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We show that helical magnets exhibit a nontrivial type of domain wall consisting of a regular array of

vortex lines, except for a few distinguished orientations. This result follows from topological considera-

tion and is independent of the microscopic models. We used simple models to calculate the shape and

energetics of vortex walls in centrosymmetric and noncentrosymmetric crystals. Vortices are strongly

anisotropic, deviating from the conventional Berezinskii-Kosterlitz-Thouless form. The width of the

domain walls depend only weakly on the magnetic anisotropy, in contrast to ferromagnets and anti-

ferromagnets. We show that vortex walls can be driven by external currents and in multiferroics also by

electric fields.
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Introduction.—The structure of domain walls (DWs)
determines to a large extent the properties of magnetic
materials, in particular, their hardness and switching be-
havior; it represents an essential ingredient of spintronics
[1,2]. Common DWs are of Bloch and Néel types in which
the magnetization rotates around a fixed axis, giving rise to
a one-dimensional magnetization profile [3,4]. Two-
dimensional vortex wall configurations can appear in re-
stricted geometries as a result of the competition of stray
field, exchange, and anisotropy energy [1]. The more diffi-
cult problem of DWs in helical magnets has not yet been
solved.

Here we show that DWs in helical magnets are funda-
mentally different from Bloch and Néel walls. They are
generically characterized by a two-dimensional pattern.
For almost all orientations of the DW they contain a regular
lattice of vortex singularities. However, DWs of few excep-
tional orientations, determined by symmetry, are free of
vortices and maximally stable. Though DWs do not exist
without anisotropy, their width and energy depend only
weakly on the anisotropy strength. Similar to other topo-
logical defects [5–8], vortex DWs can be driven by electric
currents. In multiferroics vortices are electrically charged,
allowing manipulation of magnetic DWs by electric
fields [9–11].

Helical magnets exhibit a screwlike periodic spin pattern
intermediate between ferromagnets and antiferromagnets.
Examples of such structures are shown in Fig. 1. In addi-
tion to time reversal symmetry, in helical magnets the
space inversion symmetry is broken [12], either spontane-
ously in centrosymmetric crystals, or enforced by the
symmetry of the crystalline lattice in noncentrosymmetric
crystals. The magnetization m in these structures rotates
around a fixed axis when the coordinate along a fixed
direction, generally not coinciding with the rotation
axis, changes. Further, we denote the projection of the

magnetization to the rotation axis m3, its rotating projec-
tion to the perpendicular plane as m?, and assume that
m2 ¼ 1. The angle of rotation is �.
Centrosymmetric case.—We begin with the centrosym-

metric case, since it is simpler and includes already many
features discussed in this article. Prominent experimental
realizations are frustrated antiferromagnets in rare earth
metals Tb, Dy, Ho [13,14], their alloys and compounds
RMnO3 R 2 fY;Tb;Dyg [15], R2Mn2O5, R 2 fTb;Big, as
well as Ni3V2O8 and LiCu2O2 [15,16]. The helical mag-
netic order originates in these materials from the indirect
RKKY exchange which results in a competing nearest
neighbor ferromagnetic (J > 0) and next nearest neighbor
antiferromagnetic (J0 < 0) interaction along the helical
axis [14,17,18]. The corresponding Ginzburg-Landau
Hamiltonian then reads [1]

(a)

(b)

(c)

FIG. 1 (color online). Different types of helical ordering.
(a) The magnetization rotates in a plane perpendicular to the
helical (x) axis as in Tb, Dy, Ho. (b) Conical phase with a
nonzero m3 component of the magnetization as in Ho below
19 K. (c) The magnetization rotates in a plane parallel to the
helical axis as inTbMnO3.
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where
R
r ¼

R
d3r, r? ¼ ŷ@y þ ẑ@z, and a is the lattice

constant. � ¼ arccosðJ=4jJ0jÞ denotes the angle between
spins in neighboring layers. The continuum approach is
valid for � � 1. � can be diminished to zero under uniaxial
pressure [19]. The last term in (1) is an interpolation
that fixes the spins either in-plane, m3 ¼ 0 at � ¼
ðT � T0Þ=T0 > 0, as in Tb, Dy, Ho, and TbMnO3, or on a
cone with angle #0 for � < 0, as in Ho below T0 ¼ 19 K
[20] (#0 � 1:56 [14]). �a � 0:625 for Ho and �a ¼ 0:17
for Tb [14]. The ground state of (1) has a helical structure
with � ¼ qx:

m ¼ jm?jðe1 cosqxþ �e2 sinqxÞ þ �m3e3; (2)

where q ¼ �=a [see Fig. 1(a)]. � ¼ �1 and � ¼ �1 de-
scribe the chirality and conicity of the solution, respec-
tively. The rotation axis e3 may be parallel to the helical
axis x̂, as in Tb, Dy, Ho, or perpendicular to it, as in
TbMnO3 [see Fig. 1(c)]. Because of its space inversion
symmetry, (1) is a generic model for any centrosymmetric
helical magnet. In centrosymmetric helical magnets where
the star of modulation vectors includes 3 vectors, like in
CuCrO2 [11,21], a slightly more complicated model has to
be used, but the main conclusions of our analysis remain
valid also in this case.

Domain walls and vortices.—DWs separate half spaces
with different values of � or � or both. We consider here
only walls with different � since domain walls between
phases with different � , but the same value of �, are of
Ising-type and well studied. A wall whose normal n̂ is
parallel to the helical axis, n̂ � x̂ ¼ 1, has been studied by
Hubert [1,22]. In such a wall, the derivative of the rotation
phase @x� changes smoothly from�q to q over a distance
�1=q [see Fig. 2(a)]. Its surface tension �H � ðJ=a2Þj�j3

is small for small �. Walls of different orientation were not
yet studied theoretically, although seen in experiment, e.g.,
in Ho by circular polarized x rays [20]. We consider first a
wall in the xz plane whose normal n̂ is perpendicular to x̂.
Since both domains have the same pitch, the magnetization
is periodic along the x axis with the period 2�=q.
Circulating counterclockwise along a closed contour C in
the xy plane formed by two horizontal lines at x ¼ N�=q
and x ¼ ðN þ NvÞ�=q with N and Nv being integers and
two vertical lines connecting the horizontal ones far from
the wall [see the red contour in Fig. 2(b)], an observer sees
the change of phase 2�Nv. A similar contour C enclosing a
Hubert wall gives Nv ¼ 0. We note that this argument is
purely topological and not limited to the particular
Hamiltonian (1). In the case of six modulation vectors
�qi, i ¼ 1; 2; 3, as in CuCrO2, in addition to the �qi

DWs considered here, also DWs between qi;qj phases

(i � j) appear, similar to those discussed below for the
noncentrosymmetric case.
Vortices are saddle point configurations of the

Hamiltonian (1). For �a � 1 they obey the equation

f4r2
? þ a2½6ð@x�Þ2 � 2q2 � @2x�@2xg� ¼ 0: (3)

Vortex lines parallel to x̂ have the standard Kosterlitz-
Thouless form [23]. The same applies to vortex lines
perpendicular to x̂ on scales much larger than q�1 where
ð@x�Þ2 � q2 and hence Eq. (3) becomes Laplace’s equa-
tion. On smaller scales, instead of solving (3) exactly, we
use a variational ansatz �ðrÞ ¼ arctanð	z=xÞ, where 	 is a
variational parameter to be found from the energy minimi-
zation. It gives 	2ðrÞ ¼ �2 þ 5=½64 lnðr=aÞ� where r2 ¼
x2 þ 	2z2. The vortex energy per unit length is

"vðrÞ ¼ �J

a
ln1=2ðr=aÞ

�
5

64
þ �2 lnðr=aÞ

�
1=2

: (4)

Equation (4) describes the crossover from the conventional
Kosterlitz-Thouless behavior � lnðr=aÞ at distances r >

rc ¼ a exp½5=ð64�2Þ� to a ½lnðr=aÞ�1=2 behavior at scales
r < rc.
So far we assumed that �a � 1 and hence the

spins are confined at a fixed value of m3. However, for

�a < 1 in the vortex center, i.e., for r & r� ¼ ��1ð1þ
�cos2#0Þ�1j lnð�aÞj1=2, spins align parallel to the e3 axis to
save energy. Thus, m3� ¼ �1; i.e., the vortex forms a
meron [24]. Vortices in the DW have the same vorticity
�1 and are equidistant with the spacing �=q forming a
vortex fence. The energy per unit area of the vortex DW is

�v ¼ ð ffiffiffi
5

p
J=4a2Þj�jj lnj�jj1=2 � �H.

A DWof general orientation with n̂ � x̂ ¼ cos
 consists
of a periodic chain of vortices perpendicular to the helical
axis and the normal to the DW [Fig. 2(c)]. For 
 close to 0
the wall can be treated as pieces of Hubert walls separated
by vortex steps of the height �=q and length
ð�=qÞ=j tan
j, giving rise to a vortex staircase. The energy
per unit area of such a wall is approximately equal to

(a) (b) (c)

FIG. 2 (color online). DWs in centrosymmetric helical mag-
nets. Cross section parallel to the x-y plane of (a) a Hubert wall,
(b) a vortex wall parallel to the helical axis in a system where the
magnetization rotates in the x-y plane, (c) a vortex wall tilted
with respect to the helical axis. The arrows denote the orientation
of m. For systems where m is confined to the y-z plane, m has
been rotated by �=2 for better visibility. The closed (red)
contour is described in the text.
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"v½ðq sin
Þ�1�qj sin
j=�þ �Hj cos
j. At any
 � 0, it is
larger than the energy of the Hubert wall.

Noncentrosymmetrics case.—In these systems, invari-
ants violating the space but not time inversion symmetry
are permitted. Those terms appear in first order perturba-
tion theory in the spin-orbit coupling constant g [25,26].
Experimental examples of noncentrosymmetric com-
pounds are MnSi [27], Fe1�xCoxSi [28], and FeGe [29].
The magnetic anisotropy in crystals with cubic symmetry
is of the order g4. The phenomenological Ginzburg-
Landau functional for the magnetization m has been de-
rived in detail in [30] and takes the form

H n ¼ J

a

Z
r

�
ðrmÞ2 þ 2gmðr 	mÞ þ v

X3
i¼1

m4
i

�
: (5)

Here we ignored other terms representing the cubic anisot-
ropy since they do not influence our results qualitatively.
For v ¼ 0 the minimum of energy (5) is given by a planar
chiral structure, mðrÞ ¼ e1 cosqrþ e2 sinqr, where q is
the wave vector of the helix and e1, e2 ¼ q̂	 e1, and q̂
form a triad. The direction of q is arbitrary, but its length
jqj ¼ g is fixed. Contrary to the centrosymmetric helices,
states with wave vectors q and �q describe the same
magnetization reducing the degeneracy space to
SOð3Þ=Z2 [31]. Cubic anisotropy pins the helix direction
q either along one of the cube diagonals or along one of the
fourfold axis, depending on the sign of v. DWs separate
half spaces with different values of q. Since jvj � g2, one
could expect, in analogy with ferromagnets, that the DW
locally represents a helical structure whose wave vector
slowly rotates pertaining its length constant. We will prove
that such a configuration does not exist. Indeed, the gen-
eralization of the equation for the magnetization in a
structure with slowly varying q is

m ðrÞ ¼ e1 cos�ðrÞ þ e2 sin�ðrÞ; (6)

where �ðrÞ is an arbitrary function of coordinates.
e1; e2;r� form a right triad. The requirement of the con-
stancy of the pitch implies ðr�Þ2 ¼ q2, which is the
Hamilton-Jacobi equation for a free particle with the
boundary conditions r� ! q1;2 at x ! 
1. Since a free

particle conserves its momentum, the latter cannot be
different in two different asymptotic regions. Thus, it is
impossible to construct a DW between two different
asymptotic values of the wave vector without changing
its modulus between. The DW solution has a width deter-
mined by the only existing scale 1=q and the surface
energy is independent of anisotropy v.

DWs whose plane is a bisector of the asymptotic wave
vectors q1 and q2 do not contain vortices. They are analogs
of the Hubert DWs. Their surface tension has the order of
magnitude �� Jg=a. DWs of any different orientation
contain a chain of vortex lines for the same reason as in
the centrosymmetric case (see Fig. 3, left panel).
The vortex lines are located in the plane of the DW

perpendicular to the projection of either of the vectors q1 �
q2 � 2q� or q1 þ q2 � 2qþ onto the domain plane de-
pending on what configuration has lower energy. The
vortex line spacings in the chain are equal to ‘� ¼
2�=jn̂	 q�j. Pictures of both vortex-free and vortex
DWs based on variational numerical calculations are
shown in Fig. 3, together with the experimental figure of
FeGe [29] displaying these structures. For numerical cal-
culations we used (6) and the following ansatz (we write
the answer for the first choice of the sign):

�ðrÞ ¼ rqþ þ nq�w lncosh
nr

w
þ arctan

tanc 1

tanhc 2

; (7)

where c 1 ¼ ½r� nðnrÞ�q� and c 2 ¼ jn	 q�jnr. The
last term in (7) is the contribution of the vortex array. It
has the asymptotics �c 1. The second term does not have
any singularity. It corresponds to the vortex-free DW when
n is parallel to q1 � q2, i.e., when the DW plane is the
bisector of the vectors q1 and q2. Its asymptotics are
�ðnrÞðnq�Þ. The asymptotic of the sum of the second
and third terms is �rq�. Together with the first term
they tend asymptotically to q1r above the domain wall
and to q2r below. The only variational parameter is w. The
surface tension of a vortex DW differs from that of the
vortex-free DW by a factor sin� lnð1=qaÞ, where � is the
angle between n and q
. Apart from a narrow interval of
small �, this factor is larger than 1. Because of their higher
surface tension, DWs carrying vortices may be unstable
with respect to formation of a zigzag structure formed by
vortex-free DWs. Zigzag structures observed in experi-
ments with Fe0:5Co0:5Si [28] can be tentatively interpreted
as arising from this instability. The zigzag structure is
impossible in the helical magnets with uniaxial anisotropy
since only one orientation of the vortex-free DWs is al-
lowed. This fact, together with low stability of vortex-
carrying DWs, can serve as an explanation of a disordered
domain structure observed in Ho [20].
DW roughening.—Roughening of DWs occurs by the

formation of terraces which condense at the roughening
transition temperature [32]. For Hubert walls, terraces
are encircled by vortex rings of some length L. Since their
energy and entropy scale as "vðLÞðL=aÞ and L=a,

FIG. 3 (color online). DWs in noncentrosymmetric helical
magnets. A detail of Fig. 1(g) of Ref. [29] (center) showing
two types of DWs in the ferromagnet FeGe; the left one includes
vortices, the right one is vortex-free. The panels are theoretically
calculated DWs, right without vortices, left with vortices.
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respectively, Hubert walls remain asymptotically flat at
increasing temperatures, slowing down their propagation.
On the contrary, vortex walls are always rough, as seen also
experimentally [20].

Driven domain walls.—We assume that the spin of a
conduction electron follows adiabatically the magnetiza-

tion mðrÞ. This approximation is valid provided jk"F �
k#Fj � q. Here k"#F is the Fermi momentum of the electrons
with spin parallel or antiparallel to m. Thus, electrons
experience a change of angular momentum. Inversely, the
electron current j creates a reaction torque on m driving
the magnetic texture with a force [5–8],

F
 ¼ @

2e
j�

Z
r
fm � ð@
m	 @�mÞ þ�sf@�m � @
mg: (8)

The first term is the spin transfer torque [5,6] related to the
Berry’s curvature K
 ¼ �
��mð@�m	 @�mÞ. For a

single vortex, its only nonzero component is parallel to
the vortex lines and is given by 2�m3� . Aweak field along
the axis of rotation will order � of different merons. The
force per unit area of the DW exerted by a current of
density j parallel to the wall due to the spin torque is of
the order m3��ðj=105 Am�2ÞNm�2. The second term
results from the spin relaxation and is orthogonal to the
first one. �sf is a dimensionless coefficient which depends
on the specific relaxation mechanism [7,8]. The pinning
force density due to nonmagnetic impurities of density ni
can be estimated from the theory of collective pinning as
J�ni=6 � �ðTc=20 KÞðni=1017 cm�3ÞNm�2, which gives
a critical current jc � 6	 107 Am�2 for ni � 1019 cm�3.

Multiferroics.—In multiferroics the magnetization can
induce the electric polarization [9],

P ¼ 
½mðrmÞ � ðmrÞm�; (9)

where 
 is some material constant. P is only nonzero if
mx̂ � 0 (as in TbMnO3). The vortex structure in a helical
DW induces a ferroelectric DW, in agreement with experi-
ments [33]. Hubert walls are uncharged whereas vortex
lines carry an electric charge � ¼ 2�
½e3 	 x̂�n̂ per unit
length. This allows us to move magnetic DWs by an
external electric field.

To conclude, we have shown that DWs both in centro-
symmetric and noncentrosymmetric helical magnets con-
sist of a regular array of vortex lines for almost all
orientations except of a few that correspond to a minima
of the surface energy. The helical DWs are generically two-
dimensional textures. They are charged in multiferroics
and can be driven by electrical currents and fields.
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