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The Random Energy Model
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1. Introduction

In this talk, we present a simple model of disordered system which can be solved exactly. The model
is defined as following: The energy levels of the whole system are random independent quenched
variables. We obtain an analytic expression of the averaged free energy over all the possible choices of
the energy levels. To understand how this model is related to more conventional problems, let us start
by considering a simple spin glass model. For such a model, the hamiltonian [1] of N interacting Ising
spins can be written as

%’=—%L,ma‘,- (1)

where the bonds J;; are random quenched variables given by a probability law p(J;;) and the spins o; are

either +1 or —1.
We can define for this model the probability Pi(E) that a given configuration {o "} of the spins has the

energy E
P@E)- [ [T1p0)2,5(E+ 3 5oot?).

When the distribution of bonds is gauge invariant [2], which means that:

p(Jy) = p(Jyjo0;) with o; = +1 for any i

the probability P(E) does not depend on the spin configuration.
To show that this distribution P(E) has a simple form, let us give two examples:
Example 1 [2,3]: The spins are on a lattice with a coordination number z and the distribution of

bonds is
p) =36W; —T)+8(J; +J)).

Then one has for large N
Nz 2E 2E 2E 2E
P(E)~exp—"0 [(1 o) log(1+32) + (1-32 ) tog1 —N—Z)]
Example 2: The Sherrington—Kirkpatrick model [4] (the S.K. model) where
_ N T
p("tl) - \/27TJ2 eXp 2]2 N

for any pair of spins i and j in the system.
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Then

1 2
P(E)=7oRp P~ Ny

One can define in the same way P, »(E,, E,) as the probability that two given configurations {o{"’} and
{o®} have energies E, and E,.
For the S.K. model, one finds

Pl,Z(EI, EZ) exp {4]2((N_n)2+n2)+8(N_n)nJ2}
where n is the number of identical spins in the two configurations. This formula shows how the energies
E, and E, of the two configurations are correlated. In the limit (n -0 or n - N), the two energies have

to be equal while when n = N/2, the two energies are completely independent and the probability is
factorizable

P(E1,~Ez)=P(E1)P(E2)-

2. Definition of the random energy model

We consider an abstract system with the following properties:
(1) The system has 2V energy levels E;;
(2) The energy levels E; are distributed randomly with probability distribution

1 2
PEY= 57 ™~ N @

(3) The E; are independent random variables.

As we saw in the introduction, the two first assumptions are actual features of some spin glass
models.

The third assumption is crucial because it allows to solve exactly the model. However it can be seen
as a crude approximation to more realistic models since the correlations between the energies of
different configurations are neglected.

The partition function Z is given by

N

Z =" exp{-BE}
i=1
and as usual for disordered systems, one wants to calculate the average free energy F

Fe-TQogZ)=—T j 1 (P(E) dE)) logl Z(E ).

3. The moments (Z") of the partition function

The integer moments of the partition function are customarily the easiest quantities one can calculate
for disordered systems.
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Fig. 1. The integer moments (Z") as functions of temperature. In the high temperature region T > T, (Z")}~(Z)". In the low temperature region
T<T.(Z">(Z)"

For this random energy model, one finds that in the thermodynamic limit (N - ), each moment
(Z") changes its behaviour at a critical temperature T, = (J/2V1og 2)Vn. For large N, the moments are
given by

(Z")~2N exp{Nn®J?/4T% i T<T, 3)
(Z"y~ 2N exp{NRJ?4TS i T> T,

As each moment (Z") has its own critical temperature T,, the question is what happens for the
average free energy at these temperatures T,,.

The simplest approach to compute the average free energy would be to assume that the distribution
of Z is concentrated around its average (Z)

(log Z) = log((Z))+<log[1+<<Z> 1)])=tog2)+ ZLL<(@~1)> )

By looking at the behaviour of the moments (Z") (3), it is obvious however that the series (4) is
divergent at any temperature and that formula (4) is useless to calculate the average free energy.

4. The average free energy

It is possible for this random energy model to find the analytic expression of the average free energy
when N is large [5]. The details of the calculation are too lengthly to be included here. So we only sum
up the results and we indicate in section 5 a simple way to recover the thermodynamic limit.

In the thermodynamic limit, the system has a critical temperature T.=J/2Vlog?2.

In the low temperature phase (T < T.), the system is completely frozen in its ground state and the



32 Common trends in particle and condensed matter physics

average free energy is given by

%(F) ——JViog2 + g '—_%_—+ S1 log(dm log 2) + (T~ T)% r'(1)—%,-° 1og(r(1 _%))
+0(%) ©)

(where I' is the gamma function).

In the high temperature phase (T > T.), the thermodynamic limit is a simple function of temperature
but the subdominant terms change their behaviour at all the temperatures T, ., = V2n +1T..

T, 1 <T<Thi

N O =@zt run g (G- 1) v g {( 5 1))

- 1\22’2 2\1/; (T7 7}3 +1) e”(p{—l\nl:]2 (%_ %)2} [sm 27T(T12/ T:+1) O( 1 )] ©

In the expressions (5) and (6), the underlined quantities give the thermodynamic limit whereas the other

terms describe how this large N limit is reached.
One can notice that the convergence when N — is very rapid above T. (because each term

(ZKZ)—1)" in eq. (6) decreases exponentially with N) and is very slow below T.. At the critical
temperature as well as at all the temperatures T, ., the subdominant terms are singular. It follows that
a high temperature expansion would be very singular as the infinite temperature is the accumulation
point of the temperatures T,,.

5. The microcanonical approach

For one sample of the 2V energy levels, one can define the density n(E) of energy levels:
N
n(E)=>x. withx,=1if E<E <E+dE
i=1

= () otherwise.

One can average this density as well as all its moments. When N is large, one finds

(B = oms exp 5 4B (7)
W ENV~nEY it ((E)>1 @

~(mE)  if (mE)<I.

From (7) and (8), it follows that

@ if |[E|> NJVlog 2, the average density (#(E)) is much smaller than 1. This means that, for almost
all the samples, there is no energy level in this region;

@ if |[E| < NJVlog?2, the average density (n(E)) is very large and the fluctuations of the number of
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Fig. 2. The entropy S(E) as a function of the energy E.

levels between E and E +dE are of order (n(E))"?. Therefore almost all the samples have n(E)~

(n(E)).
So the entropy S(E) is for almost all the samples

S(E)~log (n(E))= N log2— E*NJ* if |E| < NJViog2.

To obtain the free energy at a given temperature T, one has to find the point of the curve S(E)
where the slope is dS/dE = 1/T. The energy and the entropy of the system at temperature T are the
coordinates of this point.

The critical temperature T. is the inverse of the slope dS/dE at the edge of the density of states. For
T <T., the system is frozen in its ground state and the energy is E = — NJVlog 2.

Now, we can make two remarks:

a) It seems that the moments (n”(E)) are simpler quantities than the moments (Z"): all the moments
(n”(E)) change their behaviour at the same energy —NJVlog2. It is then natural to think that this
energy is the energy of the system at the critical temperature. On the contrary, each moment (Z")
changes its behaviour at its own critical temperature 7, and hence it is less easy to see what is the
critical temperature of the average free energy.

b) From (5) and (6), one can find the specific heat C:

CIN=0 ifT<T,
CIN=J712T* i#T>T.

The specific heat has a discontinuity at T, and is zero in the whole low temperature phase.

One can compare this result with the specific heat C’ calculated for a ferromagnetic system using the
mean field theory. C' has also a discontinuity at the critical temperature but in the ferromagnetic case, it
vanishes in the whole high temperature phase.

6. The effect of a uniform magnetic field

To calculate the magnetic susceptibility for this random model, one has to define the probability
distribution of the energy levels in presence of a uniform magnetic field H.
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Fig. 3. The phase diagram of the random energy model in a uniform magnetic field H.

If we start again with the spin glass model defined by the equation (1), we find that in a uniform
magnetic field H, the probability distribution P(E) depends on the magnetization M of the configura-
tion:

(in the case of example 2).

The random energy model is always a system of 2" random independent energy levels but among
these 2V energy levels, C%'*™”* have a magnetization M and are distributed with probability
distribution (9). ,

Using the same arguments as in section 5 (the true density of states is equal to its average when the
average is large and to zero when the average is small), one can calculate the free energy of the random
energy model in a magnetic field H. One finds that for any value of H, there is a transition temperature
(fig. 3). In the low temperature phase, the free energy is independent of the temperature. This means
that the system is completely frozen in its ground state.

From the free energy, we can obtain the susceptibility when H = 0:

x=UT #T>T.
x=UT. ifT<T..

We can notice here that although the system is completely frozen in the low temperature phase and
has no thermal fluctuations, the response function y does not vanish.

7. Conclusion

This random energy model may be the simplest model of disordered systems. It gives a simplified
picture of a glassy transition: the system becomes completely frozen below the critical temperature.
Many of its properties are very similar to those of more conventional spin models: the corrections of
order log N/N to the thermodynamic limit for the ground state energy are to be compared with the 1/N
[4], or 1/V/'N [6] corrections conjectured for the S.K. model; the same behaviour of the moments (Z")
can be observed for the S.K. model [7]; the constant susceptibility at low temperature has been
suggested by Parisi [8] for the S.K. model.



B. Derrida, The random energy model 35

This random energy model shows that looking at the distribution of the level density may be simpler
than using the moments (Z") of the partition function. It can also be seen as a first approximation to
any spin glass model. For a large class of models, one can find very easily the probability distribution
P(E) and solve the corresponding random energy models. We studied within this approximation the
S.K. model with a non symmetric distribution of bonds and we found the same kind of phase diagram
that the one predicted by Sherrington and Kirkpatrick [4]. We also used this approximation to calculate
the ground state energy for spin glass models with short range interactions on finite dimensional lattices.
The results do not differ from the true values by more than 10%.

Starting from the exact solution of this random energy model, one can envisage a systematic
inclusion of the correlations between energy levels in order to approach the usual spin glass models.
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