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Solutions in Advanced Statistical Physics

Solution 21. The Fisher-Kolmogorov equation

a.)

linear stability analysis
Ope = 9%e + (1 — 2¢0)e, = w(gq, do) = —¢* + (1 — 2¢0). (1)
For ¢9 = 1, w is negative for all ¢’s while w becomes positive for ¢y = 0 when ¢ < 1.

Hence ¢ = 1(0) is the stable (unstable) state.

analogy to the time-dependent Ginzburg-Landau equation

Let f(¢) = —¢?/2 + ¢3/3. Then the Fisher-Kolmogorov equation becomes the time-
dependent Ginzburg-Landau equation (problem 20) with I"' = 1 and the functional

Fe / dz (%(vw + f<<z>>> . (2)

¢ = 0 is the (local) maximum of the Landau free energy which is unstable.

traveling wave solution

RO+ VP +P(1—P) =0, (3)

where £ = — Vt. Equation (3) can be interpreted as the damped motion of a particle
with unit mass under the potential U(®) = ®2/2 — ®3/3 which has minimum at ® = 0.
When damping constant V is large enough, the particle cannot overshoot the point

® = 0, which is required because of the condition 0 < ® < 1. Hence the motion of the

—kKt

particle close to ¢g should behave exponentially ~ e~ "**. From Eq. (3), we obtain

K2 —Vr+1=0, (4)

which has real solutions if V' > 2 = Viuin.

selection of the front speed

The linear equation around the unstable state ¢ = 0 is

O = 020 + ¢ [put ¢ = e'u(z,t)] — du(x,t) = d2u(x,t). (5)



To solve the partial differential equation, let u(z,t) f dqe’®ii(q,t) with @(q,0) = 1

which corresponds to the initial condition u(x,0) = ( ). Hence

Orii(g. 1) = ~¢*lq.t) — (g, 1) = ¢ T S ua,t) = w%e o
From ¢(z,t) = e'u(z,t) = C (constant), one can get
1/2
zo(t) =2t (1 —t I (c\/m)) 2 v o Jim mCT(’f) =2, (6)

which is Vi in c.).

Solution 22. Phase fluctuations in the XY-model

a.)

Let ¢ =2mn/L (n=1,2,...,L) and x = 27r/L. The expression for the phase difference

correlation function derived in the lectures is!

kT
{(ep(r) = q%? —cos(q- 7)) g

kpTL i 1 — cos(nx)

= 2 2
271'gn:_OO n
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where n = 0 is excluded in the sum over n.

.1 1
Using VZ — e
q

A N rA _
kT ¢ dG( — cos(qrcos@)) _ kBT/ dql Jo(qr) _ k‘BT/ dazl J(](l‘)‘
297 7 g7 Jo g7 Jo x

d%q, the summation becomes

Since

22
1—Z+O(a?4) for r < 1,

Jo(w) = 2 s
”ECOS (az—z) for x> 1,

the integral is dominated by [ dz/z ~ In(rA).

Solution 23. Fluid interfaces under gravity

a.)

free energy in the presence of the gravity
The gravitational energy at Z is [ dZdzp(z)gz with p(z) = po(p1) if z < (>)h(Z). Hence

the energy at & becomes

L
1
/ dzp(z)zg = §Apgh2 + constant, (7)
0

!Note that in the problem set a factor 2 was missing in the first relation.



where Ap = pop — p1. The free energy takes the form as in the problem sheet with
a = Apg.

the capillary length and the interfacial width

From the lecture,

2kpT (N, 1-— 2T [&N , 1—
Clr) ~ B / 2 cos(qr)  2kp / 2 cos(qx)
0 0

(2m)? Y@+ (2m)%y ¢>+1

; (8)

where & = /v/a and x = r/§.. When x > 1, the main contribution comes from the
momentum range gz > 1. Thus
_kpT M 2q kT (EM)?+1 4ooo kBT

~ 2 = 1 = In((EAN)?+1) =W (9
21y J1/a qq2+1 27y . 14+22 — 27y n((&A)"+ 1) )

c(r)

At room temperature, £ = \/v/a = 1/0.073/(10% x 9.8)m = 2.7mm and W ~ 7.8 x
107 0m ~ 8A, where A ~ 1A7" is used.

near criticality

Since v ~ t3/2 (problem 19) and a o Ap ~ tY/2 near criticality (¢ is the reduced
temperature), & ~ t1/2 and W ~ 1/~ t=3/4. The bulk correlation length diverges
as ~ t~/2 which is smaller than W. Actually, W and the bulk correlation length should

scale equally, which just means that the mean field theory is wrong in three dimensions.



