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We give the results of a numerical study of the motion of a point particle in a d- 
dimensional array of spherical scatterers (Sinai's billiard without horizon). We 
find a simple universal law for the Lyapounov exponent (as a function of d) and 
a stretched exponential decay for the velocity autocorrelation as a function of 
the number of collisions. The diffusion seems to be anomalous in this problem. 
Ergodicity is used to predict the shape of the probability distribution of long 
free paths. Physical interpretations or clues are proposed. 
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1. I N T R O D U C T I O N  

This pape r  conta ins  numer ica l  results  concern ing  the per iod ic  Loren tz  gas, 
as well as some phys ica l  in te rp re ta t ions  and  conjectures.  This system is a 
d -d imens iona l  a r r ay  of  fixed spher ical  scat terers  (of rad ius  R)  in which a 
classical po in t  par t ic le  travels  and  undergoes  specular  reflections. We 
choose  the par t ic le  veloci ty to be 1. We also choose  a cubical  lat t ice with a 
lat t ice spacing equal  to 2. The geomet ry  of this b i l l iard  (in two d imens ions )  
is shown in Fig. 1. The  range  of values cons idered  for R is 0 ~< R ~< ~ .  I t  is 
i m p o r t a n t  to not ice  tha t  for R < 1, this b i l l ia rd  is wi thout  hor izon,  i.e., the 
length of free pa ths  is unbounded .  W h e n  R > / 1  the spheres over lap  and 
when R . > - ( d - l )  1/2, the par t ic le  is t r apped  in a region b o u n d e d  by 2 a 
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Fig. 1. The geometry of the system studied here, and the definition of the notations used 
below. 

pieces of spheres, with an intricate geometry. Throughout  we will call # = 
I R - 1 I .  

The system is known to be ergodic in two dimensions, and seems 
experimentally to be ergodic in higher dimensions. Ergodicity means that 
there exists an invariant asymptotic measure de) over the phase space such 
that the mean value of any physical observable over a trajectory converges 
towards its ergodic mean value for almost all trajectories. For  example, in 
two dimensions, the invariant measure on the three-dimensional phase 
space of constant energy is de) = dx dy dO. The trace of this measure on the 
two-dimensional Poincar6 section (defined by the intersection of the flow 
with the circles) is dp = �89 q)[ dO (see Fig. 1). 

We shall assume that averages over computed trajectories are the 
same as over real trajectories, as was extensively studied in Ref. 1. This 
property is assumed here to hold also in higher dimensions. 

Despite its very simple definition, and its deterministic character, the 
periodic Lorentz gas is an extremely chaotic system where it is impossible 
to make any long range prediction concerning a single trajectory. In order 
to give an idea, let us say that if one calculates with a computer, using 
double precision (16 digits), two trajectories with initial conditions differing 
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only their last digit one would find that after a few (~-10) collisions with 
the spheres these trajectories are far apart. 

So, this is intrinsically a system that can only be studied under a 
statistical point of view. It shares this property with complicated systems 
(with many degrees of freedom) which are within the scope of statistical 
physics. Simple in its formulation, free from any ab initio disorder, does this 
model exhibit some universal (as function of d) behavior? This paper shows 
that it is actually the case (at least numerically) and the simplicity of the 
model allows us to hope that the laws stated here could be derived exactly. 
We studied four statistical observables, which are the simplest one could 
think to define here. Each one is associated with an important physical 
process which is of interest in much more general systems. These are as 
follows. 

(i) The collision process, associated with the pressure of the "gas" 
consisting of many independent particles. We measure it with the 
probability distribution of free path of length s: N(s), linked with a (the 
number of collisions with the scatterers per unit time, or the inverse of the 
mean free path) by the formula 

1 ( H )  
a - S sN(s) ds 

which only holds if the system is ergodic. 
The pressure is naturally connected to a by 

p = 2Np(cos ~o)a/NsS (1.2) 

where S is the total area of the boundary of a scatterer. Np denotes the 
number of moving particles and Ns the number of scatterers. 

The probability distribution of finding a particle on a free path of 
length s at any given time is M(s), related to N(s) through M(s)~sN(s). 

(ii) Loss of information on the position of the particle. It can be 
measured here by the Lyapounov exponent 2, which is associated with the 
divergence of two nearby trajectories. It has, for d = 2 ,  a precise infor- 
mation theory meaning via the Kolmogorov entropy. It is the minimal rate 
of information one has to gain from measurements to keep knowledge of 
the p~irticle's position within a given precision. 

(iii) The relaxation process, illustrated by the velocity 
autocorrelation function (VACF) decay which is associated with the 
statistical loss of memory on initial conditions. It has no known rigorous 
link with the Lyapounov exponent, and if such a link exists, it must be a 
very subtle one (cf. Section 4). 

822/41/1-2-t5 



228 Bouchaud and Le Doussal 

(iv) The self-generated diffusion process, which was shown to be 
Brownian in two dimensions with a diffusion coefficient D in the case of a 
billiard with finite horizon. (8) This result has to be slightly modified here. 

In each paragraph we focus on a specific observable. We first describe 
experimental results, then give our interpretation. 

2. T H E  RATE OF C O L L I S I O N  W I T H  T H E  S P H E R E S  

We used for all our calculations a VAX/VMS coupled to an array 
processor FPS-164, using double precision (16 digits). Each trajectory was 
calculated for 105 to 2 x 107 collisions, depending on the rate of con- 
vergence. 

2.1. Rate  of  Coll ision 

The asymptotic measure allows us to calculate a in any dimension, 
with the help of a kinetic theory of gases argument: 

S dp (unnormalized) 
(2.1) 

a = ~ doJ (unnormalized) 

The explicit formula is simple for R~< 1: a is the cross section of the 
hyperspheres divided by the total accessible volume (which can be seen as 
a normalization to one particle per unit volume): 

V ( d -  1 ) 27~d/2Ra 
with - - -  V(d) (2.2) 

a a -  2d - V(d) dF(d/2) 

We can obtain the pressure by inserting (2.1) into (1.2). We find 

1 
p =~-~ (2.3) 

where f2 is the total accessible volume per cell [2 d -  V(d) for R ~< 1 ]. We 
thus for recover the perfect gas law as it should be for a gas of independent 
particles. 

This system has been proven to be ergodic in two dimensions, and we 
checked numerically that formula (2.2) is very well obeyed. A convergence 
better than 1% is obtained alter roughly 10 6 collisions. Formula (2.2) still 
gives the observed cr in three dimensions, thus in agreement with the belief 
that the system remains ergodic in three dimensions. We only have 
indications about ergodicity in higher dimensions as will be further dis- 
cussed in Section 4.3. 
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2.2.  D i s t r i b u t i o n  o f  P a t h  L e n g t h .  

Calling s the length of a free path between two successives collisions, 
N(s) represents the probabili ty density of having a path of length s. It is 
normalized as 

= { N(s) 1 ds 
J 

In Ref. 2 we discuss the behavior of N(s) for small s when R is close to 1 (in 
two dimensions): in particular, we find that, for R =  1 N(s) diverges like 
s-1/2 for small s. 

We are interested here in the large-s behavior of N(s). It is clear that 
when R > ( d - 1 )  1/2, N ( s ) = 0  if S>Smax. It is possible to derive the 
asymptotic behavior of N(s) in two dimensions if R is close to 1. Let us call 
"windows" the directions along which the paths can be as long as one 
wants. If R < 1, the only windows are long the axis of the square lattice (cf. 
Fig. 2). In this case, using the asymptotic measure (assumed to be reached), 
we have for large s 

N(s) ds< (1 - R )  f cos (p d~p dO 

[o 1is( 
~ - ( 1 - R )  ds O' ~-1/, s / s  2 dO' 

0 2 1 
with 1 - c o s O -  s 

2 - -S  2 

1 - R  
- ds 

S 3 

Fig. 2. One of the windows along which a particle can escape. 
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We have checked numerically that N(s) behaves like S - 3  plus higher-order 
terms for R = 0.9. 

When R decreases, new windows appear, and the same argument can 
be applied for each window, replacing 1 - R  by the width of the window. 
The total asymptotic behavior of N(s) remains s 3 but only for s larger 
and larger as R decreases (one must have s > R  2). When l~s4~R -~ the 
impact does not have to be tangential (the small cos q~ factor disappears) 
and thus the law is expected to be rather s 2.s. This will be of importance 
in Section 3. 

A last remark can be made: suppose that in Fig. 2 the arc of circles are 
replaced by curves having locally a structure y =  x ~ along the window 
(n = 2 for the circles). For  a lattice of such scatterers the same argument 
would lead to the same decay in N(s) which is thus independent of the 
shape of the scatterers. 

3. T H E  L Y A P O U N O V  E X P O N E N T  

3.1. De f in i t ion  

This system falls into the category of dispersed billiards which are 
known to be K systems (Sinai ~ at least for two dimensions). It means that 
two nearby trajectories diverge exponentially with time and one can define 
a strictly positive Lyapounov exponent for the flow F r, by 

F l o g  IIDF (x) �9 ell )~,= limoo 1 r (3.1) 

where Ir'"l[ is the vector norm and DFr(x) is the differential of the flow F r 
at point x. 2t exists for almost every tangent vector e at point x and does 
not depend on x nor on e, as explained in Refs. 4 and 5. Numerically we 
use the technique described in Ref. 5. We average over a trajectory the 
increase in distance of two nearby trajectories between T and T +  z. z is a 
(small enough) numerical parameter on which 2, does not depend. 

Another Lyapounov exponent 2~, relative to the Poincar6 section, can 
be defined by a formula analogous to (3.1) replacing T by the number of 
collisions K. It is known that a "mean field" formula relates (in two dimen- 
sions 2t to 2k: from Abramov's formula and Pesin's theorem we have 
2, = a2k, supposing that the invariant measure is reached. We calculate 2 t 
and use this formula to obtain 2k. 

In d dimension (d>  2) the phase space is of dimension 2 d - 1 ,  and the 
differential of the flow DF r possesses d -  1 eigenvalues of modulus higher 
than 1. This is why the numerical convergence of (3.1) is not very good in 
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high dimension for small R. For  a finite waiting time the calculated 
Lyapounov exponent is less than the real one, because the chosen direction 
e not only "feels" the highest eigenvalue but all the eigenvalues of modulus 
> 1. But in two dimensions, the convergence is very good, for all R. 

3.2. Results in the Two-D imens iona l  Case 

The d =  2 2k curve is shown on Fig. 3. 2k as a function of R is very well 
fitted by the following form (with ~,/? constants): )~k = c~ log/3/R as predic- 
ted by Sinai. t6) Furthermore, Oono et  al. (7) showed that :~ = 2 for vanishing 
R. We found numerically c~ ~_/3 = 2 _ 0.2. 

Figure 4 shows the global behavior of 2t as a function of R. ) ,  is 
regularly growing, until R-~ 1, owing to the increase of the collision rate. 
The interesting point is that 2t undergoes a jump for R =  l (cf. Fig. 5, 
!llustrating the good convergence of 2,). As discussed in Ref. 2 and in Sec- 
tion 3.3 one probably has a/~1/2 law for R < 1 (at a scale g _~ 10-4). This is 
very difficult to confirm experimentally. Another interesting point is the 
quasiconstant value of 2~ between 0.99 and 0.999, before the steep decrease 
very close to 1. Seen with a poorer resolution, 2, looks like a cubic curve, of 
Van der Waals type, with a local maximum for R < 1 and a local minimum 
for R > 1 (cf. Fig. 4). 

k 

�9 �9 

0 I I " , ,  
0,1 1 lq --2 

Fig. 3. 

Log R 
0,05 

) -  

2 k vs. log R in two dimensions for 0.05 ~< R ~ 1, in a semilogarithmic plot. 
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2, vs. R for R -~ 1. The p la teau  for R < 1 was conf i rmed by a longer  run. The dashed  
line i l lustrates  a poss ible  nonana ly t i c  behavior .  



Numerical  Study of a D-Dimensional  Periodic Lorentz Gas 233 

3.3. H o w  to Isolate the Ver tex  Contr ibut ion  

In order to isolate the vertex contribution, responsible for all the 
singularities around R =  1 (Fig. 5), one could think of the following 
artifact. Imagine a particle trapped in a small rectangular box drawn 
around the vertex and compute the Lyapounov exponent for this system 
(cf. Fig. 6): the contribution of the vertex is then clearly enhanced. If the 
length w of the box is sufficiently small, the curve 2, as a function of R 
should reproduce the vertex contribution for # not too small compared to 
w. The curve 2t(p, w) for w = 0.05 is shown in Fig. 7. It clearly shows that 
2t(#, w) can be approximated by #1/2 only if # is not too small since 
2t(0, w) is not strictly zero. In order to get rid of this unwanted residue and 
exhibit a/~l/a law down to zero, one should make at the same time w--, 0 
and R ~ 1 . The trouble is that in this limit the system disappears entirelyt 
So the simplest idea is to start from a value of R very close to 1 and of w 
very close to zero, and parametrize (R, w) as 

R=R~= 1 + ( 7 -  1) R 0 

1 
W z  Wc~ - -  

1 + (c~-- 1) R 0 

R0 

( 
Fig. 6. The small box isolating the vertex. 
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Fig. 7. 2f(#,w) for w-0 .05  for ~<0.1.  

and let ct --. or. This family of little boxes can be deduced by a scaling of 
ratio: 

[1 + (c~- 1) Ro] 

from what we will call throughout the equivalent system represented in 
Fig. 8, which has a constant size. This implies that )v t for the boxes is equal 
to 2 t for the equivalent system multiplied by e. 

q 

/ /  \ 
/ \ 

Fig. 8. The "equivalent system" which was studied for d = 0.2. 
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We have thus studied the equivalent system when a--+ oo (which is a 
rectangle in this limit). Figure 9 shows that 2, ~- x /~  for the family of little 
boxes (R~, w~). We then expect 2~(#, 1) to have a/?/2  behavior at a small 
scale, as observed. The 1/2 exponent is an intermittency type of exponent, 
reminiscent of the fact that the Pomeau-Manneville scenario is physically 
realized here. (2) 

The a-1/2 behavior of ,L t in the equivalent system (Fig. 8) is easy to 
understand if one notes that the logarithm of the eigenvalue of the 
linearized mapping near the unstable periodic orbit goes to zero like 
(~Ro) ~/~ 

3.4. The d-Dimensional  Case 

The experimental results concern 2~ in dimension 2, 3, 4, 5. Figure 10 
shows 2k as a function of log R (for R between 0.3 and 1.2). Those curves 
are very well approximated by the following surprisingly simple form 
(except in the region of small R for the reason explained above): 

2k(R) = c~(d) logEfl(d)/R] (3.2) 

with 

fi(d) = 2 4- 0.2 for all d 
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Fig. 10. 2~vs. log R i n d = 3 , 4 ,  5. 

and 

c~(2)-~ 2 

~(3) -~ 2.8 

c~(4) -~ 3.5 

c~(5) -~ 4.35 

We notice the following: 

(i) fl(d) seems to be independent  of  the d imension as il lustrated by 
the c o m m o n  intersections at 2~ = 0 of  the curves p ro longa ted  up to R = 2. 2 
is the lattice spacing, which is the only d- independent  length scale. 

(ii) c~(d) seems to be well fitted by the linear form 

= (3d+  2)/4 (3.3) 

it is interesting to compare  this result on 2k, which is the largest 
L y a p o u n o v  exponent ,  with a recent conjecture of O o n o  etal.  (v) on the 
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Kolmogorov entropy of any periodic d-dimensional array of scatterers of 
vanishing size. Assuming Pesin formula, the Kolmogorov entropy h is 
equal to the sum of the positive Lyapounov exponents (up to a volume fac- 
tor). Their conjecture is that 

h -~ - d  log R for small R (3.4) 

Our result tends to prove that for our lattice, the logarithmic form of 2~ is 
true for the whole range of R. If (3.4) is valid, then formulae (3.2) and (3.3) 
lead to the two following suggestions: 

(i) Every positive Lyapounov exponent has a logarithmic depen- 
dence on R. 

(ii) Using the form of c~(d), the sum of the ( d - 2 )  positive 
Lyapounov exponents (but the largest) is proportional to (d -2 ) /4 .  So one 
is tempted to conjecture that every nonmaximal Lyapounov exponent is 
equal to - 1 / 4  log R/2. This is perhaps an interesting statistical restoration 
of the ( d -  2) symmetry of the problem at each collision point. 

Our results on N(s) allow us to discuss further the argument of 
Oono eta/. (7) (3.4) is exact in two dimensions if {log s>/log(s> ~ 1 as R 
goes to zero. They checked numerically that l o g < s > - ( l o g s )  goes to 
0.44_+0.01 as R--*0. In order to understand their result, we can 
approximate N(s) by 0 if s ~< a 

s ~ for a<<.s<<.R 1 

s 3 for s>>.R 1 

The evaluation of ( s~>/(s )  ~ for e small gives 

A = l o g < s > -  <logs> 

1 - 7  1 

=1~ 1 - 7  
for R --* 0 and any a (3.5) 

If we insert in this formula the geometrically expected 7=2.5 (cf. Sec- 
tion 2), we find A =0.43. Since (3.5) varies rapidly with 7, this is a good 
check for 7 being exactly equal to 2.5. Figure 3 of Ref. 7 shows the growth 
of A when R goes to 0, which corresponds to the passage from 7 = 3 to 
~=2.5. 

Formula (3.5) shows that (3.4) is no longer true if N(s) goes to zero 
more slowly than s - <  
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4. THE VELOCITY A U T O C O R R E L A T I O N  F U N C T I O N S  

4.1. The d = 2  V A C F  w i th  Respect to the Number  of Collisions 

4.1 .1 .  R < 1. We have computed the average C(n) over a given tra- 
jectory (starting on a sphere) of v(k) v(k+n), where v(k) denotes the 
velocity after the kth collision. We found that the result does not depend 
on the chosen trajectory nor on the precision used. In the billiard, 
correlations decay very quickly, thus making numerical experiments dif- 
ficult. However, by increasing the statistics to 2 x 1 0  7 collisions we obtained 
a well-defined curve up to n = 8. In fact, an exact bound on C(n) due to 
Sinai (s) for a billiard with bounded horizon (which is the case for R > 1) 
and for sufficiently large n gives 

[C(n)l<<.exp[-n "/] with 0 < ~ < 1  

This indicates that the system could be a C system for R > 1, that is, a 
system for which all correlations decay exponentially. For a billiard 
without horizon, it has been conjectured (Bunimovitch (16)) that the decay 
is algebraic, as n 3. Nevertheless, we found, for R <  1, as illustrated in 
Fig. 11, 

C ( n ) = ( - 1 ) " e x p ( - t c n  ~ ( l < n < 9 )  (4.1) 

12 

O,Sm 

0.2 
0 

Lo 9 ILogl C(n)l[ 
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, /  
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/ 
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,?g/ 

~ / / + /  
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,r 
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, /  
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2 

Fig. 11. C(n) for d = 2  for 2• 10 7 collisions for R=0.5.  



Numer ica l  S t u d y  o f  a D - D i m e n s i o n a l  Per iodic  Lorentz  Gas 239 

with 7 = 0.86 _ 0.06 (apparently independent of the radius R) and 

log ~c = -0.27 for R = 0.5 

log ~c = --0.2 for R = 0.05 

The C(1) point does not follow this law. This will be discussed later. Let us 
emphasize that we do not claim that (4.1) is the actual asymptotic behavior 
of C(n). Perhaps there is a crossover region between the stretched exponen- 
tial decay and an algebraic decay. But as we will discuss in the following 
section, this crossover could happen very late. Furthermore, as discussed in 
Section 4.4, the stretched exponential regime could be as important in the 
understanding of the system as the truly asymptotic regime. 

4.1.2.  Evidence for  the  S t r e t c h e d  Exponent ia l  Law.  It is 
interesting to obtain such a law for C(n) in such a simple system. In order 
to have a decisive test of the existence of this type of law in a billiard, we 
studied numerically C(n) in the equivalent system defined in Section 3. We 
used (and of course this is very important) periodic boundary conditions 
which make the horizon unbounded. The interesting point of this system is 
that when R goes to infinity, C(n) decreases very slowly: this allowed us to 
obtain reliable curves up to n = 1000. A power law is clearly ruled out (at 
least in this range) by Fig. 12, and Fig. 13 shows that C(n) is equal to 

exp[ - ~c(R) n ~ ] 

' ko 9 IC(n)l 
0 

-1 

LogEn/2] 
-2 I [ 

1 6 

Fig. 12. C(n) for the "equivalent system." This clearly rules out an algebraic decay over the 
time of observation. Note that the slope is always greater than - 3. 
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0 

-l 

-2 

-3 

 Log ILog C(n)l 

Log [n/2] 

I I [ I I ~, 
1 2 3 4 7 

Fig. 13. The log-log curve for C(n) in the equivalent system allowing to measure x and 7. 
Note that C(1) is not on the straight line. 

with 7 = 0.71 _+ 0.05 independently of R, and ~c(R) going to zero as R ~ oe 
as R z with z of order 2 (for example, l o g i c ( 6 ) =  -2 .07 ;  

log tc(12) = -4 .28) .  

4 .1 .3 .  C r i t i c a l  B e h a v i o r  f o r  R = 1. There is no r igorous result 
concerning the R = 1 case. We computed  C(n) for R = 1. Our  result is com- 
patible with a law c ( -  1)"/n for n < 50 with c = 0.9 +_ 0.1. This agrees with a 
result obtained by Mach ta  (9) for a tr iangular lattice having, for R = 1, three 
vertices instead of four as in our  case: According to Machta ' s  interpretat ion 
of the 1In decay, his c should differ f rom our 's  by a factor 3/4, which is 
approximatively true as his c is ~-0.6. Mach ta  (9) has given a strong 
theoretical support  for this algebraic law, by calculating the contr ibut ion to 
C(n) of a series of successive collisions on two adjacent arcs of circles in a 
"vertex," where the collisions are weakly decorrelating. The transit ion from 
an exponential  law to a power  law decay is governed by the divergence of 
the correlat ion length { (in terms of the number  of collisions), owing to the 
increasing impor tance  of those trajectories. Note  that  ~-1 goes to zero as 
~c l/y, so { may  go to oo as #-=/~ with z defined above. This behavior  is 
reminiscent of a phase transition, as for )~ and, as discussed in Ref. 2, for a. 

Let us make a last remark about  this algebraic law: for R = 1, we have 
a strictly positive L y a p o u n o v  exponent.  Thus trajectories split exponen- 
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tially, while the "relaxation process" associated to the VACF is slow. This 
shows that a link between the two quantities must be very subtle, if any. 

4.1.4.  R > 1. In this case, Casati et al.~~ found C(n) ~- 
( -  1)n e x p [ - ~ n  ~] with 7,~0.42 and K= 1.4. 

It is interesting to note that 7 changes by a factor - 1 / 2  when R 
crosses 1. 

In fact a correlation function different from C(n) was computed in 
Ref. 10 but this should be irrelevant for 7. 

4.2. The  d =  2 V A C F  w i t h  Respect  to  T i m e  

We computed C ( d t ) = l ( v ( t ) v ( t + d t ) ) l  and found the following 
form: For  dt<~r -1 (time during which the particle undergoes on average 
less than one collision) we have 

C(t) ~- exp( - at) 

and for 20~>dt~>cr ~ C(t)~_exp(-bt~ Note the 0.7 instead of 0.86 for 
C(n). For At---50, Friedman etal. (15) found that the decay is algebraic 
(~  1/t). This can now be easily understood from the s 2 decay of M(s), as 
C(t) behaves for large t like 

c(t) ~- M(s) ds 

if one admits that C(t) is governed by the fraction of particles which have 
not collided at time t. 

This indicates a crossover between a stretched exponential and an 
algebraic decay for C(t). 

We note the change from a stretched exponential decay for C(t) for 
R > 1 (as for C(n) since the free path is bounded) to an algebraic decay for 
R < I .  

4.3. C(n) in d D i m e n s i o n s  

We studied C(n) for d as high as 7. 
For  d =  3, the striking fact is that C(n) is very small (<0.08)  for all n, 

and that C(1)'is strictly zero. It is difficult to obtain any curve at all. 
For  d = 4 ,  we notice that ( i )C(n)  is always positive and its order of 

magnitude is the same as in two dimensions and (ii)C(n) is again of the 
form e x p ( - K n  ~) with 7=0.83 _+0.05 and log K =0.3. 

For  d = 5, 6, 7, we note that, as d increases (cf. Fig. 14) (i) correlations 
are positive and for a given n, bigger as d increases; and (ii) C(n) follows 
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again the same law with ? getting closer to 1 and ~ going to 0: 
log ~c(5)= -0 .05 ,  log ~ ( 6 ) =  -0 .2 ,  log ~ ( 7 ) =  - 0 . 4  (within 20%). 

It is easy to calculate C(1), using the asymptotic measure, for any d: 
let (0 be the deviation due to a collision. The law of distribution of (0 is 

d -  1 sin ~ cos &0 c# ~ [0, 7c] dP(q~) = - T  

thus leading to 

d - 3  
<cos ~o7 -- = C(1) 

d + l  

This law is very well confirmed experimentally. This is a check of the 
ergodicity of the system in higher dimensions. 

This calculation allows us to understand better the observed behavior 
of C(n) in d dimensions: 

(i) When d increases, (cos  cp) - ,  1, which means that the collisions 
are more and more tangential. This is due to the fact that the surface of a 
high-dimensional sphere is relatively very important, in the sense that the 
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ratio surface by volume diverges as d--* oc. Tangential collisions lead to a 
slower decay (~c goes to zero). 

(ii) In two dimensions, the collisions are in great majority frontal, 
while in d = 4, they are mostly tangential. For d = 3, there is an exact com- 
pensation between the two effects, leading to C(1)= 0 and C(n) negligible. 
Thus, it is in three dimensions that elastic collisions are the most efficient in 
the redistribution of velocities. This could be important for the study of the 
approach of equilibrium in d dimension, with d =  3 singled out. In high 
dimensions, two successive collisions usually diffuse the particle in 
orthogonal directions. The process then becomes Markovian. We conjec- 
ture that 7 ~ 1 as d ~ ~ .  

Note that C(n) should be calculable for high d, using the fact that 
deviation angles are small. One can then convolute distribution laws for the 
square of the deviation angles. 

4.4. Discussion of the Stretched Exponential Behavior. 

Stretched exponential decay has also been obtained, for example in the 
William Watts relaxation model, (~1~ in the problem of a random walk with 
traps, (~2) in the percolation theory, (13) and also recently in spin glasses. (17t 
This kind of law is beginning to be extensively discussed. (18) In particular 
this type of non-Markovian law can be viewed as a sum of independent 
Markovian relaxation process with relaxation times distributed according 
to a stable law (Levy or Gauss). It can also be a superposition of purely 
oscillatory processes as it has been shown by Mazo and Van Beijeren (19) in 
the case of the one-dimensional Lorentz gas. Here, successive deviations 
are strongly correlated by the geometry of the problem. This is associated 
to the following facts. 

(i) ? depends on the geometry of the system: o/takes three different 
values for three different geometries (R > 1, R < 1, equivalent system). But 
7 seems to be constant, for continuous deformation of a given geometry (7 
does not depend on R). 

(ii) A 7 different from 1 should be related with the symmetries or 
periodicities of the system, or more precisely, with the periodic orbits. In 
the billiard, periodic trajectories are dense in the phase space, and the num- 
ber of periodic trajectories with period L grows exponentially with L. This 
superposition of periodic motions with a weight proportional to the time 
spent near each periodic orbit, could perhaps lead to the expected law for 
C(n). The role of periodic orbits is clearly exhibited by the jump of 7 for 
R = 1, when the most important period 2 orbit disappears. 

822/41/I-2-16 
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(iii) C(1) is not on the curve, because obviously there is no 
correlation effects for this quantity. The same remark holds for C(At) when 

- -1  At<~ 

5. THE DIFFUSION COEFFICIENT 

5.1. Definition, Convergence, Numerical Results 

We have computed a diffusion coefficient D, defined as 

D(T) = (1/2d) ( r 2 (T ) /T )  

We do not know whether the limit D(oo) exists in our case. As will be dis- 
cussed there are reasons to believe that it does not exist. 

Its existence has only been established in the case of bounded horizon 
by Bunimovich and Sinai. (8) For  example, D(oo) exists in the case of the 
triangular lattice for a certain range of parameter (cf. Ref. 14). 

When a single trajectory is observed, we find (for R = 0 . 5 )  the 
following: 

(i) Above T - 3 0 0 ,  the curve seems to settle roughly to a linear 
behavior. However, a T log T behavior is not excluded. 

(ii) When different trajectories are compared one obtains very dif- 
ferent rZ(T)/T. 

(iii) Nevertheless, when rZ(T)/T is averaged over the phase space this 
results in a well-defined curve D(T, R) as a function of R. We obtained one 
curve for R very near to 1 (cf. Fig. 15) by averaging over 500 trajectories 
up to T =  10 000. The result is that 

D(T)___# 1+" with t /= 0.3_+ 0.06 (5.1) 

5.2. Discussion 

From a theoretical point of view, the behavior of D as R goes to 1 is 
not an easy problem. 

There are several arguments which could imply that D(oo) is not 
defined: 

(i) The VACF Behavior. The coefficient D(T) is related to the 
velocity autocorrelation function by the formula: 

D=lim 1 S  fo: ~-, ~, 2 ~  o d~: (v(0) v(t) } clt. 
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If the tail 1/t of C(t) holds true (is) this would imply that D(T)  behaves like 
Do log T for large T. Nevertheless, owing to the weak divergence of D(T), it 
is not irrelevant to study D(T)  as a function of R for large fixed T. 

(ii) A Random Walk Model. At first sight, one could think that for 
R'-~ 1 the particle stays trapped a long time and the direction of escape 
decorrelates from the entry. With this hypothesis, one can approximate the 
motion by a random walk between traps on a lattice with a mean waiting 
time T,, at every site. Experimentally we find (as expected by the co 
measure) T w ~_ t~-  1 

If we consider the triangular symmetry case, the particle can only 
jump from one site to one of its nearest neighbor and we find D(oo) to be 
-~const x 1/Tw~-#: this was confirmed experimentally by Machta and 
Zwanzig.(15) 

The nonlinear # behavior observed here for D(T)  with fixed T may be 
due to the following complications: 

(a) It is not true in our case that each jump occurs between two 
nearest traps. More precisely, we saw that the probability of a jump of 
length s is given by N(s)~-g/s  3. Therefore <s 2 > diverges logarithmically, 
which could imply that D(oo) is not defined. Experimentally though, the 
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divergence is so weak that one still obtains, for (S2)(R), a well-defined 
curve, showing the importance of finite observation time. [We expect that 
D(T) ~-log T.] Notice also that s -3 is marginal between Gaussian statistics 
and Levy statistics. In order to explain the value of t/, a simple, but poor, 
scaling argument is that each jump should have a range #1/3 due to the 
form of N(s). The diffusion coefficient of such a walk is 

D ~- 1/Tw x range --/~1.33 thus giving ~/= 1/3 

(b) It is not true that the direction of escape is decorrelated from the 
one of the entry. We find that the "forward" correlation is -~ 30 % even for 
/~ -- 0.001. 

(iii) Experimental Indication. If the law (5.1) is to be valid for very 
small ~t ( <  0.005) our D will become smaller than in the triangular case, 
where D is linear in #. This is surprising since this would mean that for 
very small #, the diffusion is slower for an unbounded horizon 
[-N(s)-~s 3] than for a bounded horizon (s ~< Smax). So, either this is true 
and this proves that in this problem D(oe) is meaningless (which would be 
an indirect proof of its nonexistence) or the law is in fact linear for very 
small # but we could not check this experimentally. 

Let us finally remark that it would be interesting to define an order 
parameter for this system by lim D(T)/log T (if it exists) and to study its 
behavior as a function of #. The diffusion coefficient is a usual order 
parameter for instance in percolating systems. 

6. C O N C L U S I O N  A N D  S U M M A R Y  

We summarize the results of this study: we have checked the 
ergodicity of the system by studying the rate of collisions and the velocity 
autocorrelation. We derived the asymptotic behavior of the distribution of 
path lengths. It decreases as s -3 (as s -25 for s <  1/R). Those tails are 
important ( i)for the behavior of the Kolmogorov entropy for vanishing 
size of scatterers: it clarifies a result obtained by Oono et al.(7); (ii) for the 
long time behavior of the velocity autocorrelation: it confirms the 
experimental law obtained in Ref. 15; (iii)for the nonexistence of a dif- 
fusion coefficient. 

We obtained remarkably simple logarithmic behaviors for the 
Lyapounov exponent as a function of R and d. We also obtained a 
stretched exponential decay of the velocity autocorrelation in a billiard 
without horizon, with a possible crossover. This law should give subtle 
information on the phase space of the problem. We conjecture that it 
becomes a pure exponential decay for d ~ or. 
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Some points would deserve a better numerically study. These are 
(i) the behavior  of D ( T ) / l o g  T as a function of g; ( i i ) the behavior  of 
l i m ( r Z ( n ) ) / n ,  where n is the number  of collisions. This limit should exist 
because C(n)  is in any case integrable; ( i i i )a  direct determinat ion of  z by 
studying C(n)  for R near 1; ( iv)direct  calculation of 2 . . . . . .  in high dimen- 
sion. 

We find simple laws whose derivation are challenging. M a n y  of the 
tools and ideas of statistical mechanics  and critical phenomena  seem to be 
relevant for this problem. Prel iminary physical interpretat ions or clues are 
proposed,  but much remains to be clarified. We discuss further and in more  
precise terms in Ref. 2 the very interesting two-dimensional  R = 1 region 
where we find a critical behavior  with exponents which should be related to 
each other. 
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