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CLASSROOM NOTES. For this department we hope to obtain brief papers dealing with the subjects 
currently taught in undergraduate mathematics. Occasionally we shall also accept notes dealing with 
material commonly encountered in the first year of graduate study. Classroom notes should be 
relevant to some actual classroom situation that can be expected to exist at a good number of 
institutions. 

MATHEMATICAL EDUCATION. There is now a growing and very healthy concern with mathematicians' 
role as teachers. This department welcomes reports of experiments in novel methods of teaching as 
well as discussions of all educational aspects of our profession. 

PROBLEMS. This department attracts many readers and is an especially valuable feature of the 
MONTHLY. It will continue to seek and publish interesting elementary and advanced problems in pure 
and applied mathematics, both classical and modern. 

REVIEWS. Through the telegraphic reviews the MONTHLY will continue to provide as complete a 
coverage as possible of the current textbooks. At present the MONTHLY iS the only journal that 
performs this service for the mathematical community. Extended reviews will continue to appear, and 
we hope that the number of classroom reviews will increase. 

R. P. BOAS, Editor 

BREAKING RECORDS AND BREAKING BOARDS 

NED GLICK 

Part I. What a Statistician Can Do With a Minimum of 
Probability or the Probability of a Minimum 

1. Introduction 
2. Weather Records 
3. Tests of Randomness 
4. Car Caravans in a One-Lane Tunnel 
5. Sequential Strategy for Destructive Testing 
6. Tolerance Limits for Failure Distributions 

Part II. A Beginner's Guide to Record Breaking Mathematics 
7. Persistence of Record Breaking and Divergence of the 

Harmonic Series 
8. Frequency of Record Breaking 
9. Serial Numbers of Record Breaking Trials 

10. Waiting Times Between Record Breaking Trials 
11. The Record Value Sequence 
12. Extreme Values and Extremal Processes 

1. Introduction. When I take observations in chronological sequence, how often will the 
outstanding record value be surpassed? For example, suppose that I register the annual total inches of 
precipitation or, to take a less gloomy statistic, the total hours of bright sunshine in Vancouver, where 
I live: what is the probability that next year will be a new maximum? 

Breakthroughs are less likely later than early in a sequence of observations. The first observation 
necessarily must be a "record high." But, prior to observing any values, I know that the second of two 
numbers in random sequence has equal probability of being smaller or larger than the first. Hence the 
probability is exactly 50% that a second, independent observation will be a new record high surpassing 
the initial record, assuming that there cannot be an exact tie (if measurement is arbitrarily precise). 
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From the same perspective, there is probability 1/3 that a third trial will be a new maximum, since the 
last of three repeated observations is equally likely to be smallest, middle, or largest.... Similarly, all 
10 ranks are equally likely for the tenth observation; so maximum rank for the tenth observation has 
probability 1/10. 

The theoretical expected or average number of record highs in a chronological sequence of n 
independent observations is the sum of these probabilities: 1 + (1/2) + (1/3) +..- + (1/n). 

This result surprises my acquaintances who have no background in probability theory. I have here 
the beginning of a conversational ploy to hold a person's interest when she or he asks what work I do 
and I say, "I am a statistician." Otherwise this reply may ruin a fine conversation, as in the dinner 
scene depicted by William Kruskal [221. 

My ploy proceeds to verify predictions from the simple probability model with some real weather 
records. It happens that these weather records excellently illustrate the pathos and problems of work 
with statistical data. 

It is just as interesting to note that the simple model does not fit record breaking in athletic 
competitions. Race times, jump heights, and throw distances have improved over several decades, 
while rainfall fluctuations from year to year are "random." In fact, the frequencies of record highs and 
lows can be used to infer whether observations indicate linear trend or random sequence. 

After the weather and sports, I talk about traffic. Curiously, the simple model of random record 
values says something about how cars tend to bunch together behind a slow vehicle. 

The same probability model applies in yet another context: a sequential strategy to find the 
weakest item in a sample of boards or beams, and hence to establish "tolerance limits" for lumber 
strengths. My interest in record highs and lows actually began in discussions at the Western Forest 
Products Laboratory of the Canadian Forestry Service. Breaking a random, but usually small, fraction 
of the available beams can accomplish the same purpose as 100% destructive laboratory testing. This 
conservation of material illustrates the economic spirit of experimental design. 

So one example, the frequency of record highs or lows, ties together several "applied" aspects of a 
statistician's livelihood. More surprising, the intuitive idea that any record can be beaten also leads to 
mathematical proof that the harmonic sum 1 + (1/2) + (1/3) + grows without bound, becoming 
bigger than any finite number. 

Harmonic divergence is the simplest of many "well known" limit theorems and paradoxes related 
to record breaking. The mathematical sections comprising the second part of my paper review 
primarily those results in the theory of record values which do not depend on the particular 
distribution of the basic sequence of observations. This mathematics is mostly at the level of an 
undergraduate discrete probability course in the spirit of William Feller's famous text [121. 1 avoid 
differentiation and integration as much as possible. 

2. Weather records. Weather records in Canada are kept by the Meteorological Branch of the 
federal Department of Transport. Vancouver's weather records, however, are largely products of "the 
colourful careers of the two Shearman brothers": T. S. H. Shearman, who "was officially appointed by 
the government as weather observer for the city of Vancouver" in April, 1905, and E. B. Shearman, 
who replaced his brother from 1915 to 1948, for which service he received the British Empire Medal. 
This history I found in a Department of Transport 1964 Annual Meteorological Summary [251, from 
which most of my figures are taken. 

Monthly, as well as annual inches of precipitation and hours of sunshine are shown in Data Set 1 
and Data Set 2, respectively. Looking down the February column, for example, I find 5 record high 
years in the precipitation data (1900, 1901, 1902, 1918, 1961) and 5 in the sunshine data. Each sequence 
includes 65 observations; so 1 + (1/2) + (1/3) + .. + (1/65) = 4.76 is the theoretical expected number of 
record highs. 

The 12 monthly precipitation sequences actually give an empirical average of 4.17 highs per 
sequence. Record lows have the same distribution as highs, if the case of absolutely nil precipitation 
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DATA SET 1. 

Monthly & Annual Total Precipitation (Rain + One-Tenth Snow) in Vancouver, B.C., in Inches 

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual 

1900 7.24 5.95 10.29 4.51 4.20 5.42 1.05 3.60 1.61 9.20 10.00 9.22 72.29 1 
1901 11.28 6.31 3.04 5.29 4.38 5.01 83 .22 2.65 5.20 14.06 8.09 66.36 2 
1902 6.68 10.17 7.45 3.11 4.40 1.97 2.37 1.15 3.39 4.72 10.33 9.55 65.29 3 
1903 8.23 2.60 6.88 3.78 3.68 3.56 1.12 1.07 8.35 5.72 11.36 4.21 60.56 4 
1906 9.66 6.03 2.37 1.04 3.58 3.04 .45 .83 8.87 7.60 8.25 7.33 59.05 5 
1907 9.32 8.30 2.39 4.13 1.44 1.43 1.70 1.36 4.51 1.76 13.23 8.02 57.59 6 
1908 7.60 6.31 7.14 2.61 4.11 1.86 1.59 1.15 1.46 6.68 13.69 8.41 62.61 7 
1909 6.20 8.15 4.31 1.23 3.76 1.69 2.45 1.43 2.23 7.06 15.66 4.28 58.45 8 
1910 11.19 5.01 2.91 3.60 2.15 1.98 .24 1.38 2.47 9.04 10.62 8.79 59.38 9 
1911 6.11 3.37 3.05 1.96 5.39 2.09 .92 1.23 4.41 2.24 12.68 8.82 52.27 10 
1912 8.47 6.25 .89 3.92 2.35 2.28 1.54 5.86 2.84 4.64 9.21 8.80 57.05 11 
1913 9.62 4.38 5.38 2.53 4.33 3.81 2.02 .85 3.89 6.19 10.08 3.95 57.03 12 
1914 10.56 4.87 3.33 3.28 .74 3.58 .42 .75 6.86 6.37 10.18 2.84 53.78 13 
1915 7.13 4.42 4.18 3.04 3.42 1.07 .91 .36 .80 8.83 5.41 10.36 49.93 14 
1916 5.96 7.40 14.55 4.07 1.41 1.34 5.25 .58 1.28 2.16 6.37 5.71 56.08 15 
1917 9.33 5.87 5.61 8.20 1.69 5.40 .48 .93 3.30 3.49 5.23 11.72 61.25 16 
1918 11.05 10.50 7.48 1.70 1.15 1.00 2.29 4.59 .30 7.56 7.02 8.07 62.71 17 
1919 7.57 7.35 6.61 4.47 3.60 1.02 .15 1.15 1.16 3.14 11.25 9.74 57.21 18 
1920 8.92 1.21 5.20 2.51 1.94 3.06 .67 2.91 10.37 8.34 7.14 11.01 63.28 19 
1921 9.39 6.66 2.53 3.62 2.52 3.64 .32 2.84 5.03 10.08 8.99 5.56 61.18 20 
1922 3.15 4.75 3.44 2.63 2.46 .17 .02 2.01 5.76 3.26 2.63 10.35 40.63 21 
1923 8.73 4.06 3.86 2.14 2.84 2.07 .52 .73 2.97 2.56 6.13 15.88 52.49 22 
1924 8.26 8.86 1.16 3.84 .31 .91 .71 1.88 5.81 6.56 5.87 8.35 52.52 23 
1925 12.16 6.01 4.24 2.44 2.20 .38 .74 2.36 .44 3.00 4.05 13.05 51.07 24 
1926 7.62 6.70 2.48 2.58 4.17 .78 .36 2.10 3.26 6.37 7.80 8.99 53.21 25 
1927 9.08 4.73 6.80 1.88 5.12 1.16 .94 3.74 3.07 7.22 8.39 6.92 59.05 26 
1928 9.04 1.87 7.01 4.29 2.22 1.93 .47 .20 1.35 7.38 5.36 5.34 46.46 27 
1929 3.05 1.64 4.47 4.81 1.25 3.24 1.41 1.50 1.77 3.57 2.54 8.58 37.83 28 
1930 2.75 9.42 3.33 4.72 2.86 2.18 .08 .07 2.65 7.50 3.00 5.22 43.78 29 
1931 11.24 4.95 6.35 4.57 1.23 5.59 .44 .61 7.14 5.22 8.34 11.92 67.60 30 
1932 9.18 6.65 9.15 4.84 1.34 2.08 5.32 2.01 2.62 5.66 10.17 7.37 66.39 31 
1933 9.57 6.32 6.43 .53 4.33 2.03 1.76 1.12 5.89 7.94 5.45 12.85 64.22 32 
1934 11.90 3.02 5.57 1.18 3.44 .69 1.86 1.24 2.77 4.99 9.56 12.27 58.49 33 
1935 20.65 3.75 8.41 2.28 .55 1.06 1.79 1.36 2.57 6.70 4.65 8.46 62.23 34 
1936 9.37 4.37 6.12 3.31 5.23 3.13 1.65 2.11 3.51 4.21 1.84 10.63 55.48 35 
1937 2.42 8.62 3.64 7.16 3.14 6.14 .47 3.45 1.84 8.14 11.01 10.94 66.97 36 
1938 6.59 4.68 4.65 2.93 1.86 .78 .66 .74 1.68 5.74 6.44 13.53 50.28 37 
1939 11.91 5.94 3.83 1.71 3.40 3.03 2.34 .68 3.20 6.72 12.35 11.78 66.89 38 
1940 5.65 8.11 7.39 4.57 2.85 .30 1.52 1.70 2.15 10.85 4.91 10.47 60.47 39 
1941 8.04 6.24 3.82 2.59 5.73 2.19 .48 2.12 8.26 9.86 6.93 9.15 65.41 40 
1942 3.56 2.82 4.25 3.88 1.89 5.28 3.36 .47 .79 6.20 6.11 9.59 48.20 41 
1943 4.25 4.69 3.94 4.16 3.28 1.20 1.10 2.12 1.82 7.16 3.29 9.16 46.17 42 
1944 7.85 4.63 3.41 4.15 1.90 .95 .49 .92 4.86 5.87 8.97 3.76 47.76 43 
1945 9.33 7.45 8.54 4.23 2.64 .94 .91 1.27 3.21 7.10 10.07 6.45 62.14 44 
1946 11.30 9.36 8.79 7.54 .43 4.87 1.63 .78 1.94 5.91 6.19 8.40 67.14 45 
1947 10.68 7.02 6.52 5.62 1.74 2.08 2.34 .49 2.18 10.29 5.22 13.32 67.50 46 
1948 3.76 10.31 2.67 3.59 6.05 11.82 2.16 4.03 2.83 4.69 14.57 9.59 66.07 47 
1949 .84 7.58 5.05 2.22 1.73 1.76 2.75 1.46 1.45 6.83 11.89 7.62 51.18 48 
1950 6.48 10.07 9.42 5.01 2.61 1.48 2.15 2.93 1.65 10.24 5.01 10.50 67.55 49 
1951 11.10 10.28 6.40 2.82 3.50 .37 .01 .90 3.64 5.66 6.71 6.17 57.56 50 
1952 8.23 5.55 5.99 2.72 2.23 3.92 .40 1.27 1.08 2.13 2.34 7.97 43.83 51 
1953 14.08 4.79 4.93 2.38 2.31 2.26 1.29 1.83 4.76 5.26 10.44 11.28 65.61 52 
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1954 10.00 8.39 2.58 3.92 2.13 2.79 2.11 4.35 4.45 3.15 16.10 9.39 69.36 53 
1955 5.09 4.17 7.41 4.32 3.22 3.03 2.97 .31 1.87 7.08 13.59 7.14 60.20 54 
1956 7.10 6.47 7.72 1.12 .84 6.57 .89 2.52 5.65 13.69 13.86 13.71 70.14 55 
1957 3.52 3.79 6.96 2.87 1.72 2.99 2.81 1.84 1.72 3.88 4.59 9.24 45.93 56 
1958 13.48 6.75 3.51 3.60 1.33 1.51 Nil 2.35 3.10 5.93 9.03 9.44 60.03 57 
1959 8.51 6.83 8.97 3.66 2.78 3.94 .97 .80 7.03 4.99 8.09 8.24 64.81 58 
1960 7.43 7.04 5.49 3.13 5.64 2.05 .02 4.15 2.08 11.00 7.06 7.13 62.22 59 
1961 13.28 15.26 6.04 2.98 3.96 1.42 1.34 3.56 1.94 8.82 7.70 10.04 76.34 60 
1962 7.57 2.37 4.35 5.02 2.87 1.42 1.20 5.35 3.12 5.77 11.55 12.49 63.08 61 
1963 1.76 7.53 4.29 4.09 1.81 2.24 3.08 .83 1.86 8.71 9.33 12.92 58.45 62 
1964 11.62 3.82 6.44 3.27 2.75 2.58 3.56 2.33 7.41 3.38 10.17 6.71 64.04 63 
1965 9.54 10.67 2.30 2.48 2.89 0.62 0.51 2.57 0.67 8.67 6.68 7.43 55.03 64 
1966 9.28 4.53 4.87 1.75 2.89 2.18 3.36 1.66 3.17 7.43 9.47 15.34 65.93 65 

DATA SET 2. 

Monthly and Annual Total Hours of Bright Sunshine in Vancouver, B.C. 

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual 

1909 55.3 56.4 143.7 252.4 230.3 251.8 224.4 262.8 294.9 99.2 58.1 51.4 1880.7 1 
1910 45.5 91.5 117.7 181.2 276.5 186.5 312.8 224.1 181.2 103.6 49.9 31.0 1801.5 2 
1911 14.4 84.8 154.0 248.2 174.9 217.7 272.7 225.1 142.2 140.0 41.6 48.3 1763.9 3 
1912 44.2 81.4 233.8 113.8 215.4 229.0 198.1 186.6 185.9 110.7 19.4 26.0 1644.3 4 
1913 43.3 97.1 125.6 149.5 178.2 186.6 270.2 228.0 173.2 110.6 62.1 27.6 1652.0 5 
1914 38.7 46.4 104.1 155.8 270.2 250.5 313.5 280.7 79.4 101.6 39.0 67.1 1747.0 6 
1915 57.7 44.1 131.8 203.0 163.7 266.7 261.7 221.9 141.3 84.6 70.2 36.4 1683.1 7 
1916 65.9 84.8 86.4 141.5 216.9 222.9 145.5 284.4 190.5 150.9 84.7 23.5 1697.9 8 
1917 53.9 56.7 153.5 90.4 220.6 188.5 358.7 348.2 153.8 104.5 50.9 23.1 1802.8 9 
1918 45.3 95.8 103.5 257.5 253.0 318.8 297.4 232.4 236.2 77.1 48.4 58.4 2023.8 10 
1919 50.6 58.2 128.2 147.2 257.5 250.1 341.8 265.5 202.9 122.7 60.7 73.5 1958.9 11 
1920 44.8 148.4 108.0 196.1 249.0 206.5 308.7 308.6 138.2 91.4 77.8 20.0 1897.5 12 
1921 31.6 85.9 137.2 180.1 275.0 137.4 317.2 221.1 172.1 123.7 42.9 57.5 1781.7 13 
1922 77.4 98.5 116.5 143.7 243.2 257.0 267.5 193.2 163.4 106.7 71.7 23.3 1762.1 14 
1923 52.3 75.2 163.4 194.7 181.4 228.6 289.1 291.7 226.4 142.8 49.9 30.0 1925.5 15 
1924 24.6 59.2 157.8 168.0 250.3 238.0 273.9 238.0 217.8 118.7 54.3 62.4 1863.0 16 
1925 49.4 49.7 137.3 168.7 261.0 254.3 327.7 240.7 205.2 116.0 59.7 10.7 1880.4 17 
19Z6 27.4 56.1 187.7 220.0 186.4 288.6 300.3 236.9 221.7 93.8 60.5 30.5 1909.9 18 
1927 39.9 96.3 128.8 164.5 199.9 219.6 305.1 178.4 124.2 78.3 28.8 56.5 1720.3 19 
1928 42.6 102.7 116.2 168.4 278.4 195.7 285.1 258.1 199.2 94.3 45.0 38.9 1824.6 20 
1929 50.5 109.7 119.3 169.3 249.0 187.9 322.2 304.9 225.2 113.7 61.7 25.1 1938.5 21 
1930 100.7 85.8 169.5 142.7 254.2 219.0 320.6 305.6 192.0 125.9 54.1 40.7 2010.8 22 
1931 28.5 80.2 109.8 215.2 274.7 187.9 381.2 334.1 118.5 124.9 96.8 23.2 1975.0 23 
1932 65.4 97.0 94.6 147.4 246.3 297.0 195.2 237.7 235.3 115.1 37.8 63.0 1831.8 24 
1933 36.8 86.1 117.8 223.4 146.1 198.3 336.3 302.3 123.7 112.4 42.9 30.4 1756.5 25 
1934 56.7 118.8 136.5 237.5 236.2 301.0 236.2 270.2 155.3 126.5 34.2 43.8 1952.9 26 
1935 44.8 94.3 84.8 246.9 277.5 194.7 247.3 257.1 213.2 109.0 59.1 26.9 1855.6 27 
1936 54.6 70.5 121.6 168.5 174.0 212.9 313.3 295.0 181.4 130.1 52.3 36.6 1810.8 28 
1937 87.1 69.7 93.7 79.0 221.1 201.6 292.6 203.0 164.6 121.2 37.1 34.0 1604.7 29 
1938 30.7 78.0 110.5 175.9 313.1 292.1 314.6 253.9 161.6 132.7 68.4 52.6 1984.1 30 
1939 20.8 75.9 116.2 166.5 206.7 143.9 278.7 320.6 193.6 108.7 36.8 30.1 1698.5 31 
1940 42.9 63.4 109.0 167.2 242.6 329.2 236.5 266.1 180.1 73.9 48.6 37.6 1798.0 32 
1941 38.7 93.0 161.4 184.6 191.8 164.2 326.0 231.2 119.2 80.1 71.2 55.9 1717.3 33 
1942 51.2 75.7 101.6 120.6 140.0 192.7 236.4 291.0 175.1 116.3 61.3 44.8 1606.7 34 
1943 52.8 104.3 107.7 149.5 177.1 234.7 251.5 203.4 201.0 126.0 42.1 43.2 1693.3 35 
1944 50.9 80.7 155.7 121.4 213.0 201.2 259.1 179.9 167.0 108.0 38.5 42.2 1617.6 36 
1945 51.9 75.5 77.6 129.9 200.2 191.5 283.3 252.1 154.0 124.0 33.5 32.8 1606.3 37 
1946 38.2 42.0 95.2 88.4 287.1 135.7 232.9 267.7 144.9 122.6 66.5 17.8 1539.0 38 
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DATA SET 2 (continued). 

Monthly and Annual Total Hours of Bright Sunshine in Vancouver, B.C. 

Year Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Annual 

1947 35.8 94.6 149.0 169.5 223.1 199.3 259.5 264.5 193.2 72.9 54.5 15.9 1731.8 39 
1948 45.9 62.2 134.7 115.0 143.0 244.1 207.4 130.6 184.5 118.5 63.2 30.5 1479.6 40 
1949 83.3 91.9 105.2 128.5 271.7 237.9 247.3 165.6 209.6 136.6 50.6 43.5 1771.7 41 
1950 58.5 48.0 63.0 158.4 231.5 223.0 309.4 294.3 222.6 55.0 33.9 20.1 1747.7 42 
1951 35.9 82.2 121.7 290.0 203.7 300.2 316.6 276.8 201.2 81.5 33.3 29.1 1972.2 43 
1952 8.9 80.4 83.3 157.1 221.0 183.0 332.2 248.4 215.1 153.1 52.3 21.8 1756.6 44 
1953 17.3 62.8 94.3 118.9 189.9 101.6 278.3 195.5 169.0 107.4 37.0 20.0 1392.0 45 
1954 30.7 49.9 155.6 143.3 218.2 170.9 240.7 134.1 116.3 100.0 38.6 23.4 1421.7 46 
1955 12.8 78.7 106.8 191.2 182.9 162.0 196.5 309.1 148.2 81.3 51.5 37.1 1558.1 47 
1956 35.0 46.6 102.2 237.4 312.2 124.6 333.5 278.5 147.6 75.5 40.5 24.8 1758.4 48 
1957 69.1 79.1 96.6 159.5 248.1 190.7 201.7 245.8 227.1 135.2 66.3 36.2 1755.4 49 
1958 22.6 38.0 131.8 197.4 308.9 220.5 365.0 286.7 164.4 114.6 51.3 10.9 1912.1 50 
1959 43.7 56.2 77.3 182.9 236.3 219.9 331.9 220.3 128.5 92.8 71.6 32.1 1693.5 51 
1960 50.9 124.9 120.2 165.8 135.6 199.4 388.1 181.6 210.7 115.6 75.3 81.3 1849.4 52 
1961 45.0 30.3 80.4 119.9 203.5 322.6 310.9 293.8 152.8 137.8 80.8 20.9 1798.7 53 
1962 42.1 77.7 116.8 96.0 119.5 232.8 245.5 148.8 170.2 87.0 35.4 28.3 1400.1 54 
1963 69.2 62.6 98.2 91.3 277.6 146.1 177.5 225.3 166.5 78.6 42.0 18.5 1453.4 55 
1964 18.9 99.7 67.4 154.9 212.5 124.0 210.8 229.5 169.1 151.6 82.4 54.0 1574.8 56 
1965 39 76 222 168 253 330 310 225 179 111 46 52 2010 57 
1966 30 84 95 189 263 181 258 281 153 112 46 26 1718 58 
1967 42 83 123 151 177 275 319 340 215 74.3 74 47 1920 59 
1968 46 156 77 175 254 224 334 216.1 177 73.6 43 60 1836 60 
1969 70 103 152 106 280 247 311 215.8 131 165 71 21 1873 61 
1970 46 132 163 176 228 262 288 297 192.0 149 75 40 2048 62 
1971 37 86 127 152 264 112 352 260 150 127 42 41 2013 63 
1972 61 72 75 136 232 168 351 325 165 182 73 64 1904 64 
1973 59 88 106 219 259 207 280 263 192.4 74.1 39 29 1815 65 

SUMMARY OF RECORD BREAKTHROUGHS IN 65-YEAR SEQUENCES 

Precipitation 

Jan. Feb. Mar. Apr. May June Jul. Aug. Sep. Oct. Nov. Dec. Average 

Record Highs 4 5 2 3 6 4 5 2 6 4 4 5 4.17 
Record Lows 10 3 4 4 6 7 8 4 4 4 7 5 5.50 
Reverse Highs 7 3 5 8 42 5 3 4 4 6 5 2 4.71 
Reverse Lows 3 5 4 3 71 5 4 5 4 5 5 6 4.71 

Sunshine 

Record Highs 4 5 3 3 4 5 6 4 1 7 5 4 4.25 
Record Lows 4 6 7 5 7 5 3 5 4 6 4 7 5.25 
Reverse Highs 6 3 5 3 5 4 4 4 6 2 5 3 4.17 
Reverse Lows 6 4 4 6 5 4 5 6 7 3 5 5 5.00 

can be excluded (an almost valid assumption in Vancouver); and these 12 monthly precipitation 
sequences give an average of 5.42 lows. Similar counts of "backward" highs and lows are obtained 
reading the 12 sequences in reverse, from most recent back to the oldest observations. (Since the May 
precipitation for 1965, recorded with two decimals, ties the figure for 1966, I treat May 1965 as 1/2 in 
the counts of reverse order highs and lows.) Considering highs and lows, chronological and reverse 
order, the 48 sequences give an overall empirical average of 4.77 record breaking values per sequence 
(compare to the theoretical expectation of 4.76). 
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All these counts can be repeated for the monthly sunshine sequences in Data Set 2. 
The accompanying Summary of Record Breakthroughs shows all 96 counts (24 monthly data sets, 

considering highs and lows, forward and backward sequences). More than half of these 65-year-long 
sequences have exactly 4 or 5 breakthroughs. 

People I ask usually guess that there will be more than 5 record values in 65 years. In predicting the 
number of record highs for a much longer sequence, say 1,000 or 1,000,000 observations, human 
intuition, even among mathematicians and statisticians, is definitely extravagant compared to the 
simple model's expectations of 7.49 and 14.39, respectively. 

Over a long time, say a hundred or a thousand or ten thousand years, there may be shifts or cycles 
of climate; so the basic model of "interchangeable" weather years may not fit well. If climate trends 
are not negligible, then the actual probabilities for record breaking will differ from what the simple 
model predicts In fact, the observed frequencies of record highs and lows can be used to infer 
whether or not data are a random sample.* 

3. Tests of randomness. At a meeting of the Royal Statistical Society about twenty-five years ago, 
F. G. Foster and A. Stuart [14] pointed out that record low and record high annual rainfalls at Oxford 
were much more rare than record breaking performances (low times or high distances) in annual track 
and field competitions of the British Amateur Athletic Association. 

This contrast is not surprising: athletic recruiting and training have intensified over the past 
century; but no one has done much about the weather. Although athletic performances do fluctuate, 
there is an average trend over decades for national competitors (and, therefore, winners) to run faster, 
jump higher, or throw farther; while weather fluctuations over a century are more intuitively random, 
without dramatic linear trend. 

Of course it is possible for 100 random observations to be ordered so that the sequence has as 
many as 10 or 50 or 100 record highs. But detailed calculation [6] shows that the probability of 10 or 
more record highs in a 100-long random sequence is less than 5%. Therefore, in a situation where data 
are less familiar than rainfalls or race times, the mere finding of many record highs or lows suggests 
that the data are not a simple random sample; that is, an alternative hypothesis should be sought to fit 
the data better. 

Foster and Stuart [14] gave formal procedures using the sum or the difference of record high and 
record low frequencies to fit or to test the hypothesis of randomness. Other statisticians have also 
considered such inference procedures [3, 4, 14, 15]. 

* Returning to the Shearman brothers, I note that their locale of weather observation moved several times. 
Nonetheless, official records report precipitation for "Vancouver (City)" or "Port Meteorological Office" through 
1966. Beyond that date there are reports for 10 separate city locations, plus the University of British Columbia and 
Vancouver Airport. Since rainfalls at nearby city locations often differ by more than an inch in a single month, I 
have not extended the precipitation sequences in Data Set 1 beyond 1966. Also I omit 1903 and 1904 because some 
months of precipitation data are missing from official records for those years. 

For years since 1964 the monthly sunshine figures in Data Set 2 are taken from annual reports by the British 
Columbia provincial Department of Agriculture [5], because I could not find relevant annual publications by the 
federal Department of Transport. Although the provincial figures are derived from the same source, these monthly 
sunshine totals are rounded to the nearest whole hour, dropping one decimal. The provincial practice of first 
rounding and then adding the monthly figures may yield a different annual total than the federal total obtained by 
adding the monthly figures and then rounding-off. Moreover, other discrepancies which I noticed in comparing 
federal and provincial figures for 1960-1964 confirm that there are fairly frequent copying or typographic errors in 
one or the other publication (or both). Also the federal 1964 summary makes a substantial mistake in summing its 
own monthly sunshine figures to obtain its 1964 annual total. Apart from this addition error (which I noticed by 
accident) I have made no attempt in Data Sets 1 and 2 to find and correct the various errors carried over from my 
sources. 

To count record highs and lows in the monthly sunshine sequences, I have broken several ties between 
rounded-off figures by finding more exact values from daily weather summaries. 

... And there you have examples of the complications which arise in compiling real data, no matter how easy 
the job seems before you do it. 
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It can be shown that the number of forward and backward record highs, say R. and R ', for any 
sequence have exactly the same joint probability distribution as the forward record highs and lows, say 
Rn and Ln [4]. And, as sample size n -* oo, the counts of record highs and lows become approximately 
independent [141. 

4. Car caravans in a one-lane tunnel. When traffic moving in one direction is confined to a single 
lane, a slow car is likely to be followed closely by a queue of vehicles whose drivers wish to go faster, 
but who cannot pass. If there is no exit from this lane, then more and more following vehicles will 
catch up and be added to the slow moving "platoon" or "caravan" ... until there happens to be a 
following vehicle travelling at a lower speed. This vehicle will not catch up, but will accumulate its own 
caravan. 

Thus cars whose drivers all desire different speeds in fact will travel in caravans at actual speeds 
determined by record lows in the sequence of desired speeds. 

Applying the simple probability model to a random sequence of drivers, the frequency of record 
lows corresponds to the number of caravans formed by n drivers. And the numbers of trials between 
successive record breaking low values correspond to the lengths of caravans. 

Since caravans will be successively slower, separations between caravans will increase as time 
passes. G. F. Newell [29] used this reasoning to explain why cars near the exit of a long tunnel tend to 
travel faster and in smaller bunches more widely separated than cars in the tunnel near the entrance. 
This model of traffic flow also has been mentioned by other authors [13, 19, 29, 38]. 

5. Sequential strategy for destructive testing. Many products fail under stress. For example, a 
wood beam breaks when sufficient perpendicular force is applied to it; an electronic component ceases 
to function in an environment of too high temperature; and a battery dies under the stress of time. But 
the precise breaking stress or failure point varies even among "identical" items. 

Suppose that I can observe an item's exact failure point in a laboratory by gradually increasing 
stress (force, temperature, time, etc.). From such destructive testing of 100 items I could find all their 
failure points, say X1, X2,.. ., X100. But now suppose that I only need to find the weakest item in my 
sample: I only want the minimum value among failure stresses X1, X2,.. ., X1i. Then I need not stress 
most of the items to their failure points. 

The minimum failure stress among any batch of items can be determined sequentially. Test the 
first item until it fails, and record its failure stress Xi. Stop the next test (short of failure) if the second 
specimen survives this amount: so the second specimen's failure stress X2 is determined exactly if 
X2 < Xl; otherwise obtain only the "censored" information that X2> Xi, and hence Xl = 
min (X1, X2). In either case proceed to the third specimen and stop the test if this item survives a stress 
equal to min (XI, X2): so X3 is observed only if X3 < min (Xi, X2); but min (Xi, X2, X3) is always 
determined .... In general, the ii" item survives its stress test if X, > min (Xi.., X-,) = 

min (X,,.. ., Xi); or the test concludes with stress-to-failure if Xi = min (X,. .,X,) < 

min (XI,..., Xi-). In either case, the value min (X,.. .,Xi) is known after the ilh trial. 
The items destroyed in this sequential procedure are those with "record low" failure points. The 

frequency of such record lows fits the same probability model as the lows in a sequence of weather 
records. For a sample of n items, the expected number of items destroyed is 1 + (1/2) + (1/3) +... + 
(1/n). This harmonic sum grows very slowly compared to sample size n. For example, the sum is only 
5.19 when n = 100 and is only 7.49 when n = 1000 (see Table C). 

The sequential strategy to find the minimum value generalizes easily to find the 2,3,..., or j 
smallest values among Xl, X2, . . ., Xn. To begin, test j items until they fail, at stresses XA, X2, . . ., XA. 
Thereafter stop the ith trial if the item survives the j lowest failure stresses among all i - 1 previous 
specimens. The probability of stress-to-failure for the ith item (i > j) is the probability that it is among 
the j smallest of i independent observations from the same continuous distribution: all ranks are 
equally likely for Xi, so the desired probability is jli. The expected number of items destroyed is the 
sum of failure probabilities over all trials: 
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If j is much less than the sample size n, then so is the expected number of failures. For example, to 
find the weakest 4 items in a sample of 1000, I expect to destroy only about 26; and to find the weakest 
8 items I expect to destroy less than 50. 

For some sorts of failure distributions, notably the exponential ([13] page 41), the minimum or the 
j smallest failure stresses from a sample can be used to estimate the theoretical mean of the failure 
distribution. Usually, however, the sample minimum is used to estimate a low percentile rather than 
the mean or median of the failure distribution. 

6. Tolerance limits for failure distributions. A building code may prohibit use of a particular type 
of structural component unless it has probability at least .95 of surviving some severe stress x. In other 
words, the failure distribution's fifth percentile should satisfy x.05 > x. It is safer to under-estimate the 
percentile x.05 than to over-estimate; so consider the lowest failure point observed in laboratory 
testing. In a very large sample it is highly probable that the breaking strength of the single weakest 
item is below the x.05 value. It can be calculated, for example, that sample size n = 90 is sufficiently 
large to assure that x.05 > min (Xl, X2,.. ., X.) with probability .99; so when this sample minimum 
exceeds x, the inference x.05> x has ".99 confidence." 

The smallest value in a random sample of size n _ 90 also is called a level .99 tolerance limit for 
x.05, the fifth percentile of the sampled distribution. 

The tolerance limit interpretation of small order statistics is about thirty-five years old [26, 41, 45]. I 
encountered this subject when I joined a Statistics Committee of the Study Group on Wood Stresses 
under auspices of the Canadian Standards Association. (Vancouver's lumber export is important 
enough to be illustrated on the cover of the Annual Meteorological Summary [25] cited before.) The 
1970 "Tentative Method for Evaluating Allowable Properties for Grades of Structural Lumber" [1] 
mentioned the sample minimum (n = 90) as a level .99 tolerance limit, although it did not suggest the 
sequential strategy for finding it. 

The 2nd smallest sample value is a level .99 tolerance limit for x.05 when sample size n ' 130; and 
the 3rd smallest sample value is a level .99 tolerance limit when n _ 165. In general, the jth smallest 
sample value is a level .99 tolerance limit for the fifth percentile when n ' nj, where values n, are given 
in Table A for j = 1, 2, 3,..., 15. The greater the value of j, the less the variability of the corresponding 
tolerance limit and the less its conservative bias. 

This table also gives values m,, the mean number of failures (items destroyed) in sequential 
examination of n, items to find the j weakest among them. Because the ratio mj/n, is about 1/10, I can 
afford a sample size about 10 times the number of items I can actually afford to break. For example, 
Table A shows that I must sample at least 228 items to use the 5th weakest as a level .99 tolerance limit 
for x.05; but I expect to destroy only 23.63 of the 228 sample items. 

Table A can be used in finding not only level .99, but also level .75, .90, or .95 tolerance limits for 
the fifth percentile. As the confidence level attached to the sample minimum is increased from .75 to 
99, notice that sample size must be tripled, from 27 to 90; but the increase in expected failures, from 
3.89 to 5.08, is slight. Hence, level .99 may cost little more than level .75 tolerance limits. 

Table B similarly gives sample sizes nj and expected failure numbers m, for finding percentile x.o1 
tolerance limits, at confidence level .75, .90, .95, or .99. 

By now my writing has gone past the point I could ever carry a conversation. Often it is just as well 
to leave some air of mystery about how to calculate the minimum sample sizes in Tables A and B. But, 
of course, for a mathematician this computation is quite elementary. 
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TABLE A. Non -parametric Tolerance Limits for Fifth Percentile, x os 

The jth smallest order statistic from a sample of n items is a non-parametric tolerance limit for the sampled 
distribution's fifth percentile if sample size n ' n, where n, is given in the following tables for confidence level 
-y = .75, .90, .95, or .99; that is, X,,) < x 0 with probability = y. The sequential strategy to find the jth order statistic 
is expected to destroy m, of the n, items sampled. 

y = .75 

j n, m, m,/n, 

1 27* 3.89 0.144 
2 53 8.11 0.153 
3 75* 11.45 0.153 
4 101* 15.66 0.155 
5 124* 20.59 0.166 
6 147* 24.73 0.168 
7 170 28.86 0.170 
8 192 32.96 0.172 
9 215 37.09 0.173 

10 237 41.18 0.174 
11 259 45.28 0.175 
12 281 49.37 0.176 
13 303 53.46 0.176 
14 325 57.55 0.177 
15 346* 61.60 0.178 

y = .95 

nj Ml m, /n, 

1 58* 4.65 0.080 
2 93 9.22 0.099 
3 124 13.70 0.111 
4 153 18.11 0.118 
5 180~ 22.45 0.125 
6 207* 26.77 0.129 
7 234 31.09 0.133 
8 260 35.38 0.136 
9 285* 39.62 0.139 

10 311 43.90 0.141 
1 1 336 48.14 0.143 
1 2 361 52.37 0.145 
1 3 385* 56.57 0.147 
14 409* 60.77 0.149 
1 5 434 65.00 0.150 

y =.90 

n, m, m1/n1 

1 45 4.39 0.098 
2 76* 8.83 0.116 
3 105 12.46 0.119 
4 132 17.52 0.133 
5 158 21.80 0.138 
6 183* 26.04 0.142 
7 208* 30.27 0.146 
8 233* 34.50 0.148 
9 257* 38.69 0.151 

10 281* 42.88 0.153 
11 305* 47.07 0.154 
12 329* 51.26 0.156 
13 353 55.44 0.157 
14 376* 59.59 0.158 
15 399* 63.74 0.160 

y = .99 

j tn, m, m,/n, 

1 90 5.08 0.056 
2 130 9.90 0.076 
3 165 14.56 0.088 
4 197* 19.12 0.097 
5 228* 23.63 0.104 
6 258* 28.09 0.109 
7 287* 32.52 0.113 
8 315* 36.91 0.117 
9 343* 41.29 0.120 

10 371 45.66 0.123 
11 398 50.00 0.126 
12 425 54.33 0.129 
13 451 58.63 0.130 
14 477* 62.92 0.132 
15 503* 67.21 0.134 

* Asterisk indicates sample size n, such that P {X(",) < x.05} < -y, but the probability is as close as possible to y 
(I) 

(i.e., for sample size n, + 1, the probability P {X"'tj < x.05} > y and the excess over y is of greater magnitude than 
(I) 

the deficit for sample size n, ). Absence of an asterisk means sample size n1 is such that P {X'"2 < x.05} ' y and the 
(j) 

probability is as close as possible to y. 

For any proportion p, the p th percentile of a continuous probability distribution F can be defined as 
the unique value x, such that F(xp) = p. In terms of the distribution's inverse function, the pth 

percentile x, = F- (p). It is not difficult (see [8], page 7) to show that the jth smallest order statistic 
X(7) from n sample observations will satisfy X,n) < xp with probability 

n n 1Fn - 
(n 

i=j I = 
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TABLE B. Non-parametric Tolerance Limits for First Percentile, x 0, 

The jth smallest order statistic from a sample of n items is a non-parametric tolerance limit for the sampled 
distribution's first percentile if sample size n '- n,, where n, is given in the following tables for confidence level 
y = .75, .90, .95, or .99; that is XU"I < x.01 with probability = y.'The sequential strategy to find the jth order statistic im ) 
is expected to destroy m, of the n,i items sampled. 

y = .75 

j n, ml m, /n, 

1 138 5.51 0.040 
2 268* 11.34 0.042 
3 391* 17.14 0.044 
4 510 22.92 0.045 
5 626* 28.67 0.046 
6 741* 34.42 0.046 
7 855 40.15 0.047 
8 967* 45.87 0.047 

y = .95 

j n1 m, m,/n, 

1 298* 6.28 0.021 
2 473 12.47 0.026 
3 627* 10.56 0.030 
4 773 24.58 0.032 
5 913 30.56 0.033 

y = .90 

j n, ml m,/n, 

1 229* 6.01 0.026 
2 388 12.08 0.031 
3 531 18.06 0.034 
4 666* 23.98 0.036 
5 797* 29.88 0.037 
6 925* 35.75 0.039 

y = .99 

j n, ml m,/n, 

1 458* 6.71 0.015 
2 661 13.14 0.020 
3 837* 19.42 0.023 
4 1001 25.62 0.026 
5 1157 31.74 0.027 

* Asterisk indicates sample size ni such that P{X, < x.}01 < y, but the probability is as close as possible to y 
(i.e., for sample size n, + 1, the probability PIXsj < x.o1}> y and the excess over y is of greater magnitude 
than the deficit for sample size n,). Absence of an asterisk means sample size n, is such that P {X(7,) < x01} _ y and 
the probability is as close as possible to y. 

The subtracted sum is a binomial tail probability which can be evaluated using binomial tables (or a 
normal approximation) or a calculator. Since this sum vanishes as sample size n -) 00, one can find, for 
any fraction y, a sample size nj (y) so large that the event xp > X,n ) has probability _ y for all 
n _ nj (y). 

Clearly this construction of tolerance limits is distribution-free: sample size n, (y) does not depend 
on the form of the continuous distribution function F(x) = P{Xi < x}. 

7. Persistence of record breaking and divergence of the harmonic series. No matter what the 
present precipitation record may be, it is certain that eventually there will occur a year with more rain. 
No matter how many record breaking years have been counted to date, there will be always one more. 
Such unit increments make the count of record breaking years arbitrarily large as the years of 
observation increase indefinitely. 

These statements about rainfall interpret a specific mathematical theorem (and suggest its proof). 
From this point onward I emphasize formal limit results rather than applications of the theory of 
record values. 

Formally, suppose that identically distributed random variables X1, X2,.. ., Xn are exchangeable 
(in particular, it suffices that the sequence of random variables be independent). The observation Xi is 
called a record high or upper record value or ladder value * if Xi strictly exceeds all previous values in 
the sequence. For example, there are 3 record highs in the first 10 years of January sunshine figures 

* A term used by Feller [12]. 
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(Data Set 2): 

55.3, 45.5, 14.4. 44.2, 43.3, 38.7, 57.7, 65.9, 53.9, 45.3. 

In this sequence the record highs are XI = 55.3, X7 = 57.7, and X8 = 65.9. Assume that exact ties have 
zero probability (arbitrarily precise measurement from a continuous distribution). Then Xi is a record 
high if and only if Xi = max (X1, . .., Xi). Since all i ranks are equally likely for Xi, an upper record 
value (maximum rank) has probability 1/i at the ih trial. 

Let Rn denote the number of record highs among the first n observations. A formal version of the 
statement at the beginning of this section is the following theorem: 

The count of record highs Rn ?-*o with probability one as sample size n -- .00 

To prove this proposition, consider an initial sequence of n, observations XI, X2, .. ., X", and a 
further batch of n2 observations Xn,,1.. ., Xnl+n2. The probability that this additional batch contains 
no new record value is 

PjRnj= Rnl = P{max(Xl, . . 9,,) = max(X,,.. ., X*+j2)} - + 

the ratio of the initial sample size divided by the total. By taking batch size n2 sufficiently large, I can 
make this probability as small as I wish. And I can repeat this procedure for many successive batches, 
choosing sizes n2, n3,.. . n, to satisfy 

n,+n2</ 

(n, + n2) < Elr 
(n, + n2)+ n3 

(n, +**-+ nr-1) 4 

(n1+* +fnr-t)+nr< 

so that, for arbitrary E >0, 

E P{no record value in klh batch} ? r(Eir) =,e. 
k =l 

But the probability of obtaining at least r record highs in a sequence with length n _ ni + n2 +.*. + nr 
is then 

P {R > r} -> P {at least one record high in each of r batches} 

= 1 - P{at least one of r batches has no record high} 
r 

?1- , P{no record high in kth batch} 
k = I 

>1-E. 

Since E is arbitrarily small, conclude that P{Rn > r}-* 1, for arbitrarily large integer r. That is, the 
number of record highs Rn -? oc in probability as sequence length n -* Oo. Because the sequence 
RI c R2 ?*** is monotone, it follows that also Rn -a oo with probability one. 

Viewed in the theory of recurrent events [12], record breaking is a persistent phenomenon. 
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That the expectation E(Rn)-- oo is immediate: for any integer r and n ? n I+ n2+ .n+f 

as above, 
n n 

E(Rn) =E kP{Rn = k} E kP{Rn = k} 
k=l k=r 

_rP{Rn r} > r(1- e). 

In fact, the preceding argument is an obvious modification of the classic harmonic divergence proof 
with batch sizes nk = 2k-' and n = ni + n2 + * + nr. The nth partial harmonic sum is: 

1+2+3+ h+ 1/n = 1+ + 1) 

+ (4 + 5 + 6 + 7) 

2r-1 terms 

> 1 +2/4+4/8+ * * * +2 r1/2r= (r + 1)/2. 

The other harmonic divergence demonstration which is popular in calculus texts shows n=X i-l 
fnx-'dx = ln(n). 

Several arguments in subsequent sections exploit these properties of the harmonic series. 

8. The frequency of record breaking. Define binary variates to indicate the trials at which record 
highs occur in the original sequence: 

1 if X, = max (X1, X2,.. X,) 

Y. = 

0 otherwise, 

with expected value and variance given by 

E(Y,) = PI Yi = 1} = P{Xi = max(X7,..., X)} = lIi, 

V(Y.) = E( Y2)-_ [E(Y. )]J2 
= 1/i - 1/i2. 

Any distinct pair Yi and Y, (say i < j) are uncorrelated since 

E(YY, )= P{Y, = 1 and Y, = 1} 

=P{X, = max (X1,..., X,) and X, = max (X1,...7 X,)} 

=P{Xi = max (X17 ** *7X, ) < max (X,,.. *. *7X} X} } 

=P{X, = max (X1, . . .* X, )} 

x P{max (X1, .. ., X) < max (X, +*X} )} 

xP{X, = max (X,+ * X, )} 

l1/iu1 1 
i j j-i ij 

=P{Y, =1} P{Y, = 1} = E(Y,)E(Y,). 

Thus the random number of record highs among X1, X2,.. ., Xn is Rn = Y, with expectation 
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and variance given by 
n n 

E(Rn) = E(Y) =Eli 

i=l i= l = n n n 

V(Rn) =EV(Yi) = 1li- 11i2. 

Since 

1 n~~~~~~~~~' 1 IT2 
7 -ln (n) Euler's constant = .5772 ... and 2 1.6449..., 

logarithm tables (or electronic calculators) easily give approximations for E(Rn) and V(Rn). Also 
both expressions are evaluated numerically in Table C for selected values of n: I find that the actual 
numbers surprise mathematicians as well as people who know little about logarithms. 

TABLE C 

Expectation, variance, and standard deviation of R", the number of record values 
in a random sequence of n independent and identically distributed observations 

E(Rn) =El/i V(Rn) = 
E, l/- I1i2 

n E(Rn) V(Rn) /V(Rn 

2 1.50 .25 .50 
3 1.83 .47 .69 
4 2.08 .66 .81 
5 2.28 .82 .91 
6 2.45 .96 .98 
7 2.59 1.08 1.04 
8 2.72 1.19 1.09 
9 2.83 1.29 1.14 

10 2.93 1.38 1.17 

20 3.60 2.00 1.41 
30 3.99 2.38 1.54 
40 4.28 2.66 1.63 
50 4.50 2.87 1.70 
60 4.68 3.05 1.75 
65 4.76 3.13 1.77 
70 4.83 3.20 1.79 
80 4.97 3.33 1.83 
90 5.08 3.45 1.86 

100 5.19 3.55 1.88 

200 5.88 4.24 2.06 
300 6.28 4.64 2.15 
400 6.57 4.93 2.22 
500 6.79 5.15 2.27 
600 6.97 5.33 2.31 
700 7.13 5.49 2.34 
800 7.26 5.62 2.37 
900 7.38 5.74 2.40 

1000 7.49 5.84 2.42 

1,000,000 14.39 12.75 3.57 
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The variance V(Rn) gives bounds on the probability of destroying too many items in a sequential 
strategy for destructive testing. In particular, a one-sided Chebyshev inequality ([13] page 152) implies 
that 

PIR, i- rlV(R,) 1 PtR > } 
-V(Rn,) +[r - E(Rn)] 

For example, the values of E(Rn) and V(Rn) in Table C imply that P{Ri? 9} ' .14 and 
P{ R oo ' 18} ' .05 (and actually these bounds are quite conservative since detailed calculation [6] 
shows P{R. 9}= .022). 

In a later section I show that the binary variates Y,, Y2, Y3,... are independent as well as pairwise 
uncorrelated. Because of this independence, general limit theorems can be invoked to show more 
precisely how the random sum Rn = , Yi grows ptobabilistically like ln(n). I have noted that 

n n 
(i) E(Rn E(Yi) = 

and that ln(n) approximates the expectation E(Rn) for large n, so that 

V(Yn) 1 

[E (Rn ) 
]2 n [In (n) ]2 

and consequently 

(ii) n E(Y n=1 [E(Rn< 

Invoking Kolmogorov's convergence criterion for sums of independent random variables ([24] page 
238), conditions (i) and (ii) imply that the sequence Rn/E(Rn) -*1; and hence Alfred Renyi [30] 
obtained the following "strong law of large numbers" for the frequency of record highs (since 
E(Rn )/Iln(n)-) 1): 

Rn/Iln(n)- >1 with probability one as sample size n --oo, 

which implies the divergence Rn ->oo discussed in Section 7. 

Similarly, the criterion of Liapounov ([24] page 275) gives a "central limit theorem" for the 
frequency of record highs: as sample size n -> o, the limit distribution of (Rn- ln(n))/Vln(n) is 
normal with mean = 0 and variance = 1. (Renyi also gave a "law of the iterated logarithm." Resnick 
[33] later derived all these limit theorems from results concerning counts in a continuous-time Poisson 
process; see the end of Section 12, below.) But "the asymptotic distribution is a very poor 
approximation for n - 1000 say, which is the only region of much statistical importance" [4]. 

The exact probability that Rn = r is complicated. Instead, consider R2n - Rn the number of record 
highs over trials n + 1, n + 2,..., 2n. In particular, 

P{R2n - Rn = 0} = P{no record high for n + 1 ' i ? 2n} 

= P{ max (Xl, . . ., Xn )=max (Xl, . . ,X2n ) 

= n/2n = 1/2. 

In general, the count R2n - Rn has asymptotically a Poisson distribution with mean = ln (2): that is, for 
k =0,12, .... 

P{R2n - Rn = kj-> 2 asn[ln 
(2)1k X 
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One proof uses the probability generating functions gi (s) = E(s Y I) = 1 + (s - 1)/i associated with 
the binary variates Yi. Since R2 - R= Y.+1 + Y.+2 + +Y2n, and the binary variates are 
independent, this sum has generating function given by 

2n 2n 

hn (s) = Hl gi (s) = l [1 + (s-1)i]. i=n+l i=n+l 

Take logarithms of both sides and use the Taylor series expansion In (1 + x) = x - x2/2 + x313 - * to 
obtain 

2n 

In [hn (s)] = l n[l +(s -1)/i] 
i =n s 

= [ i 2i2 + i3 

=(S-_ 1) I I sH sH 

i=n+l 2 i=n+l i i=n+l 

As n a0, all of the above series tails vanish except for the harmonic initial term, which converges to 
(s - 1)[ln (2n) - In (n)] = (s - 1)ln (2). This limit is the logarithm of a Poisson generating function with 
parameter In (2)... . The argument can be generalized to prove the following theorem first stated by 
Dwass [10]: 

As sample size n --oo, the frequency of record highs among observations indexed by an < i ' bn (for 
any b > a > 0) is asymptotically a Poisson count with mean ln(b /a). 

9. Serial numbers of record breaking trials. Rather than Rn, the random number of record highs 
in n trials, consider now the random serial number N, of the trial at which the rth record high occurs. 
The number N, is called simply the rth record value time. Since I count the initial observation as a 
record value, R1 = 1 and N1 = 1. In general N, - r and, for n ' r, 

P{N, <n} = P{Rn > r}. 

In particular, the record time N2 has probability distribution, over the integers i = 2,3,..., 
given by 

P{N2= i} = P{X, = max (X1,..., X-l < Xi i 

Since this probability is strictly decreasing for i = 2,3,..., the mode = 2; but the mean is 

E(N2)= , iP{N2=i}= _i 1=a. 

Since N2 < N3 < ..., it follows that E(N,) = 00 for all r ' 2. More surprising, an argument in the 
next section shows that E(N,+i - N,) = a). 

To study joint distribution of N,, N,+i I must indicate why the binary variates Y1, Y2,..., Yn 
defined in the preceding section are independent (a condition needed earlier to prove the Renyi and 
Dw'ass limit theorems). Consider the event that Y1, Y2,..., Yn include exactly r ones, at trials 
1 = il < i2< ... < i, c n. This event corresponds to 

max (X1,.. ., X,21) <max(Xi2,... ., Xi,3) <... <max (Xi,,..., Xn), 

11 11 11 
Xi Xi2 xi, 

which is the intersection of independent events of the form 
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max (Xl, . .., Xi-,) < max (Xi, . .., Xi) = Xi, 

with i = ikl and j = ik - 1 or j = n. This component probability is 

j-(i-l) 1 1 
i j-(i-1) j' 

so the desired joint probability is the product 

(i2 - 1) i3 - 1) *(ir - )n 
It is easy to check that the product of marginal probabilities for Y2 = 0, Y3 = 0,..., Yi2-1 =O Yi2 = 1 
Yi2+1 = 0,... gives the same expression: 

1 2 3 i2-2 .1 i2 1 1 

2 3 4-i2-l i2 i2+1 (i2-1)(i3-1) 

The joint distribution of serial numbers N2, N3,..., Nr is therefore given by 

P{N2= i N3 i3* ** Nr= i} =(i2- 1) (i3-1) ***(i - 
1)iri 

for 1 < i2 < i3 < ... < ir. The general marginal distribution is complicated, but expressions have been 
given by various authors [7, 19, 30, 37]: 

P{Nr = n}- = ISrn--l I /n!, 

where the numerator uses Stirling numbers of the first kind. Renyi [30] and David and Barton [7] used 

Stirling numbers to show that 

P{Rn = r} = 2 P{Rn = r; N2 =i2, N3 = i3,.. . Nr = ir } 
2:%i2<k3< .. cir, n 

=1 E _1 
n 2:,i2<i3< ..*<ir:6n (i2 1) (i3 1) (ir 1) 

[I (n (n)r 
(r - n) n(r-1) 

for large sample size n. But this approximation also can be derived using generating functions as in the 
preceding section. (Or see [21], page 267.) 

Renyi [30] treated limit theorems for Nr as duals of theorems for Rn. First, there is a "strong law of 
large numbers": 

In (Nr) 1 with probability one as r -aoo; 
r 

or, equivalently, 

Nl'r e with probability one. 

This last result says that almost every sequence of chance observations X1,X2,X3,... from a 
continuous distribution will give an arbitrarily precise estimate of the mathematical constant e, even 
when the distribution function is unknown to me! I need only the serial numbers of trials at which 
record highs occur. (This approach differs somewhat from statistical determinations of e or of ir in 
experiments such as "matching" or "Buffon's needle problem" [12]. In those situations, a particular 
event probability is a function of e or of ir; and this probability is estimated by the relative frequency 
in repeated trials.) 



18 NED GLICK [January 

Also Renyi [30] stated a "central limit theorem" for the random variables Nr: as r --* o, the 
distribution of (ln (Nr) - r)I\/r is asymptotically normal with mean = 0 and variance = 1. 

Renyi also gave a "law of the iterated logarithm" for N,. Resnick [33] again derived Renyi's limit 
theorems for record times from a more sophisticated result. And Vervaat ([44] page 323) gave a 
Wiener process generalization of Renyi's N, central limit theorem. 

Returning to the distribution of the second record time N2, described at the beginning of this 
section, notice that for n = 2,3,4, ... . 

P <2n ) P{N2 > n} = *E P{N2 =i} 

i=n+l (i lii=n+l Vi1i Jn 

A similar result holds for record time N3 and conditional probability of the event N3> n, given that 
the preceding record time N2= m. More generally, for n > m -' r, 

P{N+<m Nr=m =P{Nr+I>nlNr=m} 
= P{no record high for m + 1 i 'n INr = m} 

= P{max (Xi,.. .,Xm )=max(Xi,...,Xn)INr = m} 

= m/n. 

Any real x in the interval (0, 1) can be approximated by a rational ratio mr/n; and Tata [43] gave the 
following limit theorem: 

The distribution of the ratio NrINr+i is asymptotically uniform over the unit interval: that is, for 
0< x < 1, 

P{$ <x1-x as r -oo. 

The proof suggests duality between this result and the theorem of Dwass in the preceding section. 
Given that the rtb record high occurs at trial N, the conditional probability 

P{N < Nr =P{Nr+i>2Nr,Nr} 

= P {no record high for Nr + 1 i -' 2N, I N,} 

= P{R2N,- RN, = O|N}Nr= Nr2Nr 

= 1/2, 

independent of N,. Similarly, for 0 < x < 1, 

P{Nr+<XjN =P{Nr+i> XN Nr [NrX 

as r -> oo, independent of Nr. (Here [N,/xJ means "the largest integer-- NrIx.") 
The argument also indicates, as Shorrock [37] and later Resnick [33] proved, that successive ratios 

N,/N,+1, Nr+I/Nr+2, ... are asymptotically independent uniform variates. In other words, Shorrock's 
theorem shows that an unknown continuous distribution can be used to approximate a uniform 
random number generator! I need only the numbers of the trials at which record highs occur in the 
original randomly sampled X1, X2, X3,.... 
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Tata's argument requires the asymptotic probability that the count (R[n,XJ- Rn) = 0. In the 
preceding section, however, the theorem of Dwass gives more: the asymptotic Poisson probability that 
(R[n/x- Rn)= k, for k = 0, 1, 2. Therefore, for any positive integer s and real x in the 
unit interval, 

p{ Nr <x N) P{Nrs >/ NrJ= P{R[N/ -RN < SIN} 

s-1 s-1 

= PIR[N,x] -RN, = k I NI,} >x (-In (x))'l k! 
k=O k=O 

as r -> 00, independent of N,. Thus a dual of the Dwass theorem generalizes Tata's result: for 
s=1,2,3,... andO<x<1, 

4p$ii <x1--* x>f(-ln(x))kIk as r -* oo. {N,+s ) k=O( ()/ 

10. Waiting times between record breaking trials. Now consider the wait from the rth to the 
(r + 1)St record breaking trial: denote this inter-record waiting time by Wr = Nr, - N,. 

Record breaking must occur infinitely often; but it turns out that the inter-record waiting time 
distributions have mean = 00, although mode = 1. These results, first proved by Chandler [6], can be 
deduced from independence of the binary variates Y1, Y2,... via the following arguments. 

P{Wr = k I N;}j = P{Nr+l = Nr + k I Nr}I 
= P { Y, = O for Nr + 1- i N + k-1,YN,+k= 1 | Nr } 

Nr Nr + 1 Nr + k-2 1 N, 
Nr+1 Nr+2 Nr+ k-1 Nr+k (Nr + k-1)(Nr + k) 

This expression is monotone decreasing as k increases; so, for any value of N, P { Wr = 1 N, } 
P{Wr = k I N }, for k = 1, 2, 3, . Taking expectations, P{ Wr = 1}> P {W = k}; that is, the most 
probable value or mode = 1. 

P{N, = i, Wr = k} = P{N, = i, Nr+l = i + k} 

=? P{N2= 2, N3= 3,..., Nr 1 = r-1,Nr = i, N+1= i + k} 

1 
(2)(3) (r-2)(i-1)(i+k-1)(i+k) 

1 1 _ 1 
=r!(i-1) Vk+i-1 k +iJ 

and hence, for any integers m and i ' r, 

P{Nr= i r > } '! (i - 1) kl=m( k + i-1 k + i) 

1 1 1 _ 1 
r!(i-1)(i-1+m) r!m i-l i-l+m 

The marginal distribution of W4 satisfies 

P{Wr m}l= P{N, = i Wr > m}l 1 (- i m r! mi= 

1 r+m-1 

r!.m =r i-l 
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and therefore, for arbitrarily large integers m, 
00 

E(W,)= > kP{W, = k}?- mP{W, -' m} 
k=1 

1 r+m-1 

=r! i=r - 

It follows from the divergence of the harmonic series that E(W,) = a). 
In other words, if I pay a fixed fee and receive in return a variable dollar amount equal to the 

waiting time W, then my expected gain is positive and my gamble is not a "fair game" no matter how 
high the fee. 

An alternate demonstration that E(Wr) = 00 assumes that observations X1, X2, X3,... have 
exponential distribution F(x) = P{Xi < x} = 1 - e-X, for x > 0. This assumption is.harmless because 
the preceding section shows that record times N, and hence inter-record waiting times Wr, have 
distributions which do not depend on F (only that it be continuous). The conditional probability that 
waiting time Wr > m, given that the rth record value XN, = x, is just the probability that independent 
Xi <x for indices Nr + 1' i- Nr + m; viz., conditional probability is [F(x)]m = (1-e- x)m for 
exponential sampling. Moreover, Section 11 shows that the record value XN, from exponential 
sampling has a gamma density. Hence the unconditional probability that Wr > m can be represented 
(independent of the distribution F) as the integral of (1 - e-x )m with respect to a gamma density: 

P{Wr >m}= P{Wr > m I XN, = x}dP{XN, = X} 

(1 - e-x )mxr-l e-xdxI(r - 1)! 

or 

P{Wr = m}= P{Wr > m - 1}- P{Wr > m} 

J [(1_e-x )m1-(1- ex)m ]xrl e-xdxl(r - 1)!. 

Notice that the geometric series 

E m [(I -e-x)M-t- le-x )m= E (I -e-x )m-l 
m=l m=1 

1- (1- ex)ex; 

so (as already showed by a different argument) the expectation 

E(Wr) = , PW, =m}l=JXd 

(I am trying to avoid integral calculus in this paper, but the preceding argument is too ingenious 
to omit.) 

For large values of r, the gamma can be approximated by a normal density. Neuts [27, 28] used 
such approximation in the integral expression for P{ Wr > m } to prove a "law of large numbers" for 
waiting times: as r - , 

In(W) 
r 
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in probability (also: with probability one [20]). By the same method, Neuts gave a "central limit 
theorem": as r -* 00, the distribution of (in (Wr) - r)IVr is asymptotically normal with mean = 0 and 
variance = 1. There is also a "law of the iterated logarithm" for waiting times [42]. Shorrock ([36] 
page 222) and Resnick ([33] page 867) include these limit results in more general theorems for 
inter-record waiting times. 

The remarkable similarity between limit theorems for record times and for inter-record waiting 
times suggests that the wait Wr for the next record value is somehow comparable in scale to the sum of 
all past waiting times WI + W2 + ' ' ' + Wri, = Nr - 1. Resnick [33] connected the limit behaviour of 
Wr and Nr in the following theorem: with probability one, 

lim sup Iln (Wr) - In (Nr)L|=1 
irn-- 

su In (r) 
Since Wr er in some probabilistic limit sense, successive waits must have increasing median 

values, although they all have mode = 1 and mean = mo. Numeric computations [19] show that 

median(Wr+i 
e= 2.718 ... 

median (Wr) 

even for r = 45 5, 6,7, 8. Note that "small r" does not mean "small sample size": Table C shows that 
fewer than 8 record highs are expected in a sample of size n = 1000. 

r 2 3 4 5 6 7 8 

median (W,) 4 10 26 69 183 490 1316 

med(-W,)/med (W,_,) 2.50 2.60 2.65 2.65 2.68 2.69 

The end of the preceding section found independent uniform limit distributions for NrINr+, and 
Nr+iINr+2; and hence, as r -- 00, the waiting time ratio 

Wr+i Nr+2 - Nr+1 (Nr+2INr+i) - i 
Wr Nr+1- Nr 1- (NrINr+i) 

asymptotically has the same distribution as 

(1/V?- 1 Vor - 1 
1 - U L 

U 

where U and V are independent random variables uniform over the interval (0, 1). For any x > 0, 

P{i , >x =P{VV<(xU+1yl} = J I dvdu 

=1 xdu ln(l+x) 
x JOxu + 1 x 

Thus Shorrock [37] obtained the following limit result for ratios of waiting times: for any x >0, 

{ W , x -* as r -oo. 
Jr x 

11. The record value sequence. Little has been said so far about actual record values, i.e., 
magnitudes. Rather I have focused on frequencies and serial positions of record values. 

Results concerning the record frequency Rn in a random sample X1, X2,. . ., X,, or concerning the 
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index number Nr of the rth record value trial are distribution-free results: they presume identically 
distributed and independent (or exchangeable) random variables sampled from a continuous 
probability distribution; but the distribution function F never appears in the theorems. 

The actual record values X1 < XN2 < XN3 < XN4 < ... present a quite contrary situation. Results 
concerning this record value sequence per se definitely depend on the particular distribution F, but do 
not involve positions in the original random sequence. 

Many properties of the record value sequence from continuous distribution F can be stated most 
conveniently in terms of the transform 

G(x)= -ln[1- F(x)]. 

The derivative G'(x) = F'(x)I[1 - F(x)] is the failure rate or hazard rate which plays a central role in 
mathematical theory of reliability (see [2] p. 53). Both F and G are strictly increasing functions over 
their support intervals, so there exist respective inverses F1 and G', 

G1 (x) = F-'(1- e-x ). 

Specific examples will illustrate the distinction between distribution-free results for record value 
times in random sampling and distribution-dependent results for the record value sequence itself. The 
theorem of Dwass at the end of Section 8 asserts that, for 0 < a < b, the count of record value trials 
indexed between an and bn has asymptotically a Poisson distribution with mean In (b/a). This result 
clearly is asymptotic (valid as n -m oo) since there can be at most (b - a)n record indices between an 
and bn, while Poisson distribution permits an arbitrarily large frequency. By contrast, for any a <,p 
such that 0 < F(a) < F(/3) < 1, arbitrarily many of the records X1 < XN2 < XN3 < * * can take values 
between a and P3. Dwass [10] proved that this count is exactly Poisson distributed, but with mean 
G(P)- G(a) = - ln{[1 - F(f3)]/[1 - F(a)]}, depending on the distribution function F. 

The fact that exact distributions are obtained more easily than most limit results for record values 
is a further contrast to results for record value times. 

The distribution of the rth record value was required in the preceding section's calculus argument 
concerning waiting time W,. Let positive integers wl, w2, .. ., w,-, denote fixed waits, and specify fixed 
trial numbers n2 =1+w1, n3=n2 +w2,..., n,=n, l-+w,l. Consider a random sample X1,..., 
Xn2,..., X..,... such that 

Xi = x1 > next (w, - 1) observations 

Xn2= x2 > next (w2 - 1) observations 

X., = X,. 

Since X1, X2, X3, ... are independent and identically distributed with P {Xi <x} = F(x), the event 
above has probability 

dF(x1) [F(x)] (w 1) 

x dF(X2) [F(X2)](w21) 

? dF(xr-1) [F(xr-1)]' Il 

x dF(Xr), 

where dF(x) = F'(x)dx and the derivative F' is a probability density function. For increasing values 
XI <X2< .. < Xr, the event above is equivalent to 
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X1=X1, W1= W1, 

XN2 = X2, W2 = W2, 

X__ = Xr-i, Wr-i = Wr-i, 

XN, = Xr 

Hence summation of the foregoing probability element over all possible waiting times gives the joint 
probability that XI = x, XN2 = x2,. . ., XN, = Xr. This sum can be expressed as a product of geometric 
series: 

# # * # dF(x1) [F(x1)J(",-1) .. dF(xr l)[F(xr 1)](wr-l-') dF(xr) 
Wj=I W2=1 W_1=1 

=dF(x,) E[F(xi)] "I ... dF(xr 1 ) E. [F(xr l)]w,-,dF(x,) w l=() W_-l-? 

- dF(x1) . dF(xr-) dF(xr) 

= dG(x,) .dG(x- )dF(xr). 

Iterated integration with respect to x,, x2,. ., X,- (over the region x < x2 <K* < xr) shows that XN, 

has probability element 

dP{XNJ = Xr} = [( 
G iix dF(xr). 

This argument was suggested by Karlin in a textbook exercise ([21] pages 267-268; see also [31] 
page 69). 

If observations X1, X2,X3,... have exponential distribution F(x) = 1 - e-x and G(x) = 

-ln[1 - F(x)] = x, then the rIb record value has gamma probability density Xr-l e-xI(r - 1)!, as 
asserted in the preceding section. 

Moreover, for X from any continuous distribution F, it is easy to show that the transformed 
variable F(X) has uniform distribution on the unit interval ([21] page 237) and G(X) has standard 
exponential distribution. Since G is strictly increasing over its support, the record value trials in 
random sampling X1, X2, XA3, ... from F correspond to record value trials in a sample G(X1), G(X2), 
G(X3),... from the exponential distribution. Thus transformed record value G(XN,) has gamma 
distribution with r degrees of freedom. For large r the gamma distribution is approximately normal. 
Thus Resnick [31] obtained a "central limit theorem": as r -oo, the distribution of (G(XNr) - r)IV/r 
is asymptotically normal with mean = 0 and variance = 1. The corresponding "strong law of large 
numbers" asserts that 

G (XNr)Ir -)/ 1 with probability one as r -m oo. 

Resnick [31] (also see Shorrock [37]) gave explicit conditions on the function G which are 
necessary and sufficient for convergences in probability 

XN, - G (r) -*O, XNr/G1(r)- 1. 

But also there are conditions under which the last ratio converges to a non-degenerate random 
variable rather than to a constant. Indeed, Resnick [31] characterized the types of limit distributions 
for record values XNr; depending on the sampled distribution function F, a record value sequence 
satisfies exactly one of the following convergences in distribution as r -- 00: 



24 NED GLICK [January 

W p xN, 

-{G (r+r- <r 
x 

} 

(ii) P{G-'(r) < i 

< x ~ ~ ~ x? 

X [a In (x)] x-'O 

XN,~~~~~~1 
x 

x'O 

where X denotes the standard normal distribution function, a is a positive constant depending on F, 
and x in (iii) is the upper (necessarily finite) endpoint of the support interval of distribution F. 

I omit more precise statements of limit theorems for record value sequences because these results 
involve complicated conditions on F or G. For details see Resnick [31] and also [9, 16, 32, 34, 35, 36, 
37, 38, 39, 40, 43, 44]. 

12. Extreme values and extremal processes. Every random sample X1, XA2,..., X,, has a sample 
maximum or upper extreme value M,, = max (Xl, X2,.. ., X,,). Clearly M1 = X1 and subsequently 
every new maximum is a record value, i.e., record breaking corresponds to a jump or strict inequality 
Mn < Mn,+ in the sequence of sample maxima XI -' M2 -< M3 -' M4 ' * - - . 

Thus a record value sequence can be extracted from a maximal sequence which is already removed 
from the random sequence; but the converse path is impossible. So maximal sequences might logically 
be studied before record value sequences and such was the historical precedence, contrary to my 
arrangement of topics. Gumbel [18] has given the early history and extensive bibliography on statistics 
of extremes, including distinctive applications: for example, using a river's past flood levels (annual 
maxima of daily observations) to plan dams, etc., with sensible allowance for worse floods in the future 
(see [18], page 236, for analysis of Mississippi River flooding at Vicksburg). 

Historically, studies of sample maxima also have been concomitant to the more general subject of 
order statistics [8], viz., randomly sampled data filed or ranked from smallest value to largest value. In 
the terms of statistical decision theory, ranked data constitute "sufficient statistics" both for 
"classical" procedures and for most "nonparametric" methods (of which the tolerance limit 
construction in Section 6 is one example). Unlike the frequency of record breaking, common sample 
statistics, such as mean or median annual rainfall, can be computed from ordered data as well as from 
values in their random sampling sequence (in fact, ranking is generally the fastest way to find the 
median or other sample percentiles). 

In 1943 B. V. Gnedenko [17] showed that there are precisely three types of limit distributions for 
sequences of sample maxima. Gnedenko's three types of extreme value distributions correspond 
exactly to the three limit laws for record values published by Resnick [31] in 1973 and mentioned 
briefly in the preceding section. The limit laws for maxima and for record values from continuous 
distribution F are linked by Resnick in a duality theorem. That is, the different extreme value 
distributions partition the space of all continuous distribution functions into disjoint "domains of 
attraction," and record value distributions determine exactly the same partition. See [321 for further 
comparison of record values and maxima. 

* * * 

A sequence of sample maxima Mn plotted as a function of sample size n can be regarded (see 
Shorrock [39]) as a discrete-time Markov process with jumps at record value times N,. Common 
techniques in stochastic process theory can be used to construct an analogous continuous-time 
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Markov jump process M(t) such that, for any times 0 ' tl < t2 < . . . < tn, the variables M(t,) ' 
M(t2) . <M(t ) have the same joint distribution as sample maxima M, <M2 _ M,. The 
study of such continuous-time extremal processes seems to have been originated by Dwass [10, 11] and 
Lamperti [23] in the mid-1960s. 

Dwass used record value theorems to "motivate some of the results" for extremal processes. But, 
conversely, Shorrock [38, 39] and Resnick [33, 34, 35] used continuous-time processes to obtain results 
for record values. In particular, Resnick [33] showed that a continuous-time extremal process M(t) 
with jump times according to a non-homogeneous Poisson process (with intensity t-') has a "discrete 
skeleton" M(n), n = 1,2,3,..., whose jump times behave precisely as record value times (for n 
sufficiently large). 

Thus Resnick [33] used the framework of extremal processes "to give a unified explanation of 
known limit laws" for record frequencies Rn for record value trial numbers Nr, and for inter-record 
waiting times Wr. 

This study was supported by the National Research Council of Canada, Grant A8044. 
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DEPARTMENT OF MATHEMATICS, AND DEPARTMENT OF HEALTH CARE AND EPIDEMIOLOGY, UNIVERSITY OF 

BRITISH COLUMBIA, VANCOUVER, BR. COLUMBIA V6T 1W5, CANADA. 

THE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION 

A. P. HILLMAN, G. L. ALEXANDERSON, L. F. KLOSINSKI 

The following results of the thirty-seventh William Lowell Putnam Mathematical Competition, 
held on December 4, 1976, have been determined in accordance with the governing regulations. This 
annual contest is supported by the William Lowell Putnam Prize Fund for the Promotion of 
Scholarship left by Mrs. Putnam in memory of her husband and is held under the auspices of the 
Mathematical Association of America. 

The first prize, five hundred dollars, was awarded to the Department of Mathematics of the 
California Institute of Technology, Pasadena, California. The members of its winning team were 
Christopher L. Henley, Karl W. Heuer, and Albert L. Wells, Jr.; each was awarded a prize of one 
hundred dollars. 

The second prize, four hundred dollars, was awarded to the Department of Mathematics of 
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