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Abstract

This work considers the quadrupolar Pomeranchuk instability of an isotropic Fermi

liquid in d = 2 dimensions. Starting from free electrons subjected to a quadrupolar

interaction one can derive an effective Ginzburg-Landau theory for the nematic order

parameter [1].

The crucial point of this theory is the presence of two simultanously critical

modes, which have different dynamics. There is a ballistic mode with a dynamical

exponent z = 2 and a Landau-damped mode with z = 3. At zero temperature, the

ballistic mode is at its upper critical dimension and interactions result in logarithmic

singularities in perturbation theory. In contrast, at finite temperatures the z = 3

mode dominates thermodynamics, due to the larger available phase space.

Trying to analyze the zero temperature theory one has to resum the arising diver-

gences. In general this is done by means of renormalization group (RG) techniques.

But due to the presence of two different dynamical exponents there is the problem,

how to rescale frequencies. In the usual RG-scheme this rescaling is done according

to ω → bzω. Since the model has two different dynamical exponents, the scheme

has to be adjusted in the first place. With this RG-scheme the mass correction at

zero temperature can be calculated. The resulting universality class is distinct from

the Ising- as well as from the XY-model.

At finite temperatures, there is a complex interplay between the two modes. At

criticality, the length scale ξT ∼ T−1/z separates the quantum from the classical

regime where each mode has effective dimensions d + z and d, respectively. The

presence of two different exponents z yields an overlap regime where the ballistic

mode still has its quantum character and the damped mode is already classical. It

can be shown that this overlap regime dominates the system at finite temperature

and that the theory cannot be reduced to an effective classical model implying a

breakdown of ”dimensional reduction”. The interplay of critical modes leads to a

universal temperature dependence of the correlation length.

Finally, the thermodynamical properties of the system are calculated on a Gaus-

sian level. As expected the higher z = 3 mode dominates the behavior of the specific

heat and the thermal expansion. In contrast, the compressibility of the system is

governed by the mode with z = 2.
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Chapter 1

Introduction

1.1 Motivation

In most theoretical models of quantum phase transitions the assumption is made

that only one time scale, τ , characterizing the physical system exists. At criticality

this time scale is given by τ ∼ ξz where ξ is the correlations length, and z is the

so-called critical dynamical exponent. This assumption is not always true since, for

instance, in a metal close to a magnetic phase transition two different time scales

exist. On the one hand, there is the time scale of the quasiparticles, and on the other

hand the time scale of the magnetic fluctuations. In such systems two different time

scales are coupled. In general, an interplay of different dynamics can be expected

to yield interesting phenomena. An example of such a system is the transition of an

isotropic Fermi liquid to a nematic electron liquid.

In the following work such a isotropic-to-nematic transition in d = 2 spatial

dimensions is investigated from the disordered side. At the nematic transition the

rotational symmetry of the Fermi surface is spontaneously broken. In the ordered

state the Fermi surface has only a residual quadrupolar symmetry. This is an ex-

ample of the so-called Pomeranchuk instability [2].

Following the pioneering work of Oganesyan et al. [1] the system is described

by a Landau-Ginzburg-Wilson action for the two-component order parameter (see

Sect. 3.4). This action consists of two modes with different dynamics which become

critical at the very same point. Moreover, the two modes have even different critical

dynamical exponents. On the one hand, there is a mode with z = 3 which is subject

to damping due to quasiparticle-quasihole excitations. On the other hand, a mode

with z = 2 exists which is undamped and hence ballistic. These two dynamical

exponents lead to two different time scales τ2 ∼ ξ2 and τ3 ∼ ξ3 at criticality.

Oganesyan et. al argued that for the critical theory only the damped mode is

important, while the mode with z = 2 has a higher characteristic energy and plays

no role. Furthermore, z = 3 scaling implies that interactions between both modes
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Chapter 1. Introduction

are irrelevant. In this thesis it is shown that, on the contrary, the system at zero

temperature strongly relies on the presence of the z = 2 mode. Since this mode

has an effective dimension d + z = 4, interactions yield logarithmically diverging

corrections (see Chap. 4). In addition, interactions of both modes are shown to be

crucial at finite temperatures. The interplay between both modes yields unexpected

consequences, which disagree with naive scaling arguments (see Sect. 5.3).

The presence of a ballistic z = 2 mode, however, relies on the isotropy of the

system. For systems with an underlying lattice the rotational symmetry is broken

and it remains only a point group symmetry. Therefore, there is no mode with z = 2

but only singular points on the Brillouin zone diagonals which are undamped [3].

1.2 Experimental Evidence for Pomeranchuk Instabili-

ties

The quadrupolar Pomeranchuk instability is not only interesting from a theoretical

point of view. In fact, there are plenty of systems which show evidence for a spon-

taneously broken symmetry towards a nematic state. Some of these are believed to

originate from a quadrupolar Pomeranchuk instability.

Transport measurements on clean two-dimensional electron gases in high Landau

levels show a broken rotational symmetry of the resistivity tensor [4]. This can be

explained by the onset of a stripe order at low temperatures. For strong quantum

fluctuations, the translational symmetry is restored, yielding the so-called “quantum

Hall nematic“ phase [5].

In solids, the underlying lattice symmetry breaks the rotational symmetry. There-

fore, the system is not isotropic from the outset but only has a point group symmetry.

Nevertheless, there are experiments which show a spontaneous point group symme-

try breaking which is suspected to originate from a transition towards a nematic

state.

An example for such a system is Sr3Ru2O7 close to its metamagnetic transi-

tion. This layered ruthenate has a quasi-two-dimensional electronic structure and a

fourfold symmetric Fermi surface. Transport measurements near the metamagnetic

transition show a new narrow phase close to the quantum critical point. The au-

thors of [6] suggest a spin dependent twofold symmetric Fermi surface distortion as

an explanation. Also for the ”hidden order“ of URu2Si2 there is a proposed scenario

involving the quadrupolar Pomeranchuk instability [7].

In high-Tc superconducting cuprates an anisotropic resistivity tensor was also

found. This nematic state can be explained by a certain model of Fermi surface dis-

tortions [8]. Alternatively, a model of spatially fluctuating stripe order was proposed

to explain the experimental data [9].
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1.3. Outline

In this thesis the nematic transition from an isotropic state is considered, which

differs from lattice models as mentioned before. A controlled experiment to study

such a transition has not been achieved, yet. A possibility may be systems of ultra-

cold atoms. Using Feshbach resonances in the d-wave channel, the direct measure-

ment of the collective excitations, that are responsible for such a transition, would

be possible. Changing the interaction strength then leads to a deformation of the

atomic cloud. However, the realization of such an experiment is a challenging task.

1.3 Outline

In this thesis an isotropic fermionic system near a quadrupolar Pomeranchuk insta-

bility in d = 2 spatial dimensions is studied.

In Chap. 2 the concept of Fermi liquid theory is briefly explained. After intro-

ducing the basic ideas, the transport equation and the ground state excitations are

discussed. Focussing on collective excitations, the concept of Landau damping is

introduced.

Chap. 3 introduces the system of concern of this thesis. Discussing the circum-

stances under which the Fermi surface becomes unstable, the focus is drawn on the

quadrupolar Pomeranchuk instability. Landau damping is specified for this model,

and finally, the effective action for the nematic order parameter is derived.

The analysis of the effective action at zero temperature is done in Chap. 4 by

means of renormalization group (RG) techniques. First, the general idea of renor-

malization group is presented. Thereafter, the general scheme is adapted to the

model at hand, taking the presence of two different dynamical exponents into ac-

count. With this adapted scheme the mass and vertex corrections are calculated to

one-loop order and the zero-temperature correlation length is obtained. Strikingly,

the mode with z = 2 is found to govern the system at zero temperature and a new

universality class is found.

At finite temperatures, in Chap. 5, the method of dimensional reduction is ap-

plied to the model and shown to break down. Therefore, the model is again analyzed

by means of the previously established RG scheme and the finite temperature cor-

relation length is obtained to be ξ−2 = 16/3 ln(3/2)T , which is thus independent

of the interaction strength. To check the applied RG scheme, the contribution in

second order perturbation theory is calculated, that is most divergent.

Finally, thermodynamics is considered in Chap. 6. After a general introduction

into quantum phase transitions, the specific heat, the thermal expansion and the

compressibility are derived from scaling theory. The calculation of these quantities

on a Gaussian level is performed and compared to the scaling results. While the

specific heat and the thermal expansion are governed by the mode with z = 3, the

compressibility is determined by the z = 2 mode.
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Chapter 2

Fermi Liquid Theory

In the beginning of the 20th century the characteristic properties of metals were

explained, treating the conduction electrons as a non-interacting Fermi gas. At zero

temperature the fermions, according to Pauli exclusion principle, are frozen into the

lowest energy levels and build the Fermi sphere. At finite temperatures they are

distributed according to the well known Fermi function

f(ε) =
1

1 + exp[(ε− µ)/kBT ]
(2.1)

The sharp edge of the Fermi sphere gets smeared out over a region of order kBT ,

where kB is the Boltzmann factor. Although neglecting any interactions, this single

particle picture explains a variety of physical observables, such as the specific heat.

However, there are many-body effects, which rely crucially on the interaction of

the particles. In order to describe liquid 3He Landau in a series of articles ([10],

[11] and [12]) proposed a semi-phenomenological approach, known as Fermi liquid

theory. This powerful model takes interactions seriously into account and is the

basis of modern understanding of fermionic systems. Furthermore, it is also capable

to explain the success of the single-particle picture.

In the following chapter, the basic ideas and some consequences of Fermi liquid

theory are described. In the first section, the main concept is briefly summarized.

Focussing on non-equilibrium processes the transport equation is stated and the

elementary excitations of the Fermi liquid, namely quasiparticle excitations and

collective modes, are explained. As an example Landau’s concept of the zero sound

mode is presented. Finally, the last section concerns with the mechanism of Landau

damping.

Much more far-reaching explanations of the theory of Fermi liquids can be found

in various textbooks e.g. [13] and [14].
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Chapter 2. Fermi Liquid Theory

2.1 Basic Ideas of Fermi Liquid Theory

In the following a system of spinless fermions is considered. To get information about

the interacting system, one may think of switching on interactions “adiabatically,“

, i.e. infinitely slowly. As a definition of a normal Fermi liquid one assumes that

the ground state of the interacting system evolves continuously from the ground

state of the non-interacting system. One has to note that this needs not to be

true. For example, the formation of Cooper pairs in a superconductor cannot evolve

continuously from the plain wave superposition of a non-interacting Fermi system.

When adding a particle with momentum p to the ground state and switching

on interactions, this particle will start to perturb the nearby particles; the particle

is ”dressed“ with a self-energy cloud. The idea of Fermi liquid theory is to consider

the dressed particle as the new fundamental entity, called quasiparticle. The same

applies for holes leading to quasiholes. Due to the adiabaticity the quantum numbers

cannot change throughout the evolution. This one-to-one correspondence between

the original particles and the quasiparticles explains the success of the single particle

approach of a Fermi gas.

Of course, the quasiparticles have a finite lifetime which is inversely proportional

to the squared distance from the Fermi surface. The adiabatic procedure is therefore

meaningless for quasiparticles with high energies, since they decay much faster than

the interaction is switched on. Hence, the concept is restricted to the vicinity of the

Fermi surface, where 1
τ ∼ (ε−εF )2 is small. This also implies that one cannot obtain

the ground state energy, which would involve a summation over all states within the

Fermi sea. Nevertheless, one can describe excitations from the (unknown) ground

state and formulate a theory for, e.g. , transport properties.

The quasiparticles and quasiholes have a certain distribution function np, and

the excitations of the system are given by the deviation from the ground state

δnp = np − n0
p (2.2)

Close to the ground state one can obtain the energy difference to the ground state

energy F0, of the system formally by carrying out a Taylor expansion up to second

order

∆F = F (np)− F0 =
∑
p

(εp − µ)δnp +
1
2

∑
p,p′

fp,p′ δnpδnp′ +O(δn3) (2.3)

This relation is the very starting point and the center-piece of Fermi liquid theory.

The first functional derivative of F has to vanish at the Fermi surface

δF

δnp

∣∣∣∣
|p|=pF

= εF − µ = 0 (2.4)
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2.1. Basic Ideas of Fermi Liquid Theory

due to the stability of the state. Furthermore, one defines the group velocity

vp = ∇pεp (2.5)

The nomenclature will become clear in the following. For isotropic systems one may

also define the effective mass as

m? = pF /vF (2.6)

where pF and vF are momentum and velocity at the Fermi surface.

The most important feature of Eq. (2.3) is the presence of the quadratic term and

the function fp,p′ which captures the interaction of the quasiparticles. Although it is

not possible to compute this function directly, one can obtain how physical properties

are modified by its pure existence. However, especially for isotropic systems there

are some things one can say about the function fp,p′ . First of all, since it is the

interaction energy of excited quasiparticles, it always has to be symmetric in the

momentum indices. For isotropic systems, one can decompose fp,p′ on the Fermi

surface into Legendre polynomials leading to

fp,p′ =
∑
l

flPl(cos θ) (2.7)

with θ being the angle between the two momenta p and p′. The constants fl are

called Landau parameters. It is often more convenient to use the reduced Landau

parameters Fl = ν0fl where ν0 is the density of states at the Fermi surface. For

isotropic systems the density of states is given by

ν0 =
1
V

∑
p

δ(εp − µ) ≈
∫

dΩd

(2π)d

∫
dp pd−1δ

[
vF (p− pF )

]
= Kdm

?pd−2
F (2.8)

where the energy was linearized around the Fermi surface, and Kd =
∫

dΩd/(2π)d

is the averaged solid angle.

From Eq. (2.3) one can obtain the energy of a quasiparticle by adding a particle

with momentum q to a state with a given distribution δnp. This yields

ε̃q = εq +
∑
p

fp,qδnp (2.9)

The energy ε̃q is called the local energy since the distribution δnp and therefore

ε̃q itself may depend on the position. One can furthermore introduce the local

equilibrium distribution ñ0
q = n0

q(ε̃p − µ) and the deviation from local equilibrium

δñq = nq − ñ0
q (2.10)

7



Chapter 2. Fermi Liquid Theory

By using the Eq. (2.9) one obtains the following relation between the deviation from

local equilibrium and from the ground state

δñq = δnq −
∂n0

∂εq

∑
p

fp,qδnp (2.11)

For isotropic systems, where one can expand the distribution function into spherical

harmonics, one then gets

δñlm =
(

1 +
Fl

2l + 1

)
δnlm (2.12)

This correspondence between local and global equilibrium distribution function is

especially helpful in calculations.

2.2 Transport Equation

Drawing the attention to non-equilibrium processes, the momentum distribution

function becomes position- and time-dependent. However, one has to take into ac-

count that the Heisenberg uncertainty principle prevents the simultaneous knowledge

of position and momentum. Thus, a non-equilibrium distribution function depend-

ing on both position and momentum can not be obtained. However, assuming to be

in the macroscopic limit of long wave lengths and low energies, one may treat this

as a classical problem with a distribution function np(r, t) . The Fourier transform

of the distribution function np(q, ω) depends now on two different momenta p and

q. To meet the macroscopic limit, it has to be |q| � kF and ω � µ, while |p| ≈ kF
is at the Fermi surface. The distribution function np(q, ω) may also be seen as a

quasiparticle-quasihole excitation with the momenta p± q/2, respectively.

The second assumption is, that the local energy ε̃p(r) acts as the classical Hamil-

tonian of the system of quasiparticles, implying

ṙ = ∇pε̃p(r) (2.13)

ṗ = −∇r ε̃p(r) (2.14)

Using these relations, the well known Boltzmann equation with an external force Fp

reads

∂np(r)
∂t

+∇rnp(r)∇pε̃p(r)−∇pnp(r)∇rε̃p(r) + Fp∇pnp(r) = I[np(r)] (2.15)

The term I[np(r)] is the so called collision integral, which captures all changes in

the distribution function due to quasiparticle collisions. In the following, only the

collisionless regime is considered where the collision frequency is going to zero and

the collision integral can be dropped.

8



2.3. Excitations

Since the quasiparticle concept is meaningful only in the vicinity of the Fermi

sphere, one has to get a transport equation for the excited quasiparticles. First of

all, one may separate the local energy and the distribution function according to

np(r, t) = n0
p + δnp(r, t) (2.16)

ε̃p(r) = εp +
∑
p′

fp,p′δnp(r) (2.17)

In many cases, the external force is proportional to the departure from equilibrium

Fp ∼ δnp. Keeping only first order terms in the deviation from equilibrium one can

therefore approximate np by n0
p in the force term, and from Eq. (2.15) one obtains

∂δnp(r)
∂t

+ vp · ∇rδnp(r)−∇pn
0
p

∑
p′

fp,p′∇rδnp(r) = −Fp · ∇pn
0
p (2.18)

For a non-interacting, system one would obtain the first two terms only. The last

term on the left hand side can be interpreted as an additional force acting on the

ground state particles. This force originates from the spatial inhomogeneity of the

excited quasiparticles. Using ∇pn
0
p = ∂n0

p

∂εp
∇pεp and comparing with Eq. (2.9) one

concludes that

∂δnp(r)
∂t

+ vp · ∇rδñp(r) = −Fp · vp

∂n0
p

∂εp
(2.19)

Here, the term of a group velocity vp becomes meaningful as it describes the velocity

of the quasiparticle distribution. Notably, only the second term relies on the local

equilibrium distribution. This term describes the diffusion of quasiparticles which

is dictated by the local energy.

2.3 Excitations

If one substitutes a plane wave ansatz for the departure from equilibrium

δnp(r, t) = δnp(q, t) e−i(q·r−ωt) (2.20)

into Eq. (2.18), one obtains for a system without external forces

(q · vp − ω)δnp(q, t)− q · vp

∂n0
p

∂εp

∑
p′

fp,p′δnp′(q, t) = 0 (2.21)

There are two kinds of excitations. On the one hand, one can add a localized quasi-

particle with momentum p0 to the ground state, corresponding to a quasiparticle-

quasihole excitation with momenta p±p0/2. Since the excited quasiparticle changes

the local energy the surrounding quasiparticles will be driven out of equilibrium, too.

On the other hand, one can distort the whole Fermi surface yielding a coherent mo-

tion of quasiparticles which are driven back to their equilibrium distribution. Such

excitations are called collective modes.

9



Chapter 2. Fermi Liquid Theory

2.3.1 Quasiparticles

Adding a localized quasiparticle with momentum p0 to the system changes the

local energy of the surrounding quasiparticles. The bare quasiparticle is in this

way surrounded by a polarization cloud. This can be modelled by the following

distribution function

δnp = δp,p0 + ξp (2.22)

The Dirac delta function, δp,p0 , resembles the localized quasiparticle, while ξp de-

scribes the polarization cloud. The transport equation (2.21) for the case p = p0

then takes the form

(q · vp0 − ω)(1 + ξp0)− q · vp0

∂n0
p0

∂εp0

fp0,p0 +
∑
p′

fp0,p′ξp′

 = 0 (2.23)

Since the polarization cloud ξp and the interaction energy fp,p′ are of the order of

1/N where N is the number of particles, one can approximate the transport equation

to zeroth order as

q · vp0 − ω = 0 (2.24)

This justifies the identification of vp0 as the group velocity of the quasiparticles.

Moreover, the energy ω and the momentum q of the excitation are not independent

from each other.

For all other momenta p 6= p0 one obtains from Eq. (2.21) to first order in 1/N

(q · vp − ω)ξp − q · vp

∂n0
p

∂εp

∑
p′

fp,p′ξp′ − fp,p0q · vp

∂n0
p

∂εp
= 0 (2.25)

For |q| = 0 the trivial solution is ξp = 0, corresponding to a bare quasiparticle-

quasihole excitation exactly at the Fermi surface. For finite momenta |q| 6= 0 the

solution of this equation is non-vanishing and very complicated. However, com-

paring this result with Eq. (2.19) one concludes that the interaction with the bare

quasiparticle at p0 acts like an additional force on the ground state particles. The

propagation of the polarization has the velocity vp0 since it has the same energy ω

and momentum q as the bare particle.

2.3.2 Collective Modes

Quantum fluctuations of the quasiparticles may lead to a distortion of the whole

quasiparticle distribution. As a result of such a distortion, the interaction forces

between the quasiparticles average no longer to zero. The net force acting on the

system drives the quasiparticles back to the equilibrium distribution yielding an

10



2.3. Excitations

oscillatory coherent motion of the quasiparticles. In the presence of excited quasi-

particles, they damp out the collective modes very fast. However, in the collisionless

regime where only very few excited quasiparticles exist the damping is negligible.

For collective modes the departure from the equilibrium distribution δnp is a

smooth function extending over the whole Fermi surface. For an isotropic systems

one can write

δnp = δ(εp − µ)up (2.26)

where up is the displacement of the Fermi surface at momentum p. Furthermore, it

is

∂n0
p

∂εp
= −δ(εp − µ) (2.27)

Defining θ as the angle between the momentum q and the group velocity vp and

introducing the variable s = ω
vF q

the transport equation (2.21) reads

(cos θ − s)up = − cos θ
∑
p′

δ(εp′ − µ)fp,p′up′ = cos θ
∫

dΩ′

(2π)d
ν0

Kd
fp,p′up′

=
cos θ
Sd−1

∫
dΩ′ Fp,p′up′ (2.28)

where Fp,p′ = ν0fp,p′ is the reduced interaction and Sd−1 is the surface of the unit

sphere in d-dimensions.

In three dimensions, one can expand up into spherical harmonics Ylm(θ, φ). This

leads to the conclusion that the different values of m are decoupled while the in-

tegration over Ω′ yields a mixing of different l values. Therefore, m is a quantum

number classifying different collective modes, starting with the longitudinal (m = 0),

the transverse (m = 1) and the quadrupolar (m = 2) modes. In two dimensions

the expansion into Legendre polynomials Pl shows, that the different l values are

coupled as well.

A very simple example of a collective mode is the so called zero sound, discovered

by Landau. Since the ordinary sound is obtained in a state of local equilibrium, the

sound frequency ω has to be much smaller than the collision frequency ν. However,

the collision frequency is proportional to the squared distance from the Fermi sphere,

which implies ω � (ε− εF )2 ∼ T 2. Therefore ordinary sound propagation of a given

frequency ω cannot exist at arbitrary low temperatures. Nevertheless, there are

collective modes propagating through the system.

For a constant interaction, Fp,p′ = F , Eq. (2.28) has the simple solution

up =
cos θ

s− cos θ

∫
dΩ′

F

Sd
up′︸ ︷︷ ︸

=const

(2.29)

11



Chapter 2. Fermi Liquid Theory

Substituting this result back into Eq. (2.28) one obtains after integration an equation

which determines the eigenvalues s

1
F

=
1
2

∫ 1

−1
d(cos θ)

cos θ
cos θ − s

=
s

2
ln
(
s+ 1
s− 1

)
− 1 (2.30)

Here, the integration was performed by assuming an infinitesimal imaginary part

of the eigenvalue s. There are three possible regimes for the interaction F . For

F > 1 one gets a real solution s > 1. If the interaction energy is attractive F <

0, one obtains a complex solution which becomes purely imaginary s = i|s| for

strong attraction, F < −1. The consequences of these solutions are explained in the

following.

2.4 Landau Damping of Collective Modes

So far, collective modes, once they are created by some internal fluctuation, are

never-ending oscillations around the equilibrium position. But, of course, there are

damping mechanisms of these oscillations.

The first one is the collision of excited quasiparticles. An effective momentum

transfer between the colliding particles changes the local energy in the neighborhood

and therefore disrupts the self-consistent interaction field which drives the oscillation.

However, in the collisionless regime such events take place only rarely and this kind

of damping is negligible.

The second damping mechanism is the so-called Landau damping. For a collec-

tive mode with momentum q and energy ω one can consider a quasiparticle with

momentum p such that it meets the condition q ·vp = ω. This means that the phase

velocity |ω|/|q| of the collective mode is just equal to the velocity of the quasipar-

ticle in direction q̂. Therefore, a steady energy transfer between the mode and the

quasiparticle takes place. If the velocity of the quasiparticle is slightly smaller than

p, it absorbs energy from the mode, whereas the mode gains energy from particles

with slightly larger momenta. Since statistics tell that at low temperatures there are

more particles with smaller momenta, in total, energy is transferred from the mode

to the quasiparticles. This mechanism leads thereby to an effective damping of the

collective mode. Another way to look at this damping mechanism is the excitation

of a quasiparticle-quasihole pair.

Of course, such a process is only possible if the phase velocity is smaller than the

Fermi velocity, since there are no quasiparticles with higher velocities. Therefore

Landau damping is only important for |s| < 1.

As an example, one may consider the solution for zero sound derived in Eq. (2.30).

For values 0 > F > −1 one obtains a complex solution for s as stated above, which

12



2.4. Landau Damping of Collective Modes

corresponds to a complex frequency ω. Substituted in the ansatz (2.20) yields

δnp(r) = δnp(q)e−i(q·q−tReω)e−t Imω (2.31)

where the last term damps out the free oscillation. For pure imaginary solutions the

collective mode is either overdamped or becomes unstable. This feature is explored

further in the next chapter.
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Chapter 3

The Quadrupole Pomeranchuk

Instability

In this chapter the model of a Pomeranchuk instability, especially the one with

quadrupolar symmetry (l = 2), is presented.

In the first part, the mechanism of the Pomeranchuk instability is introduced.

Starting from Fermi liquid theory the destabilization of an isotropic Fermi surface

due to collective modes is explained and the instability criteria for the Landau

parameters Fl are derived. Further on, focussing on the quadrupolar Pomeranchuk

instability the Landau damping mechanism for such an anisotropic Fermi surface

distortion and its restrictions are illustrated.

In the last part, following Oganesyan [1], a two-component order parameter

and the microscopic model are proposed. After performing a Hubbard-Stratonovich

transformation and integrating over the microscopic degrees of freedom an effective

Landau-Ginzburg action for the order parameter is derived. This effective action

has two coupled modes with different dynamics and a quartic interaction term.

3.1 Destabilization of an Isotropic Fermi Surface

As it was shown, the transport equation (2.28) for collective modes can have, under

certain circumstances, complex eigenvalues s. These lead to an exponential growth

of the fluctuations in Eq. (2.20), implying an instability of the collective mode. The

fluctuations thus lead to the evolution of a different ground state. This is the so-

called Pomeranchuk instability, proposed by Isaak Pomeranchuk [2] in 1958. Such

a Pomeranchuk instability may occur in systems with central repulsive interactions

which are long- but finite-ranged, as it was concluded by Quintanilla and Schofield

[15].

To make this observation more quantitative, one can calculate the free energy

for a system where the formerly isotropic Fermi surface is displaced by an angle
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Chapter 3. The Quadrupole Pomeranchuk Instability

dependent amount u (see [13])

F − F0 = V

∫ pF+u

pF

ddp
(2π)d

(εp − µ) +
V 2

2

∫∫ pF+u

pF

ddp
(2π)d

ddp′

(2π)d
fpp′ (3.1)

where Ω and Ω′ are again solid angles. With the effective mass m? = pF /vF the

energy relation in the vicinity of the Fermi surface reads

εp − µ =
1

2m?
(p2 − p2

F ) (3.2)

Introducing the d-dimensional solid angle Ω of p and the angle ξ between the direc-

tions p and p′, one can carry out the radial integrations and up to second order in

u obtains

F − F0 = V
pdF

2m?

∫
dΩ

(2π)d
u(Ω)2 +

V 2

2
p

2(d−1)
F

(2π)2d

∫∫
dΩ dΩ′ f(ξ)u(Ω)u(Ω′) (3.3)

With the density of states ν0 = V m?Kd p
d−2
F this equation simplifies to

F − F0 =
V

(2π)d
pdF

2m?

[∫
dΩu(Ω)2 +

1
Sd

∫∫
dΩ dΩ′ F (ξ)u(Ω)u(Ω′)

]
(3.4)

where F (ξ) =
∑

l FlPl(cos ξ) is the reduced interaction energy and must not

be confused with the free energy. One may expand the function u(Ω) in spherical

harmonics and use the addition theorem

Pl(cos ξ) =
4π

2l + 1

l∑
m=−l

Y ?
lm(Ω)Ylm(Ω′) (3.5)

Performing the angular integrations one finally obtains

F − F0 =
V

(2π)d
pdF

2m?

∑
l

|ul|2 (1 + Fl) for d = 2, (3.6)

F − F0 =
V

(2π)d
pdF

2m?

∑
l,m

|ulm|2
(

1 +
Fl

2l + 1

)
for d = 3. (3.7)

In order to have a stable isotropic Fermi surface the free energy has to be positive

for any possible realization of {ulm}. This yields the stability criteria

Fl ≥ −1 for d = 2,

Fl ≥ −(2l + 1) for d = 3.
(3.8)

For smaller values of the interaction energy the Fermi surface collapses into a sym-

metry broken phase.

Furthermore, there may occur other, namely topological (Lifshitz-like) instabili-

ties of the Fermi sphere which do not imply any symmetry breaking as pointed out

in [15]. However, these instabilities are not considered in the following.
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Fig. 3.1: The two different modes of a l = 2 Pomeranchuk instability. The formerly isotropic
Fermi surface (dashed) gets deformed into a nematic one (straight). The quadrupole sym-
metry is indicated by plus and minus signs. The letter N denotes the nodal points, while A
denotes the antinodal points.

The extension to the spinful case is straightforward for systems which are time-

reversal invariant and have a Fermi surface invariant under reflections. All (spin-

dependent) quantities like fpσ,p′σ′ and upσ can be split into a spin-symmetric and a

spin-antisymmetric part. The stability criteria apply to both parts, respectively since

they are independent of each other. The best known example of such an instability

is the Stoner instability which is the one for l = 0 in the spin-antisymmetric channel.

At a Stoner instability, the Fermi surface of one spin species is enlarged while the

Fermi surface of the other one is reduced. This splitting leads to a ferromagnetic

transition.

3.2 Landau Damping of the Quadrupolar Mode

In the following, the focus is put on the Pomeranchuk instability with l = 2 in

d = 2 dimensions. Here, the isotropic Fermi surface collapses to an elliptical shape

as depicted in Fig. 3.1. There are two linearly independent modes of the excitation,

which are rotated about 45◦ (Note that a 90◦ rotation yields the first mode again).

The positive and negative signs denote the gain or loss of momenta and display the

quadrupolar symmetry of the problem. Because of the shape of the resulting Fermi

surface such systems are commonly referred to as nematic Fermi fluids.

In Sect. 2.4, it was already explained that collective modes are subject to Lan-

dau damping. An oscillation with frequency ω and momentum q decays into a

quasiparticle-quasihole excitation with momentum p± q/2 where p is restricted by

the condition q · vp = ω. In the low energy limit, ω → 0, this condition can only be

met for momenta p where the departure from the isotropic Fermi surface is extremal.

As shown in Fig. 3.2, the (position) vector p and the excitation momentum q of the
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Chapter 3. The Quadrupole Pomeranchuk Instability

q
b)

p

a)
q

p

Fig. 3.2: Landau damping is only possible if the momentum q of the quasiparticel-quasihole
excitation is nearly perpendicular to the momentum p. In the low energy regime the mo-
mentum q has to be nearly tangential to the distorted Fermi surface. For antinodal points
(a) both conditions match. At the nodal points (b) the conditions contradict each other and
Landau damping can not occur

quasiparticle at the antinodal points can be nearly orthogonal while at the nodal

points this is not possible since there is no phase space left. Therefore, one concludes

that Landau damping is strong at the antinodal points while it is suppressed at the

nodal points.

In contrast, for ferromagnets according to the Stoner instability (l = 0), Landau

damping is equally important for all possible vectors q. This is because the Fermi

sphere at a Stoner transition splits into a larger and a smaller Fermi sphere for the

two spin species, respectively. However, the Fermi surface is still a sphere and as

such the mode is always subject to Landau damping.

3.3 Previous Studies of the Pomeranchuk Instability

In the last decade, Pomeranchuk instabilities, and especially the nematic transition

have been widely studied. In a pioneering work Oganesyan et al. [1] explored

a transition of two dimensional spinless fermions from an isotropic to a nematic

state. Allowing the fermions to interact via a quadrupolar density interaction, they

inferred a Landau-Ginzburg-Wilson action for the nematic order parameter. Within

a random-phase approximation, they found the single-particle self energy in the

symmetry broken phase to leading order to be

Im Σ ∼ |kxky|4/3|ω|2/3 (3.9)

where k = (kx, ky) lies on the Fermi surface. The symmetry of the self energy

resembles the symmetry of the nematic state. For the directions (kx, 0) and (0, ky)

along the symmetry axes the self energy reads as

Im Σ ∼ |ω|3/2 (3.10)

These results imply a breakdown of Fermi liquid theory where it is Im Σ ∼ ω2. Here,

the Non-Fermi liquid behavior exists not only at the quantum critical point but in the

18



3.4. Derivation of the Effective Action

whole nematic phase. A non-perturbative calculation performed by Lawler et al.[16]

via high dimensional bosonization confirmed this result. At the quantum critical

point the self energy obeys the same powerlaw as Eq. (3.9) but with a constant

(isotropic) prefactor.

In solids, the underlying lattice breaks rotational symmetry from the outset.

Nevertheless, the remaining point group symmetry may spontaneously be broken as

well. Since in this case a discrete symmetry is broken, no gapless Goldstone modes

exist. Oganesyan et al.[1] argued that this yields at sufficiently low energies to a

crossover to a Fermi liquid state.

On a square lattice, the self energy at the quantum critical point and in the

disordered phase was calculated ([8] and [3]). At the quantum critical point, dy-

namical fluctuations of the Fermi surface yield a strongly enhanced decay rate of

single-particle excitations . This implies Non-Fermi liquid behavior except at the

Brillouin zone diagonals. It was found an expression for the self energy at the Fermi

surface (k = kF ) similar to Eq. (3.9). A prefactor dk with dx2−y2 symmetry appears

even at the quantum critical point due to the lattice symmetries. At the Brillouin

zone diagonals the d-wave symmetry factor vanishes and one obtains a conventional

Fermi liquid decay rate. In the low temperature regime away from the quantum

critical point, Fermi liquid behavior was recovered below a certain crossover energy.

3.4 Derivation of the Effective Action

The aim of this section is to describe the transition from an isotropic to a nematic

state in terms of the order parameter. The subsequent derivation follows the work

of Oganesyan et al.[1].

First of all, one has to identify an appropriate order parameter which has to be

a real, symmetric and traceless tensor. A natural choice is the quadrupole density

which is the expectation value of the quadrupole operator

Q =
1
k2
F

ψ̄

(
∂2
x − ∂2

y 2∂x∂y
2∂x∂y ∂2

y − ∂2
x

)
ψ (3.11)

The action for this order parameter can be written as

S[ψ̄, ψ,Q] =
∫

dx dτ
[
ψ̄G−1

0 ψ +
f2

4
TrQ2

]
(3.12)

G0 is the free fermionic propagator, and f2 is some interaction constant.

In two dimensions, it is convenient to express the quadrupole density in terms

of the Pauli matrices, Q = φ1σz + φ2σx, where in momentum representation

φ = (φ1, φ2)T =
1
k2
F

ψ̄

(
k2
x − k2

y

2kxky

)
ψ := ψ̄∆ψ (3.13)
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Chapter 3. The Quadrupole Pomeranchuk Instability

Thus, one can rewrite the action in a vectorial form as

S[ψ̄, ψ, φ] =
∫

dx dτ
[
ψ̄G−1

0 ψ +
f2

2
φ2

]
(3.14)

Nevertheless, one has to keep in mind that the theory remains a tensorial one and

the vector components are only the prefactors of the Pauli matrices.

In order to obtain an effective theory for the order parameter one has to eliminate

the term quadratic in φ, which is quartic in the fermionic fields. This is done by

performing a Hubbard-Stratonovich transformation with the field n conjugated to

φ. Note that n has the same properties as φ. The quartic fermionic term is thus

replaced by a term quadratic in n

S[ψ̄, ψ, n] =
∫

dx dτ
[
ψ̄G−1

0 ψ +
1

2f2
n2 − in · φ

]
=
∫

dx dτ
[
ψ̄
(
G−1

0 − in ·∆
)
ψ +

1
2f2

n2

]
(3.15)

After rescaling n→ in one obtains the partition function Z as

Z =
∫
D[ψ, ψ̄]Dn e−S[ψ̄,ψ,n]

=
∫
D(ψ, ψ̄)Dn exp

[∫
dx dτ

{
1

2f2
n2 − ψ̄

(
G−1

0 + n ·∆
)
ψ

}]
(3.16)

Then one is able to perform the functional integration over the fermionic degrees of

freedom which leads to

Z =
∫
Dn det

[
G−1

0 + n ·∆
]

exp
[∫

dx dτ − 1
2f2

n2

]
=
∫
Dn exp

[
1

2f2

∫
dx dτ n2 + Tr

{
ln
(
G−1

0 + n ·∆
)}]

(3.17)

where in the second line the common identity ln(detA) = Tr(lnA) for any arbitrary

non-singular operator A was used. Finally, one expands the logarithm to second

order.

Tr
{

ln
(
G−1

0 + n ·∆
)}

= Tr lnG−1
0 + Tr {ln (1 + G0n ·∆)} (3.18)

= −S0 + Tr {G0n ·∆} −
1
2

Tr {(G0n ·∆) (G0n ·∆)}+ . . .

where S0 is the constant fermionic part of the action which is dropped in the fol-

lowing.

In App. A, the detailed calculation of these traces is presented explicitly. Here,

only the resulting effective action is given, which to quadratic order in momentum

representation reads

Seff [n] = S0 +
1
2
T

Ld

∑
q

nq g0(q)−1n−q (3.19)
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The summation index q = (q, ω) is the three-momentum, comprising momentum

and frequency.

In the frame of reference in which the momentum q is parallel to the x-axis, the

matrix g−1
0 takes the diagonal form

g−1
0 =

(
g−1

3

g−1
2

)
=

(
r0 + q2 + γ |ω|q

r0 + q2 + ω2

q2

)
(3.20)

with rescaled momenta and frequencies and γ = 1/
√

2. In Ginzburg-Landau theories

the phase transition takes place at vanishing mass r0 = 0. Here, the mass is equal

to r0 =
(
−1

2 −
1
νf2

)
and therefore vanishes at νf2 = −2. At this point, the isotropic

Fermi surface gets unstable in the quadrupolar channel, and comparison to Eq. (3.8)

leads to the identification νf2 = −2F2 where F2 is the reduced Landau parameter.

Since the order parameter explicitly breaks spatial rotational symmetry (instead

of an intrinsic symmetry like spin rotation) the vector nq is in this frame of reference

angle-dependent. For practical purposes a more convenient frame of reference is the

one in which the order parameter is kept rotationally invariant, and the inverse

propagator becomes angle-dependent. Since the quadrupolar momentum tensor is

invariant under a rotation by π, the same applies to the momentum dependence of

nq. Therefore, the transformation matrix for n is given by

U(q̂) =

(
cos(2φ) sin(2φ)

− sin(2φ) cos(2φ)

)
(3.21)

where φ is the angle between q̂ and the x-axis. The rotation of nq by an angle of 2φ

resembles the fact that the order parameter of a nematic phase is a director, rather

than a vector, which is invariant under rotation by π. With this transformation one

gets

nTq g0(q)−1n−q = ñTq U(q̂)T g0(q)−1U(−q̂)ñ−q = ñTq g(q)−1ñ−q (3.22)

Here, by ñq the new rotational invariant fields are denoted. However, the tilde is

dropped in the following. The matrix g(q)−1 is explicitly given by

g−1 =

g−1
2 sin2(2φ) + g−1

3 cos2(2φ) (g−1
3 − g

−1
2 ) sin(2φ) cos(2φ)

(g−1
3 − g

−1
2 ) sin(2φ) cos(2φ) g−1

2 cos2(2φ) + g−1
3 sin2(2φ)

 (3.23)

One may also rewrite the propagator by separating g−1 into the contribution of both

modes as g(q)−1 = g−1
2 U2(q̂) + g−1

3 U3(q̂) where the matrices U2(q̂) and U3(q̂) can

be read from Eq. (3.23).

There are two peculiarities concerning the action. First of all, both modes, g2

and g3, have the same mass r0. This implies that they become critical at the same

point in parameter space. Renormalizations of the mass due to interactions do not
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Chapter 3. The Quadrupole Pomeranchuk Instability

modify this fact since it is protected by symmetry. In contrast, the prefactors of the

momentum term are not equal because of symmetry constrains. Thus, higher order

terms give rise to different prefactors, which, however, is only of little qualitative

importance.

Second, the two modes have completely different dynamics. While the g3 mode is

subject to Landau damping, as indicated by the term |ω|/q, the mode g2 is undamped

and therefore ballistic. In particular, both modes show even a different scaling

behavior. At criticality, one has to compare the dynamical part with the q2 term.

Obviously, ω scales like qz with z = 2 for the g2 mode and with z = 3 for the g3

mode. These two different dynamical exponents have a twofold consequence.

Concerning different temperature regimes, the two modes have different impor-

tance. At T = 0, the g2 mode has the effective dimension d+ z = 4 and is therefore

at the upper critical dimension, whereas the g3 mode is above it. This implies that

in a perturbative approach the g2 mode generates logarithmic IR-divergences. On

the other hand, at finite temperatures thermodynamical properties are governed by

the mode with the larger dynamical exponent. For example the specific heat at low

temperatures usually scales as T d/z.

Moreover, the logarithmic divergences prevent analyzing the model by means of

plain perturbation theory to any order. These divergences have to be summed up

which is usually done by renormalization group techniques. But as it is specified

below, it is far from obviouse how RG works in the presence of two dynamical

exponents. This is the major problem in order to solve the problem in a perturbative

way.

In the work of Oganesyan et al. [1] the authors state that the g2 mode plays no

role for the critical theory. They argue, that the g2 mode has a characteristic energy

of ω2 ∼ q2 while the g3 mode has a characteristic energy of ω3 ∼ q3. Thus, the

energy of the g3 mode is lower and therefor dominating the system. For this reason

they justify a z = 3 scaling, for which the term ω2/q2 ∼ q4 is, of course, irrelevant.

Furthermore, the conclusion is drawn that for a theory with z = 3 in two spatial

dimensions interaction terms of order n4 are according to Hertz [17] and Millis [18]

irrelevant.

However, the choice of scaling with z = 2 is not prohibited, in which case a

quartic interaction is only marginal. Additionally, the arising logarithms of the g2

mode may play an important role. As it will be shown, the g2 mode, indeed, governs

the zero temperature correlation length of the system and has also a high impact

on its finite temperature properties. Notably, in lattices there exists no mode with

z = 2 but Landau damping is suppressed only at the Brillouin zone diagonals so

that the results of z = 3 scaling are correct.

Taking interactions into account, one formally obtains them by expanding the

logarithm of Eq. (3.18) to higher orders. However, the cubic term vanishes due
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3.4. Derivation of the Effective Action

to the fact that the original order parameter is a traceless tensor. (Note that in

dimensions larger than two this statement does not hold, and therefore a cubic term

generically arises. This implies that the transition is then of first order.) In two

dimensions the lowest-order interaction is the quartic term which by symmetry is

constrained to the form

Sint[n] =
u0

4!

(
T

Ld

)3 ∑
k1,k2
k3,k4

(nk1nk2) (nk3nk4) δk1+k2+k3+k4 (3.24)

where u0 is a coupling constant. The exact form of u0 does not play a role. Notably,

there is only one coupling constant u0 which accounts for all three possible interac-

tion terms n4
2, n2

2 n
2
3 and n4

3 (here the subscripts indicate the different modes, not

the momentum index). This fact plays an important role in the renormalization of

the coupling constants.

Collecting everything, one obtains the effective quartic action of the order pa-

rameter field n as

S[n] =
1
2
T

Ld

∑
q

nqg
−1
q n−q +

u0

4!

(
T

Ld

)3∑
k1,k2
k3,k4

(nk1nk2) (nk3nk4) δk1+k2+k3+k4 (3.25)

This action is the starting point of the further analysis of the quadrupolar Pomer-

anchuk instability.
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Chapter 4

Analysis at Zero Temperature

In order to analyze the effective action one considers the quartic interaction term as

a small perturbation. As mentioned before perturbation theory leads to logarithmic

divergences due to the mode g2 being at the upper critical dimension. In order

to sum up all these divergences a powerful tool is the so-called renormalization

group techniques (RG). However, as the model has two coupled modes with different

dynamics there is no established RG scheme.

In this chapter, a RG scheme for the problem at hand is proposed and applied.

In the first section, a brief review of the general scheme of momentum-shell RG

with a single critical dynamical exponent z is given. In the second section, the RG

scheme is described which is applied to the problem under consideration. Within

this scheme the calculation of the β functions at zero temperature for the mass r

and the vertex u are calculated. Hence, one can deduce the correlation length ξ.

The result states that this theory is neither in the Ising universality class nor in the

universality class of the XY model.

4.1 General Idea of Renormalization Group Methods

Every theory is defined by the action

S[φ] =
∑
i

giÔi[φ] (4.1)

Here, φ is in general a multi-component field over which the functional integral of

the partition function extends, and {gi} is a set of coupling constants connected to

a certain set of operators {Ôi}.
The RG method consists of two stages. In the first step one divides the field,

given in momentum space representation {φk}, into a high-momentum sector

φh(k) =

{
φ(k) for k ∈ S
0 else

(4.2)
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Fig. 4.1:

Partition of the k -ω space into

the low-momentum sector (white)

and the high-momentum sector S
(shaded). The factor b = 1 + ε is a

number close to unity.

and a low-momentum sector

φl(k) =

{
0 for k ∈ S
φ(k) else

(4.3)

where S is the shaded area depicted in Fig. 4.1.

The action can be divided into three parts

S[φ] = Sh[φh] + Sl[φl] + Sint[φh, φl] (4.4)

Integrating out the high momentum sector φh, one obtains an action depending only

on the low-momentum sector of φ

Z =
∫
Dφ e−S[φ] =

∫
DφhDφl e

−Sh[φh]−Sl[φl]−Sint[φh,φl]

=
∫
Dφl e

−S′[φl]
(4.5)

The action S′ is formally defined by

e−S
′[φl] = e−Sl[φl]

〈
e−Sint[φh,φl]

〉
h

(4.6)

where the bracket 〈. . . 〉h =
∫
Dφh . . . e−Sh[φh] denotes an average over the high-

momentum field only. Writing the resulting action in terms of coupling constants

and operators one gets

S′[φl] =
∑
i

g′iÔ
′
i[φl] (4.7)

The coupling constants g′i are in general different from the gi appearing in the

original action. Moreover, the integration over the fast fields can generate even new
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4.1. General Idea of Renormalization Group Methods

operators, which are not present in the original action. In this case, one has to go a

step back and add such operators to the original action, e.g. by taking further effects

into account. This step is repeatedly done until one arrives at a system which is

closed under RG transformation and thus called renormalizable.

However, the theories are still not yet comparable. While the original fields

fluctuate in a momentum scale [0,Λ], the low-momentum fields fluctuate only in a

momentum scale [0,Λ/b]; analogues applies for the frequencies. In order to solve this

problem one rescales momenta according to k → bk as well as frequencies according

to ω → bzω where the so called dynamical critical exponent z depends on the effective

dispersion relation. Finally, one has the freedom of rescaling the field φ arbitrarily,

since it is an integration variable. In general, one rescales the φ field such that the

leading order gradient term remains invariant. The resulting action

S′[φ] =
∑
i

g′iÔi[φ] (4.8)

differs from the original one only by the values of the new coupling constants g′i.

Therefore, the full information about the RG step is encapsulated in the mapping

gi → g′i ≡ gi(b). For infinitesimal l = ln b this change is displayed most conveniently

by the so-called β functions

βi(gi) =
dgi(b)
d ln b

∣∣∣∣
b=1

:= lim
l→0

gi(b)− gi
l

(4.9)

The β functions describe the flow of the coupling constants under subsequent RG

transformation.

A special role play the fixed points g0 of the RG flow for which all βi(g0
i ) = 0.

The RG flow can be interpreted as looking at the system on larger and larger scales,

averaging over fast fluctuations or small lengths. At a fixed point, the coupling

constants do not change under this flow which implies that the system at the larger

scale looks the same as at the smaller scales. On the other hand, every model has

an intrinsic length scale ξ determining the spatial correlations of field fluctuations.

Both observations agree only if the system is either in a state where ξ vanishes, or in

an totally ordered phase where the correlation length diverges. However, a diverging

correlation length is a hallmark of a phase transition and, thus, the phase diagram

can be qualitatively obtained by means of RG analysis

There are different possibilities for the coupling constants in the vicinity of a fixed

point. Relevant coupling constants are those that under the RG transformation are

exponentially driven away from the fixed point. This means that the difference to

the value at the fixed point, ∆gi = gi−g0
i , increases. In contrast, irrelevant coupling

constants are those for which ∆gi exponentially decrease. Coupling constants which

increase or decrease slower than exponentially are said to be marginally relevant or

marginally irrelevant. Of course, there are further specifications of the type of a

coupling constant which are not discussed here.
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Chapter 4. Analysis at Zero Temperature

With these definitions one can classify the fixed points. If there is a whole neigh-

borhood in coupling constant space in which all coupling constants are (marginally)

irrelevant, the fixed point is said to be stable. A small deviation from the fixed point

will at least asymptotically flow back towards the fixed point. These stable fixed

points resemble the stable phases. On the other hand, in the neighborhood of an un-

stable fixed points all coupling constants, taken into consideration, are (marginally)

relevant. These fixed points do not correspond to any state of matter. The third

class of fixed points have, of course, relevant as well as irrelevant coupling constants

in their neighborhood. These fixed points can be associated with phase transitions.

A deviation in the direction of an irrelevant coupling constant is driven back to the

fixed point. In contrast, the smallest deviation in any other direction will grow and

drive the system towards another fixed point corresponding to another phase.

Although there is much more to say about the renormalization group method,

this discussion concludes the current section. For a further introduction into renor-

malization group methods applied to quantum critical phenomena there are, of

course, the articles of Hertz [17] and Millis [18] as well as various textbooks, e.g. [19]

and [20].

4.2 Renormalization Group Method at Zero Tempera-

ture

The model under consideration has the action (3.25) with the propagator (3.23).

One has to recall that the mode g2 has, at zero temperature, an effective dimension

d + z = 4, which is the upper critical dimension. In a perturbative expansion this

leads to logarithmic divergences in any given order. The RG method provides a tool

to sum up all these divergencies to a convergent β function.

However, following the scheme presented above yields a serious problem. After

integrating out the fast fluctuating fields one has to rescale both momenta, q → bq,

and frequencies, ω → bzω. Here, the effective theory contains two different modes

with different dynamics and especially different dynamical exponents. Therefore, it

is not obvious how to perform the rescaling procedure for frequencies.

First, one may recall the influence of both modes. While the g2 mode gives rise

to logarithmic IR divergences, the g3 mode is above the upper critical dimension and

therefore yields IR-convergent corrections. Because of this, it is reasonable to focus

on the g2 mode and rescale according to z = 2. This, of course, implies that after

rescaling momenta and frequencies the g3 mode is no longer invariant but obtains

an additional factor of b according to γ0|ω|/q → bγ0|ω|/q. To compare the low

energy theory with the full theory, this factor can be absorbed into a rescaling of γ0.

Although in the original action γ0 is only a plain number it now becomes a running
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4.2. Renormalization Group Method at Zero Temperature

a) b)

Fig. 4.2: Diagrammatic representation of the corrections contributing in one-loop order.
Each line has a momentum and a frequency label as well as a label i = 1, 2 denoting the
component of the order parameter

“coupling constant” obeying the RG equation γ(b) = bγ0. The fact that γ increases

under the RG flow again weakens the importance of the g3 mode which is exactly

taken into account. Since the corresponding propagator for large b now scales as

∼ γ−1q/|ω| it is suppressed as γ increases.

Within this scheme the small momentum action can be rescaled and the β func-

tion for mass r(b) and coupling constant u(b) are obtained. This is done within a

loop expansion to first order. In the following the main steps are presented while a

more detailed calculation is given in App. B.

The separation into small and large momentum fields leads to the interaction

Sint[nl, nh] =
u0

4!

(
T

Ld

)3
2
∑

q1,q2,k3

ni
q1n

i
q2n

j
k3
nj
−q1−q2−k3

+4
∑

q1,k2,q3

ni
q1n

i
k2
nj
q3n

j
−q1−k2−q3


(4.10)

where the convention q ∈ S and k /∈ S is used and S was defined in Fig. 4.1. The

low-momentum action looks like the original one while the fast action to one-loop

order consists of the quadratic term only.

Now one has to calculate the average
〈
e−Sint[nh,nl]

〉
h

=
∫
Dφh e

−Sint[nh,nl]e−Sh[h].

Within a one-loop order approximation, one can expand the exponential and re-

exponentiate it after averaging which leads to

〈
e−Sint[nh,nl]

〉
h

= exp
[
−〈Sint[nh, nl]〉h +

1
2
〈
Sint[nh, nl]2

〉c
h

]
(4.11)

where the superscript c denotes that only connected diagrams are taken into account.

The diagrammatic representations of the two terms are depicted in Fig. 4.2. The

first one leads to a correction of the mass term, δr, while the second one renormalizes

the quartic term and therefore gives rise to a vertex correction δu.
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Chapter 4. Analysis at Zero Temperature

4.2.1 Mass Correction

First, the mass correction is calculated, which corresponds to the diagram depicted

in Fig. 4.2 (a) with zero external momentum. The complete correction is given by

〈Sint[nh, nl]〉h = 2
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

〈
ni
k1
ni
k2

〉
h
nj
k3
nj
−k1−k2−k3

+ 4
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

ni
k1

〈
ni
k2
nj
k3

〉
h
nj
−k1−k2−k3

(4.12)

where the sum over {i, j} is implicit. Since the propagator is diagonal in momentum

space it is
〈
ni
kn

j
k′
〉
∝ δk,−k′ . Moreover, one can show that after angular averaging∑

k

〈
ni
k n

j
−k

〉
= δi,j

∑
k

g2 + g3

2
(4.13)

which after summation over {i, j} leads to the mass correction

δr =
2(N + 2)u

4!

∫
S

dk k
dφ

(2π)2

dω
2π

(
1

r + k2 + γ0|ω|/k
+

1
r + k2 + (ω/k)2

)
(4.14)

In general N is the number of components of the field which in the problem at hand

is N = 2. This factor originates in the free summation over i while contracting〈
nikn

i
k′
〉
. The integration runs over the high momentum/frequency shell S depicted

in Fig. 4.1 since the average is taken over the fast fields only. Note the factor of 2

due to the factor of 1
2 in front of the quadratic term of the action.

To obtain the β function, one has to take the derivative with respect to ln b,

which appears in the boundaries of the integrals. This means that one has only to

perform either of the k- and ω-integration while the other variable is kept fixed to

the value of the cutoff.

∂(δr)
∂ ln b

=
K2u

6

{
Λ
b

∫ Γ

−Γ

dω

2π

(
Λ

r + Λ2 + γ0|ω|/Λ
+

Λ
r + Λ2 + (ω/Λ)2

)
+2zΓb−z

∫ Λ

0
dkk

(
k

r + k2 + γ0Γ/k
+

k

r + k2 + (Γ/k)2

)}
(4.15)

As before, K2 =
∫

dφ/(2π)2 denotes the averaged volume of the 2-dimensional

sphere. Expansion to first order in the control parameter r yields (z = 2):

∂(δr)
∂ ln b

=
K2u

6π

{
2Λ2 arctan

(
Γ
Λ2

)
+Γ ln

(
1+

Λ4

Γ2

)
+2

Λ3

γ
ln
(

1+
γΓ
Λ3

)
+

4
3

Γ ln
(

1+
Λ3

γΓ

)
− rπ

2
− 2

3
rΓ

(γΓ)2/3

[√
3

9
π + Λ

(γΓ)2/3

Λ3 + γΓ
+

2
√

3
3

arctan

(
2Λ− (γΓ)1/3

√
3(γΓ)1/3

)

+
1
3

ln

( (
Λ + (γΓ)1/3

)2
(γΓ)2/3 − Λ(γΓ)1/3 + Λ2

)]}
(4.16)
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4.2. Renormalization Group Method at Zero Temperature

Note that the terms in the first line are independent of r. Therefore these terms can

be absorbed into a renormalization of the bare parameter r0. This is a renormaliza-

tion of the starting point of the RG flow.

To obtain the asymptotic RG flow, one has to identify the leading order behavior.

The terms within the rectangular brackets, which originate from the g3 mode, are

suppressed for large b by virtue of the growth of γ. Their influence on the asymptotic

flow due to the small b behavior can be captured in another shift of the bare coupling

constant. Asymptotically the β function of r relies on the contribution of the g2 mode

only.

Together with the engineering dimension of r one ends up with the asymptotic

RG equation
∂r

∂ ln b
= 2r − uK2

12
r (4.17)

with K2 = 1
2π .

4.2.2 Vertex Correction

In the second step the vertex correction, δu, is calculated which corresponds to the

diagram depicted in Fig. 4.2 (b). More specific, the action gets the additional terms

1
2
〈
Sint[nh, nl]2

〉c
h

=
1
2

( u
4!

)2
(
T

Ld

)4
8
∑
k1,k2,k

ni
k1
ni
−k1+k

(∑
q

〈
nj
qn

k
−q

〉〈
nj
q−kn

k
k−q

〉)
nl
k2
nl
−k2−k

+ 32
∑
k1,k2,k

ni
k1
nj
−k1+k

(∑
q

〈
ni
q n

k
−q

〉〈
nj
q−k n

k
k−q

〉)
nl
k2
nl
−k2−k

+32
∑
k1,k2,k

ni
k1
nj
−k1+k

(∑
q

〈
ni
q n

k
−q

〉〈
nj
q−k n

l
k−q

〉)
nk
k2
nl
−k2−k


(4.18)

where again the sum over {i, j, k, l} is implicit. With the assumption that the

vertex correction does not vary much with k, one can approximate it by its value at

momentum k = 0. Hence, one ends up with

δu =
1
2
u2K2

4!

[∫
S

dq q
dω
2π

4(N + 7)
(
g2(q, ω)2 + g3(q, ω)2

)
+ 8 g2(q, ω)g3(q, ω)

]
(4.19)

where the factor N , the number of components of the order parameter, arises from

the free summation over i in the first term, and the integration runs over the same

shell, S, as the mass correction.

Since the further calculation of the RG equation for δu is conceptual equivalent

to the one for δr, it is not presented here in detail. To summarize, the three terms

g2
2, g2

3 and g2 g3 yield a renormalization of the bare coupling constant u0 in the
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Chapter 4. Analysis at Zero Temperature

first place. Asymptotically, the flow is governed by the g2
2 contribution only, and to

second order in u reads as

∂u

∂ ln b
= (4− d− z)u− 3K2

16
u2 (4.20)

The detailed calculation which yields this result is carried out in App. B.

4.2.3 Solution of the RG-Equations

Finally, one obtains a set of coupled differential equations for the asymptotic flow

of the mass r and the coupling u:

∂r

∂ ln b
= 2r(b)− K2

12
u(b)r(b) (4.21)

∂u

∂ ln b
= (4− d− z)u(b)− 3K2

16
u2(b) (4.22)

This set of coupled differential equations can be solved analytically which yields

(d = 2 and z = 2)

r(b) = rb2
(
u(b)
u

)4/9

(4.23)

u(b) =
c

ln(bec/u)
(4.24)

with c = 16/(3K2). The constants r and u denote the renormalized bare coupling

constants, which are different from the microscopic ones r0 and u0. Moreover, one

has to keep in mind that γ obeys the RG equation

γ(b) = γ0 b (4.25)

From these results one can calculate the correlation length ξ. To this end, one

has to estimate at which value of b the RG flow has to be stopped. This is the

case when the momentum cutoff Λ is no longer the largest scale of the problem

or, in other words, when r(b?) = Λ2. Neglecting the logarithmically small factor

(u(b)/u)4/9 this happens for b? = Λ/
√
r. Using the scaling relation

ξ−2 ∼ R(b?) = r(b?)b−2
? (4.26)

one obtains for the correlation length

ξ−2 ∼ r
(

c

(ln(Λ2ec/u/r)

)4/9

∼ r

(ln(c1/r))4/9
(4.27)

Thus, in comparison to the naive guess, ξ−2 ∼ r, the correlation length is enhanced

by a factor of ln(1/r)2/9.

The main feature of this solution is the exponent 4/9. Right from the beginning

one might have guessed that a theory of this type is in the Ising universality class.
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4.3. Summary

Although one has a two component order parameter, both components have the

same mass and interaction constant. From the asymptotic calculation one infers,

that only one mode, namely the mode g2, contributes to the corrections, and thus

one could expect an Ising-like behavior with an exponent of 3/9. On the other hand,

this argument may be oversimplified since the order parameter still consists of two

components. Because of that, one may also expect the exponent of the XY model

which is 4/10. However, the above calculation yields an exponent which is even

larger than the one of the XY model, cf. Eq.4.27.

The reason for this is the interplay of the both facts that on the one hand

the order parameter has two components, but on the other hand only one of the

corresponding modes is relevant and thereby renormalizes the interaction of both

modes. To be specific, the corrections have the general form

δr =
2uKd

4!
(N + 2)

∫
(g2 + g3) (4.28)

δu =
2u2Kd

4!

[
(N + 7)

∫ (
g2

2 + g2
3

)
+
∫

2g2g3

]
(4.29)

The exponent is obtained by dividing the combinatorial prefactors of δr and δu. For

the O(N) model there exists only one mode implying g2 = g3 ≡ g. This leads to

δr = 4uKd
4! (N + 2)

∫
g and δu = 4u2Kd

4! (N + 8)
∫
g and an exponent of

4(N + 2)/4!
4(N + 8)/4!

=
N + 2
N + 8

(4.30)

For the XY model one has to set N = 2 yielding an exponent of 4
10 while the Ising

model has only a single component order parameter implying an exponent of 3
9 . This

result can be generalized to arbitrary N and marks the universality class of O(n)

models.

However, in this problem the g2 mode and the g3 mode are not equal but one

of them does not generate logarithms and, therefore, was irrelevant (g3 = 0). Since

we, nevertheless, have a two-component order parameter (implying N = 2) the

corrections are δr = uKd
12 (N + 2)

∫
g2 and δu/u = uKd

12 (N + 7)
∫
g2

2 and the exponent

reads

(N + 2)uKd/12
(N + 7)uKd/12

=
N + 2
N + 7

=
4
9

(4.31)

As a consequence, the Pomeranchuk problem is neither in the universality class of

the XY model nor in the Ising universality class.

4.3 Summary

In this chapter the usual RG scheme was adjusted such that it is capable to capture

the two different dynamical exponents. This was done by treating the constant γ0

in the z = 3 term as a flowing prefactor γ(b).
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Chapter 4. Analysis at Zero Temperature

With this RG scheme the Pomeranchuk model was analyzed. In particular the

interaction renormalization of the mass, r, and the vertex u are calculated. It turned

out that the asymptotic RG flow of these two coupling constants is determined by

the g2 mode only. This observation contradicts the arguments given by Oganesyan

et al. [1] yielding that the g2 mode is irrelevant for the critical behavior. At least

in the case of the correlation length, the naive scaling arguments fail and therefore

this conclusion is wrong.

The correlation length was deduced from the RG-flow of the mass. At zero

temperature it is ξ−2 ∼ r ln−4/9(c/r). This result indicates that the model is neither

in the Ising nor in the XY universality class.
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Chapter 5

Finite Temperatures

In the previous chapter, the quadrupolar Pomeranchuk instability was explored at

zero temperature where a quantum phase transition takes place. At the critical point

where the renormalized mass vanishes, the system undergoes a phase transition from

an isotropic state to a nematic ordered state. However, this is a somehow academic

problem, because of the unattainability of the absolute zero point. At finite temper-

atures and in two dimensions an ordered phase with a diverging correlation length is

prohibited due to Mermin-Wagner theorem. Nevertheless, above the quantum crit-

ical point thermal fluctuations result in excitations of the quantum critical ground

state. One can therefore expect some interesting physics in the quantum critical

regime.

In this chapter, two different techniques are applied to analyze the system in

the quantum critical regime. In the first section a perturbative approach based on

a rather general method called dimensional reduction is used. However, as one will

see below, this method breaks down for the problem under consideration.

Therefore, in the second section, the renormalization group scheme developed in

the previous chapter is applied at finite temperatures. Finally, the finite correlation

length in the quantum critical region is obtained to leading order in the temperature,

which shows universal behavior.

5.1 RG-Improved Perturbation Theory

In this section, the first approach to the system at finite temperatures is made.

At zero temperature, divergences emerge due to the effective dimension d + z = 4

of the g2 mode. At high temperatures the system non-zero Matsubara modes are

gapped. As pointed out below, one may think of integrating them out perturbatively

to obtain an effective model for the zero mode with the dimension d = 2. In the

first section, general considerations for both modes at finite temperatures are made,

respectively. Thereafter, the scheme of dimensional reduction is applied to the model
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Chapter 5. Finite Temperatures

at hand and shown to fail due to the coupling of both modes.

5.1.1 General Idea

As pointed out, one can divide the momentum space at finite but low temperatures

into different regimes. Since the zero temperature renormalized mass r vanishes at

the quantum critical point, it will not differ much from zero for finite temperatures

either. Thus, the propagators of the two modes can be roughly estimated by

gz =
1

k2 +
(
ωn
k

)2/(z−1)
' k2/(z−1)

(kz)2/(z−1) + (nT )2/(z−1)
(5.1)

where z = 2, 3 for the g2 and g3, respectively, and n is an integer. The factor of 2π

of the Matsubara frequencies is neglected in this qualitative discussion for the sake

of clarity.

Now, when the momentum k is larger than T 1/z the k2 term dominates the

denominator and the finite spacing of the Matsubara frequencies is irrelevant. This

means that one can treat them like a continuous variable which is just the same as in

the zero temperature case. One then has a model with the effective dimension d+ z

and this region in k-space is therefore called the “quantum regime.” The system

can be treated as it were at zero temperature.

On the other hand, if k is smaller than T 1/z, the ωn term dominates the denomi-

nator. In this case the spacing between the Matsubara frequencies strongly matters

and one can distinguish between the zero and the non-zero Matsubara frequencies

gz(q, ωn) ∼

 1
k2 for n = 0(
k
nT

)2/(z−1)
for n 6= 0

(5.2)

Since T > kz, the former is much larger than the latter and one may integrate out

the non-zero modes perturbative. As a result, one obtains an effective d-dimensional

action for the zero mode. Therefore, this procedure is called “dimensional reduc-

tion.” This low-momentum region is also called the “classical regime,” since it is

comparable to a classical statistical field theory in d dimensions.

However, the perturbative treatment of the non-zero modes generates an effective

mass for the zero mode. A problem arises, if this effective mass becomes of the same

order as the non-zero Matsubara term which can be interpreted as the “mass” of the

non-zero modes. In the classical regime, one can estimate the lower bound of this

mass, by using k < T 1/z, to (T/k)2/(z−1) > T 2/z. Therefore, if the effective mass of

the zero Matsubara mode is of the order of T 2/z, the zero mode has no longer an

exceptional position, and the perturbative treatment of all other modes would not

be justified.

The idea of RG-improved perturbation theory is the following. Since in the high-

momentum regime the theory is nearly alike the one at zero temperature, one can
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5.1. RG-Improved Perturbation Theory

Fig. 5.1:

The different regimes in momen-

tum space for both the g2 and the

g2 modes. The most interesting re-

gion is the striped one, where g2 is

in its quantum regime with dimen-

sion d+ z = 4 and g2 is in its clas-

sical regime with dimension d = 2.
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use the previously derived RG flow. The RG flow has to be stopped as soon as one

enters the classical regime, i.e. at b = ΛT−1/z. From the resulting low-momentum

theory an effective action for the zero mode is obtained by integrating out all non-

zero modes. The effective action is still quartic in the zero mode field but has a

non-vanishing mass. Because of this, one can now use plain perturbation theory to

solve the problem and get an expression for the zero mode effective mass R. As

mentioned before, this mass R has to be compared to T 2/z to justify the procedure

from hindsight.

A much broader discussion of the idea of dimensional reduction and its applica-

tion is given in, e.g. , [21].

5.1.2 Dimensional Reduction

If one wants to apply the method described above to the Pomeranchuk theory, the

different dynamics raise a problem. Due to the existence of two dynamical exponents

there are not two but three different regimes as shown in Fig. 5.1. For momenta

larger than T 1/3 both modes are in the quantum regime, and for momenta smaller

than T 1/2 both modes are in the classical regime. However, for momenta T 1/3 <

k < T 1/3, the g2 mode is still in its quantum regime, while the g3 mode is already

in its classical regime. This fact has to be taken into account when generalizing the

scheme of dimensional reduction, explained in the previous section. One should be

aware that it is this crossover regime which may cause severe problems.

The calculation involves five steps:

• First of all, the bare coupling constants (r0 and u0) get renormalized accord-

ing to the full zero temperature RG equations yielding the renormalized bare

coupling constants r and u
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• In the second step, these renormalized bare coupling constants flow according

to the full RG flow until the classical regime of the g3 mode is reached, i.e.

b = ΛT−1/3. The remaining theory now has a momentum cutoff T 1/3.

• Then, the coupling constants flow further according to the RG flow which takes

only the g2 mode into account. The flow is stopped when the classical regime

of the g2 mode is reached, i.e. b = ΛT−1/2 yielding rR and uR. Thereby one

gets two different cuttoffs: while the g2 mode has a cutoff T 1/2 the g3 mode

still has a cutoff T 1/3.

• Now both modes are in their classical regime and one can integrate out the

non-zero Matsubara modes. This gives rise to the effective coupling constants

R′ and U ′ for the zero Matsubara mode.

• Finally, one has to get rid of the twofold cutoff structure. Therefore one has to

integrate out the intermediate momentum region T 1/3 > k > T 1/2 and obtains

the effective mass of the zero Matsubara modes

Starting with the outlined procedure, the renormalized bare coupling constants, r

and u, flow according to the full zero temperature RG equations until b = ΛT−1/3. In

the intermediate regime one let them flow further according to the zero temperature

RG equations, coming from the g2 mode only. Since in this particular case the

asymptotic flow of the full system depends only on the g2 mode anyway, the flow of

the parameters is not different from the second step. The only subtle difference is

the already mentioned twofold cutoff structure. This can be denoted by multiplying

the inverse propagator g−1
z by a factor of Θ(T 1/z − k). The coupling constants,

obtained by this flowing procedure are denoted by rR and uR.

Above the quantum critical point the renormalized bare mass vanishes, r = 0,

and thereby it is also rR = 0, while for the vertex one obtains

uR =
c

ln(ec/uΛ T−1/2)
(5.3)

Now one derives an effective action for the zero mode alone. This is done by

perturbative calculating the integral

eSeff[n0] =
∫
n6=0
Dφn eS[n] (5.4)

where S[n] is the action in the classical regime with the renormalized coupling con-

stants.

Although, the RG flow is stopped at the momentum cuttoff k = T 1/2, the renor-

malization of the bare mass involves the complete RG flow for arbitrary large values

of b. The renormalized bare mass r, therefore, also captures the zero temperature

correction for smaller values of k. To avoid double-counting of the corrections from
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5.1. RG-Improved Perturbation Theory

the low-momentum regime, one has to subtract the zero temperature contribution

again.

R′ = rR +
4(N + 2)K2

4!
uR

 1
2β

∑
ωn 6=0

(∫ T 1/2

0
dq qg2 +

∫ T 1/3

0
dq qg3

)

−

 1
2β

∑
ωn 6=0

(∫ T 1/2

0
dq qg2 +

∫ T 1/3

0
dq qg3

)
T=0

 (5.5)

Note the difference of the upper boundaries of the momentum integrals, due to the

Heaviside theta functions Θ(T 1/z − k).

The calculation of this expression, explicitly presented in App. C, yields with

rR = 0

R′ =
(N + 2)K2

12
uR

{∫ T 1/2

0
dq
T

q

[
q2

2T

(
coth

(
q2

2T

)
− 1
)
− 1
]

−
∫ T 1/3

0
dq
T

q

[
1− q3

T

∫
dω
π

γω
(
coth

(
ω

2T

)
− 1
)

q6 + γ2ω2

]}
(5.6)

which can be evaluated as

R′ = uRT κ ∼ T

ln(c1/T )
(5.7)

where κ is a constant, and c1 = e2c/uΛ2.

For the vertex correction things can be simplified. While at the quantum crit-

ical point the renormalized mass vanishes, the renormalized vertex is finite. An

expansion of the effective coupling of the zero Matsubara modes, U , in the temper-

ature therefore yields a finite zeroth order term, U ≈ uR + c(uR)2T . Thus, higher

order terms, as generated by integrating out the non-zero Matsubara modes, are

suppressed by a factor of T . Hence, in a reasonable approximation, one may take

into account the zero-temperature renormalization only

U ≈ uR =
2c

ln(c1/T )
(5.8)

Now an effective quartic action for the zero mode is achieved, but it still contains

a twofold cutoff structure. Depending on which mode one considers the cutoff is

either T 1/3 or T 1/2. In order to get an effective action with only one cutoff, one

has to integrate out the momenta T 1/3 > k > T 1/2 sector, which yields another

correction to the effective mass

R = R′ +
(N + 2)K2

12
U

∫ T 1/3

T 1/2

dq
g3

2

= R′ +
(N + 2)K2

12
uRT

2
ln

(
R′ + T 1/3

R′ + T 1/2

)
(5.9)
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Substituting the expression for R′ and uR one finally gets the effective mass for the

zero modes

R = const · T + const · T

ln(1/T )
(5.10)

To leading order this mass grows linearly with temperature. Note, that the linear

temperature dependence originates from the overlap regime only. To sum up, the

effective action for the zero mode reads

S[n0] =
1
2
T

Ld

∑
k

ni
0,k(R+ k2)ni

0,k +
U

4!

(
T

Ld

)3 ∑
k1,k2,k3

ni
0,k1

ni
0,k2

nj
0,k3

nj
0,−k1−k2−k3

(5.11)

Further corrections of the physical mass from the quartic term are additive and

therefore only increase the leading-order behavior.

In the last step, one has to verify the consistency of this approach by comparing

the effective mass of the zero mode to the masses of the non-zero modes. The mass

of the non-zero modes is of the order of T 2/z. Thus, the effective mass of the zero

modes is much smaller than the mass of the non-zero modes with z = 3. However,

the non-zero modes with z = 2 have a mass comparable to the effective zero-mode

mass. As pointed out before, this conflicts with the special treatment of the zero

mode, and thus, the concept of dimensional reduction breaks down. The approach

is inconsistent. It has to be stressed that up to Eq. (5.7) the effective mass, R′, is

logarithmically suppressed. The consistency condition is violated only due to the

contribution of the overlap regime.

5.2 Renormalization Group Approach

The calculation of the previous section has shown, that one cannot approach the

problem with perturbation theory. Therefore, one once again uses renormalization

group methods to obtain the finite temperature correlation length.

In this section, the RG equations at small but finite temperatures are derived

according to the scheme developed in Chap. 4. From the RG flow of the mass one

can derive the correlation length within the quantum critical region. In order to

simplify calculations and to get a feeling for the result, one may first consider what

can be expect from the outset.

The region of the phase diagram in which one is interested is the regime right

above the quantum critical point. Here, the renormalized r which covers the RG

flow of r0 at zero temperature vanishes. In the vicinity of the quantum critical point

it differs only slightly from zero which implies that temperature dependend correc-

tions are important. In contrast, the zero temperature coupling constant u has a
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5.2. Renormalization Group Approach

finite value at the quantum critical point, and an expansion of the RG flow in tem-

perature yields only a small correction. Therefore, one can neglect the temperature

dependence of the vertex and approximate it by its zero temperature RG flow.

The second consideration is a more qualitative one. As pointed out before, the

momentum space can be separated into the three regimes depicted in Fig. 5.1. In

the large-momentum region, both modes are of quantum nature, having almost

continuous Matsubara frequencies and an effective dimension d + z. In the small-

momentum region, the whole theory is classical, i.e. comparable to a classical d-

dimensional field theory.

In the interesting regime, where the g3 mode is already classical, while the g2

mode is still in the quantum regime, the g3 mode is at the lower critical dimension

d = 2. On the other hand, the g2 mode is at the upper critical dimension d +

z = 4. Since the flow of u is determined by the g2 mode only while the finite

temperature correction of the mass will be governed by the g3 mode, the most

divergent contributions come from this overlap regime. This means that the theory

is dominated by the momentum scale between T 1/3 and T 1/2. The strong influence

of this momentum regime can be also seen from Eq. 5.9 and Eq. 5.10. It is the

overlap regime that leads to the failure of dimensional reduction.

5.2.1 Calculation of the β Function at Finite Temperature

As explained before, at finite temperature one only has to calculate the RG equation

for the mass r. The vertex u is in leading order governed by its zero temperature

RG flow

u(b) =
c

ln
(
bec/u

) with c =
16

3K2
(5.12)

The one-loop correction to the low momentum action is the same as in the zero

temperature case

〈Sint[nh, nl]〉h = 2
u0

4!

(
T

Ld

)3 ∑
k1,k2,k3

〈
ni
k1
ni
k2

〉
h
nj
k3
nj
−k1−k2−k3

+ 4
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

ni
k1

〈
ni
k2
nj
k3

〉
h
nj
−k1−k2−k3

(5.13)

but this time the sum over k = (k, ωn) extends over the discrete bosonic Matsubara

frequencies ωn = 2πnT instead of continuous ones. This can be rewritten as shown

in Chap. 4 to yield

〈Sint[nh, nl]〉h =
2(N + 2)u0

4!

(
T

Ld

)2∑
k,k′

g2(k′) + g3(k′)
2

nik n
i
−k (5.14)

In the following, only the main ideas are presented while the actual calculation is

performed in detail in App. D.
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ωRe
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−ω q ω q ω q−ω qωRe

b)a)

Fig. 5.2: Illustration of the integration contours for the g2 mode. On the left side the
contour C is depicted. This contour is deformed into the contour C ′ depicted on the right
side.

To calculate the sum over the g2 contribution, one applies the residue theorem

to convert the sum over Matsubara frequencies into an integral

T

Ld

∑
q,ωn

g2(q, ωn) =
∫

d2q

(2π)2
T
∑
ωn

q2

q2(r + q2) + ω2
n

=
∫

d2q

(2π)2

1
2

∫
C

dω
2πi

coth
( ω

2T

) q2

q2(r + q2)− ω2
(5.15)

Here, the integration contour C is depicted in Fig. 5.2 (a) Deforming this contour

into the contour C ′ as shown in Fig. 5.2 (b), one only has to sum up the residues at

the poles ±ωq = ±q
√
r + q2 which leads to

T

Ld

∑
q,ωn

g2(q, ωn) =
1
2

∫
d2q

(2π)2
coth

( ωq
2T

) q2

ωq
(5.16)

On the other hand, for the g3 mode one first gets rid of the absolute value of ω

by summing twice over the positive Matsubara frequencies and adding the ω0 term

T

Ld

∑
q,ωn

g3(q, ωn) = T

∫
d2q

(2π)2

[
1

r + q2
+ 2

∑
ωn>0

q

q(r + q2) + γ0ωn

]
(5.17)

Similar as to the g2 mode one applies the residue theorem to rewrite the Matsubara

frequency sum into an integral over the contour S shown in Fig. 5.3 (a). This contour

is then deformed into the contour S′ depicted in Fig. 5.3 (b) on the right. Since the

large semi-circle vanishes for a large frequency cutoff Γ, and the infinitesimal semi-

circle with radius ε → 0 cancels against the zeroth Matsubara mode contribution,

one is left with the relation
T

Ld

∑
q,ωn

g3(q, ωn) =
∫

d2q

(2π)2
P
∫ Γ

−Γ

dω
2πi

coth
( ω

2T

) q

q(r + q2)− iγ0ω
(5.18)
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ωRe

Im ωωIm

ωReΓ−Γ −ε ε

a) b)

Fig. 5.3: Illustration of the integration contours for the g3 mode. On the left side the
contour S is depicted. This contour is deformed into the contour S′ depicted on the right
side.

Here, P denotes the principal value integral since ω = ω0 = 0 is of the domain of

integration.

In order to obtain the β function, one has to proceed in the same way as for

the zero temperature case. After restricting the integrals to the high momen-

tum/frequency shell, one takes the derivative with respect to ln b at b = 1. Thus,

the contributions for the g2 and g3 mode read as

f2(r, γ0, T ) = K2Λ2 Λ2

2ωΛ
coth

(ωΛ

2T

)
(5.19)

f3(r, γ0, T ) = K2Λ3

∫ Γ

0

dω
π

coth
( ω

2T

) γ0ω

Λ−2ω4
Λ + γ2

0ω
2

+
zΓ2

π

∫ Λ

0
dq coth

(
Γ

2T

)
q2γ0

q−2ω4
q + γ2

0Γ2
(5.20)

where the notation ωΛ = Λ
√
r + Λ2 was used. Instead of writing down the RG

equation for r, one can absorb its engineering dimension by defining R = rb−2.

Note that this R must not be confused with the the one defined in the previous

section. The β function for R takes the form

∂R

∂ ln b
=

2(N + 2)
4!

u(b)b−2
[
f2(Rb2, γ(b), T (b)) + f3(Rb2, γ(b), T (b))

]
(5.21)

The temperature which is proportional to ωn has to flow according to T (b) = Tbz,

while γ flows like in the zero temperature case according to γ(b) = γ0b

5.2.2 Correlation Length Above the Quantum Critical Point

The correlation length ξ is connected to the mass as ξ−2 ∼ R(b?) where b? is the point

at which the RG flow stops. To extract R(b), the RG equation can be integrated

over d(ln b) = db
b yielding

R(b?)−R(1) =
2(N + 2)K2

4!

∫ b?

1

db′

b′
u(b′)b′−2

[
f2(Rb′2, γ(b′), T (b′))

+f3(Rb′2, γ(b′), T (b′))
]

(5.22)
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At the quantum critical point the zero temperature renormalization of the bare mass

R(1) vanishes so that

R(b?) = R(1) +
∫ b?

1

db′

b′
F (b′, R, T )

∣∣
T=0︸ ︷︷ ︸

=0

+
∫ b

1

db′

b′
[
F (b′, R, T )− F (b′, R, 0)

]
(5.23)

where F (b′, R, T ) denotes the integration kernel.

Substituting b = Λ/k, rescaling ω → ωk2/Λ2 and q → qΛ/k with the associated

cutoffs Γ′ and k, and inserting the zero temperature result for u(b) one finally gets

(z = 2)

R(b?) =
8
9

∫ Λ

Λ/b?

dk
ln(ec/uΛ/k)

[
k2√

R(b) + k2

(
coth

(
k
√
R(b) + k2

2T

)
− 1

)

+ 2k2

∫ Γ′

0

dω
π

γ0ω
(
coth

(
ω

2T

)
− 1
)

k2(R(b) + k2)2 + γ2
0ω

2

+2Γ′
2
π

∫ k

0
dq

q2γ0

(
coth

(
Γ′

2T

)
− 1
)

q2(R(b) + q2)2 + γ2
0Γ′2


b=Λ/k

(5.24)

The RG flow stops at b? = Λ/
√
R. Thus, the equation becomes self-consistent.

A detailed analysis of the individual terms (see App. D) shows that the leading

order contribution originates only from the zero Matsubara mode ω0, and the k-

integration may be restricted to the interval [R1/2, T 1/3]. In this regime one can

approximate R(Λ/k) + k2 ≈ k2 and finally ends up with the two terms

R =
8
9

{∫ T 1/2

R1/2

dk
k

2T
ln(c1/k)

+
∫ T 1/3

R1/2

dk
k

2T
ln(c1/k)

}
(5.25)

where c1 = Λec/u. Carrying out the integrations, a self-consistent equation deter-

mining the correlation length at finite temperatures arises

ξ−2 = R = −16
9
T

[
ln

(
ln
(
c1/T

1/2
)

ln
(
c1/R1/2

))+ ln

(
ln
(
c1/T

1/3
)

ln
(
c1/R1/2

))] (5.26)

Approximating R = c̄ T on the right hand side, one can fairly neglect the first

logarithm which leads to a correction of order 1/ lnT . One thus gets

ξ−2 =
16
9
T

[
ln

(
ln
(
c1/T

1/3
)

ln
(
c1/(c̄T )1/2

))] ≈ 16
9
T

[
ln

3
2

+O
(

1
ln(1/T )

)]
(5.27)

Interestingly this result shows that the effective mass grows to leading order lin-

early with temperature without any logarithmic corrections. Even more astonishing

is the fact that the leading-order behavior has a prefactor of 16
9 ln(3/2) which is

completely independent of the interaction strength u.
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b)
z=3

z=2

z=2

a)

z=2

z=2

z=3

Fig. 5.4: The most important second order diagram. On the right hand the same diagram
is displayed but the z = 2 modes are gathered into an effective vertex, denoted by a box.

5.3 Calculation of a Second Order Diagram

In the previous section, the leading logarithmic divergencies were resummed within

the RG method. This was done by a scheme where all frequencies were rescaled ac-

cording to z = 2. In principle, the coupling constant u for the low frequency/momentum

sector is a function of three Matsubara frequencies and momenta. However, within

this approach one assumes that the flow of u can be captured by one parameter, b,

only. The validity of this assumption for the applied scheme has to be checked.

In order to verify the results, one may calculate the most important two-loop

diagram and obtain the leading-order temperature dependence. Due to the number

of free summations one identifies the diagram shown in Fig. 5.4 (a) as the most

important one. It can be interpreted as a normal Hartree diagram with a one-

loop renormalized vertex, as shown in Fig. 5.4 (b). As mentioned above, the finite

temperature mass correction is governed by the g3 mode while the most divergent

vertex correction comes from the g2 mode. One thus expects the leading-order

contribution to be the diagram where two of the propagators are ballistic and only

one propagator is damped, which will be called the 223-contribution from now on.

The general expression for the displayed diagram with no external momentum

reads

∆Rij = −43
( u

4!

)2
(
T

Ld

)3∑
k,q,p

[
1
2
gij(k)gmn(q)gnm(p) + gim(k)gmn(q)gnj(p)

]
δk+q+p

(5.28)

where it was used that the matrix g is symmetric, and the summation over indices

m and n is implicit. After angular integration one, of course, expects ∆R to be

diagonal, i.e. ∆Ri,j = ∆Rδij .

Rewriting g(k) = g2(k)U2(k̂) + g3(k)U3(k̂) with the matrices Uz defined in

Chap. 3, one can separate all 223-contributions and gets from Eq. 5.28

∆R223 =
(
T

Ld

)3∑
k,q,p

g3(k)g2(q)g2(p)P (k,q,p)δk+q+p (5.29)
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Here, the matrix P (k,q,p) was defined as

P (k,q,p) = −43
( u

4!

)2
[

1
2
U3(k̂) Tr

(
U2(q̂)U2(p̂)

)
+ U2(q̂) Tr

(
U3(k̂)U2(p̂)

)
+U3(k̂)U2(q̂)U2(p̂) + U2(q̂)U3(k̂)U2(p̂) + U2(p̂)U2(q̂)U2(k̂)

]
(5.30)

Defining Π(q,p, ωn) = T 2
∑

Ωn,Ωm
g2(q,Ωn)g2(p,Ωm)δ(Ωn+Ωm+ωn) and perform-

ing the analytical continuation (iωn → w + i0) one gets

Π(q,p, ω) =
q2p2

4ωqωp

[
ωp coth

ωq
2T

(
1

ω2
p − (ωq + ω + i0)2

+
1

ω2
p − (ωq − ω − i0)2

)
+ωq coth

ωp
2T

(
ωq ↔ ωp

)]
(5.31)

where, as before, ωq = q
√
r + q2.

The remaining Matsubara summation can be calculated using the residue theo-

rem

T
∑
ωn

g3(ωn)Π(ωn) =
∫

dω
2π

coth
( ω

2T

)[
Im g̃3(ωn) Re Π(ωn)

+ Re g̃3(ωn) Im Π(ωn)
]
iωn→w+i0

(5.32)

Here, g̃3(−iω) = (r + q2 − iγ0ω/q) denotes the analytical continuation in the upper

complex plain which differs from the lower complex plain by a minus sign in front

of the frequency ω. For the sake of brevity, g̃3 is further on also called g3.

With these definitions one can rewrite Eq. 5.29 as

∆R223 = L−3d
∑
k,q,p

P (k,q,p)δk+q+p

∫
dω
2π

coth
( ω

2T

)
×
[
Im g3(k, ωn) Re Π(q,p, ωn) + Re g3(k, ωn) Im Π(q,p, ωn)

]
iωn→w+i0

(5.33)

5.3.1 Recovering the RG Result

Starting with the first term of the integral in Eq. 5.33, one has to calculate

∆R223 = L−3d
∑
k,q,p

∫
dω
2π

coth
( ω

2T

)[
Im g3(k, ωn) Re Π(q,p, ωn)

]
iωn→w+i0

P (k,q,p)δk+q+p

(5.34)

Concerning the integration over q and p one gets

δu(k, r, T, ω) =
∑
q,p

Re Π(q,p, ω)P (k,q,p)δk+q+p =
∫ Λ

0

dq
q
F
( q
k
,
q

r1/2
,
q

T 1/2
,
q

ω1/2
, x
)

(5.35)
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where x = φk − φq is the angle between k and q. If all four ratios are larger than

one, the function F resembles the k-independent result c
∫

ddq dω g2(q, ω)g2(q, ω)

calculated in Sect. 5.2. If one of these ratios is smaller than one, one gets a less

divergent behavior which is not important for the leading order calculation. Thus,

one obtains

δu(k, r, T, ω) = −3
u2K2

8π

∫ Λ

c
dq
∫

dω′ g2(q, ω′)g2(q, ω′)

= −3
u2K2

16π
ln

Λ
c

(5.36)

where the lower momentum cutoff is c = max[k, r1/2, T 1/2, ω1/2].

Now one substitutes this result into the leading order contribution of the remain-

ing q and ω integral.

∆R223 ≈
K2

3

∫ Λ

0
dk k

∫ Γ

0

dω
π

coth
ω

2T
δu(k, r, T, ω)k

γ0ω

k−2ω4
k + γ2

0ω
2

(5.37)

The last fraction is peaked at γ0ω ∼ k−1ω2
k. Therefore, the frequency is to leading

order pinned to ω ∼ k3 which implies that δu does not depend on ω. Subtracting

the zero temperature contribution, one can approximate

coth
(
k−1ω2

k

2γ0T

)
− 1 ≈

2γ0T
k
ω2
k

for k ≤ (2γ0T )1/3

0 for k ≥ (2γ0T )1/3
(5.38)

One finally arrives in leading order at

∆R223 ≈
K2

3
T

∫ (2γ0T )1/3

0
dk δu(k, r, T )

k3

ω2
k

(5.39)

Note that the momentum cutoff ∼ T 1/3 originates from the g3 mode. For k2 < T, r

the vertex δu is k-independent while in the region k2 > T, r the vertex is essentially

given by δu ∼ ln k. Therefore, the leading order behavior comes from this second

interval. Assuming that r ∼ T < k2, one can approximate ωk ≈ k2 and arrives at

∆R223 ≈ −
(
uK2

4

)2 ∫ (2γ0T )1/3

r1/2

dk
k

ln
Λ
k

≈ −
(
uK2

4

)2 T

2

[
ln2

(
Λ
r1/2

)
− ln2

(
Λ

(2γ0T )1/3

)]
(5.40)

Expansion of the RG result of R, cf. Eq. (5.27), up to second order in u0 (which

is contained in c1) yields the same result. Therefore, the applied RG scheme seems

to sum up the leading divergences in the correct manner. However, to prove this

statement, the second term in Eq. (5.32) has to be calculated, although from naive

scaling arguments one may infer that it should be of the order of T 2.
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5.3.2 Interplay of the Two Modes

The second term of Eq. (5.33) reads

∆R223 = L−3d
∑
k,q,p

∫
dω
2π

coth
( ω

2T

)[
Re g3(k, ωn) Im Π(q,p, ωn)

]
iωn→w+i0

P (k,q,p)δk+q+p

(5.41)

Taking the imaginary part of Π in Eq. (5.31) yields Dirac delta functions for fre-

quencies

Im Π(q,p, ω) =
q2p2

8ωqωp

[(
coth

ωq
2T

+ coth
ωp
2T

)(
δ(ω − ωp − ωq)− δ(ω + ωp + ωq)

)
+
(

coth
ωq
2T
− coth

ωp
2T

)(
δ(ω − ωp + ωq)− δ(ω + ωp − ωq)

)]
(5.42)

The two Dirac delta functions in the first line correspond to processes where two

quasiparticles with energies ωq and ωp are absorbed or emitted. These processes

also take place at zero temperature where the prefactor in the parentheses becomes

a factor of two. In contrast, the processes of the second line cannot take place at

zero temperature due to the negative sign in the prefactor. These processes are

simultaneous absorption and emission of quasiparticles with energies ωq and ωp.

Nevertheless, at small but finite temperatures the latter process is the dominating

one.

Performing the integration (5.32) and subtracting the zero temperature contri-

bution leads to the relation

∆R223 −∆R223

∣∣∣∣
T=0

=
∫ Λ

0

ddk
(2π)2

ddq
(2π)2

ddp
(2π)2

(
coth

ωq
2T

coth
ωp
2T
− 1
) q2p2ω2

k

8ωqωp
P (k,q,p)

×
(

1
k−2ω4

k + γ2
0(ωq + ωp)2

+
1

k−2ω4
k + γ2

0(ωq − ωp)2

)
δk+q+p

(5.43)

The first term in the second line correspond to the twofold emission or absorp-

tion processes whereas the second fraction resembles the mixed absorption-emission

processes.

To obtain the leading order behavior, one notices that for ωq = ωp the second

fraction diverges with a higher power of momentum. Since, this is a whole subspace

of the integration regime, one can neglect the first term and approximate the second

term by

1
k−2ω4

k + γ2
0(ωq − ωp)2

≈ πk

γ0ω2
k

δ(ωq − ωp) (5.44)
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Performing the integration over p and anticipating the further angular integrations

one obtains∫
ddp

(2π)d
δk+q+pPij(k,q,p) = −

( u
3!

)2
(

3− 4 cos 4x+ 2 cos 4(φ−k−q − φq)
)
δij

(5.45)

where the angle x = φk−φq was introduced, and the momentum p has been replaced

by −(k + q). Since P is a multiple of the identity matrix, a matrix notation is no

longer necessary. In the following, ∆R223 denotes the scalar mass correction.

The Dirac delta function of Eq. (5.44) demands that |q| and |p| = |k + q| are

equal, which implies φ−k−q − φq = 2x. Converting the Dirac delta function over

energies into one for the absolute value of k and putting everything together one

arrives at

∆R223−∆R223

∣∣∣∣
T=0

= −
( u

3!

)2 π

4γ0

∫ Λ

0
dqdk

∫ 2π

0

dx
(2π)2

dφq

(2π)2

(
coth2 ωq

2T
− 1
) q4

ω2
q

q2k

dωq/dq

×
(

3− 4 cos 4x+ 2 cos 8x
)
δ(k + 2q cosx) (5.46)

Performing the integration over k and φq restricts the x integration to the interval

of [π2 ,
3π
2 ], and one obtains

∆R223 −∆R223

∣∣∣∣
T=0

=
(
uK2

3!

)2 1
4γ0

∫ Λ

0
dq
∫ π/2

3π/2
dx
(

coth2 ωq
2T
− 1
) q4

ω2
q

q3

dωq/dq

× cosx
(
3− 4 cos 4x+ 2 cos 8x

)
(5.47)

Finally, rescaling q2 → 2T q2 and introducing ω̄q = q( r
2T + q2)1/2, one may approxi-

mate ΛT−1/2 →∞ for small temperatures and ends up with

∆R223 −∆R223

∣∣∣∣
T=0

= −
(
uK2

3!

)2 2038
315

T 3/2

√
2γ0

(∫ ∞
0

dq
(
coth2 ω̄q − 1

) q4

ω̄2
q

q3

dω̄q/dq

)
(5.48)

where the integral is finite and depends on r/T via ωq. Using the RG result ob-

tained in Sect. 5.2 for the renormalized mass, r = 16/9 ln(3/2)T , the energy ωq is

temperature independent, and, thus, the integral gives just a number.

In general, using the RG result for r demands the use of the momentum de-

pendent RG result for u. However, due to the form of the integrand the major

integration regime is given by [r1/2, T 1/2]. This is a parametrically small regime and

therefore one must not take the flow of u into account.

The important thing to notice is the temperature dependence T 3/2 of the cor-

rection whereas one initially expected only a quadratic behavior. This term arises

from a non-trivial interplay of the two modes and relies crucially on the different
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Chapter 5. Finite Temperatures

dynamical exponents. If there would be only one dynamical exponent, the approxi-

mation in Eq. (5.44) would not be justified. Physically, this means that if one probes

the vertex with an energy ω, it responds at finite temperatures with a simultaneous

emission and absorption of quasiparticles both with the same energy ωq. This effect

can be seen as some kind of resonance. However, at zero temperature this process

can not occur.

For the developed RG scheme the consequences are twofold. On the one hand,

the latter derivation shows that there are no equally divergent terms correcting

the prefactors in Eq (5.40). Thus, the RG scheme seems to sum up the leading

divergences of each order. In this respect, the scheme works well. On the other

hand, there are other, subleading corrections, which stem from the interplay of the

different dynamical exponents. These corrections cannot be captured within the

current scheme, even at arbitrary loop order. This is because the scheme handles

the problem as if there were only one dynamical exponent. The remaining one

is hiden within a flowing number γ. Hence, the RG scheme may work for some

quantities but is not a general tool for all calculations.

5.4 Summary

In this chapter, the model of a fermionic system near a quadrupolar Pomeranchuk

instability was investigated at finite temperatures. As it turns out, this model has

some peculiar properties.

Most notably, the system is governed by the momentum scale between T 1/3 and

T 1/2 only. Here, the g2 mode is characterized by its quantum nature while the

g3 mode is already classical. The interplay between the two modes in this regime

is crucial and leads to unexpected results. In particular, it is this overlap regime

which inhibits the success of the concept of dimensional reduction. As shown in

Sect. 5.1, the approach to derive an effective action for the zero Matsubara modes

by integrating out all other modes failed. The self-consistency requirement was not

met since the effective mass of the zero Matsubara mode was of the same order as

the mass of non-zero Matsubara modes with z = 2. This inconsistency originates

only from the last step of the calculation, where the overlap regime was integrated

out.

Since dimensional reduction failed, the system was once again explored by means

of RG techniques. In Sect. 5.2 the previously established RG scheme was applied

to the model. As a result the inverse square of the correlation length at finite

temperatures was obtained to be to first order linear in temperature. Logarithmic

corrections appeared only for subleading terms. Furthermore, the leading order

term was universal, i.e. it was independent of any system parameter. Strikingly, this

results originate from the momentum interval between T 1/3 and T 1/2 again.
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5.4. Summary

Finally, in Sect. 5.3, the most divergent contribution in second-order perturba-

tion theory was identified and calculated. This was done to verify, that the used

RG scheme is correct in the sense that the all leading logarithmic divergencies are

resummed. As a result, the second order expansion of the RG result was recovered,

and no additional terms that were equally divergent appeared. However, the cal-

culation revealed a complex interplay between the two modes, g2 and g3, at finite

temperatures, which leads to deviations from naive scaling arguments. Although

these corrections are of subleading order for the correlation length, they may play a

further role for the damping of the ballistic mode.
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Chapter 6

Thermodynamics

In this chapter, the thermodynamic properties of the system are discussed. Al-

ready in Chap. 3 the statement was made that the mode with the higher dynamical

exponent is expected to govern the thermodynamics of the system. Since this is

the Landau damped mode, the system will behave in the thermally disordered low-

temperature regime according to Fermi liquid theory. Nevertheless, one can expect

interesting features arising from the interplay between the two different modes. Af-

ter a brief introduction of the theoretical basics of quantum phase transitions and

the phase diagram the specific heat, thermal expansion and compressibility are in-

troduced. Their behavior in the quantum critical and the low-temperature regime

are obtained by naive scaling arguments. Finally, the explicit calculations for the

Gaussian model are presented. While the specific heat and the thermal expansion

obey the scaling results, the compressibility only agrees with the scaling result in

the low temperature regime. In the quantum critical regime, the compressibility

originates from the zero Matsubara mode only.

6.1 Basic Notions of Quantum Phase Transitions

Most phase transitions can be characterized by a so called order parameter. This

order parameter vanishes in the disordered phase and becomes finite in the ordered

phase. Although for some cases the order parameter is not known, every 2nd order

phase transition is supposed to have one. While the expectation value of the order

parameter vanishes in the disordered phase, there are of course fluctuations around

zero. These fluctuations have a twofold origin; thermal fluctuations and quantum

fluctuations resulting from Heisenberg uncertainty principle.

At finite temperatures thermal fluctuations are usually much stronger than quan-

tum fluctuations in the vicinity of the transition line. Therefore finite temperature

phase transitions are in general driven by thermal fluctuations and called classical

phase transition. The situation changes if one considers systems at zero tempera-
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Fig. 6.1: Generic phase diagram above (a) and below (b) the lower critical dimension. The
dashed lines denote the crossover from the low-temperature regime to the quantum critical
regime. (Figure taken from [22].)

ture, where no thermal fluctuations are present. Depending on external parameters

(e.g. pressure p or magnetic field B), there may be different ground states of the

system. Tuning these parameters through a critical value yields a so called quantum

phase transition from one into another ground state. Note that this transition is

driven by quantum fluctuations only. The critical value is called the quantum critical

point.

To make the discussion a bit more specific, one defines the distance to the critical

point r = (g − gc)/gc where g is a generic placeholder for the external parameter

and gc is the value at the quantum critical point. Close to a phase transition,

fluctuations occur on all length scales and the system becomes scale invariant (or self-

similar). This implies that all observables have to depend on the external parameters

according to a power law. In particular, the correlation length ξ which is a measure

for the spatial dependence of fluctuations on each other diverges according to

ξ ∼ |r|−ν (6.1)

The exponent ν is called the correlation length exponent. The decay of the critical

fluctuations occur on a typical timescale τc which is called the correlation time and

diverges according to

τc ∼ ξz ∼ |r|−zν (6.2)

The exponent z is the dynamical exponent, as mentioned earlier in the text.

For a quantum phase transition there are two possible scenarios. Either the

quantum critical point is the endpoint of a finite-temperature phase transition in a

r-T -phase diagram. This possibility is depicted in Fig. 6.1 (a). For r > 0 the system

is disordered, but tuning the parameter r through the critical value rc(T ), which

dependends on temperature, the system becomes ordered. At any finite temperature

close to the transition line thermal fluctuations are of the order Tc and the quantum
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6.1. Basic Notions of Quantum Phase Transitions

fluctuations are of the order ~τ−1
c ∼ |r − rc(T )|zν . Therefore in the region where

|r − rc(T )| < T
1/zν
c the macroscopic critical behavior of the system is governed

only by the thermal fluctuations. The shaded region around the transition line is

therefore called classical regime.

In the other case, as depicted in Fig. 6.1 (b), there is no ordered state at any

finite temperature and the quantum critical point is an isolated point of non-analytic

behavior of the free energy. This is the generic case in dimensions smaller than the

lower critical dimension dc. The Mermin-Wagner theorem states that for d < dc

thermal fluctuations prevent an ordered state at any finite temperature due to the

bigger gain of entropy compared to energy. This means that the system only orders

at exactly T = 0. At finite temperature the system is either thermally disordered or

quantum disordered depending on whether the order is mainly destroyed by thermal

or quantum fluctuations.

The remaining question is, for what reason other than pure academic interest

these quantum phase transitions are worth to study. After all they take place at

zero temperature only, which cannot be achieved in any experiment. The answer is

the so called quantum critical regime right above the quantum critical point. The

dashed crossover line is determined by the condition that the thermal fluctuations

are larger than the quantum fluctuations, which means

kBT > ~ωc ∼ |r|νz (6.3)

Here, the system is close to the critical value of the tuning parameter but thermal

fluctuations drive it out of criticality. Hence, the physics are dominated by thermal

excitations of the quantum critical ground state. The peculiar excitation spectrum of

this state causes unusual finite-temperature behavior, like Non-Fermi liquid behavior

and unconventional power laws and therefore influences observables over a wide

range of the phase diagram. In particular, if a finite temperature phase transition

is prevented by the Mermin-Wagner theorem, the system will nevertheless display

quantum critical behavior in this region.

Having identified the different regions of the phase diagram, one notices that

one can approach the quantum critical point from two different regimes. Either one

chooses |r|νz � T which means to approach it via the quantum critical (QC) regime.

One then observes the temperature scaling at the quantum critical point. Or one

chooses |r|νz � T , being in the low temperature (LT) regime, where one observes

a crossover from quantum critical to classical critical behavior asymptotically close

to the transition. For a more detailed discussion of quantum phase transitions see,

e.g. , [23], [24] or [25].
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6.2 Thermodynamic Properties

Experimentally important are the second order derivatives of the thermodynamic

potential. Therefore, it is in general a good idea to calculate these thermodynamical

properties and compare them to experimental data to verify a theory.

There are three possible second order derivatives of the Gibbs free energy F (r, T ).

First of all, one can calculate the second derivative of F with respect to temperature.

Since the first derivative of the free energy is the entropy, this can be rewritten as

cr = −T
V

∂2F

∂T 2
=
T

V

∂S

∂T

∣∣∣∣
r

(6.4)

The quantity cr is the specific heat at constant control parameter r, e.g. pressure.

One can also calculate the mixed derivative of F with respect to the control

parameter r and temperature,

αr =
1
V

∂2F

∂T∂r
(6.5)

For systems where the control parameter is the pressure, the derivative of F with

respect to p is the volume V , and one gets

αp =
1
V

∂V

∂T

∣∣∣∣
p

(6.6)

which is known as the isobaric thermal expansion of the system.

Finally, the remaining possible second order derivative of the free energy is

κ =
1
V

∂2F

∂r2

r=̂p
∝ 1

V

∂V

∂p

∣∣∣∣
T

(6.7)

where at the second equality the control parameter again was identified with pres-

sure. This last term is known as the compressibility of the system.

6.3 Scaling relations

Before actually calculating the thermodynamic properties of the system, one may

deduce the expected leading behavior by using the property of scale invariance at

criticality. The scaling hypothesis states that at criticality there is no other char-

acteristic length scale than the correlation length ξ. Eq. (6.1) and Eq. (6.2) then

imply that upon rescaling all lengths x → b x the imaginary time, τ , and control

parameter, r, have to be rescaled as well according to

τ → b−zτ

r → b1/νr (6.8)
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6.3. Scaling relations

Since temperature is proportional to Matsubara frequencies it rescales like T → bzT

which implies that the free energy density scales like

f → bz+df (6.9)

Note that this is true only for models where hyperscaling applies, which is violated

in theories with dangerously irrelevant variables. Such variables appear generically

above the upper critical dimesion d+ which for φ4-theories is d+ = 4. Right at the

upper critical dimension there may appear logarithmic corrections (see also [19]).

With these scaling dimensions of the theory one can use the scale invariance

of the system. After switching to a dimensionless temperature t = T/T0 with a

unspecified temperature scale T0 the requirement of scale invariance implies that

close to criticality the equation

f(r, t) = b−d−zf
(
b1/νr, bzt

)
(6.10)

holds. One still has the freedom of choosing the scaling parameter b.

In the quantum critical regime where rνt−1/z � 1 is small, one chooses b = t−1/z

which leads to

f(r, t) = b−d−zf(b1/νr, bzt) = t1+d/zf(t−1/zνr, 1)

= td/z+1f̃QC

(
t−1/zνr

)
(6.11)

Since there is no phase transition in the QC region the function f̃QC is assumed to

be analytic. Because of the smallness of r t−1/νz, one can then expand the function

as

f̃QC

(
t−1/zνr

)
≈ f̃QC(0) + f̃ ′QC(0) t−1/zνr (6.12)

Note that this needs not to be true and non-analyticity is often encountered.

In the low temperature regime, where t r−zν � 1 is small, one chooses b = r−ν .

This leads to

f(r, t) = b−d−zf(b1/νr, bzt) = rν(z+d)f(1, tr−zν)

= rν(z+d)f̃LT

(
tr−zν

)
(6.13)

According to the third law of thermodynamics the entropy has to vanish upon ap-

proaching zero temperature. Therefore, assuming a power law behavior, one can

approximate

f̃LT

(
tr−zν

)
≈ f̃LT(0) + c

(
tr−zν

)y0+1 (6.14)

with positive constants c and y0. These constants are in general different in the two

low temperature limits, depending on whether r is smaller or larger than zero, i.e.
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whether one considers the LT region on the left or the right side from the quantum

critical point.

From this one can now compute the leading order dependence of the thermody-

namic properties by performing the derivatives of the free energy, e.g. for the specific

heat. In the quantum critical regime, one concludes that

c(r, t) ≈ t

T0

∂2
(
td/z+1f̃QC(0)

)
∂t2

∼
(

1 +
d

z

)
d

z
td/z (6.15)

while in the low-temperature regime one gets

c(r, T ) ≈ t

T0
crν(z+d)∂

2 (tr−zν)y0+1

∂t2
∼ y0(y0 + 1) ty0rν(d−y0z) (6.16)

The analogous calculations can be done for the thermal expansion and the com-

pressibility which yield

α ∼


(
z+d− 1

ν
z

)
t(d−

1
ν

)/z

ν(d− y0z)(y0 + 1) ty0rν(d−y0z)−1

QC,

LT,

κ ∼

t(z+d−
2
ν

)/z

(z + d− 1
ν )(z + d) rν(d+z)−2

QC,

LT.

(6.17)

For further introductions on scaling theory see also [25], [26].

6.4 Thermodynamic Calculations

In this section the behavior of the system is calculated and the results are compared

to the ones obtained from the scaling ansatz. First of all, one calculates the free

energy density, f , which is defined as

f =
F

V
= − 1

V
T lnZ (6.18)

In a perturbative approach, one expands the partition function Z in the following

way

Z =
∫
Dφ e−S0−Sint =

∫
Dφ e−S0

∞∑
n=0

1
n!

(−Sint)n

= Z0 + Z0

∞∑
n=1

1
n!
〈(−Sint)

n〉0 (6.19)

Z0 =
∫
Dφ e−S0

Here, S0 is the quadratic part of the action, and the average in the second line is

taken with respect to this part only. Substituting this result into Eq. (6.18) yields

f = −T
V

lnZ0 −
T

V
ln

(
1 +

∞∑
n=1

1
n!
〈(−Sint)

n〉0

)
(6.20)
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which to first order in the coupling constant u0 takes the form

f ≈ T

V
lnZ0 +

T

V
〈Sint〉0 +O(u2)

=
T

V
ln
{[

Tr g−1
]1/2}+

u0

4!

(
T

V

)3 ∑
k,q,p

〈
ni
k n

i
q n

j
p n

j
−k−q−p

〉
0

(6.21)

Here, the summation over the indices {i, j} is implicit. On a Gaussian level, one

considers the first term only which can be rewritten as

f0 =
T

V
ln
{[

Tr g−1
]1/2} =

1
2
T

V

∑
q

(ln g−1
2 (q) + ln g−1

3 (q))

=
1
2

∫
ddq

(2π)2
T
∑
ωn

[
ln
(
r + q2 +

ω2
n

q2

)
+ ln

(
r + q2 + γ0

|ωn|
q

)]
(6.22)

Converting the Matsubara frequency summation into a contour integration, as it

was done in the preceding chapter, and after some algebra one gets

f0 = K2

∫ Λ

0
dq q

[
T ln

(
sinh

ωq
2T

)
+
∫ ∞

0

dω
2π

coth
ω

2T
arctan

γ0ω q

ω2
q

]
(6.23)

where ωq = q(r+ q2)1/2 as before. The first term originates from the g2 mode, while

the second term, containing the frequency integration, comes from the g3 mode.

The first-order correction can actually be rewritten as a derivative of the Gaus-

sian free energy. It is

f1 =
2u0

4!

(
T

V

)2∑
k,q

(δijδlm + δilδmj + δimδlj) gij(k)glm(q)

=
2u0

4!

[
T

V

∑
q

g2(q) + g3(q)

]2

=
2u0

4!

(
∂f0

∂r

)2

(6.24)

Due to this relation the first order corrections can be calculated derived from the

results of the Gaussian calculation and one can compute all three thermodynamic

quantities introduced above.

However, before this is done, one has to recall the phase diagram of this special

problem. Since the two modes, g2 and g3 have different dynamical exponents, the

phase diagram consist not only of two but of three different regions (see Fig. 6.2).

For temperatures T > |r| the system is in the quantum critical regime of both

modes, and for temperatures T < |r|3/2 the system is in the low temperature regime

of both modes. In the region |r| > T > |r|3/2 the low temperature regime of the

g2 mode overlaps with the quantum critical regime of the g3 mode. In this overlap

(OL) regime, one has to compare the low temperature result of the g2 mode with

the quantum critical result of the g3 mode.
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Fig. 6.2: Different regions in the phase diagram of the system. There is the region above
the quantum critical point where both modes are in their quantum critical regime (QC)
and is the low temperature regime of both modes (LT). Additionally, there is a overlap
regime (OL), where the g2 mode is already in its LT regime while the g3 mode is still in its
QC regime. The thermally disordered region (QLO) above the ordered ground state is not
exactly known. However, one can expect a state of quasi-long ranged order.

6.4.1 Specific Heat

To obtain the specific heat, one differentiates Eq. (6.23) twice with respect to tem-

perature and multiplies by T . Split into the contributions coming from the two

modes respectively one obtains

c 0
2 =

K2

4T 2

∫ Λ

0
dq q ω2

q sinh−2
( ωq

2T

)
(6.25)

c 0
3 =

K2

T

∫ Λ

0
dq q

∫ ∞
0

dω
2π

ω

2T
sinh−2

( ω
2T

)( ω
2T

coth
ω

2T
− 1
)

arctan
γ0ωq

ω2
q

(6.26)

In order to analyze the two contributions, one may rescale momentum and fre-

quency in both expressions. For the g2 mode one rescales q2 → 2Tq2 and introduces

ω̄q = q( r
2T + q2)1/2 which leads to

c 0
2 = 2TK2

∫ Λ/
√

2T

0
dq q ω̄2

q sinh−2 ω̄q (6.27)

For the g3 mode one has to rescale frequencies according to ω → 2Tω and momenta

q3 → 2Tq3. Introducing further ω̃q = q
(

r
(2T )2/3 + q2

)1/2
one obtains

c 0
3 = 2K2(2T )2/3

∫ Λ/(2T )1/3

0
dq q

∫ ∞
0

dω
2π
ω sinh−2 ω (ω cothω − 1) arctan

γ0ω

ω̃2
q

(6.28)

In the quantum critical regime, a careful analysis shows that both contributions

are independent of the momentum cutoff. Moreover, since the region in momentum

space between zero and r
2T or r

(2T )2/3 is negligible small, one can approximate ωq ≈ q2

over the whole range of integration. One therefore concludes that c 0
2 grows linearly
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6.4. Thermodynamic Calculations

with temperature while c 0
3 grows according to T 2/3.

c 0
QC ∼

{
T for g2

T 2/3 for g3

(6.29)

This result is in perfect agreement with the one obtained by the scaling approach in

two dimensions.

In the low-temperature regime, the value of r
2T and r

(2T )2/3 is relatively large. For

momenta smaller than these ratios, one can approximate ωq ≈ q
√
r. This implies

that in the low-momentum regime on has to rescale momenta differently. For the

ballistic mode with z = 2 one chooses q2 → 4T 2

r q2, while for the damped mode one

rescales according to q → 2T
r q. A careful analysis of the two integrations leads to

the result that for both modes this lower momentum regime gives the leading order

behavior. One obtains the specific heat in the low temperature regime to be

c 0
LT ∼

{
T 2r−1 for g2

Tr−1/2 for g3

(6.30)

Again the results are in agreement with the one obtained by the scaling approach

in two dimensions. However, while the damped mode has an exponent y0 = 1 which

is characteristic for a Fermi liquid, one has to set y0 = 2 for the ballistic mode. The

Non-Fermi liquid behavior of the g2 mode is not such a surprise since the important

particle-hole excitations are excluded and Landau damping is not active. Finally,

the specific heat in the overlap regime is obtained to be

c 0
OL ∼

{
T 2r−1 for g2

T 2/3 for g3

(6.31)

To find the leading order behavior of the specific heat of the whole system, one

has to compare the two contributions in each regime respectively. One finds that

the g3 mode governs the specific heat in the quantum critical regime, as well as in

the low temperature regime. For the overlap regime of the phase diagram holds

r3/2 < T < r < r4/3, and therefore, the specific heat is governed by the g3 mode

also in this regime. One concludes that the whole system shows (z = 3) behavior

over the whole phase diagram. There is one crossover line from the overlap regime

to the low temperature regime

c 0 ∼


T 2/3 in QC regime

T 2/3 in OL regime
T√
r

in LT regime

(6.32)

The inclusion of finite interactions yields logarithmic correction does. This is, be-

cause one essentially has to replace r by the correlation length ξ−2 ∼ r/(ln(1/r))4/9

obtained in Sect. 4.2.
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6.4.2 Thermal Expansion

Differentiating Eq. (6.23) with respect to the control parameter r leads to the very

same expression like the Hartree diagram considered in Chap 5. This has to be

differentiated with respect to temperature and yields for the both modes

α 0
2 =

K2

4T 2

∫ Λ

0
dq

q3

2
sinh−2

( ωq
2T

)
(6.33)

α 0
3 =

K2

4T 2

∫ Λ

0
dq q

∫ ∞
0

dω
π

sinh−2
( ω

2T

) qγ0ω
2

q−2ω4
q + γ2

0ω
2

(6.34)

In the quantum critical region, one performs the same rescaling procedure as

done for the specific heat, approximating again ωq ≈ q2. However, one has to cut off

the momentum integration at a scale
√
r/(2T ) for the ballistic mode and at a scale

r1/2/(2T )2/3 for the damped mode. These integrals are logarithmically divergent in

temperature for both modes

α 0
QC ∼

{
ln(c r/T ) for g2

ln(c′T/r3/2) for g3

(6.35)

The constants c and c′ are left unspecified since they are of no concern. This result

is in agreement with the scaling approach prediction, since it states a temperature

exponent of zero for both modes in the quantum critical region.

In the low-temperature regime one may again split the momentum integration in

the two regimes where one can approximate ωq either by q
√
r or by q2. The rescaling

is done exactly like for the specific heat, and the resulting integrals are obtained to

scale like

α 0
LT ∼

{
T 2 r−2 for g2

T r−3/2 for g3

(6.36)

The g3 mode agrees with the scaling result for an exponent y0 = 1, i.e. showing

Fermi liquid behavior. The g2 mode also gives the expected result for y0 = 2. This

result is also in agreement with the calculation of the specific heat.

In the overlap regime, the contributions to the thermal expansion of both modes

are, respectively

α 0
OL ∼

{
T 2 r−2 for g2

ln(c′T/r3/2) for g3

(6.37)

Comparing both contributions in the two coinciding regimes, one obtains that

the thermal expansion of the whole system depends on temperature and control

parameter according to the g3 mode. In the overlap regime, the contribution of the g2

mode decrease from a constant of order one to r when lowering the temperature from

T = r to T = r3/2. At the same time the g3 mode decrease from ln r to a constant.
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Thus, the g3 mode is always dominant in the overlap regime and therefore dominates

the whole phase diagram in terms of the thermal expansion. To summarize, the

behavior of the thermal expansion is

α 0 ∼


ln(c′T/r3/2) in QC regime

ln(c′T/r3/2) in OL regime

T r−3/2 in LT regime

(6.38)

As for the specific heat, one crossover line from the overlap regime to the low tem-

perature regime can be seen.

The calculation of the corrections is not so easy as for the specific heat. This

is, because for the thermal expansion one has to differentiate with respect to r.

It is not obvious whether a replacement of r by ξ(r)−2 is sufficient to obtain the

correct result. However, logarithmic corrections are expected, but the calculations

are, unfortunately, not done, yet. At least, one can see that in the quantum critical

regime, where it is r ∼ T , the thermal expansion shows a logarithmic temperature

dependence as it was expected.

6.4.3 Compressibility

Finally, one may calculate the compressibility by differentiating Eq. (6.23) twice

with respect to r. The resulting integral expressions of the contribution of the

modes reads

κ0
2 = −Kd

∫ Λ

0
dq

q5

8ω3
q

[ ωq
2T

sinh−2
( ωq

2T

)
+ coth

ωq
2T

]
(6.39)

κ0
3 = −Kd

∫ Λ

0
dq
∫ ∞

0

dω
2π

coth
ω

2T
2q2γ0ω ω

2
q(

q−2ω4
q + γ2

0ω
2
)2 (6.40)

A careful analysis (done by the same means as used for specific heat and thermal

expansion) leads to the conclusion that the g2 mode is logarithmic UV-divergent

while the g3 mode depends linear on the cutoff. These UV divergencies can be

interpreted as a non-universal background which has to be subtracted. Doing so,

one obtains the compressibility in the quantum critical regime as

κ0
QC ∼

{
T/r for g2

T/r for g3

(6.41)

These contributions originate from the zero Matsubara modes only and obviously

diverge for r → 0. The Gaussian level, therefore, is not appropriate to obtain the

compressibility in the quantum critical regime, but one has to take finite interactions

into account.

In the low temperature regime, applying the same methods as before, one obtains

κ0
LT ∼

{
ln(c r/Λ2) for g2√
r for g3

(6.42)
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The logarithmic cutoff dependence of the g2 mode signals an IR divergence. This

implies that the Gaussian level is not appropriate in the low temperature regime

either. One rather has to sum up these IR divergences in any order of perturbation

theory. This can be done by deriving a RG equation for the compressibility. In

particular, a plain substitiution of r by ξ−2, which may work for the g3 mode, is not

sufficient.

In the overlap regime, where g2 is in its low temperature phase and g3 is in its

quantum critical phase, the compressibility is

κ0
OL ∼

{
ln(c r/Λ2) for g2

T/r for g3

(6.43)

Comparison of both contributions yields a dominating behavior of the g2 mode in

the over the whole phase diagram.

κ0 ∼


T/r in QC regime

ln(c r/Λ2) in OL regime

ln(c r/Λ2) in LT regime

(6.44)

Here, the crossover takes place from the quantum critical to the overlap regime.

The results of this calculation indicate that one has to take finite interactions

seriously into account. As for the thermal expansion, a pure replacement of r by

ξ(r)−2 in Eq. (6.23) may be not sufficient because of the twofold derivative with

respect to r. Rather one has to do an infinite resummation by means of RG methods.

A comparison with the result obtained by pure scaling arguments shows an agree-

ment in the low temperature regime. In the quantum critical regime the assumption

of an analytical scaling function, fQC , leads to κ ∼ T 0 for the g2 mode and κ ∼ T 1/3

for the g3 mode. However, if one uses that r ∼ T , one recovers the scaling result

at least for the g2 mode. This illustrates the necessity of taking interactions into

account.

6.5 Summary

The calculations, done in this chapter, show that the mode with the larger dynamical

exponent, g3, indeed governs up to logarithmic corrections the specific heat and the

thermal expansion of the system. The results are in agreement with the behavior

obtained from pure scaling arguments. Furthermore, the leading g3 mode shows

in the low temperature regime away from the quantum critical point Fermi liquid

behavior, having an exponent y0 = 1. In contrast, the subleading g2 mode has

an exponent y0 = 2 implying Non-Fermi liquid behavior. Such an exponent also

appears, e.g. , for d-wave superconductors and may originate from the quadrupolar

interaction of the electrons. In summary, the whole system shows, in the isotropic

state, Fermi liquid behavior.
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6.5. Summary

The compressibility is in the low temperature regime also in agreement with the

prediction of the scaling ansatz. Strikingly, the compressibility is governed by the

mode with the lower dynamical exponent, i.e. the g2 mode. In particular, this result

contradicts with the statement of Oganesyan et al. [1], which claimed the z = 2

mode to be irrelevant.

The result, obtained on a strictly Gaussian level, are not satisfying since inter-

actions were neglected. Especially the diverging compressibility is an artifact of this

approximation. As soon as one takes finite interactions into account, the divergence

is prevented. The thermal expansion gets finite interaction corrections for the same

reason.
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Chapter 7

Summary and Outlook

In this thesis, the transition from a isotropic to a nematic fermionic system in spatial

dimensions d = 2 was studied. Starting from free fermions subject to a quadrupolar

interaction, the effective Ginzburg-Landau-Wilson action for the order parameter

was derived in Chap. 3. A peculiarity of this action is the existence of two modes

which become simultaneously critical but have different dynamics. While the g3

mode is subject to Landau damping and has a dynamical critical exponent of z = 3,

the g2 mode is ballistic and has a dynamical exponent z = 2.

An investigation at zero temperature by means of renormalization group meth-

ods required an adjusting of the usual scheme due to the two different dynamical

exponents. Within the scheme delivered in Chap. 4, a RG analysis yields that at

large scales the correlation length is determined by the g2 mode only. This is in

contrast to the scaling arguments given by Oganesyan et. al [1], which state that

only the g3 mode is important for the critical behavior. Moreover, because of the

interactions between both modes, the system was obtained being neither of the Ising

universality class nor of the universality class of the XY model.

At finite temperatures the intricate interplay of the two modes leads to interesting

consequences. As shown in Chap. 5, the model is governed by the momentum

interval k ∈ [T 1/3, T 1/3]. Here, the g3 mode behaves as in a classical d-dimensional

field theory while the g2 mode is still controlled by its quantum character and has

an effective dimension d + z = 4. The former is, therefore, at the lower critical

dimension of the theory while the latter is at its upper critical dimension.

The existence of this crossover regime is the reason that the theory can not be

reduced to a d-dimensional effective theory for the zero Matsubara modes, implying

a breakdown of dimensional reduction. It also leads to a correlation length which

is, to leading order, linear in temperature. Moreover, the prefactor is obtained to

be independent of the interaction strength. In Sect. 5.3 it was furthermore shown

that the interplay of the two modes, g2 and g3, can lead to completely unexpected

corrections, although for the concrete example the obtained correction was only
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subleading.

Finally, in Chap. 6 the thermodynamic quantities specific heat, thermal expan-

sion and compressibility were calculated on a Gaussian level. As expected, thermo-

dynamics are governed by the g3 mode, due to the larger available phase space. The

expressions for the specific heat and the thermal expansion agree with the naive scal-

ing results. However, the compressibility turns out to have a finite cutoff dependend

background contribution and is, to first order, determined by the zero Matsubara

mode only. The arising divergencies above the quantum critical point as well as

the logarithmic cutoff dependence of the g2 mode indicate the incompleteness of the

Gaussian approximation and the necessity of interactions.

As a next step, it is necessary to calculate the interaction corrections to the

compressibility and the thermal expansion. To resum the arising divergencies one

has to use the developed RG-sheme again. It would also be interesting to calculate

the lifetime of the ballistic mode, g2. A further expansion of the dynamical part of

g2 in ω/q gives rise to the damping term |ω|3/q3. In addition, the interaction with

the g2 mode as well as with the g3 mode leads to another damping contribution.

Therefore the interesting interplay between both modes discovered in Sect. 5.3 may

become very important.

68



Appendix A

Derivation of the Effective

Action

Starting from the action

S[ψ̄, ψ, n] = − 1
2f2

∫
dx dτ n2 − Tr

{
ln
(
G−1

0 + n ·∆
)}

= − 1
2f2

∫
dx dτ n2 + S0−Tr {G0n ·∆}+

1
2

Tr {(G0n ·∆) (G0n ·∆)}+ . . .

established in Chap. 3, one first of all drops the constant fermionic part of the

action, S0. The calculation of the two terms Tr {G0n ·∆} and Tr{(G0n ·∆)2} is

most conveniently done in momentum representation.

The first trace has to vanish due to the fact that the original order parameter is

a traceless matrix. In fact, since ∆ and G are both diagonal in momentum space,

we obtain

Tr {G0n ·∆} =
T

Ld

∑
k

G0,kn
i
0∆i

k = ni0
1
Ld

∑
k

nF (ξk)∆i
k

= ni0
1
k2
F

∫
d2k

(2π)2
nF (ξk)

(
cos 2φ

sin 2φ

)
= 0

In contrast, the second term will not vanish but yield additional terms quadratic in

the field n.

Tr{(G0n ·∆)2} =
(
T

Ld

)2∑
k,k′

G0,kn
i
k−k′∆i

k′G0,k′njk′−k∆
j
k

=
(
T

Ld

)2∑
q

niqn
j
−q
∑
k

G0,k∆i
k−qG0,k−q∆

j
k =

T

Ld

∑
q

niqΠ
ij
q n

j
−q

(A.1)

The dynamical and the static part of the tensor Πij have to be calculated separately.

Starting with the dynamical part, one can neglect the q-dependence of ∆ for small
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momenta

Πij(q,Ω) =
T

Ld

∑
k

G0,k+q∆i
kG0,k∆

j
k+q (A.2)

≈ T

Ld

∑
k,ω

1
iω − ξk

1
iω + iΩ− ξk+q

k4

k4
F

(
cos2(2φ) cos(2φ) sin(2φ)

cos(2φ) sin(2φ) sin2(2φ)

)i.j
Here, φ is the angle between k and the x axis.

Choosing a frame of reference in which q is parallel to the x-axis one can expand

ξk+q to first order in q yielding ξk+q = ξk+vF q cosφ, where vF is the Fermi velocity.

Note that this implies that in Eq. (A.1) the frame of reference for each summation

term is a different one, and nq is rotated.

Changing from summation to integration and approximating k5/k4
F ≈ k one

arrives at the integral

Π(q,Ω)=
∫

dω
2π

∫
dk
∫ π

0

dφ
(2π)2

k

iω−ξk

[
1

iω+iΩ−ξk−vF qcosφ
+

1
iω+iΩ−ξk+vF qcosφ

]

×

(
(cos2 φ− sin2 φ)2 2 cosφ sinφ(cos2 φ− sin2 φ)

2 cosφ sinφ(cos2 φ− sin2 φ) 4 cos2 φ sin2 φ

)
Upon substituting dξk = 2πk/ν with the density of states ν = m?/(2π) according

to Eq. (2.8), one can simplify this equation to

Π(q,Ω) =
∫

dω
(2π)2

∫
dξ

ν

iω−ξ

∫ 1

−1

dx√
1− x2

[
1

iω+iΩ−ξ−vF qx
+

1
iω+iΩ−ξ+vF qx

]

×

(
4x4 − 4x2 + 1 2x

√
1− x2(2x2 − 1)

2x
√

1− x2(2x2 − 1) 4x2 − 4x4

)
where it was substituted further x = cosφ. Since the term in brackets is symmetric

with respect to x→ −x, the antisymmetric off-diagonal terms of Π will vanish upon

integration over x, so one can drop them from the beginning.

To perform the integration over ξ one applies the residue theorem, by extending

the integration from [−∞, ∞] to a semi-circle in the upper complex plane (see

Fig. A.1). The function has, depending on Ω, up to two simple poles in the upper

complex plane, which lead to the following result

Π = iν

∫ 1

−1

dx√
1− x2

[
1

iΩ− vF qx
+

1
iΩ + vF qx

](
4x4 − 4x2 + 1

4x2 − 4x4

)

×
∫

dω
2π

(Θ(ω)−Θ(ω + Ω))

= iν
Ω
2π

∫ 1

−1

dx√
1− x2

[
1

iΩ− vF qx
+

1
iΩ + vF qx

](
4x4 − 4x2 + 1

4x2 − 4x4

)
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Fig. A.1: Picture of the integration contour for the ξ integration. The integration over the
dashed semi-circle gives no contribution since the integration kernel vanishes faster than ξ−1

for ξ → ∞. On the other hand, the closed contour permits the use of the residue theorem
to perform the integral.

With s = iΩ/(vF q) this relation takes the form

Π =
ν

2π
s

(
4I4 − 4I2 + I0

4I2 − 4I4

)
(A.3)

and one has to deal with integrals of the form

In =
∫ 1

−1
dx

xn√
1− x2

(
1

s+ x
+

1
s− x

)
=
∫ 1

−1
dx

xn√
1− x2

2s
s2 − x2

These integrals obey the following relations

I4 = s2I2 − πs

I2 = s2I0 − 2πs

and one only has to calculate I0. To carry out the integral I0, one first shifts

x → x + iε by an infinitesimal positive ε. After this shift, one can continue the

integration to ±∞, since the additional contributions cancel each other in the limit of

ε→ 0+. For σ = ±1 denoting the positive and negative real axis, these contributions

are given by

σ

∫ σ∞

σ1

dx√
1− (x+ iε)2

2s
s2 − (x+ iε)2

=
∫ 1

∞

dx√
1− (x+ iσε)2

2s
s2 − (x+ iσε)2

where the substitution x → σx was made. Since s is purely imaginary, ε may be

safely sent to zero in the second term while the squareroot is expanded to√
1− (x+ iσε)2 = exp

[
1
2

ln
(
1− (x+ iσε)2

)]
= exp

[
1
2

{
ln(x2 − 1) + ln

(
−1 +

2iσxε
x2 − 1

)}]
=
√
x2 − 1 ei sgn(σx)π/2
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where in the last line the branch cut of the second logarithm at the negative x-axis

yields π times the sign of the imaginary part. The remainig exponential gives −iσ,

and the integrals may be written as

iσ

∫ 1

∞

dx√
x2 − 1

2s
s2 − x2

These cancel indeed each other. The integral over the entire real x-axis may now be

extended by a semi-circle in the upper complex plain which gives no contribution,

due to the integrand vanishing faster than 1/x. Hence, one can use the residue

theorem and sum up the pole |s| in the upper complex plain which finally gives

I0 = − 2πi√
1− s2

sgn(s)

Substituting this result into Eq. (A.3) yields to leading order in |s|

Π(q,Ω) = ν

(
|s| − 2s2

2s2 − 4|s|3

)
≈ ν

 |Ω|vF q

2
(

Ω
vF q

)2


For the static contribution, Π(q, 0) one has to treat the momentum dependence

more carfully. In particular, one must not drop the q-dependence of ∆k+q in Eq. A.2.

Choosing again the frame of reference such that q = q ex one gets

Πij(q,Ω) =
T

Ld

∑
k

G0,k+q∆i
kG0,k∆

j
k+q

=
T

k4
FL

d

∑
k,ω

1
iω−ξk

1
iω+iΩ−ξk+q

(
(k2
x−k2

y)((kx+q)2−k2
y)

4kxk2
y(kx+q)

)
ij

=
1

k4
FL

d

∑
k

nf (εk)− nf (εk+q)
iΩ−ξk+q+ξk

(
(k2
x − k2

y)((kx + q)2 − k2
y)

4kxk2
y(kx + q)

)
ij

Shifting the momentum integration such that the Fermi functions nF (ε) have the

same argument, and sending Ω→ 0 to obtain the static contribution one gets

Π(q, 0) =
1
k4
F

∫
d2k

(2π)2

[
nf (εk)

ξk − ξk+q

(
(k2
x − k2

y)((kx + q)2 − k2
y)

4kxk2
y(kx + q)

)

−
nf (εk)

ξk−q − ξk

(
(k2
x − k2

y)((kx − q)2 − k2
y)

4kxk2
y(kx − q)

)]
In the zero temperature limit, the Fermi functions become Heaviside step functions,

which restrict the momentum integration to the Fermi sphere. Together with the

dispersion relation ξk+q = 1
2m?

[
(kx + q)2 + k2

y

]
one then obtains

Π(q, 0) =
2m?

k4
F

∫
d2k

(2π)2
Θ(−ξk)

{[
1

2qkx−q2
− 1

2qkx+q2

](
(k2
x−k2

y)(k
2
x−k2

y+q2)

4k2
xk

2
y

)

+
[

1
2qkx − q2

+
1

2qkx + q2

](
2kxq(k2

x − k2
y)

4kxk2
yq

)}
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Switching to polar coordinates and performing the φ-integral yields

Π(q, 0) =
ν

πk4
F q

∫ kF

0
dk k3

(
π(q2/k2 − 2)

π(q2/k2 − 2)

)

The remaining momentum integration is easily carried out

Π1,1(q, 0) = Π2,2(q, 0) = −ν
2

(
1− q2

k2
F

)
+O

(
q4

k4
F

)
Adding static and dynamical contributions as well as the original quadratic term,

the inverse propagator for the field n reads

1
2
g−1

0 (q,Ω) = − 1
2f2

+
1
2

Π(q,Ω)

=
ν

2


(
− 1
νf2
− 1

2

)
+ q2

2k2
F

+ |Ω|
vF q (

− 1
νf2
− 1

2

)
+ q2

2k2
F

+ 2
(

Ω
vF q

)2


Setting ν = 1 and rescaling momenta and frequencies according to q2/(2k2

F ) → q2

and Ω2/(2v2
Fk

2
F )→ Ω2 we finally get

g−1
0 (q,Ω) =

r0 + q2

2k2
F

+ γ0
|Ω|
q

r0 + q2 +
(

Ω
q

)2


where r0 =

(
− 1
νf2
− 1

2

)
is the distance from the quantum critical point. The factor

in front of the Landau damping term is just the constant γ0 = 1/
√

2. A further

discussion of the propagator is given in the main text.
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Appendix B

RG Equation at Zero

Temperature

To calculate the β functions for r and u one starts from the original action

S[n] =
1
2
T

Ld

∑
q

nqg
−1
q n−q +

u0

4!

(
T

Ld

)3∑
k1,k2
k3,k4

(nk1nk2) (nk3nk4) δk1+k2+k3+k4

with

g−1 =

(
g−1

3 cos2 φ+ g−1
2 sin2 φ (g−1

3 − g
−1
2 ) sinφ cosφ

(g−1
3 − g

−1
2 ) sinφ cosφ g−1

3 sin2 φ+ g−1
2 cos2 φ

)
One has to divide the action into a low and a high momentum sector, Sl and Sh,

as well as a interacting part, Sint. This is done within a loop expansion to first

order which means that only such contributions are taken into account that in a

diagrammatic representation lead to one-loop contractions only. This corresponds

to two high-momentum summations. Within this expansion, the action is split to

Sh[n] =
1
2
T

Ld

∑
q

nqg
−1
k n−q

Sl[n] =
1
2
T

Ld

∑
k

nkg
−1
k n−k +

u0

4!

(
T

Ld

)3∑
k1,k2
k3,k4

(nk1nk2) (nk3nk4) δk1+k2+k3+k4

Sint[n] =
u0

4!

(
T

Ld

)3

2
∑
q1,q2
k3,k4

(nq1nq2) (nk3nk4) δq1+q2+k3+k4

+4
∑
q1,k2
q3,k4

(nq1nk2) (nq3nk4) δq1+k2+q3+k4


Here, the convention is such that the label k stands for low momenta and the label

q stands for high momenta.
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Appendix B. RG Equation at Zero Temperature

Several terms are neglected due to the one-loop order. First, the quartic term of

Sh leads to higher order loops and secondly, terms consisting of one slow and three

fast momenta (or vice versa) spoil momentum conservation.

Following the usual scheme one calculates the average over the high momentum

fields of the exponentiated mixed action,
〈
e−Sint[nh,nl]

〉
h

=
∫
Dnh e

−Sint[nh,nl]e−Sh[nh].

Within the actual level of accuracy one can expand e−Sint to second order, take the

average and after that re-exponentiate the terms, which leads to

〈
e−Sint[nh,nl]

〉
h

= exp
[
−〈Sint[nh, nl]〉h +

1
2
〈
Sint[nh, nl]2

〉c
h

]
(B.1)

The superscript c denotes that only connected diagrams are taken into account since

disconnected diagrams of this order are either two-loop diagrams or contain powers

of n larger than 4. Although such higher power terms will appear, they can be safely

neglected since all terms nm>4 are irrelevant in a RG sense .

B.1 Mass Correction

The first term in Eq. B.1 yields a renormalization of the mass r0. The explicit

representation of this term is given by

〈Sint[nh, nl]〉h = 2
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

〈
nik1

nik2

〉
h
njk3

nj−k1−k2−k3

+ 4
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

nik1

〈
nik2

njk3

〉
h
nj−k1−k2−k3

with an implicit sum over {i, j}. The propagator
〈
nikn

j
k′
〉

= gi,jk,k′ is given by

g =

(
g3 cos2 φ+ g2 sin2(2φ)+ (g3 − g2) sin(2φ) cos(2φ)

(g3 − g2) sin(2φ) cos(2φ) g3 sin2(2φ) + g2 cos2(2φ)

)

Since the propagator is momentum-diagonal one gets a free summation over the high

momenta/frequencies

T

Ld

′∑
q,ω

gi,j(q, ω) =
∫ ′ dω

2π
dq q

∫ 2π

0

dφ
(2π)2

gi,j(q, φ, ω)

The prime over summation and integration respectively denotes, that it runs over

the high momentum/frequency-shell depicted in Fig. 4.1 only.

The g2 mode and g3 mode do not depend on φ, hence, this integration can be
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B.1. Mass Correction

carried out directly and yields∫ 2π

0

dφ
(2π)2

g11(q, φ, ω) =
∫ 2π

0

dφ
(2π)2

[
g3 sin2 φ+ g2 cos2 φ

]
= K2

g3 + g2

2

=
∫ 2π

0

dφ
(2π)2

g22(q, φ, ω)∫ 2π

0

dφ
(2π)2

g12(q, φ, ω) =
∫ 2π

0

dφ
(2π)2

g21(q, φ, ω)

=
∫ 2π

0

dφ
(2π)2

[g3 − g2] sinφ cosφ = 0

Here, K2 denotes the averaged volume of the 2-dimensional unit sphere. Performing

the summation over {i, j} one gets a total mass correction

δr =
2(N + 2)K2

4!
u

∫ ′ dω
2π

dk k
(

1
r0 + k2 + γ0|ω|/k

+
1

r0 + k2 + (ω/k)2

)
Here, N is the number of components of the field, which in this problem is N = 2.

Note the factor of 2 due to the factor 1/2 in front of the quadratic term of the action.

To obtain the β function, one has to take the derivative with respect to ln b. Ne-

glecting an integration regime of order (b−1)2 one may rewrite the above integration

as

δr =
2(N + 2)K2

4!
u

∫ Λ

Λ/b
dk k

∫ Γ

−Γ

dω
2π

(
1

r0 + k2 + γ0|ω|/k
+

1
r0 + k2 + (ω/k)2

)
+

2(N+2)K2

4!
u

∫ Λ

0
dk k

(∫ Γ

Γ/bz
+
∫ −Γ

−Γ/bz

)
dω
2π

(
1

r0+k2+γ0|ω|/k
+

1
r0+k2+(ω/k)2

)
Then b appears in one of the boundaries only, and the derivation with respect to

ln b is carried out very easily.

∂(δr)
∂ ln b

=
K2u

6π

{
Λ
b

∫ Γ

−Γ
dω
(

Λ
r0 + Λ2 + γ0|ω|/Λ

+
Λ

r0 + Λ2 + (ω/Λ)2

)
+2zΓb−z

∫ Λ

0
dk k

(
k

r0 + k2 + γ0Γ/k
+

k

r0 + k2 + (Γ/k)2

)}
An expansion to first order in the coupling constant r and setting b = 1 yields

two terms, f2 and f3, originating from the g2 mode and the g3 mode, respectively.

These terms are explicitly given by

f2 =
K2u

6π

{
2Λ2 arctan

(
Γ
Λ2

)
+
z

2
Γ ln

(
1 +

Λ4

Γ2

)
−r0

[
arctan

(
Γ
Λ2

)
+
z

2
arccot

(
Γ
Λ2

)
+

Λ2

Γ

(
1− z

2

) 1
1 + Λ4

Γ2

]}

f3 =
K2u

6π

{
2

Λ3

γ
ln
(

1+
γΓ
Λ3

)
+2

z

3
Γ ln

(
1+

Λ3

γΓ

)
− z

3
r0Γ

(γΓ)2/3

[
2(γΓ)2/3 Λ

Λ3+γΓ

(
3
z
−1
)

+
√

3π
9

+
2
√

3
3

arctan

(
2Λ−(γΓ)1/3

√
3(γΓ)1/3

)
+

1
3

ln

( (
Λ + (γΓ)1/3

)2
(γΓ)2/3 − Λ(γΓ)1/3 + Λ2

)]}
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Appendix B. RG Equation at Zero Temperature

The main focus is on the asymptotic behavior of the RG flow. Since r(b) flows like

b2 times some small correction, terms independent of r lead to extra contributions

for small b but not to the asymptotic flow. The b dependence of u has no strong

influence, because for d + z = 4 the engineering dimension of u is zero, and the

anomalous dimension is small. To describe the asymptotic flow, the contributions

for small b can be absorbed into a renormalization of the bare parameter r0. This

renormalized bare mass, r, is now the starting point for the asymptotic flow, r =

r(b = 1).

Moreover, the contributions of f3 for large γ are at least of the order of γ−2/3

or smaller. Because of the increase of γ(b) = γ0b, these terms are asymptotically

negligible compared to the γ-independent f2 contributions. Therefore, the RG flow

of r is goverened by the g2 mode only.

With z = 2 one can use the equality arctanx + arccotx = π/2 for the f2 con-

tribution. Adding the engineering dimension of r, one ends up with the resulting

asymptotic RG equation

∂r(b)
∂ ln b

= 2r(b)− u(b)K2

12
r(b)

B.2 Vertex Correction

The second term in Eq. (B.1) yields a renormalization of the vertex u. This term is

given by

1
2
〈
Sint[nh, nl]2

〉c

h
=

1
2

(u0

4!

)2
(
T

Ld

)4
8
∑
k1,k2,k

nik1
ni−k1+k

(∑
q

〈
njqn

k
−q

〉〈
njq−kn

k
k−q

〉)
nlk2

nl−k2−k

+ 32
∑
k1,k2,k

nik1
nj−k1+k

(∑
q

〈
niq n

k
−q

〉〈
njq−k n

k
k−q

〉)
nlk2

nl−k2−k

+32
∑
k1,k2,k

nik1
nj−k1+k

(∑
q

〈
niq n

k
−q

〉〈
njq−k n

l
k−q

〉)
nkk2

nl−k2−k


with an implicit summation over the indices {i, j, k, l}. In general, the vertex cor-

rection dependends on k. However, assuming that the leading-order correction is

k-independent, one may calculate the contribution for k = 0 only. The resulting

integrals are of the form∫ ′ dω
2π

dq q
∫ 2π

0

dφ
(2π)2

gi,j(q, φ, ω)gk,l(q, φ, ω)

where the prime denotes an integral over the high momentum/frequency-shell as

before. Due to the fact that the k-dependence is neglected, the angular integration

can be carried out easily and leads to the the following results
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B.2. Vertex Correction

• Integration over a diagonal term times a non-diagonal term vanishes

• Two non-diagonal terms yield K2/8 (g2
2 + g2

3 − 2g3g2)

•
∫ 2π

0
dφ

(2π)2 g
i,i(q, φ, ω)gi,i(q, φ, ω) = K2/8 (3g2

2 + 3g2
3 + 2g3g2)

•
∫ 2π

0
dφ

(2π)2 g
1,1(q, φ, ω)g2,2(q, φ, ω) = K2/8 (g2

2 + g2
3 + 6g3g2)

Summing up all possible contractions depending on the set {i, j, k, l} one gets

the total vertex correction

δu =
2K2

4!
u2

0

∫ ′ dω
2π

dkk
[
(N + 7)

(
g2

2 + g2
3

)
+ 2g2g3

]
Again, the integration over the high momentum/frequency-shell depicted in Fig 4.1

can be approximated by the integrations over the stripes [0,Λ] × [±Γ/b,±Γ] and

[Λ/b,Λ]× [Γ,Γ] which leads to the three contributions

δu =
2K2

4!
u2

0

∫ Λ

Λ/b
dk k

∫ Γ

−Γ

dω
2π
[
(N + 7)

(
g2

2 + g2
3

)
+ 2g2g3

]
+

2K2

4!
u2

0

∫ Λ

0
dk k

(∫ Γ

Γ/bz
+
∫ −Γ

−Γ/bz

)
dω
2π
[
(N + 7)

(
g2

2 + g2
3

)
+ 2g2g3

]
To obtain the β function of u, one takes the derivative with respect to ln b which

gives

∂(δu)
∂ ln b

=
2K2

4!
u2

0

{
Λb−1

∫ Γ

−Γ
Λ

dω
2π

[
(N + 7)

(
g2

2 + g2
3

)
+ 2g2g3

]
k=Λ

+2z
Γb−z

2π

∫ Λ

0
dk k

[
(N + 7)

(
g2

2 + g2
3

)
+ 2g2g3

]
ω=Γ

}
Splitted into the individual parts coming from the terms g2

2, g2
3 and g2g3 and ex-

panding to zeroth order in r one gets

h2 =
K2(N + 7)

4!π
u2

0

[
arctan

(
Γ
Λ2

)
+
z

2
arccot

(
Γ
Λ2

)
+

Λ2

Γ

(
1− z

2

) 1
1 + Λ4

Γ2

]

h3 =
K2(N + 7)

4!π
u2

0

{
2Λ

Λ3 + γΓ

(
1− z

3

)
− z

3
Γ

(γΓ)2/3

[√
3π
9

+
2
√

3
3

arctan

(
2Λ− (γΓ)1/3

√
3(γΓ)1/3

)

+
1
3

ln

( (
Λ + (γΓ)1/3

)2
(γΓ)2/3 − Λ(γΓ)1/3 + Λ2

)]}

hmix =
2K2

4!π
u2

0

{
Λ2

γ2 + Λ2

[
2 arctan

(
Γ
Λ2

)
+
γ

Λ
ln

( (
Λ3 + γΓ

)2
Λ2 (Γ2 + Λ4)

)]

+
2zΛ
γ

[
1 +

√
Γ

8Λ

(
arctan

(
1−

√
2Λ2

Γ

)
− arctan

(
1 +

√
2Λ2

Γ

)

−1
2

ln

(
1 + 2

√
2Λ2/Γ

1 +
√

2Λ2/Γ + Λ2/Γ

))]}
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Appendix B. RG Equation at Zero Temperature

To obtain the asymptotical leading term one recalls that the constant γ flows ac-

cording to γ(b) = γ0b. Thus, terms containing the inverse of γ are suppressed for

large b and their influence on the asymptotic flow can be captured once again in a

renormalization of the bare coupling constant u0. The renormalized bare vertex is

the new starting point of the RG flow, u = u(b = 1). This implies that the leading

behavior is given by h2 only, while h3 and hmix are irrelevant for the asymptotic

flow.

With z = 2 the resulting RG equation for u reads:

∂u

∂l
= (4− d− z)u− 3K2

16
u2

The term (4 − d − z)u resembles the engineering dimension of the vertex. For two

dimensions and a dynamical exponent z = 2 it vanishes. Moreover, on has to keep

in mind the renormalization of the bare coupling constant u = u(1) 6= u0.
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Appendix C

Dimensional Reduction

By using the zero temperature RG flow one obtains an effective low-momentum

action with the two cutoffs T 1/2 and T 1/3 for the g2 mode and g3 mode, respectively.

This low-momentum action has the coupling constants rR and uR, without the

trivial scaling dimension since there is no rescaling to the original cutoff. For the

same reason γ0 is left unchanged. After this cutoff reduction one wants to obtain an

effective action for the zero Matsubara mode which is achieved by integrating out

all other modes.

One first divide the full action S[n] with the new coupling constants into three

parts. The first part for the zero Matsubara mode, S0[n0], the second part consists

only of non-zero modes, S[nm] and the third part mixes both modes Smix[nm, n0].

The partition function then can be written as

Z = N
∏
m

∫
Dnm e−S[n]=N

∫
Dn0 e

−S0[n0]
∏
m 6=0

∫
Dnm e−S[nm]−Smix[n0,nm]

=
∫
Dn0 e

−Seff [n0]

Conceptually, the step from the first to the second line is similar to the derivation

of the effective low-momentum action in the RG scheme in Chap. 4. To one-loop

order it corresponds to the evaluation of the diagrams displayed in Fig. 4.2.

Because of the previously applied RG flow, the renormalized bare mass also

contains the zero temperature correction for momenta smaller than T 1/2. Therefore,

one has to subtract this contribution, and the resulting effective mass reads

R′ = rR +
4(N + 2)K2

4!
uR
∫ Λ

0
dq q

 1
2β

∑
ωm 6=0

(
g2 Θ(T 1/2 − q) + g3 Θ(T 1/3 − q)

)

−

 1
2β

∑
ωm 6=0

(
g2 Θ(T 1/2 − q) + g3 Θ(T 1/3 − q)

)
T=0


The Heaviside step functions resemble the fact of the different cutoffs for the two

modes. To perform the Matsubara frequency sum, one applies of the residue the-

81



Appendix C. Dimensional Reduction

ωRe Re ω

ωIm ωIm

C C’

a) b)

Fig. C.1: The descrete bosonic Matsubara sum T
∑

m f(ωm) can be interpreted as a sum
over the residues of the function coth(ω/2T ) f(−iω) over the contour C. If the sum only
extends over positive Matsubara frequencies one has to use the contour C ′ depicted on the
right side and add the zero mode contribution.

orem which for arbitrary non-singular real functions g(ω) and bosonic Matsubara

frequencies reads ∑
ωm

g(ωm) =
1

2T

∫
C

dz
2πi

coth
( z

2T

)
g(−iz)

Here, C is the contour depicted in Fig. C.1 (a). To avoid the absolut value in the g3

mode, one may sum twice over the positive frequencies and add the zero Matsubara

mode. For the sum over positive frequencies the residue theorem is applied using

the contour C ′ shown in Fig. C.1 (b). Then one can replace the sum by an integral

and obtains

δr2 =
2(N + 2)K2

4!
uR
∫ T 1/2

0
dq q

{∫
C

dω
2πi

(
q2
(
coth

(
ω

2T

)
− 1
)

q2(rR + q2)− ω2

)
− 2T
rR + q2

}

δr3 =
2(N + 2)K2

4!
uR
∫ T 1/3

0
dq q

{∫
C

dω
2πi

(
q
(
coth

(
ω

2T

)
− 1
)

q(rR + q2)− iγ0ω

)
− 2T
rR + q2

}
Here, δr2 and δr3 are the contributions from the g2 mode and the g3 mode, re-

spectively. Above the quantum critical point the renormalized mass vanishes, and

rescaling according to q = xT 1/z and ω = yT yields

δr2 =
(N + 2)K2

4!
uRT

∫ 1

0
dx x3

{∫
C

dy
2πi

(
2 (coth y − 1)
x4 − y2

)
− 2
x2

}
δr3 =

(N + 2)K2

4!
uRT

∫ 1

0
dx x2

{∫
C

dy
2πi

(
2 (coth y − 1)
q3 − iγ0y

)
− 2
x2

}
Both integrals are constant, and one finds

R′ = uRκ T = 2cκ
T

ln(c1/T )
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with c1 = e2c/uΛ2 and some unspecified constant κ

The effective vertex of the zero mode, U , can be approximated by the zero

temperature renormalized vertex uR. Since this renormalized vertex is finite, any

higher order temperature dependence is suppressed by a factor of T .

Thus, one has obtained an effective action of the zero Matsubara mode with an

effective mass R′, but it still contains the two different cutoffs for the g2 mode and

the g3 mode. To get rid of this cutoff structure, one integrates out the intermediate

regime T 1/3 > k > T 1/2 which leads to another correction to the effective mass. In

this intermediate regime only the propagator of the mode with z = 3 is non-zero,

and thus one gets the following correction

R = R′ +
4(N + 2)K2

4!
U

∫ Λ

T 1/2

dq
q

2β

(
g2 Θ(T 1/2 − q) + g3 Θ(T 1/3 − q)

)
= R′ +

2(N + 2)K2

4!
uR
∫ T 1/3

T 1/2

dq q
T

R′ + q2

The integral can be easily carried out yielding T
2 ln

(
R′+T 2/3

R′+T

)
. Substituting the

obtained formula for R′ one arrives at the expression

R ∼ T

ln(c1/T )
+

c̃T

ln(1/T )
ln

(
1 +

T 2/3 ln(1/T )− T ln(1/T )
aT + T ln(1/T )

)

≈ T

ln(c1/T )
+

c̃ T

ln(1/T )
ln(1/T )

3
∼ T

with some constants c̃ and a. To leading order, the effective mass of the zero mode

action is, therefore, linear in temperature. A further discussion of this result is given

in the main text.
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Appendix D

RG Equation at Finite

Temperatures

At finite temperatures one has to calculate the RG equation for the mass r only,

while the vertex u is to leading order governed by its zero-temperature behavior.

The one-loop correction to the low-momentum action reads

〈Sint[nh, nl]〉h = 2
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

〈
nik1

nik2

〉
h
njk3

nj−k1−k2−k3

+ 4
u

4!

(
T

Ld

)3 ∑
k1,k2,k3

nik1

〈
nik2

njk3

〉
h
nj−k1−k2−k3

=
2(N + 2)u

4!

(
T

Ld

)2∑
k,q

g2(q) + g3(q)
2 h

njk n
j
−k

where the sum over k = (k, ωn) runs over discrete Matsubara frequencies. In the sec-

ond line, it was used that
〈
nik1

njk2

〉
∝ δk1,−k2 and

∑
k

〈
niq n

j
−q
〉

= δi,j
∑

q
g2(q)+g3(q)

2 ,

see App. B.

For the g2 mode one has to calculate

T

Ld

∑
q, ωn

g2(q, ωn) =
∫

d2q

(2π)2
T
∑
ωn

q2

q2(r + q2) + ω2
n

=
∫

d2q

(2π)2

1
2

∫
C

dω
2πi

coth
( ω

2T

) q2

q2(r + q2)− ω2

In the second line, the residue theorem is applied to switch from the Marsubara

summation to an integration over the counter C shownin Fig. D.1 (a).

Deforming the contour C into the contour C ′, depicted in Fig. D.1 (b), one apply

the residue theorem, replacing the above integral by the sum of the residues at the
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Appendix D. RG Equation at Finite Temperatures

ωRe

Im ωωIm

−ω q ω q ω q−ω qωRe

b)a)

Fig. D.1: Illustration of the contour integration for the Matsubara frequencies. In (a)
contour C is depicted. This contour is then deformed into the contour C ′ depicted in (b).

two simple poles ±ωq = ±q
√
r + q2 which leads to

−1
2

∫
d2q

(2π)2

[
Res

(
q2 coth (ω/(2T ))

ω2
q − ω2

, ωq

)
+ Res

(
q2 coth (ω/(2T ))

ω2
q − ω2

,−ωq
)]

=
1
2

∫
d2q

(2π)2
coth

( ωq
2T

) q2

ωq

The minus sign in the first line arises from the fact that the contour C ′ is mathe-

matically negatively orientated.

Carrying out the frequency integral one has to be a bit more specific about

the cutoff. The calculation is performed using a hard cutoff scheme on the real ω-

axis. This means that the original summation over large ωn is done such that after

analytical continuation to the real axis the integration is sharply cut off at values

±Γ. In particular, one chooses a cutoff Γ which is larger than the pole ωq for all

momenta q < Λ.

To obtain the β function for the mass r, one restricts the integrals to the high

momentum/frequency-shell, as it is done in the zero temperature case. This integra-

tion can be approximated, as before, by the integration over three stripes, namely

[Λ/b,Λ]× [−Γ,Γ] and [0,Λ]× [±Γ/b,±Γ]. Differentiating with respect to ln b leads

for the g2 mode to

f2(r, γ0, T ) = K2
∂

∂ ln b

∫ Λ

Λ/b
dq q coth

(
q
√
r + q2

2T

)
q

2
√
r + q2

= K2
Λ3

2
√
r + Λ2

coth

(
Λ
√
r + Λ2

2T

)

To eliminate the absolute value of ωn for the g3 mode, one may sum twice over
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Fig. D.2: On the left side the contour S is depicted. This contour is deformed into the
contour S′ depicted on the right side.

positive Matsubara frequencies while adding the zero mode contribution:

T

Ld

∑
q,ωn

g3(q, ωn) =
∫

d2q

(2π)2
T
∑
ωn

q

q(r + q2) + γ0|ωn|

=
∫

d2q

(2π)2

[
T

r + q2
+ 2T

∑
ωn>0

q

q(r + q2) + γ0ωn

]

As before one applies the residue theorem to express the Matsubara frequency sum

by an integral over the contour S displayed in Fig. D.2 (a). This contour is deformed

into the contour S′ shown in Fig. D.2 (b). The term in the brackets then becomes

T

r + q2
+
∫
S′

dω
2πi

coth
( ω

2T

) q

q(r + q2)− iγ0ω

The integral over the contour S′ consists of three parts: the one over the large semi-

circle from −Γ to Γ, the one over the infinitesimal semi-circle from −ε to ε and the

principal value integral from −Γ to Γ. While the large semi-circle is negligible, the

small one gives

−
∫
Sε(0)

dω
2πi

coth
ω

2T
q

q(r + q2)− iγ0ω
= −

∫ π

0

dφ
2πi

coth
εeiφ

2T
iqεeiφ

q(r + q2)− iγ0εeiφ

' −Tq
π

∫ π

0

dφ
q(r + q2)− iγ0εeiφ

=
2T
π

arctan
(

ε
q(q2+r)

)
− π

2

r + q2

The minus sign arises from the orientation, and the approximation cothx ' 1/x for

small |x| was done. In the limit ε→ 0+, the result simplifies to −T
r+q2 , and, therefore,

cancels against the zero mode contribution. The g3 part then yields

T

Ld

∑
k,ωn

g3(k, ωn) =
∫

d2q

(2π)2
P
∫ Γ

−Γ

dω
2πi

coth
( ω

2T

) q

q(r + q2)− iγ0ω

=
∫

d2q

(2π)2

∫ Γ

0

dω
π

coth
( ω

2T

) qγ0ω

q2(r + q2)2 + γ2
0ω

2
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Appendix D. RG Equation at Finite Temperatures

Restricting the integration to the stripes [Γ/b,Γ]× [0,Λ] and [0,Γ]× [Λ/b,Λ], one

takes the derivative with respect to ln b and gets the two contributions

f3(r, γ0, T ) = K2
∂

∂ ln b

[∫ Λ

Λ/b
dq q

∫ Γ

0

dω
π

coth
( ω

2T

) qγ0ω

q2(r + q2)2 + γ2
0ω

2

+
∫ Λ

0
dq q

∫ Γ

Γ/bz

dω
π

coth
( ω

2T

) qγ0ω

q2(r + q2)2 + γ2
0ω

2

]

= K2Λ3

∫ Γ

0

dω
π

coth
( ω

2T

) γ0ω

Λ2(r + q2)2 + γ2
0ω

2

+
zΓ2

π

∫ Λ

0
dq coth

(
Γ

2T

)
q2γ0

q2(r + q2)2 + γ2
0Γ2

To cast the RG equation in a more convenient form, one can absorb the engineering

dimension by switching to the variable R = rb−2. The β function then takes the

form

∂R

∂ ln b
=

2(N + 2)
4!

u(b)b−2
[
f2(Rb2, γ(b), T (b)) + f3(Rb2, γ(b), T (b))

]
As in the zero temperature case, γ flows according to γ(b) = γ0b. Since temperature

is related to the Matsubara frequencies, ωn = 2πnT , it has to obey the same RG

equation than frequencies, namely T (b) = Tbz.

To extract the temperature and momentum dependence of R, the RG equation

may be integrated over d(ln b) = db/b, yielding

R(b′)−R(1) =
(N + 2)K2

4!

∫ b′

1

db
b
u(b)

[
b−3Λ3√

R(b) + b−2Λ2
coth

(
Λ
√
R(b) + b−2Λ2

2Tb

)

+ 2b−2Λ3

∫ Γ

0

dω
π

coth
( ω

2Tb2
) bγ0ω

b4[Λ2(R(b) + b−2Λ2)2 + γ2
0b
−2ω2]

+ b−2 4Γ2

π

∫ Λ

0
dq coth

(
Γ

2Tb2

)
q2bγ0

b4[q2(R(b) + b−2q2)2 + γ2
0b
−2Γ2]

By substituting b = Λ/k and rescaling ω → ωk2/Λ2 and q → qΛ/k one finally gets

R(b)−R(1) =
∫ Λ

Λ/b
dk F (k, T,R(Λ/k))

=
(N + 2)K2

4!

∫ Λ

Λ/b
dk u(Λ/k)

[
k2√

R(Λ/k) + k2
coth

(
k
√
R(Λ/k) + k2

2T

)

+ 2k2

∫ Γ′

0

dω
π

coth
( ω

2T

) γ0ω

k2(R(Λ/k) + k2)2 + γ2
0ω

2

+
4Γ′2

π

∫ k

0
dq coth

(
Γ′

2T

)
q2γ0

q2(R(Λ/k) + q2)2 + γ2
0Γ′2

]
(D.1)

where Γ′ is the rescaled cutoff ΓΛ2/k2.
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In the quantum critical regime, the zero temperature renormalization of the bare

mass R(1) vanishes so that

R(b) = R(1) +
∫ Λ

Λ/b
dk F (k, 0, R(Λ/k))︸ ︷︷ ︸

=0

+
∫ Λ

Λ/b
dk [F (k, T,R(Λ/k))−F (k, 0, R(Λ/k))]

The subtraction of the zero temperature renormalization results only in substituting

cothx→ cothx− 1.

To find the leading-order behavior in which one is interested, the different terms

have to be compared. First of all, the last term in Eq. (D.1) can be neglected due

to the factor coth
(

Γ′

2T

)
− 1 ≈ 2 exp

(
− Γk2

2Λ2T

)
, which is exponentially suppressed for

k2/T � 1. The remaining frequency integration can be solved by the approximation

coth(x)− 1 =

{
0 for|x| > 1

1/x− 1 for|x| < 1

With this simplification one gets

2k2

∫ Γ′

0

dω
π

coth
( ω

2T

) γ0ω

k2(R+ k2)2 + γ2
0ω

2
= 2k2

∫ 2T

0

dω
π

2Tγ0 − γ0ω

k2(R+ k2)2 + γ2
0ω

2

=
2Tk
R+ k2

2
π

arctan
(

2Tγ0

k(R+ k2)

)
+

k2

πγ0
ln

[
1 +

(
2Tγ0

k(R+ k2)

)2
]

Substituting the zero temperature result u(b) = c/ ln(bec/u) and using the approxi-

mation for cothx− 1 again the result for R reads

R

(
Λ
q

)
=

8
9

∫ Λ

q
dk

2T
k

1
ln(ec/uΛ/k)

{
k2

R(Λ/k) + k2
Θ

(
2T

k
√
R(Λ/k) + k2

− 1

)

+
k2

2T
k√

R(Λ/k) + k2
Θ

(
2T

k
√
R(Λ/k) + k2

− 1

)

+
k2

R(Λ/k) + k2

2
π

arctan
(

2Tγ0

k(R(Λ/k) + k2)

)
+

1
π

k3

2Tγ0
ln

[
1 +

(
2Tγ0

k(R(Λ/k) + k2)

)2
]}

In the following, the assumption is made that R ∼ T , up to logarithmic corrections,

implying that k < (2T )1/2 for the first two terms due to the Heaviside step function.

This restriction implies that one can neglect the second term compared to the first

one due to the factor of k2/T � 1. Furthermore, the fourth term is negligible

compared to the third term for k < (2γ0T )1/3 while they are of same order otherwise.

In the end, one may approximate

arctan
1
x

=
π

2
− arctanx ≈

π
2 − x for x� 1

0 for x� 1
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Appendix D. RG Equation at Finite Temperatures

Finally, one ends up with

R

(
Λ
q

)
=

16T
9

∫ Λ

q

dk
k

1
ln(ec/uΛ/k)

{
k2

R(Λ/k) + k2
Θ

(
2T

k
√
R(Λ/k) + k2

− 1

)

+
k2

R(Λ/k) + k2
Θ
(

2γ0T

k(R(Λ/k) + k2)
− 1
)}

The correlation length is given by ξ = R−1/2(b?) where b? is the point at which

the RG flow has to be stopped, i.e. where r(b?) = b2?R(b?) ∼ Λ2. Assuming R(b)

to be only weakly depending on b in comparison to the factor b2, one can may

approximate R to be constant. Then b?Λ/
√
R which corresponds to q =

√
R. Thus,

the self-consistent equation arises

ξ−2 = R =
16
9
T

[∫ T 1/2

R1/2

dk
k

1
ln(c1/k)

k2

R+ k2
+
∫ T 1/3

R1/2

dk
k

1
ln(c1/k)

k2

R+ k2

]

≈ 16
9
T

[∫ T 1/2

R1/2

dk
k

1
ln(c1/k)

+
∫ T 1/3

R1/2

dk
k

1
ln(c1/k)

]

where the abbreviation c1 = ec/uΛ was introduced, and the approximation k2/(R+

k2) ≈ 1 for k2 > R was made. The integrals can be carried out easily and yield

ξ−2 = −16
9
T

[
ln

(
ln
(
c1/T

1/2
)

ln
(
c1/R1/2

))+ ln

(
ln
(
c1/T

1/3
)

ln
(
c1/R1/2

))]

Substituting R ∼ T , one finally gets

ξ−2 =
16
9
T ln

(
ln(c̃1/T

1/2) ln(c̃1/T
1/2)

ln(c1/T 1/3) ln(c1/T 1/2)

)
≈ 16

9
T ln

(
3
2

ln(1/T ) + 4 ln(c̃1)
ln(1/T ) + 5 ln(c1)

)
=

16
9
T

[
ln

3
2
− const.

ln(1/T )
+O

(
1

ln2(1/T )

)]
where c̃1 contains c1 as well as the constant R/T .
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Deutsche Zusammenfassung

In dieser Arbeit wird die quadrupolare Pomeranchuck-Instabilität einer isotropen

Fermi-Flüssigkeit in zwei Dimensionen untersucht. Die effektive Ginzburg-Landau

Theorie für ein System spinloser Fermionen mit quadrupolaren Wechselwirkungen

wurde von Oganesyan et al. [1] bereits 2001 hergeleitet.

Die Besonderheit dieser Theorie ist das Auftreten zweier Moden, die gleichzeitig

kritisch werden, aber unterschiedliche Dynamiken haben. Zum einen gibt es eine bal-

listische Mode, deren kritischer dynamischer Exponent z = 2 ist, zum anderen taucht

eine Laudau-gedämpfte Mode auf mit einen dynamischen Exponenten von z = 3.

Das Zusammenspiel dieser beiden Moden führt zu interessanten Konsequenzen.

Am Temperatur-Nullpunkt hat die ballistische Mode eine effektive Dimension

von d + z = 4 und ist somit an der oberen kritischen Dimension. Dies führt bei

einer störungstheoretischen Behandlung in jeder Ordnung zu logarithmischen Sin-

gularitäten. Auf der anderen Seite wird bei endlichen Temperaturen die Mode mit

dem höheren dynamischen Exponenten dominieren, da ihr ein größerer Phasenraum

zur Verfügung steht.

Will man die effektive Theorie am absoluten Temperatur-Nullpunkt untersuchen,

muss man zunächst die angesprochenen Divergenzen resummieren. Dies wird im All-

gemeinen mit Hilfe der Renormierungsgruppen (RG) - Methode gemacht. Allerdings

ist diese in ihrer herkömmlichen Form nicht anwendbar, da eine Frequenzreskalie-

rung mit dem dynamischen Exponenten durchgeführt werden muss. Man muss somit

zunächst die RG-Methode an dieses spezielle Problem anpassen. Mit diesem ange-

passten RG-Schema kann dann die Korrelationslänge am Temperatur-Nullpunkt be-

rechnet werden. Man erhält eine Universalitätsklasse, die nicht die des Ising- oder

XY-Models ist.

Bei endlichen Temperaturen findet ein äußerst komplexes Zusammenspiel zwi-

schen den beiden Moden statt. Nahe eines Phasenüberganges existiert eine Längenskala

ξT ∼ T−1/z, die den sogenannten klassischen Bereich vom Quantenbereich trennt.

Für kleinere Längen herrscht der Quanten-Charakter vor, der mit einer effektiven

Dimension von d+ z einhergeht. Auf größeren Längen kann die Theorie vollständig

klassisch in d Dimensionen beschrieben werden. Da es bei diesem Problem jedoch

zwei verschiedene dynamische Exponenten gibt, existiert ein Zwischenregime, in dem
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Deutsche Zusammenfassung

die ballistische Mode bereits klassisch ist, während die gedämpfte Mode noch durch

den Quantencharakter bestimmt wird. Im dieser Diplomarbeit wird dargelegt, dass

genau dieses Zwischenregime die Eigenschaften des Systems bei endlichen Tempe-

raturen dominiert. Dies führt dazu, dass die Theorie der dimensionalen Reduktion

zusammenbricht, d.h. das System kann nahe des Phasenüberganges nicht durch eine

rein klassische, d-dimensionale Theorie beschrieben werden. Es führt zudem auf eine

universelle Temperaturabhängigkeit der Korrelationslänge bei endlichen Tempera-

turen.

Im letzten Teil werden mit der spezifischen Wärme, der thermischen Ausdeh-

nung und der Kompressibilität die thermodynamischen Eigenschaften des Systems

auf Gaußschem Niveau untersucht. Wie erwartet, werden die spezifische Wärme und

die thermische Ausdehnung durch die gedämpfte Mode dominiert. Die Kompressi-

bilität wird von der ballistischen Mode dominiert, zeigt jedoch Divergenzen, die das

Einbeziehen von Wechselwirkungen notwendig machen.
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