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Abstract. – Space-dependent diffusion of micrometer-sized particles has been directly ob-
served using digital video microscopy. The particles were trapped between two nearly parallel
walls making their confinement position dependent. Consequently, not only did we measure a
diffusion coefficient which depended on the particles’ position, but also report and explain a new
effect: a drift of the particles’ individual positions in the direction of the diffusion coefficient
gradient, in the absence of any external force or concentration gradient.

Brownian motion of spherical colloidal particles in the vicinity of a wall has been extensively
studied, both theoretically [1–3] and experimentally [4,5]. It has been shown that the diffusion
coefficients parallel or perpendicular to the wall were greatly reduced when the particles were
close enough to the obstacle, i.e. within distances comparable to or less than their radius.
When the particles are trapped in a more confined geometry, as for example for colloidal
suspensions in a porous medium or particles enclosed in a cell or a vesicle, the theory is far
more complicated and only few experimental studies have been reported in model geometries,
where the particles are trapped between two parallel walls [6, 7].

In this article, we report some new experimental results concerning the Brownian motion
of particles trapped between two nearly parallel walls, so that the confinement, and thus
the diffusion coefficient, become space dependent in a controllable way. As a result, we not
only measure a diffusion coefficient which varies with the confinement, but also a drift of
the particles’ individual position in the direction of the diffusion coefficient gradient, in the
absence of any external force or concentration gradient. This drift was not accompanied by
any net particle flux, i.e. statistically the same number of particles crossed any imaginary
surface in both directions.

We shall first discuss the general problem of a Brownian walker with a space-dependent dif-
fusion coefficient to explain the origin of the expected drift, and then present the experimental
set-up and results.
c© EDP Sciences
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As in our experiment the diffusion coefficient varies in only one direction, say x, we briefly
sketch a heuristic derivation of the 1D Brownian walker algorithm. The velocity of a 1D Brow-
nian particle subjected to a random force and a viscous drag follows the Langevin equation [8]

dν

dt
= −γν + Γ(t), (1)

where γ−1 is the velocity relaxation time and Γ(t) the random force per unit mass, with zero
mean and a correlation function proportional to a δ function:〈

Γ(t)
〉
= 0 and

〈
Γ(t)Γ(t′)

〉
= qδ

(
t − t′

)
. (2)

Using the equipartition theorem it can be shown that q is related to the temperature T
and the particle’s mass m by the standard relation q = 2γkT/m. Discretizing the random
function Γ(t) over time intervals ∆t � γ−1 allows us to drop in eq. (1) the inertial term, dν

dt ,
and to replace ν by ∆x/∆t. Choosing for Γ(t) the simplest random function which obeys
relations (2), i.e. Γ(t) = ±√

q
∆t , leads to the well-known Brownian walker algorithm

x(t +∆t) = x(t)± 1
γ

√
q

∆t
∆t = x(t)±

√
2D∆t with D =

kT

mγ
. (3)

When the diffusion coefficient D, i.e. when the temperature T and/or the drag coefficient γ
become position dependent, the above classical algorithm needs to be clarified. During each
time interval ∆t, the walker makes a step to the right or to the left, but should the length
of this position-dependent step,

√
2D∆t, be computed at the departure point x(t) = x, the

arrival point x(t + ∆t) = x + ∆x or at any point in between? These mathematical choices,
often referred to as the Ito/Stratonovitch convention [8], lead to different equations which
model different processes and the choice of the convention is dictated only by the physics [9].
Explicitly in our case, we denote by D(x + α∆x) the diffusion coefficient appearing in (3),
where α = 0 or 1/2 corresponds to the classical Ito or Stratonovitch convention, and α = 1
to a third choice we call isothermal. As we will show, this last case models a situation where
the temperature, T , is uniform but the drag coefficient, γ, is space dependent. Using in (3)
the standard limited expansion

D(x + α∆x) � D(x) + α
dD

dx
∆x with ∆x = ±

√
2D(x)∆t (4)

yields for the algorithm of a Brownian walker with a position-dependent diffusion coefficient

x(t +∆t) = x(t)±
√
2D[x(t)]∆t + α

dD

dx
∆t. (5)

Depending on the value of α, this algorithm has very different implications concerning the
equilibrium distribution of the Brownian walkers, their individual drift 〈x(t)−x(0)〉 and their
net flux. This algorithm has been used [10] with α = 1 to model a Brownian walker with
a space-dependent diffusion coefficient. We shall justify this choice in the case where the
diffusion coefficient gradient does not come from a temperature gradient, but is due to a
hydrodynamic effect.

Averaging eq. (5) over a large number of walkers shows that the average displacement of
a Brownian walker is no longer zero, leading to a particle drift. If the diffusion coefficient
gradient is assumed to be constant, this drift increases linearly with time as

〈
x(t)− x(0)

〉
= α

dD

dx
t. (6)



30 EUROPHYSICS LETTERS

Fig. 1 – Particles flux for Brownian walkers with a step length depending on the arrival position
(α = 1) or the departure position (α = 0).

This drift is analogous to the drift experienced by Brownian walkers subjected to an external
force such as gravity. A first intuitive but misleading idea would be to conclude that the
particles will migrate in the direction of the diffusion gradient, leading therefore to a concen-
tration gradient. This is actually incorrect, as we will now show. To illustrate this idea, let
us suppose that we start from a uniform particle distribution ρ0. To check if this corresponds
to an equilibrium state, let us determine the particles flux through an imaginary surface S
placed perpendicular to the diffusion coefficient gradient, at coordinate x (see fig. 1). During
a time interval ∆t, all the particles crossing S from the left (or right) are half of those included
in the volume S ·Lright (or S ·Lleft), where Lright (or Lleft) is the right (left) step, terminating
at x, taken by a walker during that time interval. The net particle flux to the right will thus
be

J =
ρ0

2
SLright − SLleft

S∆t
. (7)

Algorithm (3) allows computing the length of these two steps which both end at the same
point x:

Lright
left

=
√

2D(x)∆t ± (α − 1)
dD

dx
∆t, (8)

leading to the particle flux

J = −ρ0(1− α)
dD

dx
. (9)

As a result, in the situation of maximum drift where α = 1 this flux will vanish (see left
part of fig. 1), meaning that the uniform particle distribution corresponds to an equilibrium.
According to Boltzmann, this should correspond to an isothermal situation, the diffusion
coefficient gradient arising only from a pure hydrodynamic effect, the spatial dependence of the
coefficient γ. For all the other values of α, the flux will be negative, leading to a concentration
gradient of the particles in the direction opposite to that of the diffusion coefficient gradient.
The maximum flux is obtained for α = 0, as shown on the right part of fig. 1.

Equation (7) may be generalized to the case where the particle distribution is position
dependent:

J = −(1− α)ρ(x)
dD

dx
− D

dρ

dx
, (10)

which leads to the well-known generalizations of Fick’s law when dealing with a space-
dependent diffusion coefficient [11].
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Fig. 2 – Cross-section of the cell showing the colloidal suspension confined between the spherical lens
and the flat disk, separated by an elastic O-ring. The left view shows an enlargement of the center
of the cell with the circular excluded volume and the observation frame (65 × 100 µm2). The round
inset explains the two contributions to the change in diffusion coefficient when a particle moves a
distance dx.

This situation of “drift without flux” may be compared to the equilibrium situation of
Brownian particles subjected to an external force, such as their weight. If one follows the
motion of individual particles in a given volume V , an average downwards drift is observed;
however there is no net flux across a given surface S because of the vertical concentration
gradient. The individual downwards drift of the sedimenting particles leads to a downwards
flux which is exactly compensated by the upwards flux linked to the equilibrium concentration
gradient. In our isothermal case, the drift of individual particles in a given volume V from the
lower to the larger D(x) region does not lead to a net flux across a surface S because particles
in the larger D(x) region diffuse further than particles in the lower D(x) region. This physical
situation imposes the choice of α = 1 in algorithm (5), so that a particle coming from a low
D(x) region makes a right step just equal to the left step of that particle coming from a high
D(x) region and arriving at the same point (see the left part of fig. 1). It should be emphasized
that the drift is measured averaging the positions of all the particles contained in the volume
V , whereas the net flux involves only those particles which cross the surface S from either
side. In the absence of gradient, the fact that the drift and the net flux are measured on a
different population is rarely mentioned, as it does not lead to any surprising result. In the
presence of a gradient, be it a concentration gradient or, as in our case, a diffusion coefficient
gradient, it does lead to a counterintuitive idea: A drift in the individual particle positions
does not always result in a net flux, and may be observed in an equilibrium situation where
the particle concentration does not change with time.

Experimental set-up. – Polystyrene spheres, of radius a = 1µm, were suspended in a
mixture of H2O + D2O so as to cancel any sedimentation effects. Addition of a surfactant
(2.2 g/l of SDS) helped to minimize particles aggregation or adhesion to the walls. A drop of
this mixture was placed between a flat disk and a planar convex lens (see fig. 2), of curvature
radius R = 15.5mm. The spacing e between the flat and curved wall depend on the distance
r from the center of the cell as e = r2/2R. The contact between the two walls as well as the
dependence of the confinement e on the distance r were carefully measured by monitoring the
Newton rings observed under the microscope. We used as a light source a new super-radiant
diode [12] whose coherence length is less than 100µm. This coherence length was long enough
to observe the desired Newton rings, but short enough to avoid any other interference patterns
due to all the cell interfaces, which were visible with an ordinary diode laser and completely
masked the relevant signal.

The horizontal Brownian motion of the polystyrene balls was observed through a micro-
scope equipped with a long-range objective of magnification 50×, followed by a CCD camera
coupled to the microscope via an eye piece of magnification 8×. The video signal was processed
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Fig. 3 – D‖/D0 with respect to relative confinement e/2a. Open squares are the experimental data;
the dotted line is the best fit to the black dots calculated by the collocation method.

Fig. 4 – Average position of the walkers as a function of time, along the diffusion gradient (black
dots) and perpendicular to the diffusion gradient (open squares).

in real time by a computer. Following the particles’ positions from one frame to another, the
program analyzed more than 105 trajectories for each run. When two particles got closer than
twice their diameter, the program treated them as “dimers”, no longer used to determine the
diffusion coefficient or the drift. In that way, the role of particle interactions, which have
a range smaller than a couple of particle diameters, could be safely ignored. The vertical
Brownian motion of the particles could not be monitored. However, we took that motion
into account when interpreting the data by averaging the particle’s vertical position over the
confinement range.

Diffusion coefficient determination. – A given observation frame was divided into 3
zones (see top view in fig. 2), each corresponding to an approximately constant confinement
e. For each zone we averaged the particle’s displacement squared, either in the x, or in the
y directions, as a function of time, and checked that indeed they followed the well-known
diffusion law 〈

x2
〉
=

〈
y2

〉
= 2D‖(e)t. (11)

By moving the frame to different locations, we were able to explore a range of confinement
extending from e/2a = 1.2 to 11. The bulk diffusion constant D0 was determined using the
well-known relation

D0 =
kT

6πηa
, (12)

where η = 0.99 · 10−3 SI is the viscosity of the mixture of water and heavy water, yielding
D0 = 1.92 ·10−13 m2/s. The experimental values for D‖/D0 are shown in fig. 3 (white squares)
and fit remarkably well the available numerical predictions (black dots) using the collocation
method [13] averaged over all the possible vertical positions z of the particle for a given
confinement e, i.e. with a ≤ z ≤ (e − a).



P. Lançon et al.: Drift without flux: Brownian walker etc. 33

Determination of the drift. – To demonstrate the existence of an individual drift of the
particles, we fixed the center of the observation frame at a position y = 0 and x = 300µm,
corresponding to an average relative confinement e/2a = 1.5 so that all particles present in
the frame were outside the excluded volume (i.e. e ≥ 2a), and had a diffusion coefficient
with the largest x-dependence, but no y-dependence (to first order). For the determination
of 〈x(t) − x(0)〉 and 〈y(t) − y(0)〉, each trajectory was segmented into independent paths
lasting a time t, each contributing to the evaluation of the average drift during time t. The
results are shown in fig. 4, and reveal a drift in the Brownian-walker position along the x-
direction, and none in the y-direction along which the diffusion coefficient may be considered
as constant. The statistics of the results clearly deteriorates as the time t increases: After
recording trajectories for typically a dozen hours, more than a hundred thousand independent
segments contributed to the determination of the drift at short times whereas only up to a
few thousand independent segments were left for t = 200 s. This is due to the fairly high
particle concentration which lowers the lifetime of a “monomer” (time during which a particle
does not approach another one to within 2 particle’s diameter—see above), but which was
chosen as a compromise to have good statistics at short times while allowing us to follow
each particle during a reasonable time, fixed at 200 s. It should be pointed out that in order
to avoid any bias in the statistics, for a trajectory segment to be valid and included in the
statistics, the position of a walker at instant t = 0 had to be inside an internal frame, 15µm
away from the edges of the observation frame. This condition ensured that after diffusing for
200 s, the walker had less than 0.5% chance to have covered 15µm, and was thus still present
in the observation frame. Failure to impose this condition resulted in the observation of a
spurious drift, in the opposite direction, due to an artificial selection of walkers because of the
experimental boundary conditions (limits of the observation frame).

To compare our experimental results with the theoretical predictions (eq. (6)), we evaluated
the diffusion coefficient gradient encountered by the walkers present in the observation frame.
It is important to realize that as a walker moves a distance dx (see round inset in fig. 2), its
diffusion coefficient D‖ varies first because the confinement e = x2

2R varies (path (1) parallel
to the bottom wall, i.e. at constant z), and second because at constant confinement, the
particle’s altitude z changes (path (2)). Adding both contributions and averaging over the
vertical position z of the walker yields

〈
dD‖(e, z)

dx

〉
z

=
x

R

〈
∂D‖(e, z)

∂e

∣∣∣∣
z

〉
z

+
x

2R

〈
∂D‖(e, z)

∂z

∣∣∣∣
e

〉
z

. (13)

Using our experimental data and the collocation numerical results, we found as a numerical
result

〈
dD‖
dx

〉
z
≈ 2.2 · 10−9 m/s. This value of the slope is used to plot the straight dotted

line in fig. 4. The experimental data are thus in good agreement with the predicted drift
corresponding to the expected α = 1 value.

Finally, to claim drift without flux, it is not sufficient to demonstrate the drift only: we
must also demonstrate the absence of flux. If a flux were due to the observed drift dD/dx, we
would expect a radial outward flux of ρdD/dx particles, which would empty our observation
screen in less than a day. Furthermore, if this flux were to be balanced by a concentration
gradient, one can show that a concentration change by 30% over a distance of 60µm would
be necessary. Experimentally, we observed no flux and no concentration gradient over a
period of a week or more, which is consistent with the Boltzmann requirement of a uniform
concentration in the absence of a temperature gradient.

In conclusion, our set-up is a controlled experimental realization of an old theoretical
problem, the Brownian walker with a space-dependent diffusion coefficient, a situation often



34 EUROPHYSICS LETTERS

encountered in the studies of particle suspensions in confined media, such as porous media [14],
entangled polymer suspensions [15], or particles trapped in vesicles [16]. It further illustrates
the classical Ito-Stratonovitch dilemma [9], where a multiplicative Langevin equation needs a
proper interpretation rule to describe a given phenomenon. It is worth noting that the rule
naturally imposed by our physical conditions (no temperature gradient) is neither the Ito nor
the Stratonovitch convention, but a third choice rarely mentioned in the literature.
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