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Solutions in Advanced Statistical Physics

Solution 21. The Fisher-Kolmogorov equation

a.) linear stability analysis

∂tε ' ∂2xε+ (1− 2φ0)ε,⇒ ω(q, φ0) = −q2 + (1− 2φ0). (1)

For φ0 = 1, ω is negative for all q’s while ω becomes positive for φ0 = 0 when q < 1.

Hence φ0 = 1(0) is the stable (unstable) state.

b.) analogy to the time-dependent Ginzburg-Landau equation

Let f(φ) = −φ2/2 + φ3/3. Then the Fisher-Kolmogorov equation becomes the time-

dependent Ginzburg-Landau equation (problem 20) with Γ = 1 and the functional

F =

∫

dx

(

1

2
(∇φ)2 + f(φ)

)

. (2)

φ = 0 is the (local) maximum of the Landau free energy which is unstable.

c.) traveling wave solution

∂2ξΦ+ V ∂ξΦ+ Φ(1− Φ) = 0, (3)

where ξ = x− V t. Equation (3) can be interpreted as the damped motion of a particle

with unit mass under the potential U(Φ) = Φ2/2−Φ3/3 which has minimum at Φ = 0.

When damping constant V is large enough, the particle cannot overshoot the point

Φ = 0, which is required because of the condition 0 ≤ Φ ≤ 1. Hence the motion of the

particle close to φ0 should behave exponentially ∼ e−κt. From Eq. (3), we obtain

κ2 − V κ+ 1 = 0, (4)

which has real solutions if V ≥ 2 = Vmin.

d.) selection of the front speed

The linear equation around the unstable state φ = 0 is

∂tφ = ∂2xφ+ φ [put φ = etu(x, t)]→ ∂tu(x, t) = ∂2xu(x, t). (5)



To solve the partial differential equation, let u(x, t) = 1
2π

∫

dqeiqxũ(q, t) with ũ(q, 0) = 1

which corresponds to the initial condition u(x, 0) = δ(x). Hence

∂tũ(q, t) = −q2ũ(q, t)→ ũ(q, t) = e−q
2t ⇒ u(x, t) =

1√
4πt

e−x
2/(4t).

From φ(x, t) = etu(x, t) = C (constant), one can get

xC(t) = 2t
(

1− t−1 ln
(

C
√
4πt
))1/2

⇒ V ∗ = lim
t→∞

xC(t)

t
= 2, (6)

which is Vmin in c.).

Solution 22. Phase fluctuations in the XY-model

a.) Let q = 2πn/L (n = 1, 2, . . . , L) and x = 2πr/L. The expression for the phase difference

correlation function derived in the lectures is1

〈(ϕ(r)− ϕ(0))2〉 = 1

V

∑

~q 6=0

2 (1− cos(~q · ~r)) kBT
g|~q|2

=
kBTL

2π2g

∞
∑

n=−∞

1− cos(nx)

n2

=
kBTL

π2g

(

πx

2
− x2

4

)

=
kBT

g
r +O(1/L),

where n = 0 is excluded in the sum over n.

b.) Using
1

V

∑

~q

7→ 1

(2π)2

∫

d2q, the summation becomes

kBT

2gπ2

∫

qdqdθ
(1− cos(qr cos θ))

q2
=
kBT

gπ

∫ Λ

0
dq

1− J0(qr)

q
=
kBT

gπ

∫ rΛ

0
dx

1− J0(x)

x
.

Since

J0(x) =











1− x2

4
+O(x4) for x¿ 1,

√

2

πx
cos

(

x− π

4

)

for xÀ 1,

the integral is dominated by
∫

dx/x ∼ ln(rΛ).

Solution 23. Fluid interfaces under gravity

a.) free energy in the presence of the gravity

The gravitational energy at ~x is
∫

d~xdzρ(z)gz with ρ(z) = ρ0(ρ1) if z < (>)h(~x). Hence

the energy at ~x becomes

∫ L

0
dzρ(z)zg =

1

2
∆ρgh2 + constant, (7)

1Note that in the problem set a factor 2 was missing in the first relation.



where ∆ρ = ρ0 − ρ1. The free energy takes the form as in the problem sheet with

α = ∆ρg.

b.) the capillary length and the interfacial width

From the lecture,

C(r) ' 2kBT

(2π)2

∫ Λ

0
d2q

1− cos(qr)

γq2 + α
=

2kBT

(2π)2γ

∫ ξcΛ

0
d2q

1− cos(qx)

q2 + 1
, (8)

where ξc =
√

γ/α and x = r/ξc. When x À 1, the main contribution comes from the

momentum range qxÀ 1. Thus

C(r) ' kBT

2πγ

∫ ξcΛ

1/x
dq

2q

q2 + 1
=
kBT

2πγ
ln

(ξcΛ)
2 + 1

1 + x−2
x→∞−→ kBT

2πγ
ln((ξcΛ)

2 + 1) = W 2. (9)

At room temperature, ξc =
√

γ/α =
√

0.073/(103 × 9.8)m = 2.7mm and W ∼ 7.8 ×
10−10m ' 8Å, where Λ ' 1Å

−1
is used.

c.) near criticality

Since γ ∼ t3/2 (problem 19) and α ∝ ∆ρ ∼ t1/2 near criticality (t is the reduced

temperature), ξc ∼ t1/2 and W ∼ 1/
√
γ ∼ t−3/4. The bulk correlation length diverges

as ∼ t−1/2 which is smaller thanW . Actually, W and the bulk correlation length should

scale equally, which just means that the mean field theory is wrong in three dimensions.


