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Predicting future duration from present age: a critical assessment

CARLTON M. CAVES

Using a temporal version of the Copernican principle, Gott has proposed a statistical

predictor of future longevity based on present age ( Gott III, J. R ., 1993, Nature, 363, 315)

and applied the predictor to a variety of examples, including the longevity of the human

species. Although Gott’s proposal contains a grain of truth, it does not have the universal

predictive power that he attributes to it .

1. Introduction

Returning from a ® ve-week residence at the Isaac Newton

Institute this past summer, I found on my desk the 12 July

issue of The New Y orker, containing a provocative story by

the well known science writer Timothy Ferris [1]. The story,

entitled `How to Predict Everything’, describes how

J. Richard Gott, a Princeton astrophysicist, makes uni-

versal probabilistic predictions for a phenomenon’s future

duration based on knowing how long the phenomenon has

lasted. The justi® cation for Gott’ s rule is said to be a

temporal version of the Copernican principle: when you

observe a phenomenon in progress, your observation does

not occur at a special time.

Here is Gott’s account, as related to Ferris, of how he

conceived his rule while contemplating the Berlin Wall.

Standing at the Wall in 1969, I made the following argument,

using the Copernican principle. I said, Well, there’s nothing

special about the timing of my visit . I ’m just travellingÐ you

know, Europe on ® ve dollars a dayÐ and I’m observing the

Wall because it happens to be here. My visit is random in time.

So if I divide the Wall’ s total history, from the beginnin g to the

end, into four quarters, and I’m located randomly somewhere

in there, there’ s a ® fty-per-cen t chance that I’m in the middle

two quartersÐ that means, not in the ® rst quarter and not in the

fourth quarter.

Let’ s suppose that I’m at the beginning of that middle ® fty

per cent . In that case, one quarter of the Wall’s ultimate history

has passed and there are three quarters left in the future. In that

case, the future’ s three times as long as the past. On the other

hand, if I’m at the other end, then three quarters have happened

already, and there’ s one quarter left in the future. In that case,

the future is one-third as long as the past.
.. .
(The Wall was) eight years (old in 1969). So I said to a friend,

`There’s a ® fty-per-cen t chance that the Wall’s future duration

will be between (two and) two-thirds of a year and twenty-four

years.’ Twenty years later , in 1989, the Wall came down, within

those two limits that I had predicted. I thought, Well, you

know, maybe I should write this up.

Ferris goes on to recount how Gott applies his method to

the longevity of the human species.

The question that Gott has been asking lately is how long the

human species is going to last . Since scientist s generally make

predictions at the ninety- ® ve-per-cen t con ® dence level, Gott

begins with the assumption that you and I, having no reason to

think we’ve been born in a special time, are probably living

during the middle ninety- ® ve per cent of the ultimate duration

of our species. In other words, we’re probably living neither

during the ® rst two and a half per cent nor during the last two

and a half per cent of all the time that human beings will have

existed.

`Homo sapiens has been around for two hundred thousand

years,’ Gott said .. . . `That’s how long our past is. Two and half

per cent is equal to one-fortieth , so the future is probably at

least one-thirty-nin th as long as the past but not more than

thirty-nine times the past. If we divide two hundred thousand

years by thirty-nine, we get about ® fty-one hundred years. If we

multiply it by thirty-nine, we get 7.8 million years. So if our

location in human history is not special, there’ s a ninety- ® ve-

per-cen t chance we’ re in the middle ninety- ® ve per cent of it.

Therefore the human future is probably going to last longer

than ® fty-one hundred years but less than 7.8 million years.

Now, those numbers are interesting, because they give us a

total longevity that’s comparable to that of other species. ’
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These glib predictions astonished me, not because Gott

concludes from them that homo sapiens is unlikely to last

longer than other speciesÐ that is a legitimate subject for

inquiry and debateÐ but because they are put forward as a

universal rule, applicable no matter what other information

one has about the phenomenon in question. In making

statistical predictions of future longevity, Gott dismisses

the entire process of assembling and organizing informa-

tion about a phenomenon, evaluating that information

critically, and if possible, formulating laws that describe the

phenomenon. Put succinctly, he rejects as irrelevant the

process of rational, scienti® c inquiry, replacing it with a

single, universal statistical rule. That has to be wrong.

I decided it was important to ® nd the ¯ aws in Gott’ s

reasoning: ¯ awed thinking is an inevitable, even necessary

part of the scienti® c enterprise, but when it makes its way

into The New Y orker, the time has come to ® nd the ¯ aws

and draw attention to them. I began by requesting from the

UNM Library a copy of the Nature article [2] where Gott

proposes his rule and applies it to the above examples and

others. A citation search turned up two other pieces in

which Gott adds to the content of his Nature article: a

Letter to Nature [3] responding to letters criticizing the

original article and a chapter in the proceedings of an

Astronomical Society of the Paci® c (ASP) Symposium [4].

The present paper analyses what I found in Gott’ s papers

and reports my conclusions.

2. Gott’s delta-t argument

Gott justi® es his probabilistic predictions by making what

he calls the delta-t argument [2]. Suppose there is a

phenomenon that has a beginning, or birth, at time t0

and an end, or death, at time t0+ T , T being the duration of

the phenomenon. You observe the event at a time t between

the beginning and the end, corresponding to a present age,

tp= t Ð t0, and a future duration, t f= T Ð tp . If there is

nothing special about the observation timeÐ this is the

content of the temporal Copernican principleÐ Gott

reasons that tp= t Ð t0 is a random variable uniformly

distributed between 0 and T . This means that tp lies

between aT and bT , 0< a< b < 1, with probability b Ð a º f;

in symbols, we write

P(aT < tp < bT ) 5 b 2 a 5 f . (1)

Gott’ s next step is to infer from equation (1) that the

duration T lies between the corresponding bounds, tp/b and

tp/a, with the same probability f. Translated to future

duration, this says that tf lies between (b Ð 1
Ð 1)tp and

(a Ð 1
Ð 1)tp with probability f, i.e.

G

 
1 2 b

b
tp < tf <

1 2 a

a
tp

!

5 b 2 a 5 f . (2)

All of Gott’ s predictions ¯ ow from this probability rule. I

use the letter G to distinguish probabilities based on this

rule.

Gott phrases his predictions in terms of particular

f ´ 100% con® dence levels, which he obtains by letting a

and b be equidistant from 0 and 1, i.e. a= 1 Ð b. The

resulting choices, a= ‰(1 Ð f) and b= ‰(1+ f), lead to

Gott’ s con® dence-level prediction:

1 2 f

1 1 f
tp < tf <

1 1 f

1 2 f
tp

(f 3 100% confidence level) .
(3)

For example, in his encounter with the then (tp= )8-year-

old Berlin Wall, Gott used f= 1/2, with a= 1/4 and b= 3/4,

which led him to predict with 50% con® dence that the total

duration of the Wall would lie between 4tp/3= 102
3

yr and

4tp= 32 yr or, equivalently, that the future duration would

lie between tp/3= 22
3 yr and 3tp= 24 yr. In most of his work,

Gott uses a 95% con® dence level, corresponding to f= 0.95.

Another form of Gott’s rule arises from letting b= 1 and

a= (1+ Y ) Ð 1. Inserting these choices into equation (2), one

® nds that tf< Y tp with probability Y /(1+ Y ); equivalently,

the probability that the future duration is not less than Y tp

is (1+ Y ) Ð 1, i.e.

G(tf ³ Ytp) 5
1

1 1 Y
. (4)

In his Nature article, Gott derives equation (4) indepen-

dently of the delta-t argument by assuming that the

phenomenon of interest is an exponential decay (see Gott’ s

equation (6) and preceding discussion). There being no hint

in the delta-t argument that Gott restricts his method to

exponential decays, this derivation must be intended as an

example of his method. I defer discussion of this

derivation, since its status can be appreciated only after

exposing and correcting the ¯ aws in Gott ’s reasoning.

The delta-t argument implies that Gott’s rule provides a

universal method for predicting the future duration of any

phenomenon, the only assumption being that the observa-

tion time is not special. Moreover, it is clear from the

variety of phenomena to which Gott applies his ruleÐ

durations of the Berlin Wall, Stonehenge, and the Soviet

Union, the publication lifetime of Nature, longevity of the

human species, and in his ASP contribution and in his

conversations with Ferris, running times of plays in New

YorkÐ that he places no restrictions on the applicability of

his rule.

It is not hard to ® nd an error in the delta-t argument: the

step from equation ( 1) to Gott’s rule ( 2) has no justi® cation

in probabilit y theory. This error has been pointed out by

Buch in a letter to Nature criticizing Gott’ s method [5]. The

total duration T (or the future duration tf) is unknown and

thus must be treated as a random variable described by a

C. M . Caves144
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prior probability distribution. This prior distribution

expresses whatever information one possesses that can be

used to make probabilistic statements about the phenom-

enon’s duration. After collecting the data that the

phenomenon’s present age is tp , the only procedure

authorized by probability theory is to update the prior

distribution to a new, posterior distribution for T (or tf),

which re¯ ects both the prior information and the present

age. The formal procedure for this updating is called

Bayes’s theorem [6].

The error just identi® ed is su� cient to invalidate the

delta-t argument. To correct it requires an analysis that

uses Bayes’s theorem to update probabilities. Indeed, Gott

has endorsed [3,4] a Bayesian analysis suggested by Buch

[5]; this Bayesian analysis, said to be based on the temporal

Copernican principle, leads to Gott ’s rule, provided one

uses a particular prior distribution, dT/T , called the Je� reys

prior [7]. The reader should be aware, however, that the

Bayesian analysis suggested by Buch and endorsed by Gott

is also ¯ awed. In considering the Buch±Gott Bayesian

analysis below, we will uncover this ¯ aw, thus revealing a

second error in the delta-t argument, just as serious as the

® rst, but more insidious because it is more subtle:

equation ( 1) is an incorrect mathematical formulation of

the temporal Copernican principle. The pay-o� for identify-

ing this second ¯ aw is that it clari® es the meaning and

status of the temporal Copernican principle. In developing

a proper Bayesian analysis based on the temporal

Copernican principle, we will discover that Gott’ s rule is

a universal consequence of the Copernican principle, in the

situation where one knows the phenomenon to be in progress,

but does not know its present age. Not knowing the present

age, one cannot make Gott’ s predictions of future duration.

Before turning to the Bayesian analysis, however, I

introduce a few examples that show that Gott’ s rule cannot

be a universal predictor and also serve to put some ¯ esh on

the dry bones of the subsequent Bayesian analysis.

3. Examples of using Gott’s rule

I advise my students to test the solution to a homework

problem by considering special cases where the solution is

already known. This common-sense technique, a good rule

in scienti® c thinking and in everyday life, provides

compelling evidence that Gott’ s predictions cannot have

the universal validity that he attributes to them.

Exponential decay. Consider an atom that is excited to a

metastable energy level at some unknown time and then

decays exponentially to the ground state with a decay

constant s Ð 1= (20 min) Ð 1. You come along at time t

and are told that the atom is in the metastable level,

having been excited a time tp= 15 min ago. According to

Gott, you can predict with 95% con® dence that the

decay will occur between tf= tp/39= 23.1 s and

tf= 39tp= 9.75 h into the future; more telling is that

equation (4) predicts that tf > 4tp= 60.0 min with

probability 1/5. These predictions contradict the de® n-

ing property of an exponential decay: being informed

that the atom is still in the excited state at time t simply

resets the clock so that your expectations for its future

decay are the same as though it had been initially

excited at time t. Speci® cally, you predict that it will

survive a further time tf without decaying with

probability exp ( Ð tf/ s ), corresponding to 95% con® -

dence of decay between tf= 0 and tf= s ln 20=

3.00 s = 59.9 min. Although the numerical discrepancies

between Gott’ s predictions and the predictions of an

exponential decay are important, they are only a

symptom of the real problem: Gott’ s rule, by including

present age in the prediction of future duration, is

inconsistent with the very notion of an exponential

decay.

Buch [5] has pointed out that Gott’ s rule is inconsistent

with the properties of an exponential decay. In his reply to

Buch [3] and in his ASP contribution [4], Gott admits that his

method does not apply to an exponential decay whose decay

constant is known. Instead, he says that it applies to an

exponential decay whose decay constant is unknown and

distributed according to the Je� reys prior d s / s ; this leads to

the Je� reys prior dT/T for total duration T and is not an

exponential decay at all. Gott [3] also reasserts his

exponential-decay derivation of equation (4), to be discussed

below. All this leaves one thoroughly confusedÐ does Gott

regard his rule as universal or not?Ð but his subsequent

conversations with Ferris [1] make clear that he does not

acknowledge any restrictions on the use of his rule.

Longevity of an individual. Suppose you are going to a

meeting of your book club, to be held at a member’s

house that you’ve never been to before. You ® nd the

right street, but having forgotten the street address, you

choose between two houses where there is evident

activity. Knocking at one, you are told that the activity

within is a birthday party, not a book-club meeting.

Your friendly enquiry about the age of the celebrant

elicits the reply that she is celebrating her (tp= ) 50th

birthday. According to Gott, you can predict with 95%

con® dence that the woman will survive between tp /

39= 1.28 yr and 39tp= 1950 yr into the future. Since the

wide range encompasses reasonable expectations re-

garding the woman’s survival, it might not seem so bad,

until one realizes that equation (4) predicts that with

probability 1/2 the woman will survive beyond 100

years old and with probability 1/3 beyond 150. Few of

us would want to bet on the woman’s survival using

Gott’ s rule.

Predicting future duration from present age 145
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One might object at this point that Gott probably did

not intend his rule to apply to an individual’s longevity,

but in his ASP contribution [4], Gott applies the rule to

himself: `At the time my (Nature ) paper was published

on May 27, 1993, I was 46.3 yr old, so the 95% delta-t

argument predicted that my future longevity would be at

least 1.2 yr but less than 1806 yr. I have survived past the

lower limit already and so if I do not make it past the

upper limit, then that prediction will indeed prove correct

for me!’

Deterministic phenomena. The best testing ground for

ideas comes from extreme cases, and here the most

extreme case is a deterministic phenomenon. Putting the

example in a dramatic context, suppose you are

captured by terrorists, who con® ne you to a small

room. You are told that at some time in the next 24 h, a

timer will be set and that after it has ticked for 30 min,

poison gas will ® ll the room, killing you. You are then

drugged and wake up to ® nd the timer ticking and

reading 20 min since being set. According to Gott, you

can predict with 95% con® dence that the time to release

of the gas lies between tf= 20 min/39= 30.8 s and

tf= 39 ´ 20 min= 13.0 h; even worse, equation (4) pre-

dicts that with probability 2/3 the time to release is 10

min or more. These reassuring predictions provide scant

comfort, since you know you have 10 min to live.

These examples demonstrate that Gott’ s rule cannot be a

universal method for predicting future durations. If the rule

has any validity, it must involve other information than the

present age of a phenomenon. As E. T. Jaynes taught us [8],

when probabilistic predictions violate one’s intuition, the

proper response is neither to accept the nonintuitive

predictions without question nor to dismiss them out of

hand, but rather to identify the information underlying the

prediction. You will either ® nd the information inapplic-

able to the situation at hand, thereby con® rming your

intuition and allowing you to discard the predictions, or

you will sharpen your intuition.

The objective of this paper is to identify the prior

information that underlies Gott’ s rule. The tool is Bayesian

analysis. We will discover that the temporal Copernican

principle contains a grain of truth, but that grain of truth

does not include Gott’ s predictions of future duration.

4. A ¯ awed, but instructive Bayesian analysis

Return to the general situation introduced above, that of a

phenomenon with a birth time t0 and a duration T . You

observe the phenomenon at time t. It is often useful to replace

one or both quantities, t0 and T , by the present age, tp= t Ð t0,

and the future duration, tf= T Ð tp . In developing the

Bayesian analysis, I ® rst formulate and analyse a ¯ awed

approach, advanced by Buch [5] and endorsed by Gott [3],

which is modelled on Gott’ s delta-t argument. For this

purpose, it is most convenient to use tp and T as the primary

variables. The reason for going through this ¯ awed analysis is

that it turns up the second error in Gott’s delta-t argument.

Your prior information about the phenomenon is

expressed in a prior probability p(tp , T ) dtp dT , the joint

probability that the phenomenon has lasted a time between

tp and tp+ dtp at the time of observation and that the

phenomenon will last a total time between T and T+ dT .

The joint probability density can be written as p(tp ,

T )= p(tp |T ) w(T ), where p(tp |T ) is the conditional prob-

ability density for the present age, given a total duration T ,

and w(T ) is your prior probability density for the total

duration. Throughout I use upper-case letters for prob-

abilities and lower-case letters for probability densities.

Before going further, it is useful to introduce two

quantities related to w(T ): k (T ) is the death rateÐ i.e. k (T )

dT is the probability that the phenomenon, having lasted a

time T , ends in the next dTÐ and Q( T ) is the survival

probabilityÐ the probability that the phenomenon lasts at

least a time T . These quantities are related by

w(T ) 5 2
dQ

dT
5 Q(T )̧ (T ) (5)

or, equivalently, by

Q(T ) 5
Z ¥

T

dT ¢ w(T ¢ ) 5 exp 2
Z T

0
dT ¢ ¸(T ¢ ) . (6)

An exponential decay is characterized by a constant death

rate, k (T )= k 0, in which case Q(T )= exp ( Ð k 0T ) and

w(T )= k 0 exp ( Ð k 0T ).

Gott’ s formulation of the temporal Copernican principle

is the following: if there is nothing special about the

observation time, the present age is a random variable

uniformly distributed between 0 and T , i.e.

p(tp|T )dtp 5 dtp /T , 0 £ tp £ T . (7)

This is the probability-density version of equation (1). We

now use Bayes’s theorem,

P(X |Y)P(Y) 5 P(X , Y) 5 P(Y|X )P(X ) , (8)

to ® nd your posterior probability density for the total

duration, given the present age:

p(T |tp) 5
p(tp|T )w(T )

p(tp)
5

0 , T < tp ,
w(T )/T p(tp) , T ³ tp .

(9)

The unconditional probability density p(tp) for the present

age, which is a normalization constant in this expression, is

given by

p(tp) 5

Z ¥

tp

dT
w(T )

T
. (10)
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One can easily verify that Gott’ s rule, embodied in

equations (2)±(4), is equivalent to a posterior density

p(T |tp) 5
0 , T < tp ,
tp /T 2 , T ³ tp .

(11)

To get this posterior from the present analysis, one must

assume the (unnormalizable) Je� reys prior,

w(T ) 5
1
T

. (12)

Buch [5] concludes that Gott’ s rule is unreasonable because

it corresponds to an unnormalizable prior density. Gott [3]

replies (correctly, I think) that there is nothing wrong with

an unnormalizable prior, since the posterior density for T

can be normalized. He defends the Je� reys prior as being

the appropriate `vague Bayesian prior’ to use in a situation

where one initially knows nothing about the magnitude of

the duration [3,4].

Jaynes [9] has delineated the conditions for using the

Je� reys prior, showing that it should be used when one’s

prior information is unchanged by a rescaling of the total

duration, T ¢ = a T ( a > 0). If one’s prior information is

unchanged by the rescaling, then the density for T ¢ ,
w¢ (T ¢ )= w(T ¢ ) dT /dT ¢ = w(T )/ a , should have the same

functional form as the original density, i.e. w¢ (T ¢ )= w(T ¢ )
This gives= w( a T )= w(T )/ a , which implies that w(T ) ~ 1/

T . This might seem to be progress in identifying the

information that underlies Gott’ s ruleÐ use it when one has

no prior information about time scales associated with the

phenomenonÐ but it turns out not to be, because the

present Bayesian analysis is wrong. The reason for

presenting it is not to consider its consequences, but to

identify where it goes wrong.

5. A straightforward Bayesian analysis

That something is wrong is made apparent by a di� erent

analysis of the same situation, this time a straightforward

Bayesian analysis that does not invoke the Copernican

principle. Your prior information about the total duration

is expressed in the prior density w(T ). You observe the

phenomenon still to be in progress at a time tp after its

beginning. The conditional probability for this observation,

given a total duration T , is 0 if tp > T and 1 if tp £ T . Thus

Bayes’s theorem implies, with O denoting the observation,

p(T |O) 5
P(O|T )w(T )

P(O)
5

0 , T < tp ,
w(T )/Q(tp) , T ³ tp .

(13)

Here the normalization constant is the survival probability,

i.e. P(O) 5 Q(tp).
The posterior density (13) is so eminently reasonable that

one could have written it down without using the formal

apparatus of Bayes’s theorem. It says that the e� ect of

discovering the present age is to rule out durations shorter

than the present age; your posterior expectations for

durations longer than the present age are the same as your

prior expectations, with appropriate renormalization.

Notice that this inference updates sensibly: subsequent

observations that ® nd the phenomenon still in progress

simply exclude wider interval of durations. Yet putting this

simple inference in the context of the Copernican principle

apparently yields a di� erent posterior density (9) for the

total duration. How can that be? There is nothing wrong

with the Bayesian inference in either analysis, so the culprit

must be Gott’ s formulation of the temporal Copernican

principle. Thus we arrive at the second error in the delta-T

argument: the uniform density ( 7) for tpÐ and, by ex tension,

equation ( 1) Ð is not the correct mathematical formulation of

the temporal Copernican principle.

Where the uniform density goes wrong is in assuming

that your observation occurs while the phenomenon is in

progress. If your observation does not occur at a special

time, then it is very likely that it occurs before the

phenomenon begins or after it has ended. Including these

other possibilities leads to a proper Bayesian formulation

of the temporal Copernican principle, which is consistent

with the inference expressed in equation (13).

6. A proper Bayesian analysis of the temporal Copernican

principle

In formulating a proper Bayesian analysis, it is convenient

to choose the birth time t0 and the total duration T as the

primary variables. Your prior knowledge about these two

quantities is incorporated in two probability densities:

(i) c (t0) gives the probability c (t0)dt0 that the phenomenon

begins between times t0 and t0 1 dt0; (ii) p(T |t0) gives the

probability p(T |t0)dT that the phenomenon lasts a time

between T and T 1 dT , given that it began at time t0. The

corresponding joint probability density is p(t0, T )
5 p(T |t0)c (t0).

The temporal Copernican principleÐ that your observa-

tion does not take place at a special timeÐ is a time-

translation symmetry that restricts the form of the prior

densities [9]. To say that your observation time is not

special is to say that your prior information is unchanged if

the entire phenomenon is displaced in time while your

observation time remains ® xed. To be consistent with this

translation symmetry, your prior probability density should

be unchanged by such a time translation; i.e. p(t0, T ) should

be independent of the birth time t0. Thus the temporal

Copernican principle can be captured precisely in the

following two statements.

(1) The phenomenon is equally likely to begin at any

time. This means that c (t0) is a constant. In order

to work with normalizable probabilities, I replace

the exact symmetry with the approximate one that
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c (t0) has a constant value, 1/D , at all times within

a very long time interval. The duration D of this

very long time interval exceeds all other times

relevant to the problem, particularly typical dura-

tions.

(2) Probabilities for total duration are independent

of birth time. This means that the conditional

probability density p(T |t0) does not depend on

t0 and can be written as p(T |t0) 5 w(T ), where

w(T ) is the probability density introduced

above.

Should you be dissatis® ed with these restrictions on the

prior probabilities, it means that you do not accept the

temporal Copernican principle as applying to your prior

information. D issatisfaction should not be surprising, for

one would not expect the Copernican principle to apply to

all situations. The three examples introduced earlier

illustrate considerations that arise in using the temporal

Copernican principle. In all three examples, it is easy to

accept that ignorance of the birth time is described by the

time-translation symmetry of the temporal Copernican

principle: the atom can be excited at any time during an

interval much longer than the decay time; for the woman at

the birthday party, the situation could be phrased in terms

of an individual whose birth could occur at any time over a

period much longer than a typical human lifetime; the timer

can be set at any time within a 24 h period, a period

somewhat longer than the 30 min that the timer ticks.

Moreover, in the cases of the atom and the poison gas,

duration probabilities are independent of the birth time. In

contrast, in the case of the longevity of an individual, the

prior conditional probability for the individual’ s lifetime

would depend on the time of birth. Your prior expectation

for the longevity of an individual born, say in Britain,

would depend on whether the individual was born in the

second half of the 20th Century, at the beginning of the

19th Century, or 10 000 years ago, at the end of the last Ice

Age.

At time t you make your observation. In Gott’s

formulation the observation yields the present age, but we

now understand that getting the present age presupposes

that your observation ® nds the phenomenon in progress.

The ® rst result of the observation is simply to determine

whether the phenomenon has not yet begun, is already

over, or is in progress. Only the last of these possibilities,

denoted by I for ìn progress’ , is of interest to us. The

conditional probability to ® nd the phenomenon in pro-

gress, given a birth time t0 and a duration T , is

P(I |t0, T ) 5
1 , t0 £ t £ t0 1 T ,
0 , otherwise .

(14)

The unconditional probability to ® nd the phenomenon in

progress is given by

P(I ) 5
Z ¥

2 ¥
dt0

Z ¥

0
dT P(I |t0, T )c (t0)w(T )

5

Z t

2 ¥
dt0 c (t0)

Z ¥

t 2 t0

dT w(T )
|‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚}
5 Q(t 2 t0)

5
Z ¥

0
dt ¢ c (t 2 t ¢ )Q(t ¢ ).

(15)

The assumption that c (t0) is constant for all times of

interest means that c (t 2 t ¢ ) 5 1/D for all times t ¢ such that

the survival probability Q(t ¢ ) is signi® cantly di� erent from

zero. This allows us to put P(I ) in the form

P(I ) 5 T /D , (16)

where

T 5
Z ¥

0
dT Tw(T ) 5

Z ¥

0
dT Q(T ) (17)

is the mean total duration with respect to the prior density

w(T ). The present analysis assumes that T is ® nite, which

requires, for large durations T , that Q(T ) go to zero faster

than 1/T or, equivalently, that w(T ) go to zero faster than

1/T 2. For an exponential decay, T
2 1

5 ¸0 is the decay

constant. Notice that the probability to ® nd the phenom-

enon in progress is very small.

Bayes’s theorem gives the posterior probability density

for t0 and T , given that the phenomenon is occurring:

p(t0, T |I ) 5
P(I |t0, T )c (t0)w(T )

P(I )

5
c (t0)w(T )/P(I ) , t0 £ t £ t0 1 T ,

0 , t0 > t or t0 1 T < t .

(18)

If t 2 t0 is large enough in this expression that c (t0) does

not have its constant value, then T ³ t 2 t0 is so large that

w(T ) is negligible. Thus we can again replace c (t0) by the

constant value 1/D , leaving

p(t0, T |I) 5
w(T )/T , t0 £ t £ t0 1 T ,
0 , t0 > t or t0 1 T < t .

(19)

It is instructive to consider equation (21) from a variety

of perspectives. A ® rst question asks how the probability

density for total duration changes on learning that the

phenomenon is occurring:

p(T |I ) 5

Z ¥

2 ¥
dt0 p(t0, T |I) 5

Tw(T )
T

. (20)

Notice that p(T |I ) is biased toward longer durations than

the prior density w(T ). This is because the phenomenon is

very unlikely to be in progress at a random time selected

from the long time interval D , so ® nding it in progress
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prejudices you to think that it has a longer duration than

your original expectations.

A useful, equivalent form for equation (21) comes from

changing variables to present age and future duration. The

Jacobian of the transformation from (t0, T ) to (tp, tf) is 2 1,

which implies that dt0 dT 5 dtp dtf . Hence, the probability

density for present age and future duration, given that the

phenomenon is occurring, is

p(tp, tf |I) 5 p(t0, T |I ) 5
w(tp 1 tf)/T , tp ³ 0 and tf ³ 0 ,

0 , otherwise .

(21)
Knowing the phenomenon is in progress is equivalent to

saying that both the present age and future duration are non-

negative, so wecan regard that condition as implicit and omit

it from subsequent expressions. The content of equation (21)

is the following: if you know the phenomenon is in progress,

but do not know its present age, you treat uniformly the split

of total duration into past and future; more precisely, you

assign the same probability, governed by w(T ), to all ways of

splitting T into past and future. That is the temporal

Copernican principle. Indeed, equation ( 21) is the mathema-

tical embodiment of the temporal Copernican principle for

phenomena known to be in progress.

Equation (21) has three immediate consequences that

highlight the connection between the Copernican principle

and Gott’ s rule. We proceed by noting that once the

phenomenon is known to be in progress, the total duration

is the sum of the present age and the future duration, i.e.

p(T |tp, tf , I ) 5 d (T 2 tp 2 tf). Another application of

Bayes’s theorem then gives

p(tp, tf |T, I) 5
p(T |tp, tf, I )p(tp, tf |I )

p(T |I )
5

1
T

d (T 2 tp 2 tf) .

(22)

This is a conditional version of equation (21), with the same

content.

An obvious consequence is that if you know the

phenomenon is in progress and also know its total

duration, then you conclude that the present age is

uniformly distributed between 0 and T :

p(tp|T, I ) 5
Z ¥

0
dtf p(tp, tf |T, I) 5

1/T , tp £ T ,
0 , tp > T .

(23)

This is the precise statement of what Gott is trying to

capture in his initial assumption (1) about the present age.

The starting point (7) of the ¯ awed Bayesian analysis also

asserts that tp is uniformly distributed between 0 and T , but

it is di� erent from equation (23) in a subtle, but crucial

way: because p(tp|T, I) is conditioned on knowing the

phenomenon is occurring, further statistical inference uses

the conditional density p(T |I ) 5 Tw(T )/T , instead of the

prior density w(T ); we ® nd below (see equation (28)) that

this is how the present Bayesian analysis comes into

agreement with the straightforward inference of the

preceding section.

A second obvious, but important consequence of

equation (21) is that

P

 
1 2 b

b
tp < tf <

1 2 a

a
tp T, I

!

5

Z
T

0
dtp

Z (a 2 1 2 1)tp

(b2 12 1)tp

dtf p(tp, tf |T, I)

5
Z bT

aT

dtp

T
5 b 2 a .

(24)

Since the condition on future duration in the probability on

the left is equivalent to aT < tp < bT , this is just the

statement that in dividing the total duration into past and

future, possibilities satisfying the condition are a fraction

b 2 a of all the possibilities. Furthermore, since the

conditional probability (24) is independent of T , the same

result holds no matter what the prior density for T :

P

 
1 2 b

b
tp < tf <

1 2 a

a
tp I

!

5
Z ¥

0
dT P

 
1 2 b

b
tp < tf <

1 2 a

a
tp T, I

!

p(T |I ) 5 b 2 a .

(25)

Setting b= 1 and a= (1+ Y ) Ð 1 in this result yields the third

consequence of equation (21):

P(tf ³ Ytp|I ) 5
1

1 1 Y
. (26)

Equations (25) and (26) are precise statements of Gott’ s

rule in forms (2) and (4). Indeed, they look just like Gott’ s

rule, with the crucial di� erence that they are conditioned on

knowing the phenomenon is in progress, without knowing

its present age.

We are now in the curious position of a� rming that for a

phenomenon known to be in progress, but whose present age

is unknown, the temporal Copernican principle leads to

universal statistical predictions, which are described by Gott’s

rule. Indeed, all the manipulations in Gott’ s delta-t

argument are valid in this situation. The down side for

Gott is that this conclusion does not authorize his

predictions: in these circumstances, Gott’s rule has no power

to predict future durations from present ages, for the simple

reason that the present age is unknown.

The results of the present Bayesian analysis make perfect

sense in the three examples introduced above. Oddly enough,

the deterministic example is the simplest: if you ® nd the timer

ticking, but there is nothing to indicate how long it has been
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ticking, it is reasonable to assign the same probability to all

ways of dividing the 30 min interval into past and future.

The case of the women’s longevity is a bit more

complicated. If you encounter an individual, but are given

no clue as to the individual’ s age, a ® rst cut might treat the

past±future split uniformly. For a person born in Britain, a

more careful analysis would give greater weight to the future

than to the past, because of the increase in life expectancy in

this century. I have already indicated that the case of an

individual’s longevity does not ® t into the temporal

Copernican principle for just this reason. It should be

emphasized that the problem is not the use of Bayesian

analysis: the increase in life expectancy could be incorporated

into a more complicated Bayesian analysis, which would

automatically produce a bias toward the future.

The case of the atom is particularly interesting because of

Gott’ s exponential-decay derivation of equation (4). If you

® nd the atom in the excited state, but you are not told when

it was excited, it is reasonable to assign the same probability

to all ways of splitting a particular duration T into past and

future and to weight the result by an exponential

exp (2 ¸0T ) 5 exp [2 ¸0(tp 1 tf)], which expresses the prob-

ability for duration T . The ® nal result, properly normal-

ized, is the probability density (21) specialized to an

exponential decay:

p(tp, tf |I) 5 2̧
0 exp [2 0̧(tp 1 tf)] . (27)

This allows us to understand Gott’s exponential-decay

derivation of equation (4) (see Gott’ s equation (6)): he starts

with equation (27) (see Gott ’s equations (3) and (4)), from

which he immediately derives equation (26), all without

realizing that equation (27) applies to an exponential decay

whose present age is unknown. Having gone through a

proper Bayesian analysis, we now understand that

equation (26) does not depend at all on assuming an

exponential decay, but rather is a universal consequence of

the temporal Copernican principle, valid no matter what the

prior density w(T ), provided the present age is unknown.

The next task is to ® nd out what happens if you do discover

the present age. When you determine the present age of the

phenomenon, your Bayesian posterior for the total duration

is given by

p(T |tp, I ) 5
p(tp|T, I)p(T |I )

p(tp|I)
5

0 , T < tp ,
w(T )/Q(tp) , T ³ tp ,

(28)

where

p(tp|I ) 5

Z ¥

0
dT p(tp|T, I )p(T |I) 5 Q(tp)/T . (29)

This posterior density is identical to the one that emerged

from the straightforward Bayesian analysis that wholly

ignored the Copernican principle. This is as it should be,

because in the language of this section, the straightforward

Bayesian inference corresponds to ® rst learning the birth time

to and then discovering that the phenomenon has survived at

time tp , a situation that is equivalent to ® rst learning that the

phenomenon is in progress and then discovering its present

age. Once you are informed of the present age or,

equivalently, of the birth time, you are at a special time, the

time tp since the phenomenon began. The temporal

Copernican principle becomes irrelevant. It just gets in the

way of the obvious inference expressed in equation (13).

At this point it is pro® table to re-read Gott’ s account of

his 1969 encounter with the Berlin Wall. If Gott had not

known when the Wall was built, the logic of the ® rst two

paragraphs of his account would be impeccable. Under

those circumstances, it would be reasonable to assign

probability 1/2 to the encounter’s occurring during the

middle two quarters of the Wall’ s total history. Since he did

know that the Wall was built in 1961, however, his

encounter did occur at a special time, the time eight years

after the Wall’ s construction. The predictions made in the

third paragraph of his account do not follow from the

argument in the ® rst two paragraphs. Indeed, his posterior

expectations for the Wall’s duration should have been a

renormalized version of his prior expectations, whatever

those were, with durations up to eight years excluded.

We can now give a succinct account of how Gott’s delta-t

argument goes awry: the ® rst two steps are wrong. The step

from equation (1) to Gott’ s rule (2) is a non-Bayesian

inference having no justi® cation in probability theory; just

as important, equation (1) is itself an incorrect expression

of the temporal Copernican principle, because it assumes

that an observation at a random time will ® nd the very

unlikely result that the phenomenon is in progress. In

repairing these errors, we discovered that Gott ’s rule for

relating future duration to present age is indeed a universal

consequence of the temporal Copernican principle, but

only in a situationÐ not knowing the present ageÐ which

leaves the rule shorn of predictive power. Gott’s predictions

require knowing how long a phenomenon has lasted, but

once you obtain this information, the temporal Copernican

principle no longer has any impact, because you are at a

special time within the lifetime of the phenomenon.

7. Gott’s rule as a predictor

All of Gott’ s predictionsÐ from the future duration of the

Berlin Wall to the longevity of the human speciesÐ are now

detached from their original mooring in the temporal

Copernican principle and left to ¯ oat free of justi® cation.

Yet a ¯ awed analysis might lead to reasonable predictions.

There might be some justi® cation for Gott’ s predictions

other than the Copernican principle. Both the straightfor-

ward Bayesian analysis and the analysis based on the

Copernican principle culminate in the same inference

(equations (13) and (28)): once you know the present age,
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your expectations about total duration are the same as your

prior expectations, except that durations shorter than the

present age are excluded. Thus all questions about the

applicability of Gott’ s predictions reduce to determining

what prior density underlies his predictions.

As noted above, Gott’ s rule follows from a posterior

density

p(T |O) 5
0 , T < tp ,
tp /T 2 , T ³ tp .

(30)

Within the correct Bayesian analysis, this posterior comes

from an unnormalizable prior density

wg(T ) 5
1

T 2 . (31)

This prior density, distinguished by a subscript g,

corresponds to a survival probability Qg(T )= 1/T and to

a death rate k g(T )= 1/T . One way to characterize wg(T ) is

that the characteristic time associated with the death rate,

k g
Ð 1(T ), is always the same as the age T .

The prior density wg(T ) is di� erent from the Je� reys

prior that Gott [3,4] identi® es with his predictions, the

reason being that Gott uses the ¯ awed Bayesian analysis

given above. Yet within the Bayesian analysis using the

temporal Copernican principle, wg(T ) has a scale-free status

similar to that found by Jaynes [9] for the Je� reys prior.

Suppose that once you know the phenomenon is in

progress, anything else you know, coming from the prior

information about T , is unchanged by a simultaneous

change in the scale of the past and the future. Under such a

scale change, tp ¢ = a tp and tf ¢ = a tf, the new and old

probability densities are related by

p ¢ (tp ¢ , tf ¢ |I ) 5 p(tp, tf |I )dtp dtf /dtp ¢ dtf ¢ 5 p(tp, tf |I )/a 2 .

(32)

To say that all your information is unchanged by this scale

change is to say that the old and new densities should have the

same functional form, i.e. p ¢ (tp ¢ ,tf ¢ )= p(tp ¢ ,tf ¢ ), which implies

that p( a tp , a tf|I)= p(tp ,t f|I)/ a
2. Using equation (21) to write

this in terms of the prior density, one ® nds that w( a T )= w(T )/

a 2, which implies that the prior density has the form (31).

As discussed above, the Je� reys prior applies when your

prior information about the duration, before any observa-

tion, is scale-invariant. Once you know the phenomenon is

in progress, however, wg(T ) captures the notion of scale

invariance, because it corresponds to invariance of p(tp ,tf|I)

under simultaneous rescaling of the past and future. In

contrast, the Je� reys prior corresponds to invariance of

p(tp ,tf|I) under rescaling of tp or tf, but not both

simultaneously.

We have now uncovered the prior information that

underlies the use of Gott’ s rule as a predictor of future

duration; namely, knowing that a phenomenon is in

progress, you cannot identify any time scales associated

with the phenomenon either into the past or into the future.

One way of thinking about this is that for a phenomenon

that has no time scales, discovering the present age does not

put you at a special time in the phenomenon’s history, so

some consequences of the temporal Copernican principle

survive. Whether the scale-free prior information is

appropriate must be judged case by case; it is not a

universal rule. The scale-free prior certainly does not apply

to the three examples introduced in this article, each of

which has an obvious time scale: for the atom, the scale is

the decay time; for an individual, the scale is a typical

human lifetime; for the deterministic phenomenon, the

scale is the 30 min that the timer ticks. Ignoring these time

scales is the reason that Gott’ s rule leads to absurd

predictions for these examples.

The examples Gott discusses at the beginning of his

Nature article all have readily identi® able time scales that

make application of Gott’s rule problematic. The survival

of a human institutionÐ a political institution such as the

government of the former Soviet Union or a cultural

institution such as a periodical like NatureÐ is in¯ uenced

by the 30 yr time scale of a generation or by a typical

human lifetime, since loyalty to and management of such

institutions change on these time scales. Physical manifes-

tations of human institutions, such as the Berlin Wall or

Stonehenge, are in¯ uenced by these same human time

scales and, in addition, by the time scale over which erosion

leads to disintegration.

8. The success of Gott’s rule

Even though there is little reason to adopt Gott’ s rule, he

portrays his predictions as successful [1 ±4]. Consider, for

example, his 95% -con® dence prediction that Nature, given

its 123 yr history of publication in 1993, would continue to

publish for a period between 3.15 years and 4800 years. Gott

would consider this prediction successful because Nature has

already surpassed the lower bound and is very unlikely to

exceed the upper bound. Yet there’s the hitch: the upper

bound is far too large; without doing any analysis, anyone

could have written down a similar very large 95% con® dence

interval and achieved the same s̀uccess’ . To assess Gott’ s

rule, one should direct attention not at the the 95%

con® dence predictions, but at the high probabilities the rule

assigns to very long future durations. Gott’ s rule in form (4)

predicts that with probability 1/2, Nature will continue to

publish for more than 123 years after 1993, with probability

1/5 for more than 492 years, with probability 1/10 for more

than 1107 years, and with probability 1/20 for more than

2337 years. These probabilities posit a great deal of faith in

the durability of human institutions.

To make this point more quantitatively, it is useful to

consider a particular form of the probability that future

duration exceeds some multiple of present age:
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P(tf ³ Ytp|O) 5 P T ³ (1 1 Y)tp O

5

Z ¥

(11 Y)tp

dT p(T |O) 5
Q[(1 1 Y)tp]

Q(tp)

5 exp 2
Z (11 Y)tp

tp

dT ¸(T )

 !
.

(33)

This form makes clear that P(tf > Y tp |O) depends only on

the death rate during the interval between the present age

and the lower bound for longevity. For a death rate

k g(T )= 1/T , one gets Gott’s rule.

Now let us apply this to the example of a periodical like

Nature. At start-up a new publication confronts a variety of

short-term, rapid-death scenarios. Should it survive these

initial hazards and become established like Nature, the next

time scale it faces might be roughly a human lifetime. If this

time scale is modelled by a constant death rate

s Ð 1= (60 yr) Ð 1, then one ® nds from equation (33) that

P(tf > Y tp |O)= exp ( Ð Y tp/ s ). For Nature , this gives predic-

tions quite di� erent from Gott’s: for example, a probability

0.129 to continue publishing for more than 123 years beyond

1993 and a probability 2.75 ´ 10 Ð 4 to continue publishing for

more than 492 years.

Should these predictions seem unduly pessimistic, it is

because the constant decay rate does not recognize a long

publication record as providing evidence for continued

success. A prejudice that success begets success can be

incorporated, without discarding the time scale, by choosing,

for example,

¸(T ) 5
1
T

T

s

b

, (34)

where b > 0. For b = 1, this gives a constant death rate s Ð 1,

and for b = 0, it gives Gott’s rule. For intermediate values, it

gives a death rate that decreases with age, but with the time

scale s still having an e� ect. The resulting probability (33) is

P(tf ³ Ytp|O) 5 exp 2
tp

s

b (1 1 Y)b 2 1
b

" #
. (35)

For Nature this gives, assuming b = ‰, a probability 0.305 to

continue publishing for more than 123 years beyond 1993, a

probability 2.90 ´ 10 Ð 2 for more than 492 years, and a

probability 2.05 ´ 10 Ð 3 for more than 1107 years. The point

here is not the particular values nor even the death-rate

model, but rather that there is one or more time scales, which

can and should be incorporated in the prior distribution.

Gott stresses the success of his predictions [1,4] for the 44

Broadway and o� -Broadway plays listed in The New

Y orker on 27 May 1993, the day his original Nature

article was published. For example, Gott’ s 95% -con® dence

rule predicted that Cats, having played for 3885 days,

would continue to play for a period between 100 days and

415 years. Gott regards this prediction as a success because

the production continues today, thereby surpassing the

lower bound, and is unlikely to exceed the upper bound [1].

Yet since Cats had run 6263 days through 30 November

1999, when I determined that it was still running, the same

rule predicts that with probability 1/5, it will continue to

run for at least another 68.6 years, with probability 1/10 for

at least another 154 years, and with probability 1/20 for

another 326 years. Such predictions ignore obvious time

scales. A new production faces a variety of short- to

medium-term scales, including the time to the ® rst reviews,

the time over which a producer is willing to back a losing

production, the annual cycle of openings and closings, and

the time over which a star performer tires of a particular

part and moves on to other challenges. An established

production like Cats, having survived these initial hurdles,

must deal with the decade- to generation-long scale over

which taste and fashion change substantially and the

production experiences a nearly 100% turnover of person-

nel. Including this long-term scale would temper Gott’ s

predictions for extraordinarily long runs.

The problems with Gott’ s long-term predictions show up

more dramatically in phenomena, such as the longevity of an

individual, where an initial period of low death rate is

followed by relatively rapid extinction. We do not need a

detailed model to tell us whether we should believe Gott’ s

prediction, based on his age of 46.3 years on 27 May 1993,

that he has a 1/3 chance to survive to more than 139 years old.

There are two reasons, in my view, why Gott is able to get

away with making his scale-free predictions for the survival of

governments and plays and periodicals. F irst, statistical

models for the longevity of these phenomena are not well

developed, so Gott is protected from the absurdities that arise

immediately in the three examples used in this article.

Although there are readily identi® able time scales associated

with the phenomena Gott considers, how to incorporate them

into prior probabilities for duration has not been much

investigated. There is a good reason for this: to assess the

viability of an established government or play or periodical,

readily available current data about the particular phenom-

enon in questionÐ data such as the popularity of the govern-

ment, the balance sheet of the play or periodical, trends in

attendance at the play or the number of subscribers of the

periodicalÐ arefar morecogent than prior information about

longevity together with the present age. Second, the intervals

that Gott ® nds for survival timesare so wide that he is likely to

be right, until he is forced to placebets based on the high prob-

abilitiesheassigns to longsurvival times. A negative featureof

such bets, however, is that the bettors might not survive until

the bets are settled. Even for the case of human longevity,

where one could easily formulate bets that Gott would almost

certainly lose, the time scales are long enough that one might

not get much personal satisfaction from winning.

A way to overcome this di� culty is to bet on the survival of

creatures with a shorter lifetime than humans, but for which
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data on present ageand futuresurvival are readily obtainable.

For this purpose, I sent an e-mail on 21 October 1999, and

again on 2 December 1999, to my department’ s most

comprehensive e-mail alias, which includes faculty, sta� ,

and graduate students, requesting information on pet dogs.

The responses were compiled and checked for accuracy on 6

December; a notarized list of the 24 dogs, including each

dog’s name, date of birth, and breed, and the caretaker’ s

name, was deposited in my departmental personnel ® le on

21 December 1999. Gott ’s rule predicts that each dog will

survive to twice its present age with probability 1/2. For each

of the 6 dogs above 10 years old on the list, I am o� ering to bet

Gott $1000 US, at odds of 2:1 in his favour, that the dog will

not survive to twice its age on 3 December 1999. The reason

for weighting the odds in Gott’ s favour is to test his belief in

his own predictions: given the odds, his rule says that his

expected gain, at $1000 per bet, is $6000; moreover, the

probability that he will be a net loser (by losing ® ve or more of

the six bets) is 7/64= 0.109.

9. Discussion

The stated objective of this article is to determine what prior

information underlies Gott’ s rule. Gott proposed his rule as a

predictor of future duration based on knowing the present

age and nothing else. What we have discovered is that the

actual prior information underlying Gott’ s rule is both less

and more than he thought. On the one hand, Gott’ s rule is a

consequence of the temporal Copernican principle for a

phenomenon whose age is unknown, but this universal form

of Gott’s rule has no predictive power for future durations.

On the other hand, Gott’ s rule as a predictor of future

durations is a consequence of discovering the present age of a

phenomenon that has no identi® able time scales in the past or

future.

What about the focus of Gott’ s Nature article, the

longevity of the human species? A species’s survival depends

on its ability to adapt to short- and long-term environmental

changes produced by other species in its ecosystem and by

climatological and geological processes. The adaptations are

made possible by existing genetic variability in the gene pool

and by random mutation. How homo sapiens ® ts into this

picture is a complicated question, certainly not amenable to a

universal statistical rule. As Ferris [1] puts it, `.. .in my

experience most people either think we’re going to hell in a

handbasket or assumethat we’regoing to bearound for a very

long time’ . Both views are a re¯ ection of advancing

technology. The ® rst comes from alarm at technology’s

increasing impactÐ changes might be so rapid that we (and

certainly other) species could not adapt. The second comes

from a belief that technology can save usÐ by controlling the

environment or by making possible remarkable adaptations

such as escaping our earthly environment or changing our

genetic constitution.

Gott dismisses all such thinking as the illusions of those

who do not appreciate the power of the Copernican

principle. He contends that everything relevant to assessing

our future prospects is contained in the statement that we

are not at a special time. This article shows that the

Copernican principle is irrelevant to considerations of the

longevity of our species. Perhaps we are still subject to the

factors that determine the survival of other species. More

likely, our survivalÐ and the survival of many other species

along with usÐ depends on what we do now and in the

future. We better think hard about it.
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