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Solution 13: Virial expansion

a.)

lnY = ln(1 + Z(1)z + Z(2)z2 + . . .) ≈ Z(1)z +

(

Z(2)−
1

2
Z(1)2

)

z2

⇒ PV = kBTZ(1)z

(

1 +

(

Z(2)

Z(1)2
−

1

2

)

Z(1)z

)

.

(1)

From N = z
∂

∂z
lnY ,

N ≈ Z(1)z

(

1 + 2

(

Z(2)

Z(1)2
−

1

2

)

Z(1)z

)

⇒ Z(1)z ≈ N

(

1− 2

(

Z(2)

Z(1)2
−

1

2

)

N

)

.

(2)

Combining Eqs. (1) and (2), we get

PV ≈ kBTN

(

1−

(

Z(2)

Z(1)2
−

1

2

)

N

)

= kBTN(1 +B2ρ),

with B2 = −

(

Z(2)

Z(1)2
−

1

2

)

V .

The system with central pair potential,

Z(2) =
Z(1)2

2V 2

∫

d3xd3ye−βw(|x−y|) =
Z(1)2

2V 2

∫

d3R

∫

d3re−βw(r) =
Z(1)2

2V

∫

d3re−βw(r),

where Z(1) =
V

λ3th
, R = (x+ y)/2, and r = x− y. Z(1)z = ρV = N . Hence

B2 = −
1

2

∫

d3r
(

e−βw(r) − 1
)

= −2π

∫

drr2
(

e−βw(r) − 1
)

.

b.)

w(r) =



















∞ 0 < r < R1

w̄ R1 < r < R2

0 r > R2

⇒

B2 =
2π

3
R2
1 −

2π

3
(e−βw̄ − 1)(R2

2 −R2
1)

=
2π

3
e−βw̄R2

1 −
2π

3
(e−βw̄ − 1)R2

2.



Hence

P = kBTρ+ kBT

(

2π

3
e−βw̄R3

1 −
2π

3
(e−βw̄ − 1)R3

2

)

ρ2. (3)

In the low density regime, van der Waals equation takes the form

P =
kBTN

V − bN
− aρ2 ≈ kBTρ+ (bkBT − a)ρ2. (4)

We cannot associate a and b in Eq. (4) with parameters in Eq. (3) in general. But if

we take the limit w̄ → 0 and R2 →∞ with w̄R3
2 fixed, Eq. (3) becomes

P = kBTρ+ kBT
2π

3
R3
1ρ

2 −
2π

3
|w̄|R3

2ρ
2,

which is now matched to Eq. (4) such that b =
2π

3
R3
1 and a =

2π

3
|w̄|R3

2.

Now consider Eq. (4). The critical point will be determined by the condition ∂P
∂ρ =

∂2P
∂ρ2 = 0. One can easily see that the critical point does not exist from Eq. (4). So the

leading order expansion is not enough to study the phase transition.

Solution 14: Hard rods in one dimension

The available volume is

a

2
< x1 < x2−a,

3a

2
< x2 < x3−a . . . , (2n−1)

a

2
< xn < xn+1−a, . . . , (2N−1)

a

2
< xN < L−

a

2
.

Hence

Q(L,N) =

∫ L−a/2

(2N−1)a/2
dxN

∫ xN−a

(2N−3)a/2
dxN−1 · · ·

∫ x3−a

3a/2
dx2

∫ x2−a

a/2
dx1.

To calculate Q, let us introduce a sequence of integrals such that

qn =

∫ xn+1−a

(2n−1)a/2
dxnqn−1, q1 =

∫ x2−a

a/2
dx1 = x2 −

3a

2
⇒ Q =

∫ L−a/2

(2N−1)a/2
dxNqN−1.

Now make an ansatz such that (after trying one or two more integrals, one can easily guess

this pattern)

qn =
1

n!

(

xn+1 −
(2n+ 1)a

2

)n

.

Then

qn+1 =
1

n!

∫ xn+2−a

(2n+1)a/2
dxn

(

xn+1 −
(2n+ 1)a

2

)n

=
1

(n+ 1)!

(

xn+2 −
(2n+ 3)a

2

)n+1

.

Since the ansatz correctly reproduces q1, by mathematical induction we can say that

qN−1 =
1

(N − 1)!

(

xN −
(2N − 1)a

2

)N−1

.



So,

Q(L,N) =
1

N !
(L−Na)N

follows.

The equation of state is

P = kBT
∂ lnZ

∂L
=

kBTN

L−Na
≈ kBTρ(1 + aρ), (5)

which is exactly the same as the van der Waals equation without the long-range attraction.

The first virial coefficient is

B2 = −
1

2

∫

dr(e−βw(r) − 1) =
1

2

∫ a

−a
dr = a,

which is exactly the leading correction in Eq. (5).

Solution 15: One-dimensional lattice gas with extended particles

a.) The number of microstates is (as hinted in the problem)

Ω(M,N, n) =

(

M −Nn+N

N

)

=
(M −Nn+N)!

N !(M −Nn)!
.

Using Stirling’s formula, we get

S = kB lnΩ(M,N, n) = kB(M −Nn) ln

(

1 +
N

M −Nn

)

+ kBN ln

(

M −Nn+N

N

)

.

b.)

S = kB
1

a0
(L−Na) ln

(

1 +
Na0

L−Na

)

+ kBN ln

(

L−Na+Na0
Na0

)

→ kBN + kBN ln(L−Na)− kBN ln(Na0)

Hence

P = T∂S/∂L =
kBTN

L−Na
,

which is same as the result of the previous problem.


