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Solutions in Advanced Statistical Physics

Solution 24. Real space RG for percolation

The probability that a plaquette contains a spanning cluster is

p′ = 3p2(1− p) + p3 = Rb (p)

(three configurations of two filled + 1 empty site, one configuration with all three sites of the

plaquette filled). Fixed points are given by Rb (p
∗) = p∗ and we readily find p∗ = 0, 1, 1/2.

For the first point p∗ = 0, and Rb (p
∗ + ε) < Rb (p

∗), which corresponds to an attractive

fixed point. Analogously p∗ = 1 is also attractive. p∗ = 1
2 is repulsive, because

∂Rb (p) /∂p|p=1/2 =
3

2
> 0.

The correlation length exponent is defined by b1/ν = ∂Rb (p) /∂p|p=pc=1/2 = 3/2. Substi-

tuting b =
√
3 we obtain ν ≈ 1.355, which is a very good appoximation to the exact value

νexact = 4/3 = 1.3333. Note also that RG gives the exact critical point.

Solution 25. Stable laws and renormalization

a.) Generating function and stable distributions

Since the generating function of the convolution is
∫

eikybPΣ(by)dy =

∫

dxP (x)ei(k/b)x
∫

dybei(k/b)(by−x)P (by − x) = G(k/b)2, (1)

the stability condition becomes

G(k) = G(k/b)2. (2)

Since the generating functions of the Gaussian and the Cauchy distributions are

GG(k) = e−k
2/2, GC(k) = e−π|k|, (3)

respectively, the Gauss (Cauchy) distribution is shown to be stable if b =
√
2 (1) is

used. In general, the Lévy distribution with the generating function e−C|k|
µ

is stable,

if b = 21/µ is used.



b.) central limit theorem.

Let P (x) = PG(x)+εf(x) with the generating function G(k) = GG(k)+εF (k). Then the

generating function of the transformed distribution becomes [see Eq. (1)] GG(k/
√
2)2+

2εGG(k/
√
2)F (k/

√
2). The eigenvalue problem for the derivative of Rb at the stable

distribution becomes

lim
ε→0

R√2[PG + εf ]−R√2[PG]
ε

= 2GG(k/
√
2)F (k/

√
2) = λnF (k). (4)

Since GG

(

k/
√
2
)2

= GG(k), Eq. (4) can be rewritten as

H
(

k/
√
2
)

=
λn
2
H(k) (5)

with H(k) = F (k)/GG(k). Since H(k) is similar to a homogenous function, we ex-

pect H(k) to be a polynomial kn. Hence the eigenfunction takes the form F (k) =

C(ik)nGG(k) = C(ik)ne−k
2/2 with the eigenvalue λn = 21−(n/2). One can easily see

that the inverse Fourier transform of F (k) is

f(x) = C

(

− d

dx

)n

PG(x), (6)

where C is real. Since we are dealing with a probability, the normalization condition

requires that G(k = 0) = 1, in turn F (k = 0) = 0. Hence n ≤ 0 is meaningless

because of the normalization. Hence we have one relevant (n = 1) and one marginal

(n = 2) perturbation. One can easily check that f1(x) shifts the mean value in the

lowest order of ε (hence relevant) and f2(x) shifts the variance in the lowest order of ε

(hence marginal because the stability depends on the sign of C).

Solution 26. Power counting for the self-avoiding walk

a.) Power counting and upper critical dimension

The dimension of the conformation ~r(s) is determined from the Wiener measure, re-

quiring FE is dimensionless;

2 [~r]− [s] = 0,→ [~r] = −1

2
, (7)

where [. . .] stands for the dimension in the momentum scale (inverse of length). By the

same token, the dimension of the interaction u is determined;

[u] + 2[s]− d[~r] = 0→ [u] = 2− d/2. (8)

Since [u] becomes dimensionless at d = 4, the upper critical dimension of the SAW is

d> = 4.



b.) rescaling and ν

By rescaling, the Wiener measure becomes

(Wiener)→ b1−2ν(Wiener) (9)

and the interaction becomes

(interaction)→ b−2+dν(interaction), (10)

with u kept fixed. If both terms in the above scale equally, we find

1− 2ν = −2 + dν → ν =
3

2 + d
, (11)

which is just the prediction of Flory theory.

Solution 27. The Glauber-Ising chain

a.) transition rate

Due to the up-down symmetry, it is sufficient to consider the four local transitions

among eight processes:

↑↑↑→↑↓↑: 1− γ

2
, ↑↓↑→↑↑↑: 1 + γ

2
, ↑↓↓↔↑↑↓: 1

2
. (12)

Detailed balance requires that

e2K
1− γ

2
= e−2K

1 + γ

2
→ γ = tanh 2K, (13)

where K = βJ .

b.) equations for the spin-spin correlation functions

The master equation for the Glauber-Ising chain is

∂

∂t
P ({σ}; t) =

∑

i

wi(−σi)P ({σ}′i; t)−
[

∑

i

wi(σi)

]

P ({σ}; t), (14)

where {σ} ≡ {σ1, . . . , σL}, {σ}′i = {σ1, . . . ,−σi, . . . , σL}, and wi(σi) = Γ(σi → −σi). It
is convenient to introduce the state vector |Ψ; t〉 such that

|Ψ; t〉 =
∑

{σ}
P ({σ}; t)|{σ}〉, (15)

which, in turn, rewrites the master equation as

∂

∂t
|Ψ; t〉 =

∑

{σ}

{

∑

i

wi(−σi)P ({σ}′i; t)−
[

∑

i

wi(σi)

]

P ({σ}; t)
}

|{σ}〉

=
∑

{σ}

∑

i

wi(σi)P ({σ}; t)(σ̂xi − 1)|{σ}〉

= −
{

∑

i

(1− σ̂xi )wi(σ̂
z
i )

}

|Ψ; t〉 ≡ −Ĥ|Ψ; t〉,

(16)



where σ̂xi and σ̂zi are Pauli matrices which affect only the spin at site i. Introducing the

projection state, 〈·| = ∑

{σ}〈{σ}|, the average of observables can be written as

〈A({σ})〉 = 〈·|A({σ̂z})|Ψ; t〉. (17)

Using the identity 〈·|Ĥ = 0 which comes from the probability conservation the equation

of the average becomes

∂

∂t
〈A({σ})〉 = 〈·|[Ĥ, A({σ̂z})]|Ψ; t〉. (18)

Hence, if i 6= j,

dGij

dt
=
〈

[σ̂zi , σ̂
x
i ]σ̂

z
jwi(σ̂

z
i ) + [σ̂zj , σ̂

x
j ]σ̂

z
iwj(σ̂

z
j )
〉

= −
〈

σ̂zj

(

σ̂zi −
γ

2
(σ̂zi+1 + σ̂zi−1)

)

+ σ̂zi

(

σ̂zj −
γ

2
(σ̂zj+1 + σ̂zj−1)

)〉

= −2Gij +
γ

2
[Gi+1,j +Gi−1,j +Gi,j+1 +Gi,j−1] ,

(19)

where we are using 〈·|σ̂xi = 〈·|, 〈·|σ̂zi σ̂xi = −〈·|σ̂zi , and σ̂z2i = 1.

c.) stationarity

2Gr = γ(Gr+1 +Gr−1), (20)

with G0 = GL = 1. Let the solution of the equation γx2 − 2x + γx = 0 be α and β

(β > α).

Gr =
1

β − α
(βr(G1 − α)− αr(G1 − β)) , (21)

where G1 should be determined from the other boundary condition GL = 1. → G1 =

(β − α− αLβ + βLα)/(βL − αL)

Gr =
1

βL − αL
(βr(1− αL) + αr(βL − 1)) −−−−→

L→∞
αr = (tanhK)r (22)

Easy but non-rigorous way. Expecting Gr ∼ ηr for large r:

γη2 − 2η + γ = 0→ η± = γ−1(1± (1− γ2)1/2). (23)

Since η+ > 1, physical solution should be η− = tanhK.

d.) domain growth at zero temperature

At T = 0, γ = 1.

dGr

dt
= −2Gr +Gr+1 +Gr−1 →

∂

∂t
G(r, t) = ∇2G(r, t), (24)

with G(0, t) = 1. Putting G(r, t) = G(r/tn) into the above equation yields

−nξ
t
G′ = 1

t2n
G′′, (25)



where ξ = r/tn. Since G is a function of the scaling variable ξ only, n should be 1
2 .

Hence the equation becomes G ′′ = − ξ
2G′ with the constraint G(0) = 1 and G(∞) = 0.

Hence

G(ξ) = C1 + C̃2

∫ ξ

0
e−x

2/4dx = C1 + C2

∫ ξ/2

0
e−x

2

dx, (26)

where C1 and C2 are constants. From G(0) = 1, C1 = 1 and G(∞) give C2 = −2/
√
π.

Imposing the obvious symmetry under r → −r, we get G(r, t) = erfc(|r|/2
√
t), where

erfc is the complementary error function. One may be confused by the fact that the

solution has no initial condition dependence. The reason should be sought from the

continuum limit. Since the continuum limit takes the lattice spacing zero, all initial

conditions with finite correlation length on the discrete lattice are reduced to the one

given by the solution. For concreteness, consider the correlation function in solution

c.) (tanhK)ar/a with arbitrary K (a lattice spacing). It becomes zero when we take

a → 0 limit with ar fixed, except the special point r = 0. Hence the continuum limit

in a sense selects an initial condition.

When r/tn ¿ 1, G(ξ) ∼ 1− ξ/
√
π = 1− r/

√
πt which is consistent with Porod’s law.

e.) autocorrelation function

Since the solution of the diffusion equation

∂tP =
1

2
∇2P (27)

with the delta function initial condition δ(r − r′) at t = t′ is

P (r − r′, t− t′) =
1

√

2π(t− t′)
exp

[

−(r − r′)2

2(t− t′)

]

, (28)

the two-time correlation function becomes

G(2)(r, t, t′) =
∫

dr′
√

2π(t− t′)
exp

[

−(r − r′)2

2(t− t′)

]

erfc(|r′|/2
√
t′)

=
1√
π

∫ ∞

−∞
dx exp(−(x0 − x)2)erfc(|x|/B),

(29)

where x0 = r/
√

2(t− t′) and B =
√

2t′/(t− t′). Hence the autocorrelation function is

A(t, t′) =
2√
π

∫ ∞

0
dx exp(−x2)erfc(x/B) = 1− 4

π

∫ ∞

0
dx

∫ x/B

0
dye−x

2−y2

= 1− 4

π

∫ φ

0
dθ

∫ ∞

0
rdre−r

2

= 1− 2

π
φ,

(30)

where we change the coordinate system into the polar coordinate in 2 dimensions and

tanφ = 1/B. Hence,

A(t, t′) =
2

π

(π

2
− arctan(1/B)

)

=
2

π
arctanB =

2

π
arctan

√

2t′

t− t′
. (31)



Since arctan
√

a/b = arcsin
√

a/(a+ b), we get the answer

A(t, t′) =
2

π
arcsin

√

2t′

t+ t′
. (32)

One should note that the continuum limit is valid only when t À t′ and the above

expression is asymptotically true.

When tÀ t′, A(t, t′) '
√

8/π(t′/t)1/2, hence λ = 1 (arcsinx ∼ x).

Solution 28. Droplet dynamics in the Allen-Cahn equation

Since the Laplacian in d dimensions using polar coordinate is

∇2φ(r) = 1

rd−1
∂

∂r
rd−1

∂

∂r
φ(r) =

∂2φ(r)

∂r2
+
d− 1

r

∂φ(r)

∂r
, (33)

the Allen-Cahn equation becomes

∂φ

∂t
=
∂2φ

∂r2
+
d− 1

r

∂φ

∂r
− V ′(φ). (34)

Putting the ansatz into the above equation gives

0 = Φ′′ +

(

d− 1

r
+
dR

dt

)

Φ′ − V ′(Φ). (35)

Integrating the above equation after multiplying Φ′ gives

0 =
1

2

(

Φ′(∞)2 − Φ′(−∞)2
)

− V (φ0) + V (−φ0) +
∫

(

d− 1

r
+
dR

dt

)

(Φ′)2dx

' const

(

d− 1

R
+
dR

dt

)

,

(36)

where we use that Φ′(x) is almost a delta function and V (φ0) = V (−φ0). Hence the droplet

radius satisfies the equation
dR

dt
= −d− 1

R
. (37)

Solution 29. Zipf’s law for random texts The frequency of a given word with size ` is

x = q2sq
` → ` =

lnx− 2 ln qs
ln q

, (38)

and there are m` such words. So the number of words N(x) with frequency x for random

texts is

N(x) = m` = exp

(

lnm

ln q
ln

(

x

q2s

))

=

(

x

q2s

)lnm/ ln q

∼ x−α, (39)

with α = − lnm/ ln q. When m is very large and qs ¿ 1 (recall that q = (1− qs)/m),

α =
lnm

lnm− ln(1− qs)
≈ 1− qs

lnm
≈ 1. (40)


