canonical and grandcanonical distribution

Constraint ZP(S) =1, ZE(S)P(S) = (E), ZN(S)P(S) = (N). Let A1, Ao, and

S S S
A3 be the Lagrange multipliers for the corresponding constraint and let

:—kZP lnPS)—1)+)\1<1—ZP )
Ao <<E> -3 E(S)P(S)> — A3 <<N> = N(S)P(s)> .

s

Then to maximize the entropy is equivalent to maximize .

o PO = exp (_% _ 22 4 N G >)
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From three constraints, A1, As, and A3 are calculated. Actually, Ao = m = 7
A3 = —m =7 and A\; = klny. Since PR = —-1/P ) < 0, the extremum is
maximum.

b) Three properties
i) is clear from the above derivation.

Alternative)

Q Q
Let p(z) = xlnz. Since ¢(x) is a convex function, ¢ (% Zak> < %ng(ak) for
Q
positive ag’s. If ap = pg (Zpk = 1),
k=1
1 Q
o(1/Q) = —InQ/Q < §Zpklnpk. — S[PP < S[PY) =1/0] =InQ
k=1

ii) trivial

iii) Let so =0, sx = Q.
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c¢) uniqueness theorem

1 1 .
Let f(Q) = Sq (5,,5> Since

1 1 1 1 .
Sa <Q—1""’Q_1’0> < S (5,,5> = f(Q) [by property i)],

-1 -1 -1 a -1
f(£2) is an increasing function (f(2 —1) < f(Q2)). Let Q = LM with integers L and
M. From property iii),

Sa <Q ! . ! 0> =501 <Q ! . ! > = f(Q2—1) [by property ii)],

1 1 1 1 1 1 1
SQ(@,...,@,...,E,...,5> :SM (M,,M>+MMSL (Z,...,z>,

that is, f(LM) = f(L)+ f(M). Hence f(2) = ¢In(Q2) with ¢ positive. Now go back to
the original problem. Let P; = % with (arbitrary) positive integers ¢; and N. jFrom
Q
normalization, Z g;i = N. By property iii),
i=1

Hence
S(Py,...,Pq) = ZPi(f(N) — fl@)) = Zpl-cm (N/q;) = —cZPilrlPi.

Since S is supposed to be continuous, the above relation should be true for all real

numbers.

Solution 3: Irreversibility of diffusion

P P)?
QS[P] = —k:/dF(lnP+ 1)d— = —Dk/df (InP 4 1)V?P = Dk:/df’ (VP) >0
ot dt P
Solution 4: Entropic elasticity
a) entropy
: N R
Let m be the number of steps to the right — m = 0} + %"
N 1+z, 142 1—2 1-=x
Q(R)—(m>—>5—kan(R)_—kN< 5 In 5 + 5 In 5 >

2
~ kN <% —ln2> ,



h = —.
where x N

b) tension

oS T kT

spring constant oc T'. x o< 1/T for fixed f. For ideal gas, V oc T for fixed pressure.
Solution 5: Generating functions, cumulants, and the central limit theorem

a.) Generating functions for some distributions
. N ,
va(k) = e*k2/2790c(k) = e*\k\7¢B(k) — (1 + p(elk _ 1)) ,op(k) = exp ()\(elk _ 1))

en(k) = (14 p(e® ~ 1) = exp (A ~ 1)) = op(k)

b.) moment
The proof is rather trivial. The Cauchy distribution has a singularity at & = 0, which
means that the first moment (or average) is ill-defined. One may be tempted to say
that the average is 0 because the Cauchy distribution is even. However, this is of no
use not only because of the generating function and but also because of the law of large
numbers; see Sol. 5-d.).

c.) cumulant

Since ¢ = eX,

dp _dx _ d'p N~ (L) (AN T
e~ ak” " akn =\ p ) \ak) *\dk v

Now put k = 0, then we get

n—1 n—1 n—2 n—1 n—1 n—1
mp = Z ( D >K‘p+1mn1p = /{n“‘z < D )Kerlmnlp = /{n“‘z <p _ 1>K/pmnp
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KRl =my, M1 =Ky,
_ 2 _ 2
Ko = Mg — M7, My = K2+ K,
_ 2 3 _ 3
K3 = ma — 3mamj + 2mj, m3 = K3 + 3KkaK1 + KT,
_ 2 2 4 _ 2 2 4
kg = myg —4dmamy — Ims + 12mime — 6m] my = kg + 4k3k1 + 3K5 + 6Kak] + KT
d.) central Limit theorem

Since
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and all X; are independent, we can obtain that

cf.) Law of large numbers.
X1+ + Xy

If N is sufficiently large and p is finite, Sy = N

— 1 with probability 1.

X\ .k ikSn ikp
<exp(zkﬁ>>—1+z,uN+0(k/N):><e >—>e .

For Cauchy distribution, (e?*9v) = e~k regardless of N. Hence, it is better to say that

the Cauchy distribution does not have a mean.

Solution 6: A Lévy flight on living polymers

r2

_faprn—— (T YL [T g e <_ o_ )
o / N eXp( 4D(l)r*> \/ﬁ/o e\ T Y

where D* = 4Dy7*1%15*. If (r?) is finite, a tracer particle moves diffusively thanks to the

central limit theorem.

9 . oo o finite if o < 2,
(re) =2nr /D(Z)P(l) oc/ dyy e Y =
0 00 if > 2.
To understand the superdiffusive motion, let us find out the asymptotic behavior of p(r)
when r > 1. Let A®~! =¢2/D* and set Ay = z, then

p(r) o A(“H)/z/ dzz(@+2)/2 exp <—%(za + z)) )
0

Since A is very large, the main contliibution of the above integral happens when z < zy where
7o is the solution of the equation 2(28‘ + z9) = 1. Since oo > 2, zp ~ AYe approximately.
Hence

(a+4)/(2a)
x

p(r) ~ A™(e+4)/2 /ZO doz(@+2)/2 oo g—(a+4)/2 glat+4)/(20) _ (A—(a—l)) p—(atd)/a

0

The largest step size among N iid steps can be calculated as

o0
N/ p(rydr =1 =12, ~ N%/2,
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