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Solution 10: Detailed balance and reversibility

Assume that γijP
∗
i = γjiP

∗
j for all i, j. Then

π(L)
N
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k=1
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ik

=
N
∏

k=1

(

γikik+1
P ∗
ik

)

=
N
∏

k=1

(

γik+1ikP
∗
ik+1

)

= π(L̄)
N
∏

k=1

P ∗
ik
, (1)

where iN+1 = i1 has been used. Hence if no P ∗
i is zero, π(L) = π(L̄) for all loops, including

the case that π(L) = 0. Since, from the master equation, P ∗
i =

∑

j 6=i γjiP
∗
j

∑

j 6=i γij
for all i, no P ∗

i is

zero because of the ergodicity which implies that the denominator is positive, at least one γji

in the numerator is positive, and at least one P ∗
k is nonzero due to the normalization. [Short

question I: Construct a simple system which satisfies the detailed balance but π(L) 6= π(L̄)

for at least one loop. A system with four states will be enough.]

Now assume that π(L) = π(L̄) for all loops. First we will prove that γij 6= 0 implies γji 6= 0.

Choose an arbitrary state, say k (6= i, j). Since the system is ergodic, there is a sequence

of transitions, or a loop Lk, from k to i and j to k with nonzero transition rates. If Lk

contains j → i, then γji 6= 0 by definition. Otherwise, L̄k contains j → i transition, and

since π(Lk) = π(L̄k) 6= 0, γji 6= 0 follows. ¿From the above proof, one can easily see that

the totally asymmetric exclusion process (which allows particles to hop only to the, say,

right) does not satisfy the detailed balance condition. Now pick up an arbitrary state i0.

Due to the ergodicity, we can always find a path with nonzero rates from i0 to any j(6= i0)

(i0 → j1 → · · · → jNj−1 → j). Now define

P ∗
j = P ∗

i0

Nj
∏

`=1

γj`−1j`

γj`j`−1

, (j0 ≡ i0 and jNj
≡ j) (2)

for an arbitrary sequence and P ∗
i0

will be fixed by normalization. The uniqueness of P ∗
j is

to be proved. Consider two different paths from i0 to j, say c1 and c2 whose corresponding

reverse path will be donoted by c̄1 and c̄2, respectively. The path c1 → c̄2 form a loop, say L,

then reverse loop is L̄ = c2 → c̄1. The ratio of two P ∗
j along two different paths is

π(L)

π(L̄)
= 1.



If γij 6= 0, then

P ∗
j = P ∗

i

γij

γji
⇒ γijP

∗
i = γjiP

∗
j ,

because P ∗
j does not depend on which path you take; in the above equation, we took the

path i0 → i→ j. Not to mention, the final equality is true even if γji = 0.

[Short question II: Construct a system which satisfies the detailed balance and the loop

identity but is not ergodic. You can find a simplest system having two states.]

[Short question III: The ASEP can or cannot satisfy the detailed balance depending on

the boundary condition. Convince yourself that the ASEP with fixed (periodic) boundary

conditions does (not) satisfy the detailed balance. You can also find the answer of Short

question II from this example.]

Solution 11: Shocks in the viscous Burgers equation Put the travelling wave solution into

the Burgers equation, then

−Ṽ Φ′ +ΦΦ′ = ν̃Φ′′, (3)

where Ṽ =
V

λ
, ν̃ =

ν

λ
, and prime indicates the derivative over ξ(= x − V t). Operating

∫ ξ

−∞
dξ on both sides of Eq. (3), we get −Ṽ (Φ− φL) +

1

2

(

Φ2 − φ2L
)

= ν̃Φ′. or

(Φ− Ṽ )2 − (Ṽ − φL)
2 = 2ν̃Φ′. (4)

Putting ξ = ∞ in Eq. (4), we get Ṽ =
φR + φL

2
or V = λ

φR + φL

2
=

J(φR)− J(φL)

φR − φL

,

because J(φ) = λ
φ2

2
. Hence

−
1

2ν̃
ξ =

∫

Φ

du
1

(Ṽ − φL)2 − (u− Ṽ )2
=

1

Ṽ − φL

(

tanh−1

(

Φ− Ṽ

Ṽ − φL

)

− C̃

)

,

where C̃ is a constant. So

Φ(ξ) =
φR + φL

2
−
φL − φR

2
tanh

(

φL − φR

4ν̃
(ξ − c)

)

,

where
φR − φL

4ν̃
c = C̃. If φL < φR, the above solution does not satisfy the boundary condi-

tion, that is, the shock is unstable. For φL > φR, the width of the shock is
λ(φL − φR)

4ν
d ∼ 1

or d =
4ν

λ(φL − φR)
. So as ν → 0, the solution becomes discontinuous shock.



Solution 12: Cellular automaton rule 184

a.) Since . . . 0000 . . . and . . . 1111 . . . should not change the sequence, the conservation re-

quires

(000)→ 0, (111)→ 1. (5)

Now consider the sequence of repeating (10)’s, that is, . . . 101010 . . .. To conserve the

number of 1’s, we have only two possibility;

(010)→ 1, (101)→ 0, (6)

(010)→ 0, (101)→ 1. (7)

If one consider two sequences of repeating (110) and (100), Eq. (6) should imply the

identity rule, or rule number 204. The nontrivial possibility can arise from Eq. (7) with

Eq. (5). Considering again two sequences of repeating (110) and (100), the particle

number conserving rules are
{

(001)→ 1, (100)→ 0

(001)→ 0, (100)→ 1

}

and

{

(011)→ 1, (110)→ 0

(011)→ 0, (110)→ 1

}

. (8)

Among four possibilities, two are just frame shift, so rules 184 and 226 are the only

nontrivial examples.

b.) Let us write down the rule 184 once again.
{

(000)→ 0

(111)→ 1

}

,

{

(001)→ 0

(011)→ 1

}

,

{

(010)→ 0

(101)→ 1

}

,

{

(100)→ 1

(110)→ 0

}

. (9)

The rule says that 1 cannot move if its right neighbor is occupied by 1. Otherwise, 1

hops to the right. Hence the stationary state which depends on the initial setting is

that without 11 pair. In this case, the current is ρ. The above statement is only true

when ρ ≤ 1

2
. Since the rule 184 is symmetric under the particle-hole conversion (1↔ 0)

followed by the space inversion [(abc)↔ (cba)], the stationary state of the system with

ρ > 1

2
should be one without 00 pair. The current for this case is 1 − ρ because the

current of 0’s is −(1− ρ). In summary, J = min{ρ, 1− ρ}. As the above consideration

reveals, the order parameter for this transition can be 11 pair density which is zero for

ρ ≤ 1

2
and finite for ρ > 1

2
.

c.)

∂

∂t
ρ(x, t) +

∂

∂x
J(x, t) = 0⇒

∂

∂t
ρ(x, t) = −sgn(1− 2ρ)

∂

∂x
ρ(x, t) = −c(ρ)

∂

∂x
ρ(x, t),

where sgn(x) = 2Θ(x) − 1 and c(ρ) = sgn(1 − 2ρ). If the initial density is smaller

(larger) than 1

2
at all points, the density profile at t becomes ρ(x, t) = ρ0(x± t) (+ for

low density regime). If initial (smooth) density profile crosses ρ = 1

2
line, the shock

starts to form at ρ0 =
1

2
with

dρ0

dx
> 0 immediately.


