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Anomalous DiH'usion in "Living Polymers": A Genuine Levy Flight?
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We have observed anomalously enhanced self- (tracer) difl'usion in systems of polymerlike breakable
micelles. %e argue that it provides the first experimental realization of a random walk for which the
second moment of the jump-size distribution fails to exist ("Levy flight"). The basic mechanism is the
following: Due to reptation, short micelles diff'use much more rapidly than long ones. As time goes on,
shorter and shorter micelles are encountered by the tracer, and hence the effective diAusion constant in-
creases with time.

PACS numbers: 82.70.—y, 05.40.+j, 61.25.Hq

Much work has recently been focused on dynamical
processes in disordered media. In particular, difl'usion of
test particles can be strongly afl'ected by randomness: In
certain instances, one may even lose the usual "square-
root" dependence of the typical displacement with

time. ' In this case, one observes an anomalous
diffusion law: R(t) =t", with vA —,'. As has been em-

phasized in Refs. 2 and 3, such behavior may arise either
when events characterized by a broad probability distri-
bution come into play, or when long-range (spatial or
temporal) correlations are present in the system. Sub-
difl'usive (v( —, ) behaviors are relatively common in

physical systems where a broad distribution of local trap-
ping times may build up. Examples are the photocon-
ductivity of amorphous materials, the conductivity of
disordered ionic chains, difl'usion in convective rolls, or
the random walk on a percolation cluster (see, e.g. , Ref.
1). Enhanced diffusion (v& —,

' ) is comparatively much
rarer. The classical example is Richardson diffusion in

turbulent fluids: Long range corr-elations in the veloci-

ty field lead to v = —', (see also Ref. 2). A different
theoretical possibility is the "Levy flight": If the particle
makes jumps of various sizes I, such that the probability
distribution of those jump sizes, P(l ), decays as i
for large i, the second moment of P(l) fails to exist for
p( 2, and formally the diffusion constant is infinite.
This means that as time goes on, longer and longer steps
are encountered in a self-similar manner, which eventu-

ally change the typical time dependence of the position
from t ' to t ' ". However, to the best of our knowledge,
there are no experimental results which may be naturally
interpreted as a Levy-flight process (see, however, Ref.
8).

In this Letter we present an investigation of the
diffusion of a fluorescent probe in a system of elongated
micelles [aggregates of amphiphilic molecules —cethyl
trirnethyl ammonium bromide (CTAB)) by using
fringe-pattern photobleaching. These micelles behave,
for high enough concentration, as a semidilute solution
of transient ("living" ) polymers: The chains are not
chemically bonded and may hence break and recombine

on a characteristic time rb„„k. The consequences of this
finite breaking time on the viscosity and diffusion behav-
ior of these systems have been investigated theoretically
by Cates. ' It is clear that the difl'usion constant is
enhanced if rb„,. k is shorter than the classical de Gennes
reptation time r„~. In Ref. 10, it it argued that

D Dp pge
—&/3

where g=rb„,k/r„p and . D„p is the diffusion coefficient
in the limit rb„,. k & r„p. From (1), a scaling law for the
dependence of the diffusion constant versus concentra-
tion may be obtained. Our former experimental studies
of CTAB micelles in salted water are compatible with
this model in most cases. '' We noticed, however, that
for larger salinities the diffusion constant is not scale in-

dependent: The relaxation time r varies with the fringe
spacing i (which sets the diffusion length): r=i", with

p (2. This signals anomalously enhanced diffusion; see
Fig. 1.

Experimental aspects —The presen. t study is made
with CTAB in 0.5, 1, and 2 M KBr at 40 C using the
technique of fluorescence recovery after fringe-pattern
photobleaching (FRAP '" ). This technique allows us
to measure the self-diffusion coefficient D of fluorescent
probes incorporated to the micelles. The probe mole-
cules are similar to the CTAB molecules: a polar head
(fluorescein group) and an aliphatic tail. When strongly
illuminated by a laser flash, these probes irreversibly lose
their fluorescent properties. The fluoresence recovery, in

the "bleached" region, is controlled by the diffusion of
new, unbleached probes, and monitored by a low-

intensity laser beam; the diffusion constant D can be de-
duced from this signal.

In order to improve the signal-to-noise ratio, we use
fringe patterns with a modulation of the fringe position
at a frequency m. The signal is detected at two different
frequencies, m and 2', using a lock-in amplifier. It may
be shown' that the signal at co is nonzero only if there is
a convective motion with a velocity v in the medium:
This signal is proportional to Iosin(qtt), where q =2tt/i
and Io is the intensity of the recovery beam. We sys-
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TABLE I. Values of p versus concentration for different
KBr concentrations, and for different temperatures. Note that,
as expected, p increases towards 2 as the temperature is raised.
This is because the experimental time scale becomes too long,

and usual Brownian motion takes over. Experimental repro-

ductibility is better than + 0.05.
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FIG. 1. 10 mM CTAB, 2 M KBr: Exponential fit to the

recovery curve. Inset: The inverse relaxation time r(q) vs

q 2n/i on a log-Iog scale. Experimental errors are smaller

than the point size.

CTAB
(mM)

400
200
100
50
20
10

5

2.5
2

1

0.5
20
20
20
20
20

T
( c)
40
40
40
40
40
40
40
40
40
40
40
40
45
50
55
65

2M KBr

1.93
1.92
1,89
1 ~ 66
1 ~ 52
1.51
1.54

1.51
1.84
1.92
1.52
1.57
1.81
1.79
1.90

1MKBr

2.02
1.98
1.92
1.67
1.55
1.68
1.76
1.89

1.85
1.90

0.5 M KBr

1.91
1.93
1.93
1.95
1.95
1.82
2.04

1.79
1.80
1.86

tematically checked that no signal was detected at cu. In
the case of monodisperse diffusing objects, the signal at
2' is then proportional to Io exp( —t/r). The self-

diffusion constant is obtained as

D = lq 'r(q)) (2)

Normal diffusion is associated with the fact that D is q
independent. Experiments were made at at least six

fringe spacings with 2 ~ i ~ 100 pm. '

Results. —A typical result is presented in Fig. 1. Each
recovery signal was fitted by a single exponential (Fig. 1,
inset). An example of a plot of the recovery rate 1/r(q)
vs q is given in Fig. 1 on a log-log scale. The striking re-
sult is that r(q) =q ", with pW2 on more than two
(time) decades. This behavior was observed for many
samples (see Table I). In other words, we observe an

anomalously enhanced diffusion: r = t', with v= 1/p
We can, however, still define a (distance-

dependent) diffusion constant using Eq. (2). The values

of D(q) for several q values are plotted versus micelle
concentration in Fig. 2.

Since there is no flow in our samples, a mechanism
based on a convective regime allowing rapid motion on

the fringe length scale is a priori excluded. As will be

argued in next section, anomalous diffusion arises from a
purely statistical mechanism.

Discussion. —In a "mean-field" approach, each chain
of length L has a constant probability per unit time to
recombine, and also a constant probability per unit

length and unit time to break. This leads to an equilibri-
um concentration of chains of (arc) length L of the
form ' A(L ) =L exp( —L/L *), where L * is the aver-

age length. It is related to the micellar concentration
through @=fLexp( —L/L*)dL =L* . In the follow-
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ing, L will always denote a reduced length, in units of the
micellar radius a ( = 25 A).

We shall slightly generalize this usual description and
assume that the probability to break and recombine de-
pends on L: Wormlike micelles have indeed a larger
probability to lose their ends then to be cut in the mid-
dle. We will assume that the equilibrium distribution is

changed into P(L) =4 'L ' exp( —L/L*). ' The
algebraic prefactor is frequently present in "cluster"-size
distributions (e.g. , percolation clusters).

The distance spanned by the chain before recombining
is typically

l(I. ) = [D...(L)rb„.„]'", (3)

P(l) =P(L)dL/dl =& 'l()l (4)

with p =2(1 —cr)/P In a gi.ven long time interval
T=Arb„,. k, a given fluorescent particle will have encoun-
tered 1V different "vehicles" and spanned the distance R:

R (1V) =pl (L, ) .

where D„,~(L) is the diffusion constant of a chain of
length L. Assuming that the chains are ideal for L much
larger than the entanglement length L„D„~(L)=Do
x (L,/L) '-;' we shall again be slightly more general and
write D„,~(L) =Do(L, /L ) ~, allowing for deviations
from the classical reptation model (for example, the
chains may not be ideal at large scales). Thus, l(L)
=loL P, with /o =Dorb„. k(L, ) ~. The probability to
undergo a jump of length l is then simply obtained as'



VOLUME 65, NUMBER 17 PHYSICAL REVIEW LETTERS 22 OCTOBER 1990

Q, (10 cm/s)

104—

103

102

0
o
[-] o
a 0 o

oa

10
0.1 10 100

I

1000

C (mM)

FIG. 2. Effective diffusion constant determined at different
length scales vs CTAB concentration in 2 M KBr brine. Cir-
cles, i 89 pm; squares, i 20 pm; diamonds, i 3 pm. Exper-
imental errors are smaller than the point size except for the 2-
mM sample at large i.

One may show that D(L) [defined in Eq. (3)] behaves as
D(L) = D„~g 't (L*/L) 't, which again corresponds to
p & 2. If for some reason the solution only contains
chains of length L & L„ the average diffusion constant is
given by Cates' expression, Eq. (1) [but see also after
Eq. (8)].

The reason why anomalous diffusion is only found in a
certain range of concentrations and salinities is because,
for some reason, either the crossovers L, and L, or the
exponents P and a depend on those parameters. A first
condition for the existence of anomalous diffusion is
L, »L, : The region where the difl'usion constant strong-
ly depends on L must exist. One role of salt is to reduce
the entanglement length because the chains are then
more flexible. Another important condition for the ob-
servation of anomalous diffusion is that the experimental
time scale must be sufficiently short: The crossover time
t, above which Gaussian diff'usion is recovered is giv-
en by the condition L[l (N)] =L, with t, =Nrb„, k.

Hence,

L
—2(1 —a) @3 —Sa/2

c &break e (7)
It can be shown that the longest jump undergone in N
steps is l =N' ": As time goes on, shorter and shorter
chains will be visited by the probe It is thu. s important
to keep the modulation of the tracer concentration low,
otherwise all chains are visited from the start and non-
stationary effects cannot be observed because, in this
case, breaking and recombination only swaps the tracers.
Gaussian behavior should hence reapear if a high con-
centration of probes is used. Preliminary observations
show that this is indeed the case, ' confirming the purely
statistical nature of the phenomenon.

Hence, R (N) is given by NJ™lP(l)dl =N t" if
p & 2 (and N if p & 2). The diffusion exponent is thus
v=P/2(1 —a). More precisely, since R is a sum of
(broadly distributed) random variables, the probability
distribution P(R, t =Nub„„. k) converges' towards a Levy
stable law of order p, solution of a "generalized"
diffusion equation which reads, in Fourier space,

8P(q, t)/Bt = q"P(q, t) . —

As in the experiment, a single mode q is excited, the sig-
nal is indeed expected to be a pure exponential, with a
decay rate proportional to q" (see Fig. 1). Note that the
"classical" values (P = l, o =0) already correspond to the
marginal case p =2, for which R (t) evolves as t lnt. A
very small departure from those values, say, P = I, cr = —,',
leads to the observed value p —1.5 (see Table I).

Equation (4) for P(l) with p =2(1 —a)/P of course
only applies in a limited interval. For large l, or small L:
L (L, reptation loses its meaning and' D(L) = I/((L)
[g(L) is the gyration radius for a chain of length L].
This corresponds to p & 2, and hence very short chains
will not be responsible for anomalous diffusion. For
small l, or large L: If L & L, =L*g't, the chain recom-
bines in a time shorter than its disentanglement time.

[with L, =4 and rb„,. k=L ' =@ ' (Ref. 10)].
For t„~i&&t„ the contribution of the short chains to the
average diffusion constant is given by

~ 2(p+~ —i)
D = rb„',k„q l (L)P(L)dL = D„,r L,

(8)

Comparing with Eq. (1), one finds that the short-chains
contribution indeed dominates the diff'usion constant
when L, «L, (L */L, )', with y =1 —I/2(o+P —1).
Taking' Do= I/((L, ) and o = —,', the concentration
dependence of the diffusion constant given by (8) reads
D =4 ", with y=3 for ideal blobs, 2. 12 for "swollen"
blobs, and 1.25 for "stretched" blobs. y is thus very sen-
sitive to the chain conformation inside one blob. The
values of y obtained using Eq. (1) are, respectively, 2.33,
1.57, and 0.83.

Experimentally, the anomalous exponent disappears
for low concentrations, which is reasonable to interpret
as L, & L,(L*/L„) 'For high co-.ncentrations, the exper-
imental time scale l,„~i=i /D(i) becomes large (see
Fig. 2). The anomalous behavior is lost when t,„~, & t,
This is experimentally seen to occur when the mesh size
of the network is of the order of the diameter of the rni-
celles a (L, = 1) where (7) becomes t, =@rb„„k. We
thus think cr, P take definite values, and that the apparent
variation of the anomalous exponent p,g in fact results in
situations where t, = t,„~t, from a mixture between
Brownian difl'usion (p =1) and a unique anomalous
difl'usion exponent (p = —,

' ).
The fact that the anomalous behavior is only observ-

able if the experimental time is shorter than the cross-
over time t, and:f L, &&L, suggests that a temperature
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increase suppresses the effect, since in that case the
breaking time rb«, k diminishes rapidly ' (rb«,. k has an
activated form). The experiment fully confirms this pre-
diction: %e show in Table I the evolution of the ap-
parent exponent p,& with temperature. Thus our Levy
flight model indeed qualitatively accounts for all our ex-
perirnental results.
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