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Solution 16: Correlations and boundary effects for the Ising chain

a.) effect of boundary condition

For all cases, the partition function takes the form

Z =
∑

σ1,σL

′







∑

σ2,...,σL−1

exp

(

K
L−1
∑

i=1

σiσi+1

)







≡
∑

σ1,σL

′
ζ(σ1, σL), (1)

where K = βJ and the meaning of
∑′ varies according to the boundary conditions. As

was done in the lecture, let’s introduce the transfer matrix T̂ such that

〈σ|T̂ |σ′〉 = eKδσ,σ′ + e−K(1 − δσ,σ′) ⇒ T̂ = eK1 + e−K σ̂x, (2)

where 1 is the identity operator and σ̂x is a Pauli matrix. Since

eK∗σ̂x = eK∗ 1 + σ̂x

2
+ e−K∗ 1− σ̂x

2
= 1 coshK∗ + σ̂x sinhK∗, (3)

the transfer matrix can be written as T̂ = AeK∗σ̂x , with A =
√

2 sinh 2K and tanhK∗ =

e−2K or equivalently e2K∗

= cothK. By the definition of the transfer matrix,

ζ(σ1, σL) = 〈σ1|T̂L−1|σL〉 = 〈σ1|AL−1 exp [(L − 1)K∗σ̂x] |σL〉
= AL−1 {cosh((L − 1)K∗)δσ1,σL

+ sinh((L − 1)K∗)(1 − δσ1,σL
})

=
1

2
(AeK∗

)L−1(1 + O(e−K∗L)),

(4)

which clearly does not depend on the details of the boundaries once L is very large.

From the definition of K∗ one can easily show that AeK∗

= 2 coshK which is the largest

eigenvalue of the transfer matrix. Hence for any boundary conditions, the free energy

density per spin in the thermodynamic limit is −kBT lnλ1.



b.) correlation length

〈σ1σr〉 =
1

Z

∑

{σ}

σ1σr exp

(

L
∑

i=1

(

Kσiσi+1 + h
σi + σi+1

2

)

)

=
1

Z
Tr
(

σ̂zT̂
r−1σ̂zT̂

L−r+1
)

, (r > 1)

〈σk〉 =
1

Z

∑

{σ}

σk exp

(

L
∑

i=1

(

Kσiσi+1 + h
σi + σi+1

2

)

)

=
1

Z
Tr
(

σ̂zT̂
L
)

,

(5)

where T̂ is the transfer matrix

T̂ =

(

eK+h e−K

e−K eK−h

)

=

(

A + B C

C A − B

)

,

where A = eK cosh h, B = eK sinhh, C = e−K , and σ̂z is the Pauli matrix. One can

easily see that the unitary matrix

U =

(

α γ

γ −α

)

with α =
1√
2

(

1 +

√

B2

B2 + C2

)1/2

, γ =
1√
2

(

1 −
√

B2

B2 + C2

)1/2

diagonalizes T̂ such that

U−1TU =

(

λ1 0

0 λ2

)

=

(

A +
√

B2 + C2 0

0 A −
√

B2 + C2

)

.

Since

U−1σ̂zU =

(

α2 − γ2 2αγ

2αγ −α2 + γ2

)

≡
(

D E

E −D

)

, U−1σ̂zT̂
nU =

(

Dλn
1 Eλn

2

Eλn
1 −Dλn

2

)

,

one can find that

〈σk〉 = D
λL

1 − λL
2

λL
1 + λL

2

→ D,

〈σ1σr〉 = D2 + E2 λL−r+1
1 λr−1

2 + λr−1
1 λL−r+1

2

λL
1 + λL

2

→ D2 + E2

(

λ2

λ1

)r−1

Hence the (connected) correlation function becomes

〈σ1σr〉 − 〈σ1〉〈σr〉 =
1

e4K sinh2 h + 1

(

λ2

λ1

)r−1

=
1

e4K sinh2 h + 1
e−(r−1)/ξ, (6)

with ξ−1 = ln(λ1/λ2).



Solution 17: Solid-on-solid approximation for the Ising domain wall

The ‘grand’ partition function with the chemical potential µ is

Y = e−2βJL

(

∑

u

e−2βJ |u|−βµu

)L

= e−2βJL

(

1 +
ζ

e2βJ − ζ
+

e−2βJ

ζ − e−2βJ

)L

, (7)

where ζ = exp(−βµ) which will be determined by the global constraint. From ζ
∂ log Y

∂ζ
=

∑

x

〈u(x)〉 = L tan θ, we get

tan θ = 1 + ζ

(

1

e2βJ − ζ
− 1

ζ − e−2βJ

)

→ ζ(θ, T ) =
tan θ cosh 2βJ +

√

1 + tan2 θ sinh2 2βJ

1 + tan θ
.

(8)

Finally, the free energy per unit length is obtained from the Legendre transformation

F (θ, T ) = −Lµ(θ, T ) tan θ − kBT lnY (µ(θ, T ), T ),

⇒ γSOS(θ, T ) =
F (θ, T )

L/ cos θ
= −µ sin θ +

[

2J + kBT ln

(

cosh 2βJ − cosh βµ

sinh 2βJ

)]

cos θ,
(9)

where −µ = kBT ln ζ(θ, T ). For θ = 0 (π/4), we found ζ = 1 (cosh 2βJ). Hence

γSOS(0, T ) = 2J + kBT ln tanhβJ, (10)

which happens to be the same as the exact result and

γSOS(π/4, T ) =
1√
2

(

2J + kBT ln
sinh 2βJ

2

)

= γ(π/4, T ) − 1√
2
kBT ln(1 − e−4βJ), (11)

which is larger than the exact result. Since the entropy of the SOS model is smaller than the

true domain wall entropy, the critical temperature of the SOS model should be larger than

that of the Ising model, which is clear in Eq. (11).

For θ = π/2, γSOS becomes 2J , which is due to the prohibition of overhangs. Unlike the

SOS model, the Ising model has a (discrete) rotational symmetry, that is, invariance under

the transformation θ → θ + π/2, In general, the SOS model has no symmetry under the

transformation θ → θ + π/2; see Eq. (9).

Solution 18: Toom’s CA

First observe that when p = q, Toom’s CA has up-down symmetry, that is, there is a one-to-

one correspondence from the configuration {σ} to the configuration {−σ} with exactly the

same probability weight. So it is enough to show the behavior of a droplet of (+)-spins inside

a sea of (−)-spins. By the dynamic rule, spins in the bulk of either sea or droplet do not

change. The configuration change only occurs around the boundary (recall that p = q = 0).



Boundary of the droplet is defined by the set of sites with (+) spin at least one of whose

neighbors is occupied by (−) spin.

For simplicity, let us assume that the initial droplet takes the form of square. Remember that

a spin flip occurs when both spins at north-east neighbor sites have different sign from the

spin in question. So initially there is one site which satisfies this criterion at the north-east

corner of the droplet. Then the (+) spin neighbors of the flipped spin are in peril; they have

to flip at the next time step. This continues until the whole square has flipped to (−). As

this investigation reveals, the time for flipping the whole square is same as the “chemical”

distance (number of connecting bonds) from the north-east corner to the south-west corner

of the droplet. This is depicted in the figure below.
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⇒⇒⇒

What happens if the shape of a droplet is not square? In this case, the (−) spins neighbor-

ing the droplet’s boundary at the south-west corner can be flipped. Actually, there is an

avalanche of flips of (−) spins but this avalanche ends when the south-west boundary forms

the shape of a corner of a square. Then the avalanche of (+) → (−) flips originating from the

north-east corner eventually covers the whole droplet. So in any case, the time of removing

the droplet is the order of the linear extent of the initial droplet. The situation is depicted

in the figure below.
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