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Probability theory and stochastic processes for physicists

Problem 4: Stable laws and renormalization 1

Consider two independent real random variables X1 and X2 drawn from the same pdf f(x),

which is assumed for simplicity to have zero mean. The pdf fΣ(y) of the sum Y = X1 +X2

is then given by

fΣ(y) =

∫ ∞

−∞
dx f(y − x)f(x). (1)

A pdf f is called a stable law if fΣ is identical to f under appropriate rescaling of the

argument, that is if

Rb[f ](y) ≡ bfΣ(by) = b

∫ ∞

−∞
dx f(by − x)f(x) = f(y) (2)

for a suitably chosen scale factor b. Equation (2) can be viewed as a fixed point condition for

a simple renormalization transformation Rb acting on the space of probability distributions.

Rewrite the fixed point condition (2) using the generating function

GX(k) =

∫ ∞

−∞
dx eikxf(x). (3)

Show that the Gaussian and the Cauchy distributions

fG(x) =
1√
2π

e−x2/2, fC(x) =
1

x2 + π2
(4)

are fixed points of (2), and identify the corresponding values of b. Show more generally that

(2) is solved by the one-parameter family of (symmetric) Lévy stable laws with generating

function e−C|k|α, where 0 < α ≤ 2.

Problem 5: Zipf’s law for random texts

Zipf’s law states that the number N(x) of distinct words that occur with frequency x in

a text is proportional to x−α, where α ≈ 2. Here we consider random texts, which are

random uncorrelated sequences consisting of m different letters and one space sign which

separates different words. All letters occur with equal probability q, and the space sign with

probability qs = 1 − mq. Clearly in this model all words of the same length l occur with

the same probability. Show that both the probability of occurrence of a given word, and the

number of distinct words of length l depend exponentially on l, and deduce from this the

power law N(x) ∼ x−α. Investigate the behavior of α for large m and small qs.

1See Excercise 12.1. in Statistical Mechanics: Entropy, Order Parameters, and Complexity by J.P. Sethna,

and Sect. 2.3 of Critical Phenomena in the Natural Sciences by D. Sornette.



Problem 6: Fitting power law distributions

In many applications one is faced with the task of deciding whether a sequence of N data

points X1, ...,XN is consistent with an underlying power law probability distribution, and

to determine the exponent. We assume here that the Xi are real numbers with Xi ≥ 1, and

the hypothetical probability density is of Pareto type,

f(x) = αx−(α+1) (5)

with the corresponding distribution function

F (x) =

∫ x

1
dx′ f(x′) = 1− x−α. (6)

a.) By rank ordering the data points are ordered by increasing size, such that the maximal

value Xmax has rank R(Xmax) = N and the minimal value has rank R(Xmin) = 1. Show

that quite generally, for independent random variables and large N ,

R(Xi)

N
→ F (Xi).

b.) To determine the exponent α from the data, one often fits a straight line to a double-

logarithmic plot of a histogram representing f(x) or 1−F (x), or to the rank R(Xi). A

more accurate method is based on an estimate of the likelihood of the value of α, given

the data X1, ...,XN . A simple ansatz for the likelihood is2

L(α|X1, ...,XN ) = ln

[

N
∏

i=1

f(Xi)

]

. (7)

Derive a formula for the most likely value of α by maximizing (7) under the hypothesis

that the distribution is given by (5).

c.) Generate numerically a sample of N = 10000 power-law distributed random variables

by transforming uniform random numbers according to (6). Then try to extract the

exponent from the data using (i) a linear fit to lnR(Xi) versus lnXi, and (ii) the

maximum likelihood formula from part b.). Compare the results.

Problem 7: Combining power law random variables

Let X1,X2 ≥ 1 denote i.i.d. random variables with Pareto distribution (6).

a.) Compute the density fY (y) of the sum Y = X1 + X2, and show that it behaves as

f(y) ≈ 2αY −(α+1) for large y.

b.) Compute the density fZ(z) of the product Z = X1X2, and show that it behaves as

f(z) ∼ ln(z)z−(α+1) for large z.

2M.E.J. Newman, Cont. Phys. 46, 323 (2005); A. Clauset, C.R. Shalizi and M.E.J. Newman, SIAM Review

51, 661 (2009).


