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Bragg glass: a reminderBragg glass: a reminder

Elastic vortex lattice + point disorder   →
quasi-long range order

S(k+G)∼ (k⊥2+(c44/c66)kz
2)-(3-ηG)/2
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Elastic constants c11, c44, c66 remain finite!

1.14 < 1.14 < ηηG  G  < 1.16< 1.16
0

G=mb1+nb2
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Sample to sample fluctuations of free energySample to sample fluctuations of free energy

Bragg glass  χ=1,   μ=χ/(2-ζ)=1/2

ρ(j)∼ exp –[j(H,T)/j]nonnon--linear resistivitylinear resistivity
μμ

F∼ L3

Δ F∼ L

F∼ L3

χ
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Vortex phase diagram, elastic theory

collective pinning
RF/RM scaling
Larkin domains
no TLRO 

Bragg glass scaling
quasi-TLRO

thermal 
lattice melting
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Planar DefectsPlanar Defects
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The grey scale is defined by the ratio of the conductance measured at 20 meV to the conductance measured at zero bias. Grey tones varying from clear 
to dark correspond to ratios ranging from high to low. Note that for experimental reasons, the centre of the different images presented here are not 
exactly at the same position; this puts the twin boundary (TB) at slightly different positions relative to the centre in the various images. a, 170   170 nm2

image taken at 3 T (field-cooled). Both domains are filled with a nearly equal density of flux lines, and the 90° rotation of the ab -plane anisotropy is 
observed across the TB. b, 150   150 nm2 image taken 12 hours after the field was reduced from 3 to 1.5 T. The arrows indicate the vortex movements 
observed in the domain to the right, forming non-continuous lines extending in a direction parallel to the TB. c, Three days after field reduction, no more 
flux lines can be detected throughout the domain to the right over at least 80 nm. d, 150   150 nm2 image taken after a 3 T–1.5 T–0 T–6 T field cycle. 
Both domains show a high density of flux lines, and a flux gradient is measured across the TB. e, Topographic image of the YBCO surface taken 
simultaneously with d. The TB appears as a narrow structure about 0.1 nm deep. Note that the width of this line is much smaller than the width of the 
dark line in the spectroscopic images, giving further support to the interpretation that the dark line comes from a high density of vortices along the TB.

Letters to Nature
Nature 390, 487-490 (4 December 1997) | doi:10.1038/37312; Received 25 February 1997; Accepted 9 
September 1997
Critical currents approaching the depairing limit at a twin boundary in YBa2Cu3O7-

Ivan Maggio-Aprile
1, Christophe Renner1, Andreas Erb1, Eric Walker1 and Øystein Fischer1

twin boundarytwin boundary
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Planar defects in BSCCO ( M. Menghini, Y. Fasano, F. De la Cruz, and E. Zeldov)
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• twin boundaries in YBCO crystals
• width ∼ 2nm distance, ∼ 1μ m

B
These images were taken by Martín Irigoyen under the direction of Eduardo Rodríguez. 
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• TEM micrography showing the presence of twin boundaries in 
the YBCO melt-textured samples.
[sample by IFW, Dresden; image by CNRSM-PASTIS]
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A Single Planar A Single Planar 
DefectDefect
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Parametrization of the defect planeParametrization of the defect plane

Position vector on the defect planePosition vector on the defect plane unit vector normal to the defect planeunit vector normal to the defect plane

Δ
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Defect planes HamiltonianDefect planes Hamiltonian

Defect energyDefect energy

HHDD= = ∫∫ dd33r Vr VDD((rr) ) ρρ((rr))

Defect potential Defect potential 

VVDD((rr) ) ≈≈ --v v δδ((rr--rrDD))

vortex density

Δ
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IsIs a defect a relevant perturbation?a defect a relevant perturbation?

<HD>∼ v cos(2πΔ/δ) (L/La)2-g

gg≡≡ (3/8)(3/8) ηηGG aa22//δδ22 ψψ--χχ=1=1--g  > 0g  > 0

Thus defect relevant if  gThus defect relevant if  g≤≤ 1 1 andand

L   >  LL   >  LD D ≡≡ LLaa(ca(ca22LLaa/v)/v)1/(11/(1--g)g)

GxGxDD(s,t)= 0   defect plane characterized by (integer)   (s,t)= 0   defect plane characterized by (integer)   
Miller indices   Miller indices    

exp {exp {GxGxDD(s,t)}= 1                  defect plane (s,t)}= 1                  defect plane paralleparallel l BB

<                                           >∼ LΨΔ

δ : distance between : distance between 
equivalent defect planesequivalent defect planes

G=mb1+nb2
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gg≡≡ (3/8) (3/8) ηηGG aa22//δ22 ψψ--χχ=1=1--g  > 0g  > 0

aa22//δδ22=4/3(m=4/3(m22+mn+n+mn+n22))

m, n Miller indices of 
defect plane

δ‘

g = g = ηηGG /2/2,  3,  3ηηGG /2,  7/2,  7ηηGG /2,..., < 1 !/2,..., < 1 !

1.14 < 1.14 < ηηG  G  < 1.16< 1.16

Weak tilted 
defects always
irrelevant

δ
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So far: weak defectsSo far: weak defects
Now: Now: Critical coupling for strong defects?Critical coupling for strong defects?

Inegrate out all displacements out of defect plane Inegrate out all displacements out of defect plane 
effective model for   effective model for   ϕϕ=2=2ππ uuDD((rrDD)/)/δδ

g

v

1
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<<ρρ((x)x)--ρρ00 >>∼∼ (L(Laa/x)/x) cos (2cos (2ππx/x/δδ))

x

Density oscillations close to the defectDensity oscillations close to the defect

0

ll

α

αα== g       if     g<1g       if     g<1

αα==2g2g--1   if     g>11   if     g>1
Defect Defect 
plane x=0plane x=0

If defect not parallel B:  additional factor eIf defect not parallel B:  additional factor e--x/xx/xBB,   x,   xBB=1/(G=1/(GDD |sin |sin ββ||))
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Many DefectsMany Defects
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Defect planes of random distance Defect planes of random distance 

Δj
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Relevance of many defects (no point disorder)Relevance of many defects (no point disorder)

Ignore displacement parallel to defects:

dimensionality shift D  D-2

D=3: exponential decay of correlations D=3: exponential decay of correlations 
in direction perpendicular to in direction perpendicular to defects defects 

Functional renormalization group calculation in D=6Functional renormalization group calculation in D=6--εε

upper critical dimension D=6 upper critical dimension D=6 

Elastic constants cElastic constants c4444, c, c6666 →→ ∞∞
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Transverse Meissner effect   Hx,c∼ Σzδ/φ0

σ ∼ Σy δxy,cResistance agains shear strees

Elastic constants 
c44, c66 → ∞
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Diverging sample to sample fluctuation of 
magnetic susceptibility
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Flux creepFlux creep
Edrop= LxLyLz (c11δ2/Lx

2+Σz/Lz+Σy/Ly-fδ)

Lx

Ly

Lz 

ρ(j)∼ exp –[j(H,T)/j]nonnon--linear resistivitylinear resistivity
3/23/2

Lz L∼ y Lx
2∼

δ
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Relevance of many defects in the presence Relevance of many defects in the presence 
of point disorderof point disorder
Assume defects of random distance but identical orientation

< ∑jHD(Δj) > =0

< ( ∑j HD(Δj) )2 > ∼ nD L5-2g

Defect array relevant if g < gc=3/2

gg3/23/2

vv

D=3
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ρ(j)∼ exp –[j(H,T)/j]nonnon--linear resistivitylinear resistivity
μμ
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Transverse displacements: dislocationsTransverse displacements: dislocations
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Relations to Relations to 
other problemsother problems
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Closely related problems:Closely related problems:

••Superconducting plane with  line defect Superconducting plane with  line defect 

d=2+0      d=2+0      
gg∼∼T/T/κκ

•• 11--d electron liquid (Luttinger liquid)  withd electron liquid (Luttinger liquid)  with
point defect(s)point defect(s)

d=1+1    d=1+1    
g conductanceg conductance

x
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Bragg glassBragg glass Luttinger liquidLuttinger liquid
with defect(s)with defect(s)

•• Single defect relevant if g < 1 for all  defect strength Single defect relevant if g < 1 for all  defect strength 
•• Many defects relevant if   g < 3/2Many defects relevant if   g < 3/2
•• Density (Friedel) oscillations close to the defectDensity (Friedel) oscillations close to the defect

with power g and 2gwith power g and 2g--1 for relevant and 1 for relevant and 
irrelevant defects, respectively.irrelevant defects, respectively.

•• Coupling constant g tunableCoupling constant g tunable
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• The Bragg glass phase shows quasi-LRO    with non-universal 
decay exponent ηBG(c66/c11).

• Single planar defect in the Bragg glass phase is a relevant 
perturbation provided the defect is parallel to B and 

• g=(3/8) ηG(a/δ)2 <1.

• Close to the defect the vortex density shows Friedel like 
density oscillations with decay exponent g<1 .

• Randomly arranged weak defects become relevant in D<6 
dimensions.  In D=3 and in the presence of point disorder 
defects are relevant for g<3/2.

• Planar defects lead to a transverse Meissner effect and a 
threshold against shear deformation.

• The creep exponent is μ=3/2.

SummarySummary
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