UNIVERSITÄT ZU KÖLN

Prof. Dr. Joachim Krug Dr. Su-Chan Park Institut für Theoretische Physik WS 2007/2008

Solutions in Advanced Statistical Physics

Solution 21. The Fisher-Kolmogorov equation

a.) linear stability analysis

$$\partial_t \epsilon \simeq \partial_x^2 \epsilon + (1 - 2\phi_0)\epsilon, \Rightarrow \omega(q, \phi_0) = -q^2 + (1 - 2\phi_0).$$
(1)

For $\phi_0 = 1$, ω is negative for all q's while ω becomes positive for $\phi_0 = 0$ when q < 1. Hence $\phi_0 = 1(0)$ is the stable (unstable) state.

b.) analogy to the time-dependent Ginzburg-Landau equation

Let $f(\phi) = -\phi^2/2 + \phi^3/3$. Then the Fisher-Kolmogorov equation becomes the timedependent Ginzburg-Landau equation (problem 20) with $\Gamma = 1$ and the functional

$$\mathcal{F} = \int dx \left(\frac{1}{2}(\nabla\phi)^2 + f(\phi)\right). \tag{2}$$

 $\phi = 0$ is the (local) maximum of the Landau free energy which is unstable.

c.) traveling wave solution

$$\partial_{\xi}^{2}\Phi + V\partial_{\xi}\Phi + \Phi(1-\Phi) = 0, \qquad (3)$$

where $\xi = x - Vt$. Equation (3) can be interpreted as the damped motion of a particle with unit mass under the potential $U(\Phi) = \Phi^2/2 - \Phi^3/3$ which has minimum at $\Phi = 0$. When damping constant V is large enough, the particle cannot overshoot the point $\Phi = 0$, which is required because of the condition $0 \le \Phi \le 1$. Hence the motion of the particle close to ϕ_0 should behave exponentially $\sim e^{-\kappa t}$. From Eq. (3), we obtain

$$\kappa^2 - V\kappa + 1 = 0,\tag{4}$$

which has real solutions if $V \ge 2 = V_{\min}$.

d.) selection of the front speed

The linear equation around the unstable state $\phi = 0$ is

$$\partial_t \phi = \partial_x^2 \phi + \phi \qquad [\text{put } \phi = e^t u(x, t)] \to \partial_t u(x, t) = \partial_x^2 u(x, t). \tag{5}$$

To solve the partial differential equation, let $u(x,t) = \frac{1}{2\pi} \int dq e^{iqx} \tilde{u}(q,t)$ with $\tilde{u}(q,0) = 1$ which corresponds to the initial condition $u(x,0) = \delta(x)$. Hence

$$\partial_t \tilde{u}(q,t) = -q^2 \tilde{u}(q,t) \to \tilde{u}(q,t) = e^{-q^2 t} \Rightarrow u(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)}$$

From $\phi(x,t) = e^t u(x,t) = C$ (constant), one can get

$$x_C(t) = 2t \left(1 - t^{-1} \ln \left(C \sqrt{4\pi t} \right) \right)^{1/2} \Rightarrow V^* = \lim_{t \to \infty} \frac{x_C(t)}{t} = 2, \tag{6}$$

•

which is V_{\min} in c.).

Solution 22. Phase fluctuations in the XY-model

a.) Let $q = 2\pi n/L$ (n = 1, 2, ..., L) and $x = 2\pi r/L$. The expression for the phase difference correlation function derived in the lectures is¹

$$\begin{split} \langle (\varphi(r) - \varphi(0))^2 \rangle &= \frac{1}{V} \sum_{\vec{q} \neq 0} 2 \left(1 - \cos(\vec{q} \cdot \vec{r}) \right) \frac{k_B T}{g |\vec{q}|^2} \\ &= \frac{k_B T L}{2\pi^2 g} \sum_{n = -\infty}^{\infty} \frac{1 - \cos(nx)}{n^2} \\ &= \frac{k_B T L}{\pi^2 g} \left(\frac{\pi x}{2} - \frac{x^2}{4} \right) = \frac{k_B T}{g} r + O(1/L), \end{split}$$

where n = 0 is excluded in the sum over n.

b.) Using
$$\frac{1}{V} \sum_{\vec{q}} \mapsto \frac{1}{(2\pi)^2} \int d^2 q$$
, the summation becomes

$$\frac{k_B T}{2g\pi^2} \int q dq d\theta \frac{(1 - \cos(qr\cos\theta))}{q^2} = \frac{k_B T}{g\pi} \int_0^\Lambda dq \frac{1 - J_0(qr)}{q} = \frac{k_B T}{g\pi} \int_0^{r\Lambda} dx \frac{1 - J_0(x)}{x}.$$

Since

$$J_0(x) = \begin{cases} 1 - \frac{x^2}{4} + O(x^4) & \text{for } x \ll 1, \\ \sqrt{\frac{2}{\pi x}} \cos\left(x - \frac{\pi}{4}\right) & \text{for } x \gg 1, \end{cases}$$

the integral is dominated by $\int dx/x \sim \ln(r\Lambda)$.

Solution 23. Fluid interfaces under gravity

a.) free energy in the presence of the gravity

The gravitational energy at \vec{x} is $\int d\vec{x} dz \rho(z) gz$ with $\rho(z) = \rho_0(\rho_1)$ if $z < (>)h(\vec{x})$. Hence the energy at \vec{x} becomes

$$\int_{0}^{L} dz \rho(z) zg = \frac{1}{2} \Delta \rho g h^{2} + \text{ constant},$$
(7)

¹Note that in the problem set a factor 2 was missing in the first relation.

where $\Delta \rho = \rho_0 - \rho_1$. The free energy takes the form as in the problem sheet with $\alpha = \Delta \rho g$.

b.) the capillary length and the interfacial width

From the lecture,

$$C(r) \simeq \frac{2k_B T}{(2\pi)^2} \int_0^{\Lambda} d^2 q \frac{1 - \cos(qr)}{\gamma q^2 + \alpha} = \frac{2k_B T}{(2\pi)^2 \gamma} \int_0^{\xi_c \Lambda} d^2 q \frac{1 - \cos(qx)}{q^2 + 1},$$
(8)

where $\xi_c = \sqrt{\gamma/\alpha}$ and $x = r/\xi_c$. When $x \gg 1$, the main contribution comes from the momentum range $qx \gg 1$. Thus

$$C(r) \simeq \frac{k_B T}{2\pi\gamma} \int_{1/x}^{\xi_c \Lambda} dq \frac{2q}{q^2 + 1} = \frac{k_B T}{2\pi\gamma} \ln \frac{(\xi_c \Lambda)^2 + 1}{1 + x^{-2}} \xrightarrow{x \to \infty} \frac{k_B T}{2\pi\gamma} \ln((\xi_c \Lambda)^2 + 1) = W^2.$$
(9)

At room temperature, $\xi_c = \sqrt{\gamma/\alpha} = \sqrt{0.073/(10^3 \times 9.8)}$ m = 2.7mm and $W \sim 7.8 \times 10^{-10}$ m $\simeq 8$ Å, where $\Lambda \simeq 1$ Å⁻¹ is used.

c.) near criticality

Since $\gamma \sim t^{3/2}$ (problem 19) and $\alpha \propto \Delta \rho \sim t^{1/2}$ near criticality (t is the reduced temperature), $\xi_c \sim t^{1/2}$ and $W \sim 1/\sqrt{\gamma} \sim t^{-3/4}$. The bulk correlation length diverges as $\sim t^{-1/2}$ which is smaller than W. Actually, W and the bulk correlation length should scale equally, which just means that the mean field theory is wrong in three dimensions.