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Solution 7: Equal probability of microstates and Bernoulli measure
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where all indices are different and k, `¿ N . The stationary particle current is

J = p〈ηi(1− ηi+1)〉 − q〈(1− ηi)ηi+1〉 = (p− q)〈ηi(1− ηi+1)〉,

because the order of indices does not matter. Hence the current is (k = ` = 1)

J = (p− q)ρ(1− ρ)

(

1− 1

L

)−1

≈ (p− q)ρ(1− ρ) +
(p− q)ρ(1− ρ)

L
.

Solution 8: Single file diffusion

From the diffusion equation, we get

∂φ

∂t
= D

∂2φ

∂x2
→ ∂φ̂

∂t
= −Dk2φ̂(t)→ φ̂(k, t− t′) = e−Dk2(t−t′)φ̂(k, t′).

Hence density-density correlation function is

〈φ̂(k, t)φ̂(k′, t′)〉 =
(

Θ(t− t′)e−Dk2(t−t′) +Θ(t′ − t)e−Dk′2(t′−t)
)

〈φ̂(k, 0)φ̂(k′, 0)〉,

where Θ(0) = 1
2 is assumed and the stationarity condition, that is, 〈φ̂(k, t)φ̂(k′, t)〉 =

〈φ̂(k, 0)φ̂(k′, 0)〉 for arbitrary t, has been used. The equal time correlation function can

be calculated as

〈φ̂(k, 0)φ̂(k′, 0)〉 =
∫

dx

∫

dyeikx+ik′y〈φ(x, 0)φ(y, 0)〉

=

∫

dx

∫

dyeikx+ik′yρ̄(1− ρ̄)δ(x− y) = Lρ̄(1− ρ̄)δ−k,k′ ,



which yields

〈φ̂(k, t)φ̂(k′, t′)〉 = Lρ̄(1− ρ̄)e−Dk2|t−t′|δ−k,k′ ≡ S(k, t− t′)δ−k,k′ . (1)

Note that we are working with discrete Fourier components, i.e. the k take discrete values

compatible with a finite system of size L with periodic boundary conditions.

• Method I.

Since

〈X0(t)
2〉 =

∫ t

0
ds

∫ t

0
dw〈j(0, s)j(0, w)〉/ρ̄2 =

∫ t

0
ds

∫ t

0
dw

∑

k,q

〈ĵ(k, s)ĵ(q, w)〉/(L2ρ̄2),

where ĵ(k, t) is the Fourier component of j(x, t), we have to find the current-current

correlation function as a first step. Since ∂tφ = −∂xj, ĵ(k, t) is related to φ̂(k, t) such

that ikĵ(k, t) = ∂tφ(k, t). Hence

〈ĵ(k, s)ĵ(q, w)〉 = − 1

k2

∂2

∂s∂w
〈φ̂(k, s)φ̂(q, w)〉 = Lρ̄(1− ρ̄)

k2
δk,−q

∂2

∂s2
e−Dk2|s−w|

= DLρ̄(1− ρ̄)
(

2δ(s− w)−Dk2e−Dk2|s−w|
)

δk,−q,

where d
dx
|x| = 2Θ(x)−1, (2Θ(x)−1)2 = 1 (except x = 1), ∂wg(|s−w|) = −∂sg(|s−w|),

and d
dτ
Θ(τ) = δ(τ) have been used. Hence
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2〉 = D(1− ρ̄)

Lρ̄
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k

∫
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∫
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=
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∑

k
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0
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1

2π

∫
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1− e−Dk2t

k2
= 2
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√
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π

where
∫

ds dw g(|s− w|) = 2
∫ t

0 ds
∫ s

0 dwg(s− w) and 1
L

∑

k = 1
2π

∫

dk were employed.

• Method II.

Let N(x, t) =
∫ t

0 dsj(x, s). Note that this differs somewhat from the (incorrect) defini-

tion (6) in the problem set. Then 〈X0(t)
2〉 = 〈(N(0, t))2〉/ρ̄2 and

∂N

∂x
=

∫ t

0
ds
∂j(x, s)

∂x
= −

∫ t

0
ds
∂φ(x, s)

∂s
= φ(x, 0)− φ(x, t),

where the continuity equation has been used. The Fourier components of N can be

written as ikN̂(k, t) = φ̂(k, t)− φ̂(k, 0). So,

〈X0(t)
2〉 = 1

L2

∑

k,q

〈N̂(k, t)N̂(q, t)〉

= − 1

L2

∑

k,q

1

kq
〈(φ̂(k, t)− φ̂(k, 0))(φ̂(q, t)− φ̂(q, 0))〉

=
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2π

∫
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ρ̄

√
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,



where we used Eq. (1) and the stationarity condition.

As ρ̄ → 0, the variance diverges but this has to be expected because in this limit the

tracer particle does not feel the other particles and the variance should be ∼ t which is

much larger than
√
t.

Solution 9: The zero range process

a.) The detailed balance condition means

P∗[n1, . . . , nl, nl+1, . . . , nL]γ(nl) = P∗[n1, . . . , nl − 1, nl+1 + 1, . . . , nL]γ(nl+1 + 1), (2)

which, combined with the product measure property, yields

γ(nl)f(nl)f(nl+1) = γ(nl+1+1)f(nl−1)f(nl+1+1)→ γ(nl)
f(nl)

f(nl − 1)
= γ(nl+1+1)

f(nl+1 + 1)

f(nl+1)
.

Since the term on the left (right) hand side is a function of only nl (nl+1), the above term

should be a constant, say α. Hence

f(n) = f(0)αn

n
∏

k=1

γ(k)−1 (3)

which corrects Eq.(7) of the problem set. The free parameters α and f(0) are fixed by

the normalization and the mean particle number per site [provided the corresponding series

converge, see part c.)].

b.) The master equation reads

∂

∂t
P[{n}; t] =

L
∑

k=1

(pγ(nk−1 + 1)Pk−1,k[{n}; t] + (1− p)γ(nk+1 + 1)Pk+1,k[{n}; t]− γ(nk)P[{n}; t]) , (4)

where {n} ≡ n1, . . . , nL and

Pi,j [{n}; t] ≡ P[{m}; t]|mi=ni+1,mj=nj−1,mk=nk(k 6=i,j).

We have to verify that upon inserting the product measure solution of part a.) the right

hand side of (4) vanishes. The product measure property implies that

P∗
i,j [{n}] = P∗[{n}]f(ni + 1)f(nj − 1)

f(ni)f(nj)
.

and hence, using the results of part a.),

γ(nk−1 + 1)P∗
k−1,k[{n}] = α

f(nk − 1)

f(nk)
P∗[{n}] = γ(nk)P

∗[{n}]

and similarly γ(nk+1 + 1)P∗
k+1,k[{n}] = γ(nk)P

∗[{n}]. Thus the product measure is the

stationary solution for any p.



c.) The convergence test says that if

f(n)

f(n+ 1)
=

α

γ(n)

becomes larger (smaller) than 1 with increasing n, the series
∑

n f(n) converges (diverges).

If the ratio converges to a finite number, then by adjusting the parameter α we can always

make sure that f(n)
f(n+1) → 1 without loss of generality. In this case, the Gauss test will

determine the convergence of the series. Let us assume that

f(n)

f(n+ 1)
= 1 +

b

n
+
B(n)

n2

where b is a constant and B(n) is bounded for large n. If b > 1 (b ≤ 1) then the series

converges (diverges).


