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Probability theory and stochastic processes for physicists

Problem 15: 1/f-noise from power law waiting times

It was shown in Problem 3 that an exponential distribution of activation energies with mean
E0 leads to a waiting time distribution

ψ(τ) = α(τ0/τ)
α+1 (1)

for a diffusing particle, where τ ≥ τ0 and α = kBT/E0. Following the calculation presented
in the lectures for a uniform distribution of activation energies, compute the averaged power
spectrum S̄(ω) for a system of independent telegraph processes whose characteristic time τc
is distributed according to (1). Show that

a.) S̄(ω) ∼ ω−2 for ω ≫ 1/τ0.

b.) S̄(ω) → const. for ω ≪ 1/τ0, when α > 1.

c.) S̄(ω) ∼ ω−(1−α) for ω ≪ 1/τ0, when α < 1.

Problem 16: Poisson process and Wiener process

a.) Consider shot noise with intensity ρ = 1, and let N[0,t] denote the number of events in
the time interval [0, t]. The Poisson process is defined by Y (t) = N[0,t]. Write down the
transition probability P1|1(N2, t2|N1, t1) for this process (as also given in the lectures)
and verify by explicit computation that it satisfies the Chapman-Kolmogorov equation.

b.) Next show that the autocorrelation function of the Poisson process is given by the
expression

κ(t1, t2) = min[t1, t2]. (2)

Hint: Write down the variance of Y (t2) − Y (t1), using the fact that this quantity is
Poisson-distributed.

c.) The Wiener process is defined by the transition probability

P1|1(y2, t2|y1, t1) =
1
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with t2 > t1 > 0 and the initial condition P1(y, 0) = δ(y). Show that the autocorrelation
function for the Wiener process is identical to the expression (2) for the Poisson process.

Problem 17: The telegraph process

The telegraph process is defined by

Y (t) = (−1)N[0,t]

where N[0,t] was introduced in Problem 16. We want to prove the relations

〈Y (t)〉 = e−2t (3)

〈Y (t1)Y (t2)〉 = e−2|t1−t2|, (4)

and show that the telegraph process is Markovian.



a.) To prove (3) show first that the probability Pg(t) to have an even number of events1

in the interval [0, t] is given by

Pg(t) = e−t cosh(t)

and express the distribution function P1(y, t) through Pg. Then we obviously have that
〈Y (t)〉 = P1(1, t)− P1(−1, t).

b.) To derive (4) express the conditional probability P1|1(y2, t2|y1, t1) by Pg and determine
the two-point distribution function P2(y1, t1; y2, t2). This yields 〈Y (t1)Y (t2)〉 by an
argument similar to part a.).

c.) From part b.) we have obtained the expression

P1|1(y2, t2|y1, t1) =
1

2
[1 + e−2|t2−t1|] δy1,y2 +

1

2
[1− e−2|t2−t1|] δy1,−y2 (5)

for the transition probability of the telegraph process. Verify that (5) satisfies the
Chapman-Kolmogorov equation.

Aufgabe 18: The Ehrenfest urn model

Consider N identical balls which are distributed among two urns. In one time step one of
the N balls is selected at random and transferred from the urn in which it is found to the
other urn. The state of the system is described by the number n = 0, 1, 2, ..., N of balls in
urn 1 (the number of balls in urn 2 is then N − n).

a.) Show that this process defines a finite Markov chain with transition matrix

T1(n|m) =
m

N
δn+1,m +

N −m

N
δn−1,m.

b.) Show that the binomial distribution

Ps(n) = 2−N

(

N

n

)

is a stationary distribution of the model.

c.) A Markov chain is called reversible, if the matrix T1(n|m)Ps(m) is symmetric. Show
that the urn model is reversible.

1
Zero is even.


