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The Paradox of the Expected Time until the Next Earthquake 

by D. Sornette and L. Knopof f  

Abstract We show analytically that the answer to the question, (can it be that) 
"The longer it has been since the last earthquake, the longer the expected time till 
the next?" depends crucially on the statistics of the fluctuations in the interval times 
between earthquakes. The periodic, uniform, semi-Gaussian, Rayleigh, and truncated 
statistical distributions of interval times, as well as the Weibull distributions with 
exponent greater than 1, all have decreasing expected time to the next earthquake 
with increasing time since the last one, for long times since the last earthquake; the 
lognormal and power-law distributions and the Weibnll distributions with exponents 
smaller than 1 have increasing times to the next earthquake as the elapsed time since 
the last increases, for long elapsed times. There is an identifiable crossover between 
these models, which is gauged by the rate of fall-off of the long-term tail of the 
distribution in comparison with an exponential fall-off. The response to the question 
for short elapsed times is also evaluated. The lognormal and power-law distributions 
give one response for short elapsed times and the opposite for long elapsed times. 
Even the sampling of a finite number of intervals from a Poisson distribution will 
lead to an increasing estimate of time to the next earthquake for increasing elapsed 
time since the last one. 

Introduction 

While small earthquakes after removal of aftershocks 
have a Poissonian distribution (Gardner and Knopoff, 1974), 
intermediate and large earthquakes in a given region are 
clustered in time (Kagan and Knopoff, 1976; Lee and Bill- 
linger, 1979; Vere-Jones and Ozaki, 1982; Grant and Sieh, 
1994; Kagan and Jackson, 1991, 1994; Kagan, 1983; Kno- 
poff et al., 1996); "clustering" is taken to mean that the 
earthquakes do not have a purely Poissonian, memoryless 
distribution of time intervals. According to this interpreta- 
tion, periodic earthquakes are the extreme limit of clustering 
and can be predicted exactly. More generally, if there is tem- 
poral clustering, the estimate of the probability of occurrence 
of a future earthquake in a given time interval is improved 
if there is a knowledge of the times of previous events, since 
clustering implies a memory. To express this property quan- 
titatively, we relate the elapsed time since the last earthquake 
in a region to the conditional probability of occurrence of 
the next earthquake within a given time interval from the 
present. Davis et aL (1989) have posed a version of this 
problem in the form of the following question (hereafter re- 
ferred to as Q.): 

(can it be that) "The longer it has been since the last 
earthquake, the longer the expected time till the next?" 

The observation of Davis et al. for the log-normal distribu- 
tion was that the answer to Q. is positive. Ward and Goes 

(1993) and Goes and Ward (1994) showed numerically that, 
in the case of the Weibull distribution, the response to Q. 
can be either yes or no, depending on the exponent in the 
distribution. The positive responses would seem to be coun- 
terintuitive, since it is to be expected that an earthquake 
should be more likely to occur with increasing time in re- 
sponse to an inexorable tectonic loading that brings a fault 
ever closer to its finite threshold of fracture. 

The intuitive interpretation is of course consistent with 
simple relaxation oscillator models of the earthquake pro- 
cess, such as the slip- or time-predictable models. But these 
models should be reconsidered if the stress field is altered 
on a given fault segment due to redistribution derived from 
earthquakes on nearby fault elements; these interactions can 
cause fluctuations in the stress field, with consequent fluc- 
tuations in the interval times. Knopoff (1996) has proposed 
that the fluctuations in the interval times between great earth- 
quakes on the San Andreas Fault (Sieh et al., 1989) may be 
associated with stress interactions between the San Andreas 
Fault and other nearby faults. 

Below, we give a rigorous statistical framework for the 
derivation of a quantitative response to Q. Statistical esti- 
mates of recurrence times will be found to be very sensitive 
to assumptions about statistical distributions. Our results 
confirm, quantify, and extend the numerical analyses of 
Davis et al. (1989), Ward and Goes (1993), and Goes and 
Ward (1994) by providing an analytic basis for the problem. 
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The  T ime  to the Nex t  Ear thquake  

Let P(O be the probability density of  the time intervals 
between earthquakes. If  the time (now) since the last earth- 
quake is t, what is the probability density function P(t') that 
we must wait an additional time t' until the next earthquake? 
From Bayes' theorem for conditional probabilities, cited in 
elementary statistics textbooks, the probability that an event 
A, given the knowledge of  an event B, is simply the quotient 
of  the probability of  the event A without constraint and the 
probability of  event B: 

P(A) 
P(AIB) - (1) 

P(B)" 

Applied to this problem, P(A) = p(t  + t'), which is the 
probability that the next earthquake will occur at time t' from 
now, and P(B) = f7  p(s)ds, which is the probability that no 
earthquake has occurred up to now. Thus, 

P( t ' )  - p ( t  + t') (2) 
ITp(s)ds' 

which is normalized. 
We calculate the expected time until the next earthquake 

(t') as a function of the time since the last one. 

(A.) The answer to Q. is given by the sign of  dit')/dt, 
if it} exists. 

From equation (2), the average expected time to the next 
earthquake is 

f~t 'p(t  + t')dt' 
it') = (3) 

f7  p(u)du 

By a simple change of  variable, 

(t') = 
f~(u - t)p(u)du 

f7 p(u)du 

We integrate the numerator of (4) by parts and get 

it') = 
L ds f7 p(u)du 

fTp(u)du 

The denominator and numerator of (5) are the familiar first 
cumulative integral and the less familiar second cumulative 
integral ofp(u).  For simplicity, we write (5) as 

dit'} 
• > 0 if f( t) f f( t)  - [f'(t)l 2 > o. (7a) 

dt 

Equivalently, 

d(t') g"(t) 
dt [g'(t)] 2 

- - > 0  if g"(t)<0, (7b) 

where we have setflt) = e -g(°. The signs are appropriately 
reversed in the case g"(t) > 0. Equation (7b) especially fa- 
vors an appreciation of  the behavior at large values of  
elapsed time t. 

If  p(t) is finite at t = 0, we can find yet a third version 
of (5), which is useful for small t. A straightforward expan- 
sion for small t shows that 

dir )  
lim T = p(0)A - 1, 

t--~O + 

(7c) 

where 

A =  S U U = t .  

The result of the integration follows directly from (5); it} is 
the average (unconditional) time of  recurrence between two 
earthquakes. Let r -= l/p(0), where r is the estimate of  the 
waiting time until the next earthquake made immediately 
after the occurrence of the preceding earthquake. We call 
the instantaneous estimate of t'. Thus, dit')/dt can be re- 
written in the simple form 

dit') it) 
lim - -  - 1. (7d) 
t+o+ dt 

• If  the instantaneous estimate r of the waiting time is 
smaller than the average waiting time (t), the time to the 

(4) 
next earthquake increases with increasing time since the 
last one for small t: this reflects the fact that the average 
waiting time (t) is formed by contributions from the dis- 
tribution over all time, and a value of  (t) larger than 
indicates contributions from the distribution that are larger 

(5) than ~ at nonzero times; in this case, limt_,0+ dit')/dt > O. 
• If  it) < r, the reverse is true, shorter and shorter timescales 

are sampled on the average as time increases, and the time 
to the next earthquake decreases with increasing time since 
the last one for small t. 

f(O (t') -- (6) 
f ' ( t ) '  

where i f ( t )  = p(t); that is, f( t)  is the second cumulative 
integral of p(u). Thus, 

In particular, if p(0) = 0, then limt_+0+ d(t')/dt = - 1, and 
the time to the next earthquake decreases with increasing 
time since the last one for small t; if, however, p(0) = 0% 
then limt_~0+ d(t')/dt = % and the time to the next earth- 
quake increases with increasing time since the last one for 
small t. 
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The generalization of  (7c) to times other than t = 0 is 
the criterion (7a), when the mean (t) exists. When it does 
not exist, as, for example, when the tails of  the distributions 
decay slower than t -2, we must compare P(t ' )  as given by 
(2), with p(t ' ) .  

Exponent ia l  Dis t r ibut ion 

In order to develop some intuition, we first consider the 
exponential distribution, which is the familiar case of  Pois- 
sonian statistics, 

e - ~  
P(O - , t ~ O ,  

where to is the mean interval time between earthquakes. 
From equation (2), 

e - tr/t0 

P(t ' )  - (8) 
to 

Not unexpectedly, the estimate of  the time of  occurrence of  
the next earthquake does not depend on the elapsed time: 
the average time from now to the future earthquake is t o , no 
matter what the value of  t. This case is memoryless; indeed, 
it is the only distribution that has no memory. The expected 
time to the next earthquake is (t ') = to; there is no need to 
invoke the machinery of  (7) to derive d(t ' ) /dt  = 0. The Pois- 
son distribution is the unique case g"(t) = 0, which gives 
the same result. 

The exponential distribution is the fixed point of the 
transformation p(t)  ~ P(t ');  that is, it is the solution to the 
functional equation 

P ( t ' )  = p ( t ' ) .  (9) 

To verify that (8) is the solution to (9), differentiate (2) with 
respect to t and substitute in (9). We get 

dp(t + t ') 
- p ( t ) p ( t ' )  - (10) 

dt 

Take the Laplace transform of (10) with respect to t', with 
1~to the transform variable. The result (8) follows. Thus the 
exponential distribution is the fixed point of  (2). 

We restate these results: Except for the Poisson distri- 
bution, all statistical distributions must have an average time 
from now to the future earthquake that depends on the time 
since the last earthquake. If  the long-time tail of  the function 
f i t) ,  defined as the integral of  the integral of  the distribution 
p(t), falls off at a rate that is faster than exponential, the 
expected time to the next earthquake is reduced, the longer 
the elapsed time since the last, and vice versa. The Poisson 
distribution is the crossover between the two states. The ex- 
ponential case has neither a positive nor a negative response 

to Q., since the time since the last earthquake has no influ- 
ence on the time of  the next. 

Other  Condi t ional  Distr ibut ions 

We calculate the expected time to the next earthquake 
for several examples of  statistical distributions p(t)  with 
memory. We illustrate the results in Figure 1 by displaying 
the average time to the future earthquake t' plotted against 
the time since the last earthquake t for selected distributions 
p(t); whether the values are greater or less than 1 gives the 
answers to Q. The details of the calculations are given in the 
Appendix. 

The analytical results are summarized in Table 1. The 
times in the table are scaled by a characteristic time to for a 
given distribution; the precise definition of  to for each dis- 
tribution is given in the Appendix. In general, to is of  the 
order of  the mean time between earthquakes, if it is not so 
exactly. In most cases, we can give an answer A. that is valid 
over the entire range of  elapsed times since the last earth- 

< t ' > / < t >  
. . . . . . . . . . . . . . . .  i . . . . .  

, 7  
Power law _ ~ ' ~  

1 0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ( ~ 3 . ) . . . . . . . ~ .  L...................~ 
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Figure 1. Expected time of the next earthquake as 
a function of the elapsed time since the last one. The 
response to Q. is given by the value of the curve with 
respect to 1. 

Table 1 
Response to Q. 

Distribution Short Times Long Times 

Exponential 0 0 
Periodic 
Uniform 
Gaussian 
Semi-Gaussian - - 
Lognormal - + 

~S/-,/; _ + 
Weibull (m > 1) - - 

Rayleigh (m = 2) - - 
Weibull (m < 1) + + 
Power law - + 
Truncated power law + - 
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quake. In some cases, we can only give the answer for the 
limits of short and long time since the last earthquake. The 
table is arranged to favor the limiting responses, even though 
we may have the complete solution. In the case of the ex- 
ponential distribution, the response is neutral, as we have 
already discussed. In the cases of the periodic and uniform 
distributions, the response is only meaningful for times up 
to to; in the case of the Gaussian distribution, the response 
is meaningful for long elapsed times, as we discuss in the 
Appendix. In the cases of the Weibull distribution with 
m > 1 and the semi-Gaussian distribution, the response can 
be proved to be negative for both short and long elapsed 
times and can be inferred to be negative for all elapsed times. 
For the Weibull distribution with m < 1 and the power-law 
distribution, the response is positive for both short and long 
elapsed times and can be inferred to be positive for all 
elapsed times. For the lognormal, power-law, and truncated 
power-law distributions, there is one response for short 
elapsed times and the opposite response for long elapsed 
times, with the implications of a crossover and hence neutral 
response at an intervening time scaled by to; the lognormal 
and truncated power-law distributions have opposite re- 
sponses to each other in the long and short time regimes. 

Since the truncated and ordinary power-law distribu- 
tions give opposite results for long elapsed times, it follows 
that the answers to Q. are unstable with respect to the pres- 
ence or absence of a cutoff in the distributions. It is by def- 
inition problematical that a presumed existence of a cutoff 
can be identified from a finite set of observations of interval 
times: there is no guarantee that a presumed cutoff will not 
disappear with a future observation of a longer interval be- 
tween earthquakes. Thus a positive response to the question 
for long elapsed times since the last earthquake is only con- 
jectural; that is, it is only as strong as one knows the distri- 
bution to times longer than have been observed, which is 
impossible. Of course, the distribution can always be pos- 
tulated a priori,  as in the numerical examples of Davis et al. 

(1989) and Ward and Goes (1993), but the postulate does 
not ensure that it represents nature. 

Est imate of  t o 

Suppose that we do not know a pr ior i  the characteristic 
time to of time intervals between successive earthquakes. We 
then have to estimate it from a finite suite of observations 
of interearthquake time intervals. Assume that (n - 1) ob- 
servations of time intervals t 1, t2 . . . . .  t , _  l are made pre- 
cisely; we ignore here the additional problem of the uncer- 
tainties in the time intervals that occur for historical 
earthquakes; this can be treated by standard statistical 
methods (Sieh et al., 1989). Suppose that the time since the 
last event is t. Then, in the case of the Poisson distribution 
p(t)  = e-t/t°/to, the standard maximum likelihood method 
gives the estimate of t o as the value that maximizes 

1 n--1 

-flo e - (t + ~ tj)/to; 
j = l  

that is, 

to = t + ~ t j .  (11) 
j = l  

Thus, even for the Poissonian case, the use of the informa- 
tion that no event has occurred since t gives an estimate of 
the average recurrence time t o for the next event that in- 
creases with t! The Poisson distribution is memoryless only 
if its parameter to is known a priori.  

The calculation (11) can be generalized for the other 
distributions discussed above. Our previous results must thus 
be reconsidered if the parameters of the distributions are 
themselves not known precisely but are estimated using 
presently available information. This does not pose any dif- 
ficulty in principle, but must be addressed case by case. This 
simple calculation demonstrates the sensitivity of the "pre- 
diction" to the assumptions concerning what is really known 
and what is only inferred from the data. 

Summary  

These observations can be summarized as follows: 

• The Poisson or exponential distribution is memoryless and 
the expected time until the next event is independent of 
previous observations and of the elapsed time since the 
last earthquake. The exponential thus acts as a fixed point 
in the space of distributions of the transformation (2) and 
sits at the boundary between the positive and negative 
classes of memory, that is, at the boundary between pos- 
itive and negative responses to Q. Any statistics of the 
fluctuations of recurrence times that is different from Pois- 
sonian entails the explicit assumption of a memory. 

• Any distribution that falls off at large time intervals at a 
faster rate than an exponential, such as the periodic, qua- 
siperiodic, uniform, and semi-Gaussian distributions, and 
the Weibull distribution with m > 1, has the property "the 
longer it has been since the last earthquake, the shorter the 
expected time until the next." The truncated power-law 
distribution for times close to the cutoff time also has this 
property. 

• Any distribution that falls off at large time intervals at a 
slower rate than an exponential, such as the Weibull dis- 
tribution with m < 1, the unbounded lognormal and 
power-law distributions, and the truncated versions of 
these distributions for times remote from the cutoff, has 
the property "the longer it has been since the last earth- 
quake, the longer the expected time till the next." 

• All distributions that have an instantaneous expectation 
time interval between earthquakes smal ler  than the aver- 
age waiting time between earthquakes have the property 
of an increasing time to the next earthquake for an increas- 
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ing time since the last one, for short times since the last 
one. This includes the cases p(0) = ~. 

• All distributions that have an instantaneous expectation 
time interval between earthquakes larger  than the average 
waiting time between earthquakes have the property of a 
decreas ing  time to the next earthquake for an increasing 
time since the last one, for short times since the last one. 
This includes the cases p(0) = 0. 

• Caution should be exercised in the use of statistics of fluc- 
tuations of interval times deduced from data sets that de- 
scribe only the distributions for short time intervals between 
earthquakes. This is because of the strong dependence of 
our result for long times, and in some cases for short times 
as well, on the properties of the tails of the distributions 
as well as on the values of the parameters of the distri- 
butions. 

• The estimate of the time until the next earthquake depends 
on a precise estimate of the tail ofp(t) and is unstable with 
respect to presently available data for the recurrence of 
large earthquakes. Even a finite sampling of the Poisson 
distribution will lead to an estimate of the time to the next 
earthquake that increases with increased time since the last 
one. 

Thus the positive response of Davis et  al. (1989) to Q., 
"the longer it has been since the last earthquake, the longer 
the expected time till the next," is shown to arise from the 
use of a distribution that decays slower than an exponential 
and that is unbounded for large time intervals; the result is 
valid for other distributions as well. If  a slowly decaying law 
itself undergoes a transition at even longer intervals to a 
more rapidly decaying law, as in the extreme case of a dis- 
tribution with a cutoff, one can expect that eventually the 
next earthquake will become more and more probable. The 
response to the question (Q.) is also related, in part, to the 
finiteness of the number of observations of time intervals 
between earthquakes that gives the estimate of the distribu- 
tion p(t);  the extrapolation of the estimate of the distribution 
to its asymptote for very large time intervals is exceedingly 
dangerous, since this procedure is likely to be based on few, 
if any, observations. The results of this exercise suggest that 
caution be used in the extrapolation of statistics deduced 
from short timescale data sets to long timescales. 
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Appendix  

We calculate the expected time to the next earthquake 
for several examples of statistical distributions p( t )  with 
memory. 

Periodic Distribution 

The simplest of the distributions with memory is the 
periodic distribution, 

p ( O  = ~ ( ~  - O. 

By inspection, we have 

P( t ' )  = 6(t  o -  t' - t), ( t ' )  = t o -  t. 

Thus, d( t ' ) /d t  = - 1 without invoking the generalized ma- 
chinery. In this simplest of cases, the expected time of the 
forthcoming earthquake decreases as the elapsed time since 
the preceding earthquake increases. Extension to quasiperi- 
odic cases can be made. 
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Uniform Distribution 

The uniform distribution is 

1 
p(t) = ~0 ° 0 =< t =< 2to, 

where 2to is the maximum interval between earthquakes and 
to is the mean. From equation (2), we get 

1 
P(t ' )  - 0 <= t' <- 2to - t. (A1) 

2t o - t 

P(t ' )  is independent of  t '; that is, it is itself a uniform dis- 
tribution, but its value is dependent on t. The probability that 
an earthquake will occur at any time in the future up to to 
increases as the time since the last earthquake increases and 
becomes infinite as t ~ 2t o, which simply expresses the in- 
tuitive result that the event will occur with certainty before 
2t0. It is easy to see that the average time to the future earth- 
quake from the present is (t ') = Vz(2t o - t). The negative 
value of d(t ' ) /dt  gives the answer (A.): the expected time to 
the next earthquake decreases with increasing time since the 
last earthquake. In Figure 1, we show the average time to 
the future earthquake plotted against the time since the last 
earthquake; both coordinates are normalized by the mean 
time between earthquakes, to. The linear relationship be- 
tween (t') and t is strongly curved on the log-log plot. 

In Figure A1, we display the probability that the next 
earthquake will occur at time t '  from now. We show the 
unconditional probability, that is, the probability as though 
we knew the distribution of  intervals p(t)  but did not know 
the time of  the last earthquake. We also show the (condi- 
tional) probability of  an earthquake in the future knowing 
that the last earthquake took place at time 1.33t0 in the past. 
In the latter case, no earthquake can occur after 0.67t0 from 
now; according to (A 1), the probability of occurrence of  the 
future earthquake is higher by a factor of  3 than the uncon- 
ditional probability and is independent of  the time of  the 
future earthquake. 

(Semi) -Gauss ian  Distr ibut ion 

The Gaussian distribution is 

1 
p(t)  - ~/2n~-a e -  (t- to)2/2o2, 

where t o is both the mean and the most probable time interval 
of earthquake recurrence; the standard deviation is a. The 
Gaussian distribution has a finite probability that the next 
earthquake will occur before the preceding one. The draw- 
back is minor if (r << to, a condition that describes a nearly 
periodic distribution; we have considered the periodic case 
above. To restrict the problem to cases of positive t, we could 
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........................ .............. i i : - ; : : i i  ; i ................................. 
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Figure A1. Uniform distribution: p(t') and P(t') 
for t = (4/3)to. 

truncate the distribution at t = 0; however, this leads to 
messy mathematics; for large times, the drawback is minor. 

For the simpler problem t >> t 0, we use the approxi- 
mation 

p(t) = ~ e (t/t°)2/~, t ~ O, 
nto 

which is the semi-Gaussian distribution; that is, it is a Gaus- 
sian centered at t = 0; the mean time interval of  earthquake 
recurrence is t o , and the most probable time for recurrence 
is of  course zero for this distribution. Formally, equation (2) 
yields 

2 e -(t+t')2/gt2 

P(t ' )  - (A2) 

where erfc(x) is the usual complementary error function. 
If  the elapsed time since the last earthquake is very 

large, t >> to, we can use the first term of  the asymptotic 
expansion of  the second cumulative integral that is 

e-t2/~t~ 
f ( t )  t2 

Then g(t) ~ P + O(log t), g"(t) > 0 for large t, and from 
(7b), 

d(t ')  
- - < 0  

dt 

For short times, we use (7c) with p(0) = 2/(nto) and A = 
t o and get 

a(t') 2 
- -  1 = -0 .363 .  

dt 
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Thus in both the short and long time limits, the expected 
time until the next earthquake decreases as the time since 
the last one increases. 

L o g n o r m a l  Dis t r ibut ion 

The lognormal distribution is 

1 - - - ~ !  e -  (log t/t0)2/2~ 2 

p(t) = ~/2na t 

1 _ 1/2o_2(log # t  O + a2 )2  + a2/2 

- -  2 ~ O _ t o  e 

(A3) 

which is similar in shape to the Rayleigh distribution (see 
below) near t = 0 but has a much more slowly decaying tail 
for large times. In this case, to is the median time; the mean 
time is <t> = toe~2/2; the most probable time is to e-~2. From 
(A3), we can write 

g ( t ) =  ( log(~o)+ 0-2)2 + O[log log (~0)], 

whence 

2( 
g " ( t ) ~  1 - ~ 2 _  log . 

For t >> t 0, g" < 0, and hence d{t')/dt > 0. For t << t o, g" > 
O, and d<t')ldt < 0; alternatively, we note thatp(0) = 0, and 
hence from (7c), dt(t'>/dt < 0, which is the same result. Thus 
the lognormal distribution has a crossover in response to Q. 

We express these results graphically. For the case 
= to, we display P(t') for times t = 2t 0 and t = 5to (Fig. 

A2) together with the unconditional tognormal distribution 
p(t). From Figure A2a, we see that P(t') is significantly 
smaller than p(t') for times comparable to the elapsed time 
t, but P(t') is, as expected, larger than p(t') at large times 
(see extension of  Fig. A2a to long times in Fig. A2b). This 
is a small effect for t = 2t 0 but is much stronger for t = 5t0 
and all the more so if t increases even more. Thus, numeri- 
cally as well as analytically, for early elapsed times t that 
are comparable to the peak of  the distribution, the longer the 
elapsed time since the last event, the shorter the time until 
the next event; but for large elapsed times since the last 
earthquake, the longer the time since the last event, the 
longer the time until the next one. In the lognormal case, it 
is correct to state that "the longer it has been since the last 
earthquake, the longer the expected time until the next" but 
only for elapsed times greater than times of  the order of  the 
characteristic time. The lognormal distribution is an example 
of  a case that has one answer to Q. for short times since the 
last earthquake and the opposite answer for long times. Of 
course, the crossover takes place at elapsed times that are of  
the order of  the characteristic time to. Note that the proba- 
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Figure A2. Lognormal distribution with cy = to: 
p(t') and P(t') for t = 2t o and t = 5t0: (a) short times 
and (b) long times. 

bilities for long times in the future are, as might be expected, 
very small. The lognormal case is an example of a distri- 
bution with a tail that decays slower than an exponential. 

To illustrate more concretely the properties of  a system 
that has a crossover response to Q., we concoct the distri- 
bution 

1 ~oo e_ /~, p ( t )  = 

which probably has no redeeming virtue in nature but has 
the property that it has easily calculable integrals. It is evi- 
dent that this distribution has both a long-time tail that de- 
cays slower than exponential, and the property p(0) = 0, as 
in the case of  lognormal distribution. Thus we are guaranteed 
that there is a crossover in the response to Q. More precisely, 
the criterion function (7a) is f(t)f"(t) - [ f ' ( t ) ]  2 = ¼(x  3 + 

4x 2 + 4x - 4)e-2~, where x = t~0 .  The criterion has a 
crossover in sign between x small and large at t/to = 0.3532. 
The lognormal distribution has similar properties. 



796 D. Somette and L. Knopoff 

W e i b u l l  D i s t r i bu t i on  

The Weibull  distribution is 

p( t )  = m t o m t ' n - l e  -(ut°)", 0 < t < 0% m > O, 

having a most probable value (m - 1)l/mto, a mean a ( m ) t  o 
where a ( m )  = f ~  e -tin dt, and median (log 2)l/rot0 . Values 

of  m smaller than 1 correspond to p( t )  decaying slower than 
an exponential for large t and give the so-called stretched 
exponential distributions, while values of m larger than 1 
lead to a decay that is faster than exponential. For  large m, 
p( t )  approaches a delta function centered on t o, that is, to the 
periodic distribution we have considered above. Ward  and 
Goes (1993) and Goes and Ward  (1994) have studied the 
degree of earthquake clustering as a function of  m; in their 
notation, v = l /m.  Equation (2) yields 

P( t ' )  = m t o  m (t + t ' ) m - l e  -[(t+t')m-tm]/t'g°. (A4)  

The first term of  the asymptotic series for f(t), which is the 
second cumulative integral ofp( t ) ,  is 

e - (t/to)m 

f ( t ) ~ ( t l 3 ( m - - 1 )  - -  

\to~ 

e - (t/tOm- (3m --  1 ) log  # t  o 
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Evidently, g(t)  ~ t m + O(logt), and hence g"(t) ~ m ( m  - 1) 
t (m-2). Thus i f0  < m < 1, then g"(t) < 0, and d( t ' ) /d t  > 0 for 

large t, while if  m > 1, then g"(t) > O, and d( t ' ) /d t  < 0 for 
large t. For  small t, p(0) = 0, m > 1, and it follows from 
(7c) that d( t ' ) /d t  < 0. For cases m < 1, p(0) = oo, and from 
(7c), d( t ' ) /d t  > 0. Thus there is a reversal in response be- 
tween the cases m < 1 and m > 1, in agreement with the 
result of  Ward  and Goes. 

In Figure A3a, we exhibit the interesting subcase of  the 
Weibull  distribution with m = 2, which is appropriate for 
rectified Gaussian noise and is known as the Rayleigh dis- 
tribution. The Rayleigh distribution has a tail with similar 
properties to that of  the Gaussian and decays faster than an 
exponential. We show P( t ' )  for times t = to and t = 2to. It 
is clear that P( t ' )  has a progressively shrinking width to the 
origin as t increases; that is, the expected time decreases as 
the waiting time t increases. The answer A. is negative for 
both short times and long times, the latter property evidently 
connected with the rapid fall-off in p( t )  for large t. 

The opposite situation is found in the case m < 1; in 
Figure A3b, we plot the case m = 1/2 and show P( t ' )  for 
times t = to, t = 2to, and t = 10to, as well asp(t) .  I t i s  clear 
that P( t ' )  lies well above p( t ' )  at long times t '  > t o and all 
the more so as t increases. Thus the longer we wait, the 
longer the time to the next event, in this case. 

Figure A3 .  Weibull distribution. (a) m = 2 (Ray- 
leigh distribution), corresponding to a tail decaying 
faster than an exponential. P(t') is shown for t = t o 
and t = 2to together with p(t'). (b) m = 1/2 corre- 
sponding to a tail decaying slower than an exponen- 
tial. P(t') is shown for t = t 0, t = 2t 0, and t = 10t o, 
together with p(t'). 

P o w e r - L a w  D i s t r i b u t i o n  

The unconditional power-law distribution is 

p( t )  = O, O < t < t o , (A5)  

p(t) = , t o < - - t < = ~ ,  0 < ~ < ~ .  

The characteristic t imescale to is proportional to the mean 
(]z/(/z - 1)) t o for/z > 1 and the median t o 2w~; for # < 1, 
the mean is infinite. This is an example of  a distribution with 
a waiting time and has been used in the case#  = 1/2 in short- 
term earthquake prediction calculations by Kagan and Knop- 
off (1981, 1987). 

F o r #  > 1, we evaluate d( t ' ) /d t  for this case by applying 
the criterion function (7a), which gives (to~t) 2# 1/(p - 1). 
Thus d( t ' ) /d t  > 0 for all/z > 1 and all t > to. 
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For/z _--__ 1, (t) diverges, and the criterion (7a) cannot be 
used. In this case, we have to examine the conditional dis- 
tribution (2) directly and compare it with the unconditional 
distribution. This general method is also applicable to the 
case/z > 1. Substitution of  (A5) in equation (2) yields 

P( t ' )=H(1  +~-) - ( l + / ° ' t  (A6) 

Formula (A6) is almost the same as the unconditional dis- 
tribution, except for the additional 1 in the parentheses; the 
two expressions are identical in the limit t '  >> t except for 
obvious scaling factors. Thus, in this limit, the distribution 
P( t ' )  is also a power law with a characteristic scale given by 
the waiting time t, instead of  to for the unconditioned p( t ' ) .  
Thus the longer it has been since the last earthquake, the 
longer the expected time until the next, for all cases/z > 1. 

Figure A4a shows P( t ' )  for t = 10to and t = 100t 0 
together with p( t )  for an exponent/z = 3 (for this choice, 
p( t )  possesses a finite mean and variance). We observe the 
asymptotic power-law behavior of  P( t ' )  at times t' > t with 
amplitude significantly larger than p( t ' ) ,  showing the en- 
hanced probability for large conditional waiting times. Fig- 
ure A4b shows P( t ' )  for t = 10to and t = 100t0 together 
with p( t )  for the threshold case of  exponent p = 1; in this 
case, the mean and variance are not defined. This is an il- 
lustration of  a power law with a very weighty tail. The be- 
havior of  P( t ' )  is qualitatively similar to the previous case. 

Truncated Power-Law Distribution 

Except for the uniform and periodic distributions, we 
have considered thus far only distributions of  fluctuations in 
interval times that extend to infinity. In these cases of  dis- 
tributions with long-time tails, there is a finite but small 
probability that a second earthquake will occur after a very 
long time interval after the first. If  the distributions describe 
the seismicity of  a region, rather than that of  an individual 
fault, the very long time intervals imply very large accu- 
mulations of  deformational energy and hence very large 
fracture sizes. To avoid the problems of  earthquake sizes 
greater than the size of  a given region, we consider a cutoff 
in the distributions p( t )  (Knopoff, 1996). To demonstrate the 
influence of  a cutoff, we restrict the previous case to 

\ to /  ' to <-- t <-- &~x, p( t )  - l-(tmax] -~  t° 

\ to / 
= 0  , 0 < t <  to, 

(A7) 

which is normalized. Substitution in equation (2) yields 

P( t ' )  - It 1 
(t + t ')  1+~ t -~  - tm~" 

(A8) 
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Figure A4.  Power-law distribution. (a) p = 3;p(t) 
possesses a finite mean and variance. P(t')  is shown 
for t = 10t 0 and t = 100to together withp(t'). (b)/z 
= 1; the mean and variance are not defined. P(t')  is 
shown for t = 10to and t = 100t o together withp(t'). 

For t << tmax, the second factor of  (A8) is t ~, which is the 
same as letting tmax ~ ~. Thus we recover the previous case 
of  the simple power law without truncation. 

The interesting regime is found when t is not very small 
compared to tma x. Consider the case t --4 tma x. From equation 
(AS), we get 

1 
P( t ' )  tm~ - t '  (A9) 

which is independent of  t' and becomes very large as 
t --~ tma x. This case is identical to that of the uniform distri- 
bution (A1) above. Thus it is not unexpected that the longer 
we wait, the shorter will be the expected time until the next 
event. Without truncation, the result is reversed. There is a 
crossover between the truncated and untruncated cases, as 
illustrated in Figure A5. In the figure, we take/z = 3 as in 
Figure A4a, tmax = 100to, and show P( t ' )  for t = 10to, 90t 0, 
and 98t 0. For t = 10t0, P( t ' )  is found to be much larger than 
p( t ' )  in the tail, as in the previous untruncated case. For 
t = 90to, P( t ' )  is defined only for 0 =< t' _--< 10to. In agree- 
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Figure A5 .  Truncated power-law distribution with 
¢t = 3 and tmax = 100to. P(t ' )  is shown for t = 10t o, 
90t o, and 98t o. 

Since the truncated power-law distribution is very close 

to a uniform distribution for times near tmax, we expect that 
the truncated lognormal distribution and truncated Weibull 

distributions with ¢t < 1 will also have a shorter time until 

the next event, the longer we have been waiting for an earth- 

quake to happen; thus we expect a crossover in the response 

to Q. between these truncated and untruncated cases as well. 
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ment with (A8), we see that P(t') becomes almost constant 

and close to 1/10t0. For  t = 98t o, P(t') is defined only for 
0 _--< t' =< 2t0 and is close to V2t o. This illustrates the crossover 

from a longer expected time when t is small to a shorter 

expected time as t approaches tm~. 
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