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The Random Energy Model
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1. Introduction

In this talk, we presenta simplemodelof disorderedsystemwhich can be solvedexactly.The model
is defined as following: The energy levels of the whole systemare random independentquenched
variables.Weobtain an analyticexpressionof the averagedfree energyoverall the possiblechoicesof
the energylevels. To understandhow this model is relatedto moreconventionalproblems,let usstart
by consideringa simplespin glass model. For such a model, the hamiltonian[11of N interactingIsing
spinscan be written as

(1)

wherethebondsJ11 arerandomquenchedvariablesgiven by aprobabilitylaw p(J13)andthe spinso~are
either+1 or —1.

We can definefor this model theprobabilityP1(E) that a givenconfiguration{o~°}ofthe spinshas the
energy E

P1(E)= f. . . ff1p(J1~)dJ18(E+ ~

(ii> ij~

Whenthe distributionof bondsis gaugeinvariant [2], which meansthat:

p(J11)=p(Ji~o,o~1)with o-~=±1for any i

the probability P(E) doesnot dependon the spin configuration.
To show that this distributionP(E) hasa simple form, let usgive two examples:
Example 1 [2,3]: The spins are on a lattice with a coordinationnumberz and the distribution of

bonds is

p(J~,) =~(o(J~1—J)+ o(J1, +J)).

Then onehasfor largeN

Nz[/ 2E\ / 2E\ / 2E\ / 2E

P(E)--exp—--~-- [~l+ ~

Example 2: The Sherrington—Kirkpatrickmodel [4] (the S.K. model)where

IN J~
p(J~,)= —j~exp—~-jrN

for anypair of spinsi andj in the system.



30 Commontrends in particle andcondensedmatterphysics

Then

1 E2
P(E)= exp————.

NJ2

One can define in the sameway P
1.2(E1, E2) as the probability that two given configurations{cr~1)}and

{~(
2)}have energiesE

1 and E2.

For the S.K. model, onefinds

E E’
2N E E2

P
12(E1,E2) exp— ~4J2((N n)

2 + n2)+ 8(N—n)rJ2}

where n is the number of identicalspinsin the two configurations.This formulashowshow the energies
E

1 and E2 of the two configurationsarecorrelated.In the limit (n —*0 or n —~N), the two energieshave
to be equal while when n = N/2, the two energiesare completelyindependentand the probability is
factorizable

P(E1,E2)=P(E1)P(E2).

2. Definition of the random energy model

We consideran abstractsystemwith the following properties:
(1) Thesystemhas2N energylevelsE~
(2) The energylevelsE, aredistributedrandomly with probability distribution

1 E
2P(E)=~___~~exP_~j; (2)

(3) The E areindependentrandomvariables.
As we saw in the introduction, the two first assumptionsare actual featuresof somespin glass

models.
The third assumptionis crucial becauseit allows to solve exactlythe model. Howeverit can be seen

as a crudeapproximationto more realistic models since the correlationsbetweenthe energiesof
differentconfigurationsare neglected.

The partition functionZ is givenby

Z=~exp{—~E
1}

andas usualfor disorderedsystems,onewantsto calculatethe averagefree energyF

F = — T(logZ) = — T J [~(P(E1) dE1) log[Z({E1})1.

3. The moments (Zn) of the partition function

The integermomentsof the partitionfunction arecustomarilytheeasiestquantitiesonecancalculate
for disorderedsystems.
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Fig. 1. The integermoments~Z~)as functionsof temperature.In thehigh temperatureregion T> T~.~Z~) (Z)~.In the low temperatureregion
T< T~Z”)’>(Z)”.

For this randomenergymodel, one finds that in the theri~~namiclimit (N —* cc), eachmoment
(Zn) changesits behaviourata critical temperatureT~= (J/2Vlog2)\/~.For largeN, the momentsare
given by

(Zn) 2~’exp{Nn2J2I4T2} if T < T~ (3)

(Zn) 2’~ exp{NnJ2I4T2} if T> T~.

As each moment (Zr) has its own critical temperatureT~,the questionis what happensfor the
averagefree energyat thesetemperaturesT~.

The simplestapproachto computethe averagefree energywould be to assumethat the distribution
of Z is concentratedaroundits average(Z)

(log Z) = log((Z))+ (log[1 + (~—i)]) = Iog(Z) + ~2 ~ ((th i)”). (4)

By looking at the behaviourof the moments(Zn) (3), it is obvious howeverthat the series(4) is
divergentat anytemperatureandthat formula (4) is uselessto calculatethe averagefree energy.

4. The averagefree energy

It is possiblefor this randomenergymodel to find the analyticexpressionof the averagefree energy
whenN is large [5]. Thedetails of the calculationare too lengthly to be includedhere.So we only sum
up the resultsandwe indicatein section5 asimple way to recoverthe thermo~~miclimit.

In the thermodynamiclimit, the systemhasa critical temperatureT~= J/2Vlog2.
In the low temperaturephase(T < Ta), the systemis completelyfrozen in its ground stateandthe
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averagefree energy is given by

~(F) = —iVj~+~1~~J.N+~ log(4ir log2)+(T~—T)~F’(1)—1~Jlog(F(1—p))
+o(1O~1~) (5)

(where F is the gamma function).
In the high temperature phase(T> To), the thermodynamiclimit is asimple functionof temperature

but the subdominant termschangetheir behaviour at all the temperaturesT2~± \
12n+ I T~.

If T
2~_1< T< T2~±1

~(F) = —(T log 2+J2/4T)+~~ i) +~. . ±(_~)n~

T
2 2\/~ 1 1 NT2J2/ 1 1 \21[ 1 /1\1

N’~J (T2/T~+ 1) expi
1~ 16 ~~7~T2) l1.sin~1r(T2/T~+ 1)~o~~)j• (6)

In the expressions(5) and (6), the underlinedquantitiesgivethe thermodynamiclimit whereasthe other
termsdescribehow this largeN limit is reached.

One can notice that the convergencewhen N —* cc is very rapid above T~(becauseeach term
(Z/(Z)— 1)” in eq. (6) decreasesexponentiallywith N) and is very slow below T~. At the critical
temperatureas well as at all the temperaturesT2~+ ~, the subdominanttermsaresingular.It follows that
a high temperatureexpansionwould be very singular as the infinite temperatureis the accumulation
point of the temperaturesTn.

5. The microcanonicalapproach

For onesampleof the 2~’energylevels, onecan definethe densityn(E) of energylevels:

n(E)= x~ with x~ 1 if E <E~<E + dE

= 0 otherwise.

Onecan averagethis densityas well as all its moments.WhenN is large,one finds

2N / E
2\

(n(E)) = ~ exP~_~jJdE (7)

(n”(E))~—(n(E))” if (n(E))~1 (8)

-~-(n(E)) if (n(E))-~1.

From (7) and(8), it follows that
• if El > NJ\/i~~,the averagedensity(n(E)) is much smallerthan1. This meansthat, for almost

all the samples,thereis no energylevel in this region;
• if El < NJ\/i~~,the averagedensity(n(E)) is very largeand the fluctuationsof the numberof
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Fig. 2. The entropyS(E)asa function of theenergyE.

levels betweenE and E + dE are of order (n(E))”2. Thereforealmost all the sampleshaven(E)—’
(n (E)).

So the entropyS(E) is for almostall the samples

S(E) -~ log (n(E)> = N log 2—E2/NJ2 if IEI <NJ\/i~j~.

To obtain the free energyat a given temperatureT, one has to find the point of the curve S(E)
wherethe slope is dS/dE= lIT. The energyand the entropyof the system at temperatureT are the
coordinatesof thispoint.

The critical temperatureT~is the inverseof theslope dSIdEat theedgeof the densityof states.For
T< T~,the systemis frozen in its groundstateandthe energyis E = —NJ\/1~j~.

Now, we can maketwo remarks:
a) It seemsthat the moments(n’~(E))aresimpler quantitiesthanthe moments(Zn): all the moments

(n”(E)> changetheir behaviourat the sameenergy—NJVi~j~.It is thennatural to think that this
energyis the energyof the system at the critical temperature.On the contrary,eachmoment (Zn>

changesits behaviourat its own critical temperatureT~and hence it is less easy to see what is the
critical temperatureof the averagefree energy.

b) From (5) and (6), onecan find the specificheat C:

CIN=0 ifT<T~

C/N = J2/2T2 if T> T~.

The specific heathasa discontinuityatT~andis zero in the whole low temperaturephase.
Onecan comparethis resultwith the specificheatC’ calculatedfor a ferromagneticsystemusingthe

meanfield theory.C’ hasalsoa discontinuityat the critical temperaturebut in the ferromagneticcase,it
vanishesin the whole high temperaturephase.

6. The effect of a uniform magneticfield

To calculate the magneticsusceptibility for this randommodel, one hasto define the probability
distributionof the energylevels in presenceof a uniform magneticfield H.
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Fig. 3. The phasediagram of therandomenergymodel in a uniform magneticfield H.

If we start againwith the spin glass model defined by the equation(1), we find that in a uniform
magneticfield H, the probability distributionP(E) dependson the magnetizationM of the configura-
tion:

1 (E+MH)2P(E)=,~_j~exp_ NJ2 (9)

(in the caseof example2).
The randomenergymodel is alwaysa system of 2~’randomindependentenergylevels but among

these 2~’energy levels, C~J±M~2have a magnetizationM and are distributed with probability
distribution(9).

Using the sameargumentsas in section5 (the true densityof statesis equalto its averagewhenthe
averageis largeandto zerowhentheaverageis small), onecan calculatethe free energyof the random
energymodel in a magneticfield H. Onefinds that for anyvalue of H, thereis a transitiontemperature
(fig. 3). In the low temperaturephase,the free energyis independentof the temperature.This means
that the systemis completelyfrozen in its groundstate.

Fromthe free energy,we can obtainthe susceptibilitywhenH = 0:

x=1IT ifT>T~

x—1IT~ ifT<T~.

We can noticeherethatalthoughthe systemis completelyfrozen in the low temperaturephaseand
hasno thermalfluctuations,the responsefunctionx doesnot vanish.

7. Conclusion

This randomenergymodel may be the simplestmodel of disorderedsystems.It gives a simplified
picture of a glassytransition: the systembecomescompletelyfrozen below the critical temperature.
Many of its propertiesare very similar to thoseof more conventionalspin models:the correctionsof
order logN/N to the thermodynamiclimit for the groundstateenergyareto be comparedwith the 1/N
[4], or iiV~[6] correctionsconjecturedfor the S.K. model; the samebehaviourof the moments(Z’~>
can be observedfor the S.K. model [7]; the constantsusceptibility at low temperaturehas been
suggestedby Parisi [8] for the S.K. model.
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This randomenergymodelshowsthat looking atthe distributionof the level densitymaybe simpler
thanusingthe moments(Zr) of the partitionfunction. It can also be seenas a first approximationto
any spin glass model. For a largeclass of models,onecan find very easilythe probability distribution
P(E) and solve the correspondingrandomenergymodels.We studiedwithin this approximationthe
S.K. modelwith a non symmetricdistributionof bondsand wefound the samekind of phasediagram
that the onepredictedby SherringtonandKirkpatrick [4]. We alsoused thisapproximationto calculate
the groundstateenergyfor spinglassmodelswith short rangeinteractionson finite dimensionallattices.
The resultsdo not differ from the true valuesby morethan10%.

Starting from the exact solution of this random energymodel, one can envisagea systematic
inclusion of the correlationsbetweenenergylevelsin order to approachthe usualspin glassmodels.
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