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Abstract

The first part of this thesis is called “Skyrmions and Monopoles in Chiral
Magnets” and concerned with topological spin textures in chiral magnets.
The second part, “Correlated Heterostructures”, studies layered, strongly
correlated devices within the framework of dynamical mean-field theory.

In magnets without inversion symmetry, so called chiral magnets, weak
spin-orbit coupling leads to the formation of smooth twisted magnetic struc-
tures with a long period. Recently, a new magnetic phase of a lattice of topo-
logically stable whirl-lines was discovered. In the first chapter we introduce
the concept of a such a whirling texture and briefly mention its occurrence
in other areas of physics. In chapters 2 we review the Ginzburg-Landau
theory for chiral magnetic structures describing their equilibrium properties
followed by a description of a numerical minimisation technique to explore
the mean-field configuration of the free energy functional. In chapter 3 we
review the Langevin description for a system at finite temperature and con-
centrate on especially on the description of magnetic systems. The describe
how a numerical integration of the equations of motion, a stochastically dif-
ferential equation, can be achieved to compute ensemble-averaged quantities.
Chapter 4 we present the discovery of emergent magnetic monopoles as the
driving mechanism behind topological phase transitions from the Skyrmion
lattice into topologically trivial phases. We describe how a Skyrmion lattice
unwinds due to the motion of magnetic monopoles in the system as seen both
in experiment and numerical simulations. We investigate how the energetics
of and forces between monopoles and antimonopoles influence their creation
rate and dynamics. In chapter 5 we turn to the dynamical properties of single
Skyrmions in ferromagnetic backgrounds. In a first approach we study ana-
lytically the fluctuations around the mean-field configuration and determine
the spectrum of the bound states, the scattering solutions and their phase
shifts and coupling mechanism to the collective Skyrmion coordinate. By
integrating out the fluctuations we discover a strongly frequency-dependent
e↵ective mass for the collective Skyrmion coordinate. We approach the same
question from a di↵erent angle in the second part of the chapter. Here we



start from numerical simulations of the stochastic Landau-Lifshitz-Gilbert
equation and determine the coe�cients of the e↵ective equations of motion
from a statistical analysis of the collective coordinate fluctuations. We find
a strongly frequency-dependent e↵ective mass and a new peculiar damping
mechanism proportional to the acceleration of the Skyrmion that we call
‘gyro-damping’.

The second part of this thesis explores the interface e↵ects in strongly
correlated heterostructures. Multilayered heterostructures in the nano sized
realm (also known as multilayered nanostructures) are the most common
electronic devices. A classic multilayered nanostructure is a tunnel junction
consisting of two metallic leads connected by a “weak link”, often a conven-
tional band insulator. The connection between the two leads is thus governed
by inherently quantum mechanical e↵ects. We begin with an introduction to
model Hamiltonians, in particular the Hubbard and the single impurity An-
derson model. The second chapter describes the static mean-field treatment
of anti-ferromagnetic order in the Hubbard model. Chapter 3 introduces the
reader to the dynamical mean-field theory (DMFT) and describes extensions
of the DMFT to system with antiferromagnetic order. The DMFT maps the
lattice problem onto an e↵ective impurity problem. In chapter 4 we review
how the single impurity Anderson model can be solved using the numerical
renormalisation group (NRG). The generalisation of DMFT to inhomoge-
nous, layered systems is given in chapter 5 including the e↵ects of long-range
Coulomb interactions on the Hartree level. Here we also outline our generali-
sation of the inhomogenous DMFT to systems with antiferromagnetic order.
In chapter 6 we derive expressions for the layer-resolved optical conductivity
and the Hall conductivity. We apply the former to the Mott-Band-Mott het-
erostructure where we study the transport properties of the two-dimensional
metallic state at the interface where we find a rich temperature dependence.
In chapter 7 we turn to the question how the transmission amplitude through
a Mott insulator in a linear potential depends on temperature.



Kurzzusammenfassung

Der erste Teil dieser Arbeit “Skyrmionen und Monopole in chiralen Mag-
neten” beschäftigt sich mit topologischen Magnetisierungs-Texturen in chi-
ralen Magneten. Der zweite Teil, “Korrelierte Heterostrukturen”, untersucht
Korrelations-E↵ekte an Grenzschichten zwischen verschiedenen Materialien
in Heterostrukturen.

In chiralen Magneten bilden sich auf Grund schwacher Spin-Bahn- Wech-
selwirkung verdrillte, magnetische Konfigurationen aus, wie beispielsweise
Helizes mit einer langen Periodenlänge. Kürzlich wurde eine neue magnetis-
che Texture bestehend aus topologisch stabilen “Wirbel-Linien”, sogenan-
nten Skyrmionen, entdeckt. In dieser Arbeit untersuchen wir den topol-
ogischen Mechanismus, der zu einer Zerstörung des Skyrmionen-Gitters in
Phasenübergangen führt. Wir untersuchen darüber hinaus die dynamischen
Eigenschaften von getriebenen Skyrmionen eingebettet in einen ferromag-
netischen Hintergrund.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit Heterostrukturen
in Rahmen der dynamischen Molekularfeld Theorie. Speziell untersuchen
wir Grenzschichte↵ekte von stark-korrelierten, geschichteten Systemen. Wir
berechnen schicht-aufgelöste Transportkoe�zienten und Tunnelwahrschein-
lichkeiten durch Mott-Barrieren.
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Introduction

Nowadays, topology has firmly established itself as a vital tool in every physicists’ mathematical

arsenal and all modern theories contain topological ideas of some sort or another. The applications

range from the gauge theories in particle physics, where monopoles, instantons and solitons describe

non-perturbative excitations, to the space time topology of general relativity. Also in condensed

matter physics topology has proven itself indispensable. Noteworthy occurrences include topological

insulators, the quantum Hall e↵ect and defects in ordered media. The unique role topology plays in

physics established its status as a universal and ubiquitous paradigm.

The links between the very old subject of physics and the much younger1 mathematical discipline

of topology date back to the 19th century. The earliest connection occurs in the work of Kirchho↵,

1847, who uses graph-theoretical methods to solve the equations for a general electric network

[51]. But also mathematicians have found interesting applications of topological ideas to physical

problems. For instance, Gauss noted that Ampere’s law may be understood as the linking number

between two curves and iterated his confidence that this is only one of many topological ideas to be

eventually discovered in the field of physics [37]. One of the most common applications of topology

in present-day condensed matter physics may be homotopy theory which is vital for the description

of topological solitons.

Topological solitons are classical solutions of the Lagrangian equations of motion homotopically

distinct from the vacuum solution. Often this occurs when the surface on which the boundary

condition is specified has a non-trivial homotopy group. Such solutions can be interpreted as particles

of the theory which owe their stability against (quantum-) fluctuations to their non-trivial topology.

Historically, the first example of a topological soliton model for an elementary particle was the

Skyrmion. The Skyrmion emerged from the Yukawa model, a field theory for the three types of

spinless pions. Skyrme believed that the particles in a nucleus were moving in a non-linear, classical

pion medium [93]. Symmetry arguments lead to a particular form of the Lagrangian which allowed

topologically stable soliton solutions of the classical field equations, distinct from the vacuum. These

solutions could then be understood as baryons.

As mathematical objects Skyrmions have also gained importance in solid state physics. Here a

noteworthy example is a two-dimensional electron gas exhibiting the integer quantum Hall e↵ect.

The low energy theory of such as system has the structure of a quantum ferromagnet with elementary

excitations given by dressed particles whose local magnetisation wraps the Bloch sphere once when

exploring the two-dimensional plane. In analogy to the mathematical structure of Skyrme’s solutions

these excitations are referred to as Skyrmions. Another occurrence of Skyrmions in solid state physics

was discovered in 2009 when a Skyrmion lattice was shown to exist in the chiral magnet MnSi as the

stable phase in a region of the magnetic phase diagram [72]. Here similar to a vortex lattice in type-

II superconductors, the magnetic phase is characterised by a hexagonal lattice of magnetic whirls

1

Listing was the first to use the term ‘Topologie’ in 1836 [61].
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arranged in a plane perpendicular to an applied magnetic field and translationally invariant along

the direction of the field. The magnetisation throughout the unit cell remains finite, wraps the unit

sphere once and can thus be described by an integer-valued topological index, i.e. a winding number.

The discovery of the Skyrmion lattice has spurred great interest in these whirling spin textures and

raised hopes that they might find application in spintronic devices and future information storage

technologies.

In this part of the thesis, we study the dynamical properties of Skyrmions in chiral magnets.

We begin with a general introduction to Skyrmions and a brief summary of their discovery in chiral

magnets in chapter 1. In the following we outline the Ginzburg-Landau theory for magnetic systems

in chapter 2 and the Langevin approach to magnetic systems at finite temperature in chapter 3. The

non-trivial topology of Skrymions has important implications for the destruction of the Skyrmion

lattice. For instance, due to the conservation of topological charge phase transitions from the

Skyrmion lattice into a topologically trivial phase necessarily lead to the appearance of magnetic

point defects in the system since the destruction of Skyrmions changes the winding number of the

system. In accordance with topological constraints these defects exhibit properties characteristic

of magnetic monopoles and we thus refer to them as “emergent magnetic monopoles”. Chapter

4 describes the experimental discovery and analyses their energetics and dynamics through micro-

magnetic simulations and numerical minimisation of the free energy functional.

The study of the e↵ective dynamics of single Skyrmion excitations in the ferromagnetic back-

ground is important both from the point of view of fundamental research and possible applications

in spintronic devices. In chapter 5 we analyse the fluctuation spectrum around the classical solution

of the Lagrangian equations of motion in the single Skyrmion sector by explicitly calculating both

the scattering wave functions and internal modes of the Skyrmion. A perturbative expansion in

the fluctuations yields a fluctuation-induced inertia term. In section 5.2 we extract the e↵ective

equations of motion for a Skyrmion from the statistical analysis of its di↵usive motion and study its

dynamics when driven by time-dependent electric currents and magnetic field gradients.
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Chapter 1

Skyrmions

In the original sense of the word, a ‘Skyrmion’ is a topological soliton solution known to occur in

a non-linear field theory for interacting pions originally conceived by the nuclear physicist Tony

Skyrme [93]. In a more permissive interpretation of the word Skyrmions, as mathematical objects,

have found versatile application in a variety of di↵erent areas in physics. In this chapter we briefly

review the historic origin of the Skyrmion and define the generalised concept that is nowadays

understood as a ‘Skyrmion’. We outline previous applications in di↵erent fields of physics and then

forward to 2009 to give a concise account of the discovery of the Skyrmion lattice phase in the chiral

magnet MnSi.

1.1 What is a Skyrmion?

In 1961 before the advent of quantum chromodynamics (QCD) the nuclear physicist T.H.R. Skyrme

conjectured that the interior of a nucleus is dominated by a medium formed from three pion fields

[93]. He introduced the Skyrme model, a non-linear sigma model, with the intention to describe

baryons as the quantised soliton solutions of a field theory which involves only bosonic degrees

of freedom. The model is understood as an intermediate between the traditional models which

represent the nucleons as point particles interacting through a potential, and a complete description

based on quarks and gluons [4]. The pion fields ⇡ = (⇡1,⇡2,⇡3) are combined into a SU(2)-valued

field

U(x) =
p

1� ⇡(x) · ⇡(x) 1 + i⇡(x) · � , (1.1)

where � is the vector of Pauli matrices and we have suppressed a possible time dependence of the

fields. For static fields the energy in the Skyrme model is given by

E =

Z
d3r

✓
�1

2
Tr(RiRi)�

1

16
Tr([Ri, Rj ][Ri, Rj ])

◆
, (1.2)

where we have introduced an associated current Ri = (@iU)U † and [·, ·] denotes the commutator.

The vacuum is represented by U(x) = 1. For the energy to be finite, U must approach a constant

at infinity [65]. The energy is invariant under translations and rotations in R3 and also under the

transformation U ! AUA† with A 2 SU(2), one may thus choose U(r ! 1) = 1. E↵ectively, due

to this boundary condition space is then topologically (but not metrically) compactified to S3, and

since the group manifold of SU(2) is also S3, U defines a map from S3 to S3. The structure of the

homotopically distinct maps U is given by the third homotopy group ⇡3(S3) which happens to be

7



Figure 1.1: Construction recipes for the non-chiral and chiral skyrmion from the hedgehog configura-
tion. R denotes a rotation about the ẑ-axis acting in order parameter space and P the stereographic
projection.

isomorphic to Z. The space of all maps U : S3 ! S3 decomposes into distinct subsets characterised

by an integer-valued topological charge B =
R
d3r B with the topological charge density B given by

B = � 1

24⇡2
✏ijkTr(RiRjRk) . (1.3)

The minimal energy solutions for each B are called Skyrmions and their energy is identified with

their mass and B with the Baryon number of the nucleus. The B = 1 Skyrmion has the spherically

symmetric hedgehog form [65]

U(x) = exp(if(r)r̂ · �) , (1.4)

where f(r) is a radial profile function obeying an ordinary di↵erential equation with the boundary

conditions f(0) = ⇡ and f(r ! 1) = 0.

Skyrmions in their original sense are therefore smooth, topologically stable extremal field config-

urations which are trivial at spatial infinity and have a finite energy. They are defined by surjective

mappings into the order parameter space S3 and characterised by a non-trivial topological charge B.

Since the nth homotopy group of Sn is isomorphic to Z for any n � 1, a more permissive definition

of “Skyrmion” is given by

A skyrmion is a smooth field configuration defined by a topologically non-trivial,

surjective mapping from a base manifold M into the order parameter space T ' Sn,

trivial on the surface ofM and characterised by a finite integer-valued topological charge.

Fig. 1.1 shows the construction recipe for M = R2 and T = S2. We start with the identity map,

⌦̂(x̂) = x̂, with x̂ 2 S2 which can be visualised as a hedgehog configuration (c.f. Fig. 1.1, top

left). The stereographic projection P maps the sphere onto the two-dimensional plane, P(x̂) 2 R2

and thus a Skyrmion configuration is given by the mapping M̂ : R2 ! S2, M̂ : r 7! ⌦̂ � P�1(r).

8



The corresponding topological charge W is given by
R
d2r W where we have defined the topological

charge density W as

W =
1

8⇡
M̂ · (@xM̂ ⇥ @yM̂) . (1.5)

W counts the number of times the mapping M̂ sweeps out the target manifold S2. From the

construction recipe above it is obvious that for the Skyrmion (Fig. 1.1 lower left) W = �1. The

color code has been chose such that arrows pointing to the north pole are plotted in red and those

to the south pole as blue and the equator in green.

A chiral, non-inversion symmetric Skyrmion can be constructed if the hedgehog is additionally

‘combed’ by performing a ⇡/2 rotation R about the ẑ-axis in order parameter space (Fig. 1.1 top

right), N̂ : r 7! R� ⌦̂�P�1(r). R is a linear map on S2 and therefore W = �1 for this configuration

as well. These later, chiral Skyrmions (Fig. 1.1 lower right) will be the main focus of this thesis.

In contrast to a Skyrmion, a vortex does not sweep out the whole sphere. For example a vortex

configuration is given by the map V : R2 ! S2, V : r 7! ê�(r), where ê� = (� sin(�), cos(�), 0)T

in polar coordinates (r,�). The vortex only sweeps out the equator, is singular at r = 0 and has a

non-trivial winding for r ! 1.

1.2 Skyrmions in other areas of physics

Within this generalised understanding Skyrmions have found versatile application in many di↵erent

fields of physics. Here we only mention a few.

In 1985 Klebanov proposed the possibility of a Skyrmion crystal [52]. A phenomenological

application of this kind of a solution could be a neutron crystal, which may exist under high pressure

inside neutron stars [108]. The theory might resolve puzzles concerning discrepancies about the

maximum mass of stable neutron stars between observations and predictions by more traditional

equation of state descriptions [47].

Liquid crystals are states of matter which show characteristics of those of a conventional liquid

and those of a solid crystal. Many interesting ordering phenomena have been reported in these sys-

tems where the local order parameter is describe by a director field ( a field of headless vectors) rather

than a vector field [110]. Among these the blue phases which have a regular three-dimensional cubic

structure of defects with lattice periods of several hundred nanometers are particularly interesting.

Here so-called 2⇡ disclinations are singular line defects where the 2⇡ indicates that the director

rotates a full 360� as the singular line is encircled. These singular defect configurations are unstable

towards a non-singular configuration that di↵ers from its original one only in the immediate neigh-

borhood of the formerly singular line. For the 2⇡ disclinations these non-singular configurations are

given by Skyrmion configurations of directors in n = 2. Recently it was shown theoretically [34],

with the aid of numerical methods, that a highly chiral nematic liquid crystal can accommodate a

quasi-two-dimensional Skyrmion lattice as a thermodynamically stable state, when it is confined to

a thin film between two parallel surfaces.

Skyrmions were predicted to occur in quantum Hall systems close to the Landau level filling

fraction ⌫ = 1 for su�ciently small Zeeman splitting gµBB (compared to the the cyclotron gap

!c = eB/mc) [97]. The incompressible ground state of a two-dimensional electron gas at this filling

fraction is ferromagnetic. For su�ciently small g < gc the charged excitations of the system were

argued to be Skyrmions where their winding number is related to the charge ⌫e of the Skyrmion. The

equivalence of physical charge and topological charge in the system is a consquence of the quantum

Hall e↵ect and is responsible for the dominating role of Skyrmions in determining many physical

9



properties [28]. Brey and collaborators proposed that ground state close to ⌫ = 1 is a crystal of

charged Skyrmions [11]. Nuclear magnetic resonance measurements in GaAs provided only indirect

evidence [3, 92].

Topologically, skyrmions are equivalent to certain magnetic bubbles (cylindrical domains) in

ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications

[64]. In ferromagnets where long-range order is frustrated due to long-range dipole-dipole interactions

a wealth of di↵erent magnetic patterns can be seen, such as domain walls, vortices and periodic

stripes. In Ref. [112] Lorentz transmission electron microscopy (LTEM) was used to show that a

magnetic field applied perpendicular to a thin film of hexaferrite turns the periodic stripe domain

state into a periodic, hexagonal lattice of chiral Skyrmion bubbles (c.f. Fig 1.1 lower right). In

contrast to other materials however where the inversion symmetry of the atomic unit cell is broken,

in hexaferrite the helicity of the Skyrmion is not fixed by crystal structure, but represent a Z2 degree

of freedom and a random distribution of di↵erent helicities in the lattice can be observed. Here even

helicity reversals within a single Skyrmion where observed. Note that the helicity is independent of

the winding number which can be seen from the fact that one may smoothly deform helicities into

one another.

Bogdanov and collaborators studied the mean-field theory of easy-axis ferromagnets with chiral

spin-orbit interactions. They argued that in certain parameter regimes a mixed state with a finite

density of Skyrmions much like the vortex lattice in type II superconductors becomes the thermo-

dynamically stable phase [10]. Although the stability analysis was carried out in the circular unit

cell approximation the Skyrmion lattice was predicted to be hexagonal [10]. Here the presence of

easy-axis anisotropy turned out to be a necessary ingredient for the stabilisation of the mixed phase

within the mean-field treatment. Also they assumed the magnetization vector to be homogeneous

along the z-axis [9].

1.3 Discovery of the Skyrmion lattice in MnSi

In 2009 Mühlbauer et al. reported the discovery of a Skyrmion lattice phase in the chiral magnet

MnSi by a small angle neutron scattering study (SANS). Although in this section we concentrate on

MnSi as the first chiral magnet the spontaneous formation of this phase of whirling magnetisation

has been observed in, the Skyrmion lattice phase has since then been discovered in many other

compounds as well. In 2010 the same group discovered a Skyrmion lattice phase in the doped

semiconductor Fe1�xCoxSi [73, 114]. The Skyrmion lattice phase in this material was also later

confirmed by real-space images using Lorentz transmission electron microscopy (Lorentz TEM) [114].

Since then the Skyrmion lattice has been observed in a variety of di↵erent materials both as a bulk

phase as well as in thin films. Appendix A gives a more elaborate description of the material

properties and the magnetic phase diagram of various materials the phase has been observed in.

Here we only want to mention that the electronic properties of this set of compounds is very diverse:

Among these are metals, insulators, semi-conductors and also a multi-ferroic material. This show

that the Skyrmion lattice is not a peculiarity of MnSi but rather a general phenomenon in this class

of materials.

The unifying property for all of these materials is that they crystallise in the so-called B20

structure. The symmetry transformations are described by the space group P213 with a cubic

Bravais lattice [38]. With only 12 symmetry operations this space group is among the smallest

compatible with the cubic lattice crystal system. The point symmetry at the component sites is

C3, the cyclic group of 3-fold 2⇡/3 rotations about an appropriate [111] axis. The nonsymmorphic
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located at (u, u, u), ( 1

2

+ u, 1

2

�
u, ū), ( 1

2

�u, ū, 1

2

+u), and (ū, 1

2

+
u, 1

2

� u) with u
Mn

= 0.138 and
u
Si

= 0.845.

(b) Magnetic phase diagram of MnSi. For B = 0,
helimagnetic order develops below T

c

= 29.5 k.
Above B

c2

the material field polarises. For inter-
mediate field values the conical phase develops
with the Skyrmion lattice phase (A-phase) as a
small phase pocket inset in a specific tempera-
ture and field range. Taken from Ref. [72].

Figure 1.2

group P213 contains in addition 3 screw rotations which involve 2-fold rotations about one of the

three [100] axis followed by an appropriate non-primitive translation (0, 1
2 ,

1
2 ). Most notably the list

of symmetry transformations does not include the inversion. The lack of inversion symmetry has

profound consequences for the Ginzburg-Landau free energy description of these materials and for

the symmetry constraints on the magnetic configuration that the materials can show. Materials with

non-inversion symmetric atomic unit-cells can support non-inversion symmetric magnetic structures.

There are other mechanisms by which Skyrmion lattice phase can be stabilised. We will return to

this point at the end of this chapter. Although we concentrate prodominantly on MnSi in this

chapter, the magnetic phases of MnSi are generic for chiral magnets. Particularly the phase diagram

Fig. 1.2b can be seen as a generic phase diagram for B20 compounds that order helimagnetically.

The primitive cell of manganese silicide (MnSi) contains four pairs of the 2 component formula

units Mn and Si located at (u, u, u), ( 12 + u, 1
2 � u, ū), ( 12 � u, ū, 1

2 + u), and (ū, 1
2 + u, 1

2 � u) with

uMn = 0.138 and uSi = 0.845. MnSi is an itinerant ferromagnet with a fluctuating magnetic moment

of 0.4 µB and a saturated moment of 2.2 µB per manganese atom. Before the discovery of the

skyrmion lattice phase, it already attracted attention due to a high pressure anomaly: Although

described very well by Fermi-liquid theory at ambient pressure, MnSi shows a non-Fermi liquid phase

above a critical pressure of pc ⇠ 14.6 kbar with the temperature dependence of the resistivity given

by T 3/2 [81, 79]. In addition in the pressure region 12 kbar � 20 kbar a state of partial magnetic

order was encountered in neutron scattering experiments [80].

At ambient pressure and zero applied magnetic field, MnSi develops magnetic order below a tran-

sition temperature Tc = 29.5K that is the result of three hierarchical energy scales. The strongest

scale is the ferromagnetic exchange favoring a uniform spin polarisation (spin alignment). The lack

of inversion symmetry of the cubic B20 crystal structure results in chiral spin-orbit interactions,

which may be described by the rotationally invariant Dzyaloshinsky Moriya (DM) interaction favor-

ing canted spin configurations [22, 69]. The DM interaction originates from relativistic e↵ects, i.e.

spin orbit coupling �SO ⇠ 10�2, and is the lowest order chiral spin-orbit interaction [2, 74, 83]. In

addition there are very weak crystalline field interactions which break the rotational symmetry and

align the ordering wave vector of the magnetic structures along the [111] axes [83].
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Figure 1.3: In the helical phase the magnetisation winds around the propagation vector q. The
magnetization vectors stand perpendicular on q. Red arrows point into the paper, blue arrows out
of it while green arrows lie in the plane of the paper.

Figure 1.4: In the conical phase the spiral propagation vector q aligns parallel to the applied
magnetic field B. The magnetization winds around the q similar to the helical phase, however here
the magentic moments also tilt towards the propagation vector giving the configuration a uniform
magnetisation component along B. Red arrows point into the paper, blue arrows out of it while
green arrows lie in the plane of the paper.

Magnetic phases of MnSi

The magnetic phase diagram of MnSi, Fig. 1.2b, shows four distinct magnetic phases: a helical

phase, a conical phase, a field-polarized phase and the previously mentioned skyrmion lattice phase

(for historical reasons referred to as the “A-phase” in the diagram). In the following we briefly

describe the magnetic order in each of these.

Helical phase

Cooling the system at zero or only small applied magnetic field below the critical temperature

Tc ⇠ 29 K a phase transition to the helical phase is encountered. In this phase the magnetization

winds around an axis parallel to the spiral propagation vector q as shown in Fig. 1.3 with the local

magnetic moment M perpendicular to q. The period of the helix, �h = 2⇡/|q| is controlled by the

competition of the ferromagnetic exchange with the chiral spin-orbit coupling. The weakness of the

spin-orbit interaction leads to a wavelength �h ⇠ 190Å which is large as compared with the lattice

constant, a ⇠ 4.56Å. This large separation of length scales results in an e�cient decoupling of the

magnetic and atomic structures. The direction of propagation q̂ = q/|q| is determined by tiny crystal

field anisotropies. Therefore, the alignment of the helical spin spiral along the cubic space diagonal

[111] is weak and is only fourth power in the small spin-orbit coupling, �4SO. The decoupling from the

underlying atomic structure results in an extremely coherent helical phase with a huge correlation

length of 104 Å as reported in this neutron scattering study [59]. While the paramagnetic to

helical transition is expected to be second order on a mean-field level, interactions between the

helimagnetic fluctuations were theoretically predicted to give rise to important corrections. Indeed

it was recently shown that a Brazovskii-type scenario is realized where an abundance of strongly

interacting fluctuation distributed uniformly over a sphere in momentum space drives the transition

first order [48].

Conical phase

Setting out in the helical phase one finds a phase change upon increasing the applied magnetic field

above Bc1 ⇠ 0.1 T. The stronger magnetic field allows for a net reduction in free energy by building

up a uniform magnetic moment in the direction of the applied field. While for high magnetic fields

above Bc2 ⇠ 0.6 T the DM interaction can be completely neglected and the magnetic configuration
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(a) In the skyrmion lattice phase the magnetic stucture forms a hexag-
onal lattice of anti-skyrmions in the plane perpendicular to the ap-
plied magnetic field. The lattice constant is given by 2�

h

/
p
3. The

state posses a translational invariance along the field magnetic field
direction and should therefore be visualised as an ordered arrange-
ment of whirling tubes. Here we show only one layer.

(b) Typical SANS intensities for the
SkX phase. Red (blue) corresponds to
high (low) intensity. The color scale is
logarithmic to enhance small features.
See main text for details.

completely polarizes, there is an intermediate field range where the magnetization winds both around

a spiral propagation vector q parallel to B and in addition possesses a uniform magnetization in the

direction of B as the the magnetisation vectors tilt towards q̂ = B̂. The phase is referred to as the

concial phase and is despicted in Fig. 1.4. On general grounds a crossover between the helical and

the conical phase is expected where the ordering wave vector q rotates continously from the helical

[111] direction towards the direction of the applied field. If applied along special high symmetry axis

one may encounter a second order phase transition however. The angle between the propagation

vector q and the local magnetization M is smooth function of the applied magnetic field B and

decreases to zero for B > Bc2 .

Skyrmion lattice phase

A first order phase transition separates a tiny pocket in the magnetic phase diagram close to Tc

at finite magnetic field from the surrounding conical phase. This region, termed for historical

reasons “A-phase”, has a hexagonal lattice of anti-skyrmions perpendicular to the applied magnetic

field as its ground state. An illustration of the skyrmion lattice is despicted in Fig. 1.5a. The

configuration possesses a translational invariance along the direction of the applied magnetic field.

The magnetisation configuration should therefore be imagined as an ordered arrangement of whirling

tubes similar to the flux lattice in a type II superconductor. Fig. 1.5a shows only a single layer.

The magnetic configuration can be approximated by a superposition of three helices with their

propagation vectors lying in a plane perpendicular to the applied magnetic field and relative angles

of 120� plus a uniform magnetic moment antiparallel to the applied field. The relative phases are

aligned such that the magnetization in the center of the skyrmion points antiparallel toB. The lattice

constant is therefore given by 2�h/
p
3. The large lattice constant ensures an e�cient decoupling of

the magnetic structure from the underlying atomic lattice and allows for the orientation towards the

applied field. The orientation of the hexagonal lattice within the plane however is determined by

crystal field anisotropies. For a magnetic field in the [001] direction, for instance, one of the three

q vectors pins weakly in the [110] direction of the atomic crystal. The building blocks of the lattice
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(a) Lorentz TEM images of the Skyrmion lattice
in Fe

0.5

Co
0.5

Si. Taken from Ref. [113].
(b) MFM images of Skyrmions from the surface of bulk
Fe

0.5

Co
0.5

Si. Taken from Ref. [67].

Figure 1.6

are referred to as anti -skyrmions as their their winding number per magnetic unit cell

W =
1

4⇡

Z

UC

M̂
⇣
@xM̂ ⇥ @yM̂

⌘
(1.6)

is quantized to -1. Here M̂ = M/|M| and the integration is taken over the two-dimensional magnetic

unit cell, which contains exactly one “knot”.

The experimental technique used by Mühlbauer et al. was small angle neutron scattering (SANS).

Neutron scattering is an ideal tool for the study of magnetic order in bulk phases as neutrons

predominantly scatter from the magnetic structure in a solid-state system due to their magnetic

moment. The lack of an electric charge allows them to penetrate deep into the system under

investigation. The neutrons scatter elastically due to the interaction of their spin with the nuclei

and unpaired electrons of the magnetic atoms in the sample and the scattered neutrons are recorded

by detectors placed behind the sample. The Fourier modes in the magnetic order are recorded as

Bragg peaks in reciprocal space. A more detailed description of SANS can be found in Appendix

B. The Skyrmion lattice can be approximated by three helices with their ordering wavevectors in a

plane normal to the applied magnetic field and relative angles of 120�. In a typical neutron scattering

experiment the incoming neutron beam is perpendicular to the applied magnetic field. In such a

setup not all of the 6 reflection spots (two per helix at +q and �q) can be seen simultaneously.

The setup chosen by Mühlbauer et al. aligned the incoming beam parallel to the applied field. This

setup is much more advantageous and allows to record all 6 spots at the same time, c.f. Fig. 1.5b.

Other experimental techniques were also able to prove the existence of the Skyrmion lattice.

In recent years powerful real-space imaging techniques have been modified and applied to chiral

magnetic systems which allow for a direct visualization of the spatial magnetization configuration.

The advantage of such methods is that not only a single spin texture, but also the crystallization and

melting process during phase conversions can be observed. Fig. 1.6a shows images of the Skyrmion

lattice phase in a thin film of Fe0.5Co0.5Si recorded by Lorentz transmission elctron microscopy

(LTEM). LTEM is a modification of traditional electron microscopy in which the Lorentz forces

between the electrons in a beam and the sample are utilised to generate images which allow for

the real-space observation of the magnetic structure of materials. The drawback of LTEM is that

samples have to be electron transparent and therefore the technique can only be applied to thin

films. Also LTEM images only the in-plane component of the magnetisation.

Real-space images of the surface of bulk materials can be recorded using the magnetic field

microscopy (MFM). MFM images forces between the surface of a sample and the magnetic stray

field of a cantilever tip coated with a ferromagnetic film. The total force acting on the cantilever is
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inferred from small changes in its resonance frequency. It is complementary to LTEM in the sense

that it is only sensitive to the out-of-plane component of the magnetisation. Fig. 1.6b shows MFM

images of Skyrmions from the surface of bulk Fe0.5Co0.5Si. Red (blue) color indicates an out-of-

plane component of the magnetisation that is anti-parallel (parallel) to the line of sight. For more

information about real-space imaging techniques, see Appendix B.

Other physical quantities also show signatures in the Skyrmion lattice phase. For instance the

magnetic AC suscpetibility � shows a sudden drop to a lower when entering the Skyrmion phase

from the conical phase by increasing the applied field. It then rises exceeding the value in the conical

phase before entering the conical phase once again for higher magnetic fields [101]. A more dramatic

e↵ect can be seen in measurements of the Hall e↵ect in MnSi. Here due to the unique topology

of the Skyrmion lattice an additional top hat contribution to the Hall signal can be seen in the

Skyrmion lattice phase [85]. Chapter 4 contains an elaborate discussion of the physical e↵ect and

the experimental measurements.

Ever since the original discovery of Skyrmions in chiral magnets in 2009, many exciting develop-

ments have deepened our unstanding of these fascinating structures. Here we mention only a few.

Neubauer et al. showed that the topological properties of the Skyrmion lattice lead to additional

contribution to the Hall signal, called the topological Hall e↵ect[75]. Everschor et al. analyzed the

spin-transfer e↵ects resulting from an electric current driven through a Skyrmion lattice, and, in

particular, focussed on the current-induced rotation of the magnetic texture by an angle in such

a setup [26]. Schulz and collaborators have shown that the forces acting on conduction electrons

moving through a Skyrmion lattice can be accounted for by the introduction of emergent (fictious)

electromagnetic fields. This o↵ered fundamental insights into the connection between the emergent

and real electrodynamics of skyrmions in chiral magnets [88]. Iwasaki et al. showed in a numerical

study that a single skyrmion can be created by an electric current in a simple constricted geometry

comprising a plate-shaped specimen of suitable size and geometry [45]. In experimental realisation

of Skyrmion creation however with a di↵erent mechanism was reported by Romming and collabo-

rators in 2013. They showed that on an ultrathin magnetic film in which individual skyrmions can

be written and deleted in a controlled fashion with local spin-polarized currents from a scanning

tunneling microscope [86]. There have been many more interesting and noteworthy publications

which we cannot mention here and without question there will be many more.
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Chapter 2

Ginzburg-Landau theory for
Helimagnets

In the vicinity of a second order phase transition, the correlation length of a system diverges. This

indicates that the properties near the critical point are independent of the microscopic details. Many

universal system properties can therefore be described by phenomenological theories which reduce

the redundancy in the system description greatly. A phenomenological theory for contiuum phase

transitions is given by the so called Ginzburg-Landau theory. Based on Landau’s theory of second-

order phase transitions [57], Ginzburg and Landau expanded the free energy of a superconductor

in terms of an order parameter  , which is nonzero in the ordered phase and vanishes above the

transition temperature Tc thus laying the foundation for what became one of the most successfull

and widely used theories in condensed matter physics.

In this chapter we will give an introduction to Ginzburg-Landau theory for the description of

magnetic systems. In section 2.1 we will start with a very general description of the structure of

this theory and then apply it to the special case of helimagnets in section 2.2.1.

2.1 Theory of continuum phase transitions

The microscopic origin of magnetism in metals involves the quantum mechanical treatment of spinful,

itinerant electrons and is highly complicated and material dependent. The full theory allows to

answer the question which materials will exhibit ferromagnetism. However assuming that a given

system shows such behaviour, a microscopic theory is neither necessary nor desirable to describe for

instance the disappearance of magnetic order due to thermal fluctuations. The degrees of freedom

which describe the transition are long wave-length collective spin excitations with typical length

scales much in excess of the lattice constant. Therefore an e↵ective describtion can be achieved

by coarse-graining the system and modelling the magnetic order by the average magnetization of a

large number of spins. The average magnetization is then a smooth function on the the length scale

of the lattice constant and one arrives at a continuum theory.

The state of many condensed matter systems can be described by the appearance of a certain

order in the system or the absence of the same. The order parameter is a concept which seeks

to quantify the “amount of order” present in the system. Examples of order parameters are, for

instance: magnetization M (ferromagnets), polarization P (ferroelectrics), distortions (structural

transitions) and the complex order parameter field  in superconducting systems.

19



Figure 2.1: The order parameter depends on temperature and other external parameters. In second-
order phase transitions the order parameter is a continous function of the system temperature T
and vanishes above a crititical temperature Tc.

Typically at high temperatures the system is disordered as the state is chosen by minimization

of the corresponding thermodynamic potential, i.e. Gibbs free energy. For large T the deciding

factor is the entropy of the system, which it seeks to maximize hence favouring disordered system.

Lowering the temperature the importance of the entropy is diminished and the systems seeks to

optimize its internal energy arranging its degrees of freedom in an ordered fashion.

Therefore the order parameter ⌘ of the system depends on temperature and other external pa-

rameters. For now we will assume that the state of the system can be described by a spatially

homogenous order parameter. It is non-zero in the ordered phase of the system and vanishes upon

increasing the system temperature above the critical temperature Tc. For second order phase tran-

sitions this happens in a continous fashion, Fig. 2.1. The state of the system and in particular the

value of the order parameter ⌘ is determined by the condition that the (Gibbs) free energy G is

minimized. The free energy is related to the systems partition function Z

Z = e�G =

Z
D⌘e�F [⌘], (2.1)

where F [⌘] is the free energy functional.

Due to the smallness of ⌘ close to the critical point Tc the free energy functional F [⌘] can be

expanded in a power series

F [⌘] = F0 + ↵⌘ + �⌘2 + �⌘3 + �⌘4 + . . . (2.2)

It should be noted that this expansion can only involve terms, which are compatible with the

symmetries of the microscopic Hamiltonian. The coe�cients are functions of the external system

parameters. In the mean-fied approximation one simply looks at the stationary points of the free

energy functional, neglecting any fluctuations around this point,

G ⇠ min
⌘

F [⌘] = F [⌘0]. (2.3)

For a vanishing linear term ⇠ ↵ the free energy functional develops a minimum at ⌘ = 0 for T > Tc;

the order parameter vanishes above the critical temperature. The quadratic term must obey the

conditions

�(T ) < 0, for T > Tc

�(T ) > 0, for T < Tc (2.4)
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Figure 2.2: Sketched dependence of the free energy F [⌘] on the parameters ↵ and �. For ↵ = 0 (no
external field) the order parameter vanishes above the transition temperature, i.e. �(T > Tc) � 0.

If the expansion of the free energy is truncated at 4th order the thermodynamic stability of the

system is ensured, i.e. a diverging order parameter ⌘ is prevented, only if the prefactor of the

quartic term is positive, � > 0. The dependence of F [⌘] is sketched in Fig. 2.2.

The Gaussian fluctuations around the mean field ⌘0 are the leading order correction to the mean

field result

G ⇠ F [⌘0] +
1

2
ln det

✓
�2F

�⌘�⌘

◆ ����
⌘0

(2.5)

As we will see later these fluctuations can play a decisive role as to what phase the system will

actually realize.

2.2 Ginzburg-Landau theory for magnetic systems

For a ferromagnetic system, such as iron, the order parameter is given by the magnetization M.

Below the critical temperature Tc, the Curie temperature, the system spontaneously orders charac-

terized by a finite magnetization M, the thermal average of the microscopic magnetic moments. The

magnetization is the conjugate, thermodynamic variable to the applied magnetic field H. Fixing

the direction of H = Hêz one finds that for temperatures T < Tc the regime H > 0 and H < 0 is

separated by a line of phase transitions, which ends at T = Tc at the critical point C, see Fig. 2.3.

The system may be brought from the one regime to the other either by choosing a discontinous path

which crosses the phase boundary (path A) or continously by driving it around the critical point,

T > Tc (path B).

2.2.1 Inversion-symmetric magnetic systems

In the absence of an applied magnetic field the Hamiltonian of typical ferromagnetic system is

invariant under

1. spatial inversion, r ! r0 = �r

2. time-reversal, t ! t0 = �t

In addition in the presence of a magnetic field H it possesses the symmetry M ! �M if H !
�H. As can be seen in Fig. 2.3 the magnetization M is small in the immediate vicinity of the

Curie point C and the correlation length ⇣ diverges. Therefore it is possible to expand the free

energy functional F [M] in terms of M and rM. The above list of transformations poses a minimal

symmetry requirement that each term in the expansion has to fulfil. Assuming the validity of these

claims the expansion of the free energy functional F [M] assumes the form

F [M] =

Z
d3r

h
�HjMj + r0M

2
j + UM4

j + J (@iMj)
2 + . . .

i
. (2.6)
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Figure 2.3: Phase diagram for a ferromagnet. Here the surface of the equation of state is shown in the
space of the conjugate variables, magnetization M and external magnetic field H, and temperature
T . For any two states in the state space a connecting, continous path may be found that avoids the
line of phase transition, H = 0 and 0  T < Tc, by going around the critical point C.

Appropriate phenomenological parameters r0, U and J must be chosen for the particular micro-

scopic system. J parametrizes the ferromagnetic exchange: a positive J describes the tendency of

neighbouring magnetic moments to align parallel to each other by penalizing spatially modulated

order parameter configurations. As already mentioned in section 2.1 the stability of the system

requires U > 0. Condition 2.4 constraints the temperature dependence of r0. In order to have a

finite (vanishing) magnetization for T < Tc (T > Tc) r0 should be negative (positive) below (above)

the Curie temperature Tc. Linearizing the temperature the dependence of r0 around Tc one finds

r0(T ) = ↵(T � Tc) + . . . (2.7)

with a positive constant, ↵ > 0.

For T < Tc, H the free energy functional F [M] is minimised by spatially homogenous configu-

ration M(r) = M0. The ferromagnetic exchange term proportional to J vanishes. The functional

Eq. 2.6 is rotationally invariant in this case and the direction of M0 is spontaneously chosen. The

magnitude of M0 is fixed by minimising the free energy functional

|M0| =
r

�r0
2U

. (2.8)

As for T > Tc r0 changes sign and assumes positive values, the square root becomes imaginary and

signals a vanishing of the magnetisation, M0 = 0. For T < Tc |M0| assumes finite, positive values.

2.2.2 Non-inversion-symmetric magnetic systems

In certain materials so-called chiral magnets the atomic unit cell lacks inversion symmetry. Ap-

pendix A describe 4 exemplary materials which belong to this class. The absence of this symmetry

transformation relaxes the symmetry requirements imposed on the free energy functional F [M] and

allows for additional terms to appear in the expansion: terms with an odd number of spatial deriva-

tives transform odd under inversion symmetry. Of these previously forbidden terms that may now

appear in Eq. 2.6 the Dzyaloshinskii-Moriya (DM) interaction with only a single spatial derivative

is the most important contribution.
Z

d3r 2D M · (r⇥M) (2.9)

Originally derived on phenomenological grounds by Dzyaloshinskii [22] to explain the appearance

of weak antiferromagnetism in materials such as Fe2O3 and the carbonates of Mn and Co, Moryia
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went on to explain the origin of this term as a combination of superexchange interaction and spin-

orbit interaction [69]. Thereby the coupling constant D scales linearly in the spin-orbit coupling,

D ⇠ �SO.

Canted magnetization configurations minimize the DM interaction term. The competition with

the ferromagnetic exchange interaction leads to the appearance of helical order in the system char-

acterized by an ordering wave vector q = q q̂, where the magnetization winds around an axis q̂.

The pitch q of this helix is determined by the relative strength of the coupling constants D and J .

q =
D

J
(2.10)

The spin-orbit coupling for the materials we are interested (Appendix A) is small, �SO ⇠ 10�2.

This leads to a small DM interaction and a very large periodicity of the magnetic structures, often

making the magnetic unit cell orders of magnitude larger than the atomic unit cell. One finds for

the periodicity ⇠mag of the magnetic structure

⇠mag ⇠ q�1 ⇠ D�1 ⇠ ��1
SO (2.11)

As spatial derivatives are inversely proportional to the typical length scale over which the magnetiza-

tion rotates r ⇠ ⇠SO, terms with higher orders of spatial derivatives are suppressed by the weakness

of the spin-orbit coupling �SO.

Nevertheless the appearance of terms O(�3SO) has important consequences. The presence of

higher order terms in the spin-orbit coupling due to crystal field anisotropies breaks the rotational

symmetry of the free energy functional F [M] and allows the ordering wave vector q to choose a

preferred orientation (h111i in the case of MnSi, see Appendix A).

2.3 Numerical minimisation of the Ginzburg-Landau func-
tional

The mean-field configurations of the magnetisation can be studied by numerical minimisation of an

appropriately discretised Ginzburg-Landau functional. For the study of phases with a translational

invariance a discretisation in momentum space is advantageous. For helimagnets a characteristic

length scale is defined by the ratio between the ferromagnetic exchange J and the DM interaction

D which in term defines a characterisitc momentum, Eq. 2.10. A discretisation of the Functional

in terms of q and higher-order moments gives even for a small number of minimisation parameters

accurate results. However we will be predominantly interested in mean-field configurations which

lack translational invariance. In this case better results are achieved if one discretises in real-space.

The free-energy functional for a helimagnet up to order �2SO is given by

F [M] =

Z
d3r

h
r0M

2 + J (rM)2 + 2D M · (r⇥M) + UM4 �H ·M
i
. (2.12)

It turns out that the number of parameters in the above functional can be reduced by an appropriate

rescaling of the length, magnetisation, magnetic field and energy units. By the rescaling

r ! D

J
r

H !

s

U

✓
J

D

◆3

H

M !
r

UJ

D2
M (2.13)
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the free energy functional F [M], Eq. 2.12, can be brought to the form [72]

F [M] = �

Z
d3r

h
r̃0M

2 + (rM)2 +M · (r⇥M) +M4 �H ·M
i
, (2.14)

with the rescaled r̃0 = J
D2 r0 and the new energy unit � = JD

U . From the above expression we see

that the only parameters determining the physics in the Ginzburg-Landau regime are r0 and H.

A discretisation in real-space of the above expression can be achieved when the continous variable

r 2 R3 is replaced with a grid rijk = iaêx + jaêy + kaêz with i, j, k 2 N and a the discretisation

constant. The magnetisation density M will be replaced by the average magnetisation mijk in a

single cell with volume a3, mijk. In order to keep the energy of the discretised system finite in the

limit a ! 0 one has to rescale the magnetisation according to
Z

d3r M(r)4 !
X

ijk

a3M4
ijk

!
=
X

ijk

m4
ijk . (2.15)

where Mijk = M(rijk). From the above consideration follows that mijk = a�3/4Mijk. With the

same reasoning one finds for the magnetic field hijk = a9/4H(rijk) and for r̄0 = a3/2r̃0. Finding the

mean-field configuration of a system parametrised by (r0, U, J,D,B) therefore involves two steps.

First one rescales the system according to Eq. 2.14 and finds r̃0. Then a discretisation parameter a

is chosen small enough so that the discretised model approximates the continuum model accurately

enough and the parameters b and r̄0 of the discretised system are calculated. A numerical minimi-

sation yields a discretised magnetisation configuration which can be translated back to the original

model with the above relations.

The discretisation of the model involves the discretisation of the di↵erential operators in the

expression for the free energy. After partial integration the ferromagnetic exchange term and its

discrete approximation are given by
Z

d3r
�
�Mr2M

�
⇡ a�1/2

X

ijk

� (mi+1jk +mi�1jk) ·mijk � (mij+1k +mij�1k) ·mijk

� (mijk+1 +mijk�1) ·mijk + 6m2
ijk . (2.16)

Similarly the approximation for the DM interaction term assumes the form
Z

d3r M · (r⇥M) ⇡ � a1/2
X

ijk

mijk ⇥mi+1jk · êx +mijk ⇥mij+1k · êy +mijk ⇥mijk+1 · êz.

(2.17)

In summary the discretised model is given by

f [m] = �
X

ijk

h
(r̄0 + 6/a1/2)m2

ijk +m4
ijk � hijk ·mijk � a�1/2(mi+1jk +mi�1jk) ·mijk

� a�1/2(mij+1k +mij�1k) ·mijk � a�1/2(mijk+1 +mijk�1) ·mijk

� a1/2mijk ⇥mi+1jk · êx � a1/2mijk ⇥mij+1k · êy � a1/2mijk ⇥mijk+1 · êz
i

(2.18)

For a continuum model discretised on a N ⇥ N ⇥ N grid the above expression is a function of

3N3 optimisation parameters. An mean-field magnetisation configuration can be calculated on

a computer using numerical minimisation algorithms. The conjugate gradient method (CG) is a

standard algorithm for the minimisation of quadratic functions of the form ||A · x � b||2 with the

dimensionality of x so large that a direct calculation is too time-consuming. At the minimum x⇤ the
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gradient vanishes, rf(x) = 2AT (A · x � b) = 0. CG therefore calculates an approximate solution

of the equation Ã · x = b̃ with Ã = ATA and b̃ = ATb. The conjugate gradient method has

been generalised (non-linear conjugate gradient method) to non-linear optimisation problems. The

generalisation may work if the non-linear function is approximately quadratic near the mininum,

which is always the case if the function is twice di↵erentiable at the minimum. Over the years a

number of di↵erent optimisation strategies for non-linear functions have been developed - all based

on the CG [31]. For the numerical optimisation of the free energy functional above we use the

Fletcher-Reeves variant of the non-linear CG algorithm as implemented in the GSL (GNU Scientific

Library). A more detailed account of the algorithm can be found in Appendix C. It should be noted

though that the CG method finds local minima - it is not guaranteed to find the global minimum of

the functional.

The lattice discretisation a can be used to control how accurately the discretised model approx-

imates the continuum model. As an example we calculate the mean-field configuration of a system

with r̄0 = 2 and small magnetic field h. For these parameters the system is in the helical phase and

we therefore initialise the system by writing a single period of a helix with the ordering vector q

pointing along the x-direction into a system of size 10�⇥1⇥1 with periodic boundary conditions in

the x-, y- and z-direction. Note that due to the translational invariance of the configuration in the

y- and z-direction it su�ces to choose 1 for Ny and Nz. For the discretised system on a lattice the

pitch of the helix is given by tan(q) = D
J = a with a the lattice discretisation. The parameter � is

therefore related to a via a = tan(2⇡/10�). Fig. 2.4a shows the energy density E after convergence

of the minimisation algorithm as a function of Bz for various discretisations �. The solutions are

seen to quickly converge towards an asymptotic solution for larger �s. Fig. 2.4a shows the energy

density of the approximation for Bz = 0 as a function of the parameter �. The solutions converge

quadratically in � against the energy of the exact solution for the continuum model (red dashed

line).
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Figure 2.5: Mean-field phase diagram of a 2D helimagnet at T = 0.

2.4 First applications

Magnetic phase diagram of 2D helimagnet

We calculate the magnetic phase diagram (in mean-field approximation) of the two-dimensional

helimagnet (in the x-y plane) for r̄0 = 1 and the magnetic field h applied perpendicular to the

system, i.e. h = hêz. We discretise the system on a 100 ⇥ 100 ⇥ 1-grid with periodic boundary

conditions in the x- and y- direction. The local minimum the minimisation algorithm converges to is

determined by the initial position in the parameter space, i.e. the initial magnetisation configuration.

The only way to determine reliably the actual phase the system will exhibit is to start the algorithm

in all possible choices, let it converge and then compare the final free energy densities. The phase with

the lowest free energy density is the stable phase of the system. For a two-dimensional helimagnet

there are three competing ordered phases: a helical phase, the Skyrmion lattice phase and the field-

polarised phase. Fig. 2.5 shows the free energy density of the converged solutions for the three

phases as a function of the applied magnetic field Bz. For fields in the range 0  Bz < 0.12 ⌘ Bc1

the helical phase has the lowest energy. At Bz ⇡ 0.12 the free energy density of the helical and the

SkX phase become degenerate and for 0.12  Bz < 0.4 ⌘ Bc2 the SkX phase has the minimal free

energy. Above Bz > 0.4 the system is field-polarised. These results are in qualitative agreement

with Monte Carlo results for two-dimensional helimagnetic systems [19].

Defected phases

Up until now we have considered only phases with a translational symmetry. In such situations it

is much more e�cient to express the free energy function, Eq. 2.14, first in Fourier space and then

discretize the momenta. The strength of the real-space discretisation however lies in the possibility

to study the energetics of defected configurations. Here we compare the energetic costs of two

types of defects. The addition of a single skyrmionic defect to an otherwise helical changes its total

winding number from 0 to 1, c.f. Fig. 2.7 (left). The removal of a single Skyrmion from the SkX

reduces the total winding number by 1, c.f. Fig. 2.7 (middle and right). There are two ways to
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Figure 2.7: Left: Defected helical phase. Middle: defected Skyrmion lattice phase, vacancy. Right:
defected Skyrmion lattice phase, 2 skyrmions merged.

remove a single from the Skyrmion lattice, corresponding to two di↵erent local minima that the

minimisation algorithm may converge to: one can remove a single Skyrmion by overwriting it with

a field polarised configuration, thus creating a vacancy in the lattice (right) or one may merge two

neighbouring skyrmions (middle). In these visualisations the magnetic field vector points towards

the observer, blue color signifies magnetic momtents pointint towards the observer as well while red

region marks areas where the moments point away. We compare the energy of these three defects

as a function of the applied magnetic field Bz. The expectation is that for small applied fields the

addition of a single skyrmionic defect to the helical phase is energetically costly since the helical

phase is the ground state. For larger fields however the SkX becomes the ground state, c.f. Fig. 2.5,

an the addition of a single Skyrmion could even lower the total system energy as it brings the system

closer to its ground state configuration. For vacancies in the SkX and the merging of two Skyrmions

the situation us just opposite we expect high energetic costs at hight Bz fields and a reduction of

the cost as the applied field is lowered. Close to the critical field Bc1 a situation could arise where
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the energetic cost for both types of defects is negative. In such a situation an additional phase is

stabilised which is characterised by a finite density of defects. Fig. 2.6 shows the energy of the two

types of defects as a function of the applied field. Indeed the addition of a single Skyrmion to the

helical phase costs a large positive amount of free energy�EH for small applied fields. Slightly above

the critical field strength the cost function �EH changes sign and the addition of defects become

energetically favourable. Although the curve for the removal of a Skyrmion from the SkX by creating

a vacancy (red curve) shows the expected slope, a vacancy costs for all field strengths a finite amount

of energy �E(1)
SkX. This is in contrast to the merging of two Skyrmions which costs a positive energy

�E(2)
SkX for large fields and becomes favourable for field strengths below Bz . 0.9. There is however

no value of Bz for which both the merging of two skyrmions in the skyrmion lattice phase and the

introduction of single skyrmion defect in the helical phase are both energetically favourable. We

therefore find no indication for an additional phase with a finite defect concentration. Since have

only studied the cost of a single defect we can however not exclude this idea either.
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Chapter 3

Langevin dynamics of magnetic
systems

For deterministic, macroscopically known systems the e↵ect of fluctuations can be studied using the

Langevin approach. Fluctuations are introduced into the equations of motion by adding random

force terms, so called “noise generators”. This approach gives a more concrete picture than the

Fokker-Planck equation. In this chapter we briefly review the introduction of the Langevin approach

to Brownian motion in section 3.1. We then discuss the generalisation of the approach to magnetic

systems in section 3.2 followed by a description of the necessary steps to calculate an approximate

time evolution numerically in section 3.2.4.

3.1 The Langevin equation

In 1827 botanist Robert Brown gave a detailed account of what later became known as “Brownian

motion” while studying the plant life of the South Seas. He examined suspensions of pollen in

water under a microscope when he noticed that in all cases the pollen is in rapid oscillatory motion.

Initially many speculations surrounded the observed phenomenon ranging from Brown’s original

assertion that the motion was peculiar to the male sexual cells of plants to the early attempt by

Nägeli [17] to explain the observation by considering the the conservation of momentum. But it was

left to Einstein in 1905 [23] to explain the Brownian motion on the basis of a consistent stochastic

theory.

Einstein’s reasoning can be summarised as this: If a Brownian particle immersed in a fluid collides

with a fluid particle, its velocity changes. However in the limit of a very viscous fluid the velocity

is quickly dissipated away and the e↵ect of the collision is merely a displacement of the Brownian

particle. Therefore in Einstein’s view the process consisted of random jumps performed by the

particle; that is, the particle performs a random walk. With the assumptions that the increments

are small he derived a di↵erential equation for the probability density distribution, a Fokker-Planck

equation, of the particle’s displacements. After obtaining its solution he derived that the mean-

square displacement grows linearly in time. Using the fact that at equilibrium the Maxwellian

distribution should hold for the velocities it was possible to express the Avogadro constant in terms

of the viscosity of the fluid and the system temperature. Subsequent experimental measurements by

Perrin in 1908 found agreement in the extracted Avogadro constant to within 19% with the accepted

value [78].
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Figure 3.1: Exemplary trajectory of a Brownian particle.

3.1.1 The Langevin approach to Brownian motion

The theory by Einstein and Smoluchowski [95] is expressed entirely in terms of the underlying proba-

bility distribution of the Brownian particles and the Fokker-Planck equation. Although in agreement

with experiments the description strongly abstracts from the underlying Newtonian physics. In 1908

Langevin introduced the concept of a equation of motion for a random variable and in doing so in-

vented the subject of stochastic di↵erential equations. Langevin simply wrote down the Newtonian

equation of motion of the Brownian particle under the assumptions that it experiences two forces:

(a) a deterministic frictional force ↵ẋ which models the dynamical friction experienced by the parti-

cle as it brushes against the surrounding fluid and (b) rapidly fluctuating forces F(t) which are also

due to an interaction with the surrounding fluid: impacts by fluid atoms.

The equation of motion therefore assumes the form

mẍ(t) = �↵ẋ(t) + F (t) (3.1)

where m is the mass of the Brownian particle and ↵ > 0 the strength of the dissipative mechanism

which can be thought of as Stokes’ law. The equations of motion are extended here with the

Langevin noise term F (t) by a mere addition. In this case the noise term is said to be additive.

Three assumptions about the statistical nature of the force underly the mathematical treatment of

the above equation:

1. The force F (t) does not depend on the current particle position x.

2. The time scale on which the force F (t) varies is extremely short as compared to the timescale

of observation.

3. The statistical average of F (t) taken over an ensemble of particles vanishes, i.e. F (t) = 0.

From assumption 2 one can deduce that the particle collision are basically instantaneous. This can

be expressed by making the autocorrelation time of the random variable F (t) arbitrarly small

F (t)F (t0) = 2↵kBT �(t� t0) (3.2)

where � is the Dirac delta distribution. Eq. (3.2) is a mathematical idealisation of assumption 2

and as such certainly open to criticism. In reality the autocorrelation function starting from 2↵kBT

quickly drops to zero [17]. The white noise becomes coloured.
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Eq. (3.2) relates the autocorrelations of the fluctuations to the strength of the dissipative mech-

anism ↵ and as such it is a fluctuation-dissipation theorem [55, 68]. The physical picture is this:

the random kicks of the noise term F (t) have a tendency to spread out ẋ while the damping term

tries to bring ẋ back to zero. The balance between these two opposing tendencies is the equilibrium

distribution.

To make a connection with Einstein’s theory it is easy to derive from Eq. (3.1) the formula for

the mean square-displacement of the Brownian particle. Upon multiplying Eq. (3.1) with x and

noting that

ẋx =
1

2

d

dt
x2 and ẍx =

1

2

d2

dt2
x2 � ẋ2 (3.3)

we find after taking the thermal average

m

2

d2

dt2
x2 �mẋ2 = �↵

2

d

dt
x2 + F x (3.4)

Due to assumption 1 in the above list the force F and the particle position x are completely uncor-

related, therefore the last term in Eq. (3.4) will vanish, i.e. F x = 0.

Statistical mechanics tells us that in the presence of the dissipative mechanism ↵ the system will

approach thermal equilibrium in the long time limit thus connecting our above considerations to the

notion of temperature: the Maxwellian distribution can be assumed to hold for the velocity of the

Brownian particle so that the mean velocity becomes

1

2
mẋ2 =

1

2
kBT (3.5)

Defining u ⌘ d/dt x2 Eq. (3.4) becomes

m

2

du

dt
+
↵

2
u = kBT (3.6)

which is solved by u = Ce�↵t/m + 2kBT/↵ where C is a constant of integration. For large t the

exponential will play no role owing to the fact that the system will forget its initial conditions and

one finds a linear growth of the mean-square displacement, i.e. a di↵usive motion,

�x2 =
D�

x(t)� x(0)
�2E

= 2
kBT

↵
t (3.7)

which is just the result derived by Einstein.

3.1.2 The Itô and Stratonovich dilemma

The Langevin approach has been used by many authors to treat non-linear systems [116]. For non-

linear systems additional problems arise concerning the interpretation of the Langevin equation.

This is important for the treatment of magnetic system as their equations of motion are inherently

non-linear.

Let us suppose we have a physical system with a non-linear equation of motion, ẏ = A(y) and

following the Langevin approach we add a noise term to model the fluctuations in the system. In

the following we will suppose that the system is “fully non-linear” which means that the noise term

is not merely added (additive noise) to the equations of motion but is multiplied by a function B(y)

of the dynamical variable y (multiplicative noise)

ẏ = A(y) +B(y)F (t) (3.8)
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In case the spectrum of the noise term F (t) is truly white, the above equation (without further

information) bears no meaning. The problem lies in the Langevin noise term. If the autocorrelation

function of F (t) is truly proportional to a Dirac delta function (white noise), F (t) can be visualised

as a sequence of delta peaks occuring at random times [105]. Since according to Eq. (3.9) each

delta function causes a jump in the dynamical variable y, the value of y is not defined at that time

and hence also the value of B(y) is not defined. Eq. (3.9) does not specify whether B(y) should

be evaluated before or after the jump or maybe the mean of both. This is not only a question of

mathematical rigour but rather these various choices lead to di↵erent Fokker-Planck equations and

hence to di↵erent probability density distributions.

Physicists typically prefer the Stratonovich interpretation who opted for the mean value. After

integrating Eq. (3.9) it assumes the following form in the Stratonovich interpretation

y(t+�t)� y(t) = A (y(t))�t+B

✓
y(t) + y(t+�t)

2

◆Z t+�t

t
F (t0)dt0 (3.9)

Another way to arrive at this equation is to follow the treatment of Doob [20] who removes the

non-linearity in the noise term of the equations of motion by defining the transformation

z =

Z
dt0

ẏ

B(y)
, and A(z) =

A(y)

B(y)
(3.10)

and proves that this choice leads to Eq. (3.9). This shows that the naive use of our usual rules of

calculus lead to the Stratonovich interpretation.

Itô opted for the value of y before the arrival of the delta peak. The corresponding integrated

equation assumes the form

y(t+�t)� y(t) = A (y(t))�t+B (y(t))

Z t+�t

t
F (t0)dt0 (3.11)

This interpretation requires new transformation laws incompatible with the usual rules. They re-

quire a new form of calculus: Itô calculus. The Itô interpretation can be made equivalent to the

Stratonovich result if an additional “drift” term is added to the stochastic di↵erential equation [36].

These di�culties have to be kept in mind, especially if numerical solutions of stochastic di↵er-

ential equations are to be obtained. Di↵erent numerical integration schemes converge to di↵erent

stochastical interpretations. Sometimes it is di�cult to tell from the integration rule when exactly

B(y) is being evaluated. Care must be taken that a form of the stochastic equation is chosen that

is compatible with the choice of stochastic quadrature rule.

3.2 Equations of motion for magnetic systems

3.2.1 Landau-Lifschitz-Gilbert equation

Mechanics tells us that the time rate of change of angular momentum is given by the applied torque.

d

dt
L = T (3.12)

Considering a lattice of magnetic moments m in a magnetic field He↵ the angular momentum is

given by m/� where � is the gyromagnetic ratio and the torque acting on the magnetic moment by

�m⇥He↵ ; thus
d

dt
m = ��m⇥He↵ (3.13)
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(a) ↵ = 0 (b) ↵ = 0.1

Figure 3.2: Solutions of the equations of motion

This describes the precession of the magnetic moment m in the e↵ective magnetic field. Upon scalar

multiplication of Eq. (3.13) with the magnetisation m the right hand side vanishes. Therefore the

above equation describes the dynamics of magnetic moments with a fixed amplitude m = |m|. The
field He↵ contains both contributions from an applied field and also from exchange and demag-

netisation fields. The e↵ective magnetic field He↵ can be obtained from the Ginzburg-Landau free

energy functional F [m]

He↵ = ��F [m]

m
(3.14)

For F [m] = �m · H0 with H0 a constant magnetic field one finds indeed He↵ = H0. In a more

general situation He↵ will also include e↵ects such as magnetic anisotropy, interacting with other

spins, etc.

There are several processes in a solid which give rise to a damping of the magnetic motion

(magnons, phonons, etc.). Starting from the Dirac equation for electrons in magnetic and electric

potentials it has been shown that magnetic damping can arise from spin-orbit coupling as relativistic

corrections to the spin Hamiltonian [43]. Typically however, fundamental analysis of damping mech-

anisms is di�cult and therefore damping terms are usually added on phenomenological grounds. The

simplest relaxation term which can be written down is the so called Gilbert damping

↵

m
m⇥ d

dt
m (3.15)

It is important to appreciate the extent to which the coupling to these subsystems is included in this

expression: here �↵ d/dt m is only the dissipative e↵ective field and describes only the (ensemble)

average of rapidly fluctuating random forces. For an individual moment this expression should be

augmented by a term hfl(t) whose statistical average is zero. More on that later.

The full Landau-Lifschitz-Gilbert equation takes the form

d

dt
m = ��m⇥He↵ + �

↵

m
m⇥ (m⇥He↵) (3.16)

As an example we show in Fig. 3.2 the time evolution for a single spin of length |m| = 1 with the

initial condition m(0) = (1, 0, 0)T in an applied magnetic field H(ext) = (0, 0, 0.01)T with Gilbert

damping ↵ = 0 (Fig. 3.2a) and ↵ = 0.1 (Fig. 3.2b). For ↵ = 0 the energy of the system is conserved

as the only dissipative mechanism is switched o↵. The spin precesses at a constant polar angle

✓ = ⇡/2 around the applied magnetic field H(ext) with angular velocity ! = H(ext)
z (we set � = 1).

For the ↵ = 0.1 the spin simply relaxes in a spiral towards the applied magnetic field H(ext) on a

timescale of the order 1/↵.
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3.2.2 Spin-Transfer Torques

The field of spintronics seeks to manipulate magnetic configurations by electric e↵ects. The short

switching times for electric currents and the possibility to apply them locally using appropriately

designed circuity promises, especially in the context of applications for future information technology

devices, tremendous advantageous over the control through magnetic fields. The giant magnetoresis-

tance (GMR) e↵ect, discovered in 1988 indepedently by Grünberg [8] and Fert [1], is an example of a

successful knowledge transfer from the solid state community to technology companies. Here a very

e�cient control of electric currents is achieved by altering magnetic structures. The e↵ect is observed

in thin-film structures composed of alternating ferromagnetic and non-magnetic conductive layers

leads to a significant change in the electrical resistance depending on whether the magnetization of

adjacent ferromagnetic layers are in a parallel or an antiparallel alignment. The main application of

GMR is magnetic field sensors, which are used to read data in hard disk drives.

In the middle of 1980s Berger [6, 33] proposed the possibility to drive domain walls by the

application of electric currents. However it was not until the discovery of the spin-transfer torques

in the 1990s due to Berger [7] and Slonczewski [94] that research on current-driven magnetisation

dynamics made serious progress. A demonstration of how these physical ideas might be used for the

creation of new information technology devices was given by Parkin and his group [76] who developed

a prototypical race-track memory device in which spin-transfer torques were used to move ⇠ 100

bits encoded in a domain wall pattern along spatially fixed read and write heads by applying electric

currents. The great disadvantage of domain walls in this respect are the large current-densities

(⇠ 1011 A/m2) necessary to depin them. This leads to substantial ohmic heating and a destruction

of the magnetic state. Jonietz et al. [49] showed in 2010 that a Skyrmion lattice, on the other

hand, exhibits an ultra-low electrical threshold current density of ⇠ 106 A/m2 about five order of

magnitude smaller compared to domain walls. Here the application of a thermal gradient and an

ultra-low electrical current lead to a rotation of the Skyrmion lattice which could be consistently

explained by spin-transfer torque e↵ects. In their numerical study Iwasaki et al. [46] demonstrated

that the order of magnitude for this threshold current is robust even in the presence of easy-axis

anisotropies.

The e↵ects of spin transfer torques on the magnetisation dynamics can be accounted for on the

level of description provided by the LLG when additional terms are included. In Ref. [62] Lucassen

et al. give an intuive picture of the origin of these terms: The conduction electrons traversing

the smoothly varying magnetisation texture adiabatically adjust their spin orientation parallel to

the local magnetisation direction. By conservation of spin, there is an opposite torque on the

magnetisation texture, which leads to a net displacement of the texture in the same direction as the

electric current j.

Zhang and Li [115] account for the coupling between the itinerant electrons of transport and the

localized electrons of magnetisation by an s-d Hamiltonian. They derive a linear response function

for the conduction electrons in the presence of a time and spatially varying local moment, and the

by using the same s-d model calculate the spin torque on the magnetisation dynamics. Duine et al.

[21] present a microscopic treatment of current-induced torques based on a functional formulation

of the Keldysh formalism. They find in agreement with Ref. [115] that the LLG in the presence of

a partially spin-polarised current is given by

✓
d

dt
+ vs ·r

◆
m = ��m⇥He↵ + �

↵

m
m⇥

✓
d

dt
+
�

↵
vs ·r

◆
m , (3.17)
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with � a dimensionless constant which describes the dissipative, non-adiabatic e↵ects of the spin-

transfer torques. It is immediately clear that for ↵ = � the above equation is found when the time

derivatives in equation Eq. 3.17 are replaced by the “comoving” derivative D/Dt = d/dt + vs ·r.

For this special the system is Galilei invariant and a solution of the above equation in terms of a

solution for vs = 0, m0, is achieved by m(t) = m0(r �
R t
0
vs(t)dt). Usually, in realistic systems

no Galilei invariance is found. Microscopically the �-term has contributions from all processes that

violate spin conservation and therefore correspond to terms in the microscopic Hamiltonian that are

not invariant under spin rotations [21].

3.2.3 Stochastic Landau-Lifschitz-Gilbert equation

The stochastic Landau-Lifschitz-Gilbert equation is the basic Langevin equation for classical spins.

Originally introduced by Brown [12] to treat the dynamics of small ferromagnetic particles and

explain phenomena such as superparamagnetism and the magnetic aftere↵ect. Subsequent work by

Kubo and Hashitsume [56] who studied general classical spins showed how a Fokker-Planck equation

for the stochastic motion of the spin moment can be derived. Both, although presented separately

in literature, are essentially equivalent.

So far we have only discussed how systems without thermal fluctuations can be simulated. Fol-

lowing the Langevin approach the e↵ective magnetic field He↵ has to be augmented by a fluctuating

or stochastic field hfl(t) to describe a system at finite temperature. Similar to the case of Brownian

motion this field accounts for the e↵ects of the interaction of m with other microscopic degrees of

freedom (phonons, conduction-electrons, nuclear spins, etc.), which cause fluctuations of the mag-

netic moment’s orientation. It should be noted that the same microscopic degrees of freedom are

also responsible for the magnetic relaxation (Gilbert damping) described by the ↵-term. Therefore

the fluctuation-dissipation theorem is able to link the statistics of these fluctuations to the strength

of the dissipative mechanism.

The starting equation in the Brown-Kubo-Hashitsume model of classical (interacting) spins at

finite temperature is the stochastic Gilbert equation written here in the Landau-Lifschitz form

d

dt
m = �� m⇥ (He↵ + hfl(t)) + �

↵

m
m⇥ [m⇥ (He↵ + hfl(t))] (3.18)

where � is the gyromagnetic ratio and ↵ is the previously introduced dimensionless damping constant

for the Gilbert damping. We will refer to the above equation as the stochastic Landau-Lifschitz-

Gilbert equation. The deterministic e↵ective field He↵ is given by Eq. (3.14). With the inclusion

of the Gilbert damping term the e↵ective field describes the e↵ects of interactions with microscopic

degrees of freedom (phonons, conduction electrons, nuclear spins, etc.) on the level of averages. It

has to be augmented by a stochastic, fluctuating field hfl(t) to properly treat the e↵ects of flucuations.

The typical assumptions about the field hfl(t) are that it is a Gaussian stochastic process with

the following statistical properties

hhfl,i(r, t)i = 0

hhfl,i(r, s)hfl,j(r
0, t)i = 2↵

kBT

�m
�ij�(r� r0)�(s� t) (3.19)

where i and j are cartesian components and h. . . i denotes an average taken over di↵erent realizations

of the fluctuating field hfl(t). The Gaussian property of the process stems from the interaction of

with a large number of microscopic degrees of freedom with identical statistical properties (cen-

tral limit theorem). The delta-correlation in time in the second equation (3.19) expresses that for
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the temperature we are interested in the autocorrelation time of hfl(t) is much shorter than the

rotational-response time of the system. The Kronecker � shows that di↵erent components of are

uncorrelated. Finally the fluctuating fields acting on di↵erent magnetic moments are independent.

Equations (3.18) and (3.19) seem to fully determine the dynamical problem under considera-

tion. However one quickly sees that the equation of motion Eq. (3.18) is subject to the Itô and

Stratonovich dilemma, c.f. section 3.1.2. The added noise term is multiplicative and not additive.

Therefore the problem specification is only complete once the stochastic interpretation to be used

for the stochastic di↵erential equation, Eq. (3.18), is fixed. Interpreting the equation according to

Stratonovich calculus renders the correct physical results. The Itô interpretation would require a

modification of Eq. (3.18) where an additional “noise-induced”drift term is added. From a physical

point of view the Stratonovich interpretation makes sense: if one sees the delta correlation of the

fluctuations as mathematical idealization for physical noise with a short auto-correlation time, it is

the Stratonovich interpretation one arrives at if one takes the formal zero-autocorrelation time limit

of fluctuations with a finite autocorrelation time [36].

Fluctuation-dissipation theorem

As already mentioned in the introduction a flucuation dissipation theorem links the strength of the

dissipative mechanism to the variation of the fluctuations. The original derivation of this expression

as according to Brown [12] is complicated and uses advanced stochastic methods. We will present

here the more direct and simpler derivation presented by Garanin [35].

For the purpose of this derivation we assume that the variance of the fluctuations is parametrized

by the unknown constant D

hhfl,i(r, s)hfl,j(r
0, t)i = 2D�ij�(r� r0)�(s� t) (3.20)

We first derive the Fokker-Planck equation corresponding to Eq. (3.18) and then determine the

constant D by demanding that the Maxwellian equilibrium distribution is a static solution of the

same.

We start by introducing the distribution function of spins n

n(M, t) ⌘ h⇡t[hfl]i
hfl

where ⇡t[hfl] = �(M�m(t)) (3.21)

the time derivative of n can be calculated using

d

dt
⇡ = � @⇡

@M

d

dt
m (3.22)

and the equation of motion for the magnetic moments m, Eq. (3.18). One finds (for a more detailed

account please see Ref. [35])

@n

@t
= � @

@M

⇢
� (M⇥He↵)� �

↵

M
(M⇥ (M⇥He↵)) + �2D

✓
M⇥

✓
M⇥ @

@M

◆◆�
n

�
. (3.23)

In order to ensure that the stationary properties of the system described by Eq. (3.18) have the

correct equilibrium properties, the above Fokker-Planck equation has to have the Maxwellian equi-

librium distribution

n0(M) / e��F [M] (3.24)

as a stationary solution. This demand will fix the constant D. Using

@n0

@M
= �� @F [M]

@M
n0 = �He↵n0 (3.25)
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one proves that the expression M⇥He↵n0 is divergence-free

@

@M
(M⇥He↵n0) = n0

@

@M
(M⇥He↵) + (M⇥He↵) ·

@

@M
n0

= 0 + �n0 (M⇥He↵) ·He↵ = 0 (3.26)

For n = n0 the first term of the Flokker-Planck equation therefore vanishes and one finds that one

has to choose

��2D = �
↵

M
(3.27)

to make n0 a solution of Eq. (3.23) in agreement with Eq. (3.19).

3.2.4 Numerical integration of the stochastic Landau-Lifschitz-Gilbert
equation

In our presentation of the numerical integration scheme we follow Ref. [36]. We consider a general

system of Langevin equations

dyi
dt

= Ai(y, t) +
X

k

Bik(y, t)Lk(t) (3.28)

where y = (y1, . . . , yn)T are the dynamical variables of the system and Lk are Langevin sources of

noise. The Lk(t) obey the following stochastic properties

hLk(t)i = 0 and hLi(s)Lj(t)i = 2D�ij�(t� s) (3.29)

When the functions Bik(y, t) depend on y, the noise is said to be “multiplicative” else it is “additive”

(Itô = Stratonovich).

The next step is to find an appropriate iterative method which can be used for the temporal

discretization and approximative solution of Eq. (3.28). In case the noise terms are “mutliplicative”

care must be taken in the choice of numerical integration scheme. First, there is a problem at the

level of definition: di↵erent integration schemes converge to either Itô or Stratonovich calculus. A

scheme must be chosen which actually converges to the stochastic interpretation of one’s choosing.

But even apart from these problems serious di�culties arise in the construction of higher-order

integration schemes. The naive adaption of schemes used for deterministic systems of equations

may not converge for the stochastic problem at all and even if so usually with lower order [53].

The simplest integration scheme is given by Euler’s approximation. For a given time discretisation

t(0) < t(1) < · · · < t(N) the Euler approximation fulfils the following recurrence relation

y(n+1)
i = y(n)i +Ai(t

(n),y(n))
⇣
t(n+1) � t(n)

⌘
+
X

k

Bik(y
(n), t(n))

⇣
Lt(n+1)

k � Lt(n)

k

⌘
(3.30)

The random increments �Ln
k ⌘ Lt(n+1)

k �Lt(n)

k are generated from pseudorandom numbers with the

properties

h�Ln
k i = 0

D
(�Ln

k )
2
E
= 2D�t(n) (3.31)

where �t(n) ⌘ t(n+1) � t(n). With the initial condition

y(0)i = yiniti (3.32)
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the above equations can be implemented on a computer to calculate an approximate solution of the

system of stochastic di↵erential equations. Typically the error is defined as

✏ =
D���y(N) �Y(t(N))

���
E

(3.33)

here h. . . i denotes an ensemble average and Y(t(N)) the (typically unknown) exact solution of the

stochastic equations of motion. It can be shown that for “well-behaved” stochastic equations the

systematic error of the Euler approximation follows ✏(�t) ⇡
p
�t (Ref. [53], Theorem 10.2.2). It

should be noted that this estimate involves only the systematic error of the approximation. On any

computing architecture with a finite floating-point accuracy additional rounding errors accumulate.

This causes the “sweet-spot” to lie at a finite �t and consequently one cannot drive the error to

0 by simply making �t smaller and smaller (not at constant floating-point accuracy). Another

important point is that the Euler approximation converges in the form written above to the Itô

interpretation. Therefore modifications are necessary to the equations of motion prior to application

if they were constructed in the Stratonovich language. The necessary modification is the addition

of a noise-induced drift term [53]

y(n+1)
i = y(n)i +

0

@Ai(t
(n),y(n)) +D

X

jk

Bjk(y
(n), t(n))

@Bik(y(n), t(n))

@yj

1

A
⇣
t(n+1) � t(n)

⌘

+
X

k

Bik(y
(n), t(n))

⇣
Lt(n+1)

k � Lt(n)

k

⌘
(3.34)

The construction of higher-order integration schemes for stochastic di↵erential equations is di�-

cult [36], however one can do better than the Euler approximation. For the Euler method we simply

froze the right hand side of the stochastic equation at (t(0),y(n)) at the beginning of each discreti-

sation subinterval. An obvious improvement is to include additional information from elsewhere in

the subinterval. For instance, we could use the average of both endpoints

y(n+1)
i = y(n)i +

1

2

⇣
Ai(t

(n),y(n)) +Ai(t
(n+1),y(n+1))

⌘⇣
t(n+1) � t(n)

⌘

+
X

k

1

2

⇣
Bik(y

(n), t(n)) +Bik(y
(n+1), t(n+1))

⌘⇣
Lt(n+1)

k � Lt(n)

k

⌘
(3.35)

This is an implicit scheme as the unknown quantity y(n+1)) appears on both sides of the equation.

This prevents us from an algebraic evaluation of the above equation. However we can replace the

occurrences of y(n+1)) on the right hand side by Euler approximations of the same.

ỹ(n+1)
i = y(n)i +Ai(t

(n),y(n))
⇣
t(n+1) � t(n)

⌘
+
X

k

Bik(y
(n), t(n))

⇣
Lt(n+1)

k � Lt(n)

k

⌘

y(n+1)
i = y(n)i +

1

2

⇣
Ai(t

(n),y(n)) +Ai(t
(n+1), ỹ(n+1))

⌘⇣
t(n+1) � t(n)

⌘

+
X

k

1

2

⇣
Bik(y

(n), t(n)) +Bik(ỹ
(n+1), t(n+1))

⌘⇣
Lt(n+1)

k � Lt(n)

k

⌘
(3.36)

The above integration rule is called Heun’s scheme. The quantity ỹ(n+1) is referred to as the

predictor. Heun’s scheme converges in quadratic mean to the solution of the stochastic di↵erential

equation if interpreted in the sense of Stratonovich [53].
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(a) ↵ = 0.1, T = 0 (b) ↵ = 0.1, T = 0.001

Figure 3.3: Exemplary, numerical solutions of the equation of motion, Eq. (3.18).

Application to the stochastic Landau-Lifschitz-Gilbert equation

For the treatment of the stochastic Landau-Lifschitz-Gilbert equation, Eq. (3.18), we will use Heun’s

scheme. This is done because it converges naturally without modification to the Stratonovich in-

terpretation. Since the deterministic part of the di↵erential equations is treated with a higher

order integration rule, Heun’s scheme is more stable than Euler-type approaches [36]. The Landau-

Lifschitz-Gilbert equation can be written in the language introduced in the last section by identifying

Ai = ��
h
m⇥He↵ � ↵

m
m⇥ (m⇥He↵)

i

Bik = ��

2

4
X

j

✏ijkmj +
↵

m

�
m2�ik �mimk

�
3

5 (3.37)

As a test of the above scheme we integrate the equations of motion for a single spin of length

|m| = 1 with the initial condition m(0) = (1, 0, 0)T in an applied magnetic field H(ext) = (0, 0, 0.01)T

with Gilbert damping ↵ = 0.1 for temperature T = 0 (Fig. 3.3a) and T = 0.001 (Fig. 3.3b). For the

T = 0 the spin simply relaxes in a spiral towards the applied magnetic field H(ext) on a timescale

of the order 1/↵. For finite T the spiral can still be seen, but the path is noisy due to the thermal

fluctuations.
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Chapter 4

Emergent magnetic monopoles

Experimentally one observes that the electric charge always appears as an integer multiple qe = ne of

an elementary charge e. Why this is the case is unknown as charge quantisation is still an unresolved

physical problem. The situation changes however if there were magnetic charges. Dirac (1931, [18])

postulated the existence of magnetic monopoles and showed that quantum mechanics is only then

consistent if the product of any pair of magnetic charge qm and electric charge qe is an integer

multiple of 2⇡~.
The idea of magnetic monopoles dates back to the earliest days of magnetism as magnets appear

to have two magnetic poles of opposite strength. In the middle of the nineteenth century the electric

currents were recognised as a source of magnetism and later the magnetism found in materials was

explained by magnetic dipole moments associated with fundamental particles such as the electron.

To this day despite intensive search throughout the observable universe the elementary magnetic

monopole remains a hypothetical particle.

The absence of magnetic charges is built into Maxll’s equations. The equation r · B = 0 for

the magnetic field B implies by the Gauss’ law that the magnetic flux through any closed surface

vanishes and that hence there is no source of the magnetic flux. However it is possible to include

magnetic charges into Maxwell’s theory bringing the equations of electrodynamics to a symmetric

form

r⇥H = Ė+ je, r ·D = ⇢e, D = ✏0E

�r⇥E = Ḃ+ jm, r ·B = ⇢m, B = µ0H (4.1)

where we have introduced the magnetic charge density ⇢m and the magnetic current density jm. As a

consequence of the above equation the magnetic charge obeys the continuity equation ⇢̇m+r·jm = 0

and is hence conserved like the electric charges. There is however a di↵erence in the transformation

properties of magnetic and electric charges. To conserve parity invariance of the electromagnetic

theory ⇢m has to transform like a pseudo-scalar and jm like an axial vector. Therefore as electric

charges have a sign, magnetic charges have a handedness, c.f. Fig 4.1.

Section 4.1 outlines the original idea of Dirac. We then mention occurrences of magnetic

monopoles in solid state systems in 4.2 especially emphasising on the case of spin ice. The main

part of this chapter is devoted to the discussion of emergent magnetic monopoles in chiral magnets

in section 4.3.
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Figure 4.1: Magnetic fields of right- and left-handed monopoles.

Figure 4.2

4.1 The Dirac monopole

Dirac begins his seminal paper about “Quantised Singularities in the Electromagnetic Field” with

a rather long introduction to the growing propinquity of mathematics and physics trying to set the

mood for what follows as an essentially mathematical argument.

A magnetic point charge of strength qm at rest at the origin creates a magnetic field

B =
qm
4⇡r2

r̂, r ·B = qm�(r) . (4.2)

Away from the origin the vacuum equations are fulfilled, however at the origin there is a delta charge.

Dirac insists that a vector potential for the above magnetic field configuration exists. Due to the

singular charge distribution such a vector potential will have a singularity which poses no significant

problem. The more serious mathematical obstacle is the fact that even with the origin excluded

no smooth vector potential can be globally defined on R3 \ {o}. Dirac tackles the problem by a

generalisation of the wave function concept: fixing an origin o 2 R3 a wave function  (x) not only

depends on the point x but on a particular path �
x

connecting o and x thus becoming a functional

 : �
x

!  [�
x

]. A necessary condition to remove redundancy is that a single reference path �
x

joining o and x already determines the wave function of all other paths �0
x

ending at x. This means

that for any two paths  and  0 connecting o with the same point x the wave functions have to be

related to each other by a known phase factor

 [�0
x

] = e2⇡i�(S) [�
x

], with �(S) = e/h

Z

S
B · d2n (4.3)

where S is an oriented surface with @S = �0
x

� �
x

and �(S) is the magnetic flux through the surface

S, Fig. 4.4. He continues to point out that if the magnetic field is finite, the functional  [�
x

] is
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smooth and therefore small changes in the path �
x

will lead to small changes in the wave function

only. For the phase factor however this is only true if the wave function does not vanish

arg [�
x

] =
1

2i
log ( [�

x

]/ ⇤[�
x

]) . (4.4)

Since in 3 dimensions for a vanishing of the wave function two conditions have to satisfied, Re  = 0

and Im  = 0, typically lines of vanishing  are found, that Dirac refers as nodal lines. Due to

condition Eq. (4.4) the change of phase around a nodal line need not be small. All that can be said

is that the phase picked up on a closed path around such a nodal line must be an integer multiple of

2⇡ for the phase to be a continuous function. Since traversing a chosen path around a line backwards

accumulates the negative phase, the winding of the phase around a a nodal line endows it with a

sense of circulation. The connection of this sense of circulation with phase factor is given by equation

(4.3). If the direction of circulation around the nodal lines agrees with the internal orientation of

the surface S the phase counts positive.

Dirac now suggests the possibility for nodal lines to have points of origin and termination, nodal

singularities. In order for the phase factor �(S) to be well defined one has to augment the theory

with another constraint. Since for a given pair of paths � and �0 one may choose any surface S or

S0 as long as their boundaries agree, @S = @S0 = �0 � �, one has to demand �(S) = �(S0). With

the possibilities of nodal lines to start and terminate this poses a problem as one can construct the

situation where S intersects with the nodal line while S0 does not leading to a discrepancy of ±2⇡n.

Therefore Eq. (4.3) has to be adjusted

�(S) = e/h

Z

S
B · d2n+

X

i

±ni (4.5)

where the sums extends over all nodal lines intersecting with the surface S and the correct sign is

chose by comparison of orientations as mentioned above.

Since
R
S B · d2n computes the magnetic flux through S, Dirac concluded by considering the case

of a closed surface S = @U with U a volume that �(@U) = 0 and thus the ith nodal singularity

can be considered as magnetic monopole with charge 2⇡~
e ni with ni 2 Z. Thus receives the Dirac’s

condition for the quantisation of magnetic and electric charges

eqm 2 2⇡~Z (4.6)

4.2 Magnetic Monopoles in Spin Ice

Although magnetic monopoles have so far not been observed as elementary particles there are con-

densed matter systems where collective behaviour leads to emergent phenomena that resemble cer-

tain aspects of magnetic monopoles. To understand the relation between the magnetic monopole

as an elementary particle and its occurrence in condensed matter system one has to appreciate the

di↵erence between the microscopic and macroscopic Maxwell equations. The microscopic Maxwell

equations describe the electromagnetic fields due to the charge and current densities on a atomic

scale. Although this has universal applicability for a complicated condensed matter system this is

typically not feasible to calculate. Instead one retracts to the description of electromagnetic phe-

nomena on larger length scales by essentially subsuming microscopic behaviour. This is achieved

by the introduction of two auxiliary fields, the displacement field D and the magnetising field H.

Phenomenological constituent equations relate the additional fields to the electric field E and the

magnetic field B [14].
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(a) The dumbbell picture is obtained by replac-
ing each spin with a pair of opposite magnetic
charges placed on the adjacent sites of the dia-
mond lattice. Inverting the shared spin creates a
pair of magnetic monopoles on adjacent sites.

(b) A pair of separated magnetic monopoles. The
chain of inverted dipoles (Dirac string or nodal

line) between them is highlighted in white and
magnetic field lines are sketched.

Figure 4.3: Picture taken from Ref. [14].

The observation of even a single magnetic monopole would contradict the Maxwell equation

r · B = 0. No such contradiction has been observed to this day and one must assume that the

constraint posed by the above equation is in place. However for condensed matter systems and the

magnetising field H no such constraint applies. Indeed a number of systems exists where sources of

the magnetising field have been observed. Here we only present the most prominent example of spin

ice and later contrast monopoles in spin ice to those found in chiral magnets.

The first materials identified as spin ices were the pyrochlores Dy2Ti2O7 (dysprosium titanate),

Ho2Ti2O7 (holmium titanate) and Ho2Sn2O7 (holmium stannate). The magnetic properties of

these materials can be understood if one considers a three-dimensional lattice of magnetic moments

organised at the edges of corner sharing tetrahedra. Spin ice can be realised on this lattice when

spins placed on the vertices are constrained to point radially into the or out of the tetrahedra and

coupled ferromagnetically.

The word ice in the name stems from a similarity to an entropic e↵ect in water ice. In 1935 Linus

Pauling[77] noted that the structure of ice contains oxygen atoms with four neighbouring hydrogen

atoms. The distance between oxygen and hydrogen atoms is not the same however as two hydrogen

atoms are near forming the traditional H2O molecule and two are further away being the hydrogen

atoms of neighbouring water molecules. This gives rise to the ice rules : Two atoms have to be

near, two have to be further away. He concluded that this leads to a residual entropy even upon

cooling to zero temperature. Ice therefore exhibits degrees of freedom which remain disordered even

at absolute zero. The number of configurations conforming to these ice rules grows exponentially

with the system size, and therefore that the zero-temperature entropy of ice was expected to be

extensive. Pauling’s findings were later confirmed by specific heat measurements.

In the above mentioned pyrochlores the spin rules apply to the configuration of the spins at the

vertices of the tetrahedra. Here geometric frustration causes the lowest energy spin configuration to

obey the rule that two spins have to point in and two out of each tetrahedron. Indeed the Pauling

ice entropy, S ⇡ R/2 ln(3/2) per spin with R the gas constant, found in these materials reflects a

huge low-energy density of states in zero magnetic field [84].
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Excitations above this ground state manifold are given by local violations of these ice rules. A

single spin flip violates the rules on two neighbouring tetrahedra, at a cost of⇡ 2 K in Dy2Ti2O7. The

characteristics of these excitations were studied by Castelnovo et al. [14] by replacing the interaction

energy of the magnetic dipoles by the interaction energy of magnetic dumbbells, see Fig. 4.3a.

Demanding that the dipole moment of the original spin is reproduced fixes the magnetic charges to

±µ/ad with the diamond lattice bond length ad =
p
3/2 a and µ the magnetic permeability of the

material.

Inverting a spin on a vertex between two tetrahedra creates in the dumbbell picture a pair of

magnetic monopoles on adjacent sites. The interaction energy is now computed by the pairwise

interaction of magnetic charges as given by the Coulomb law

V (r↵�) =

(
µ0

4⇡
Q↵

Q�
r↵� ↵ 6= �

1
2⌫0Q

2
↵ ↵ = �

(4.7)

with Q↵ the net magnetic charge on site ↵ and r↵� the distance between two sites. Monopoles

may be separated from one another without further violations of the ice rules by flipping a chain

of adjacent dumbbells as shown in Fig. 4.3b. This string may be directly compared to the Dirac

string or nodal line introduced earlier [70]. It takes only a finite amount of energy to separate the

two monopoles to infinity so they are the true elementary excitations of the system. Therefore the

monopoles are truly deconfined as the the cost of creating the Dirac string remains finite as its

length grows. In a typical spin ice state at finite temperature one finds a “soup” of Dirac strings of

di↵erent length.

With respect to the Dirac quantisation condition, Eq. (4.6), one should remember that the charge

quantisation condition stems from the fact that the Dirac string has to be unobservable for quantum

mechanics to be consistent. The string soup characteristic of spin ice at low T makes the Dirac

string energetically unimportant albeit not unobservable. Therefore monopoles in spin ice have no

quantised charge. Their charge is determined by the characteristics of the concrete material under

consideration and can even be tuned continuously by applying pressure [70].

4.3 Emergent Magnetic Monopoles in Chiral Magnets

In this section we introduce the concept of emergent magnetic monopoles in chiral magnets. In

2012 Schulz and collaborators [88] showed that a particularly illuminative way to describe the forces

that act on both an electron traversing a smooth magnetic structure and the structure itself can be

accounted for by the introduction of a fictitious, emergent electrodynamic potential. It is in this sense

that an unwinding of a Skyrmion lattice is accompanied by the appearance of quantised emergent

magnetic charges. In subsection 4.3.1 we give a short introduction to emergent electrodynamics and

emphasise especially on the emergent magnetic field. We briefly discuss the experimental observation

of this field as a topological contribution to the Hall e↵ect. Then we turn in subsection 4.3.2 to the

discovery of the emergent magnetic monopoles and the roles the play in phase transitions. Most of

the results in this subsection have been published in Ref. [67].

4.3.1 Emergent Electrodynamics of Skyrmions

Non-collinear magnetic structures induce forces in moving conduction electrons. For smooth struc-

tures the dominant coupling mechanism is due to Berry phases picked up by the electron as its spin

aligns adiabatically to the background magnetisation direction. These force may be accounted for

in an elegant way by the introduction of emergent electrodynamic potentials. As we will see the
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Figure 4.4: With the magnetic moment of the electron adjusting adiabatically to the direction of
the local background magnetisation, the electron picks a geometrical phase called the Berry phase.
Picture taken from [82]

topology of the magnetic configuration also induces topological constraints in the geometry of the

emergent vector potential.

The importance of Berry phases has been known for a long time. Volovik addressed the problem

of linear momentum in ferromagnets using a technique which we also proves useful for the study of

skyrmion lattices [107]. In ferromagnets Haldane[41] pointed out that the canonical momentum of

the coherent magnetisation motion is not invariant under spin rotations and in general not conserved.

The reason is that a separation of the fermionic, incoherent subsystem from the coherent motion of

the local magnetisation makes the respective momenta ill defined. Both linear and angular momenta

of coherent motion transfer to the incoherent degrees of freedom in the subsystem of fermionic

excitations. He described the dynamics of the soft variable m, the local magnetisation, by the

introduction of fictitious emergent electrodynamic fields. Here we present an analogous treatment

for chiral magnets.

Due to the smoothness of the magnetic structure the wavelength of the conduction electrons is

small compared to the typical scale on which the magnetisation varies. As mentioned in chapter A

the typical lattice constant of the skyrmion lattice in MnSi is ⇡ 200 Å. Therefore one can assume

to a good approximation that the electron’s spin aligns adiabatically with the direction of the local

background magnetisation. We will later discuss the assumption of adiabaticity further and also

mention the most important mechanisms which may lead to violations of this assumption (see also

[88] and [111]).

During their motion through space time the adjustment of the spin causes the electrons to pick up

a geometrical, quantum-mechanical phase known as the Berry phase, see Fig. 4.4. The accumulated

phase really depends on the background magnetisation changes encountered on the concrete choice

of path in space time. Therefore the phase depends on the details of the magnetic configuration

which can be conveniently accounted for by the introduction of a fictitious emergent electrodynamic

potential. In the following derivation we borrow from both [24] and [111].

We consider a simple model Hamiltonian for free spin- 12 electrons moving through a smoothly

varying magnetic structure M(r, t). Here the free electron Stoner model provides a first approxima-
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tion to the electronic structure of an itinerant magnet

H = � ~
2m

r21 � J � · M̂(r, t) (4.8)

where � is the vector of Pauli matrices and M̂ the direction of the local magnetisation M̂ = M/|M|.
The coupling constant J parametrizes the strength of the exchange coupling in the sense that

it is chosen such that the Zeeman splitting between the two spin bands in the above equation

reproduces the quantum mechanical exchange energy and therefore also contains the magnitude of

the magnetisation.

The dynamics is then given by the Schrödinger equation

i~ @t (r, t) =

� ~
2m

r21 � J � · M̂(r, t)

�
 (r, t) (4.9)

One can now trivialise the last term by the introduction of a local unitary transformation which

rotates the local spin quantisation axis to lie parallel to M̂ . This however comes at the cost of

additional (partial) derivatives of the transformation matrix on the right-hand and the first term of

the left-hand side. We introduce the local 2⇥ 2 unitary matrix U(r, t) by

U(r, t) = exp

✓
�i
✓(r, t)

2
� · n̂(r, t)

◆
(4.10)

here n̂(r, t) is the axis of rotation given by n̂(r, t) = êz ⇥ M̂/|êz ⇥ M̂ | orthogonal to both M̂ and

the original axis of spin quantisation (we choose the z-axis here) and ✓(r, t) the angle of rotation.

With the substitution  (r, t) = U(r, t)�(r, t) and after multiplication with U †(r, t) from the right,

Eq. (4.9) becomes

i~@t�(r, t)� qeV e�(r, t) =


(p1 �Ae)2

2m
� J �z

�
�(r, t), with

⇢
V e = �i~/qeU †@tU
Ae = �i~/qeU†rU

(4.11)

Note that V e and Ae are still both 2 ⇥ 2 matrices although they were already given names which

suggest otherwise. qe is an arbitrary constant which (currently) drops out of the equation and will

be given meaning in a moment.

The two components of the Schrödinger equation describe the electrons in the majority and

minority spin band respectively. For slowly varying magnetic structures the ground state of the

fermionic system may be considered as two unequally populated Fermi spheres of electrons with

spins (anti-)parallel to the local magnetisation. The di↵erence in population determines the size of

the local magnetic moment n+ � ni = 2|M|/�~. O↵-diagonal terms in both V e and Ae describe

scattering between these bands. To estimate the strength of these processes one has to take the 3

length scales inherent to our problem into account: (i) the Fermi wavelength of the electrons ⇠F , (ii)

the typical length scale on which the magnetic structure varies ⇠M and (iii) the typical mean free

path ⇠MFP .

We consider the limit in which the Fermi wavelength is short compared to the mean free path.

This limit allows the description of the states of the system in terms of the eigenstates of the system in

the absence of scattering. When the mean free path is much longer than the characteristic size of the

structure, the distribution function f� of electrons with spin parallel/anti-parallel to the background

magnetisation describes the occupancy of the eigenstates of the entire system. This distribution

function f� is independent of the spatial coordinate and we refer to this approach as global. In

the opposite limit, the distribution function is spatially varying and describes the occupancy of
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eigenstates of the local Hamiltonian, which includes the exchange field and the gradient field. We

refer to this approach as local, as the distribution function can vary spatially.

Due to the smoothness of the skyrmion structure and the large distance of skyrmions of the

order of ⇠ 200 Å, violation of adiabaticity and such bandstructure e↵ects are probably small

suggesting that the most important corrections may arise from spin-flip scattering processes which

scatter electrons, e.g., from a majority to a minority band. These spin-flip processes, which can

be interaction- or disorder-induced, arise due to weak spin-orbit scattering and the modulation of

the magnetisation M. While the non-spin-flip scattering length is estimated to be between 10 and

100 Å, the spin-flip scattering length is much larger and therefore probably also much larger than

the distance between the skyrmions ⇡ 200 Å [88].

Consequently we assume that the distribution function describes the occupancy of the eigenstates

of the entire system and that the length of the magnetic moment is a constant |M(r, t)| = M0. The

o↵-diagonal terms in V e and Ae are suppressed and can be discarded rendering both V e and Ae

proportional to �z. This means that an electron in the (upper) majority band collects the opposite

Berry phase than an electron in the (lower) minority band. We can therefore regard V e and the

components of Ae
i as scalar potentials if we agree to define an “emergent charge” qe which takes a

value of 1
2 for electrons in the upper band � 1

2 in the lower band. The similarity to electrodynamics

becomes now apparent. We therefore refer to the potential Ae as the “emergent vector potential”

and V e as the “emergent scalar potential”.

The vector potential induces an emergent magnetic field which is felt by the conduction electron

and for time dependent magnetic structures also an emergent electric field

Be
i = ✏ijk@jA

e
k =

~
2
✏ijk M̂ ·

⇣
@jM̂ ⇥ @kM̂

⌘

Ee
i = �@iV e � @tA

e
i = ~ M̂ ·

⇣
@tM̂ ⇥ @iM̂

⌘
(4.12)

The emergent magnetic field can be understood as an emergent (fictitious) Aharonov-Bohm field,

which accounts for the topology of the adiabatic changes of the spins orientation as the electron

traverses the magnetic structure. Corrections due to non-adiabatic processes are discussed in Refs.

[111, 88]. Furthermore dissipative drag forces acting on the electrons are not taken into account. A

detailed discussion of these and the conditions under which their neglect is can be found in Ref. [24].

Emergent magnetic field

The reader might recognize the expression for the emergent magnetic field above, Eq. 4.12, as

4⇡~ times the winding number density of the magnetic configuration, Eq. 1.6. For a lattice of

antiskyrmions one finds that the winding number density integrates to -1 for each magnetic unit

cell as the magnetization wraps S2 once in spin space for each skyrmion in the lattice. The flux

generated by the emergent magnetic field is therefore quantized to minus one emergent flux quantum

�0 = h/qe = 4⇡~ per magnetic unit cell. Hall measurements are sensitive to both the real and the

emergent magnetic field and therefore allow a direct measurement of the winding number density.

In chiral magnets no other but the A-phase displays a finite winding number density and therefore

a non-vanishing emergent magnetic field. In the following we discuss the experimental detection of

an additional contribution to the Hall signal due to the finite skyrmion density, i.e. the topological

Hall e↵ect (THE).

When a current flows through a conductor with a magnetic field applied perpendicular to the

direction of electric charge carrier motion, they experience a Lorentz force perpendicular to both

the direction of motion and the applied magnetic field. The paths of the charge carriers between
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Figure 4.5: Hall E↵ect measurement setup for electrons. Initially, the electrons follow the curved
arrow, due to the magnetic force. At some distance from the current-introducing contacts, electrons
pile up on the left side and deplete from the right side, which creates an electric field. In steady-
state, the electric field will be strong enough to exactly cancel out the magnetic force, so that the
electrons follow the straight arrow (dashed).

collisions become curved so that moving charges accumulate on one face of the material. Fig. 4.5

shows a typical Hall measurement setup. Here a finite voltage drop across the sample along the y-

direction creates a current. The external magnetic field is applied in the z-direction. For negatively

charged carriers moving along the y-direction the Lorentz force causes a deflection along the negative

x-direction, c.f. Fig. 4.5, and an accumulation of charge on one face of the material. A potential

di↵erence builds up across the x-direction of the sample which is recorded by the applied contacts

as the Hall voltage Vxy. In steady-state, the electric field will be strong enough to exactly cancel

out the magnetic force. The Hall resistivity ⇢xy is defined as the ratio of the Hall voltage Vxy and

the applied current I, ⇢xy = Vxy/I and the transverse resistivity as the ratio between the transverse

voltage Vxx and the applied current I, ⇢xx as Vxx/I. In non-magnetic materials and for small fields

the Hall resistivity increases linearly with the strength of the applied magnetic field Bz. The so

called Hall conductivity is then given by �xy = �⇢xy/(⇢2xy + ⇢2xx).

In chiral magnets one finds several contributing mechanisms to the total Hall e↵ect. The mecha-

nism outlined above is referred to as the normal Hall e↵ect ⇢nxy = R0B which is proportional to the

strength of the applied magnetic field B. The precise value of the coupling constant R0 depends in

multi band systems like MnSi on details of the band structure and the relative size of the scattering

rates. A second contribution arises form the so called intrinsic anomalous Hall e↵ect (IAHE), ⇢anxy.

Here spin-orbit coupling and local electric fields on the length scale of the atomic unit cell may

lead to a dependence of the spin orientation on momentum. The resulting Berry phases may be

described by an emergent magnetic field which acts in momentum space and leads to an additional

contribution to the Hall signal. The IAHE typically scales with the total sample magnetisation M

and the Hall conductivity �xy is independent of impurity scattering. The third contribution might

arise from the topological Hall e↵ect which can be seen as a complementary mechanism to the IAHE.

Also Berry phases collected by the electrons lead to a deflection of the charge carriers but here the

phases are collected in real- instead of in momentum space. As already mentioned, spin textures

where the orientation of the background magnetisation changes on length scales much larger than

the Fermi wavelength of the electron give rise to Berry phases in real space which may be accounted

for by an emergent magnetic field which acts in real space similar to a real magnetic field. As in

the normal Hall e↵ect ⇢topxy is roughly independent of the total scattering rate, but depends in multi

band systems on the relative strength of scattering rates from various bands.
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An important motivation for the study of the THE was to prove the existence of the skyrmion

lattice in the first place. Evidence of the skyrmion lattice phase in MnSi was given by an small angle

neutron scattering study which found a sixfold Bragg peak pattern in a place perpendicular to the

applied magnetic field [72]. However whether this pattern is indeed due to a skyrmion lattice depends

crucially on the phase relationship between the helices that are superimposed. This information is

not available from the neutron scattering data. The THE as a direct probe of the winding number

density would provide the most convincing evidence. Another motivation is due to the hope to

find utility for skyrmions in spintronic applications. The current-driven dynamics of skyrmions are

crucial for the fast manipulation of skyrmion configurations. Recent experiments have identified the

e↵ects of spin transfer torques in the skyrmion lattice of MnSi at tiny electric currents [49, 88, 46].

The size of the THE signal reflects the strength of the coupling between the electric currents and the

spin structure [85] and may prove crucial to the understanding of the origin of spin-transfer torques.

A rough estimate for the size of the THE signal is given by ⇢topxy = PR0Bz
e↵ and can be inferred

from the following reasoning [75]. As the relative strength of scattering rates in di↵erent bands

enters into the coupling constant in the THE in a similar way to the normal Hall e↵ect, one can

simply try to approximate it by R0 ⇡ 1.7 ⇥ 10�10 ⌦ mT�1 in MnSi. Majority- and minority

electrons have opposite emergent charges and therefore collect Berry phases of opposite sign. The

constant P is the charge carrier spin polarisation and depends on a complicated Fermi surface

average. However it may be approximated as the ratio of the ordered magnetic moment µspo to the

saturated moment µsat ⇡ 2.2± 0.2µB in MnSi. In the skyrmion lattice phase the ordered magnetic

moment µspo ⇡ 0.2±0.05µB which gives the estimate P ⇡ 0.1±0.02. To estimate the strength of the

emergent magnetic field Bz
e↵ one has to take the geometry of the skyrmion lattice into account. With

its hexagonal shape the real-space lattice vectors of the skyrmion lattice have length �S/ sin(2⇡/3)

where �S corresponds approximately to the wavelength of the helical state near Tc, �S ⇡ �h ⇡ 165Å

in MnSi. Therefore the size of the unit cell is approximately �2h/ sin(2⇡/3) and the strength of the

e↵ective magnetic field

Bz
e↵ = �h

e

 p
3

2�2S

!
⇡ �13.15 T (4.13)

where the minus sign reflects the fact the emergent magnetic field is antiparallel to the applied

magnetic field. With these numbers one can estimate the absolute size of the THE contribution

⇢topxy ⇡ �20 n⌦ cm.

An important information is the expected temperature dependence of the topological Hall e↵ect.

Since the THE depends on the di↵erence in density of minority and majority electrons which decrease

as the temperature rises, the THE signal is expected to decrease with increasing temperature. The

temperature dependence may even be enhanced due to spin-flip scattering. Since spin-flip scattering

typically increases with increasing temperature, the THE may therefore decrease even faster with

temperature.

The topological Hall e↵ect has been studied before in materials other than chiral magnets. For

instance a topological Hall signal has been reported for three-dimensional pyrochlore lattices [98, 63].

However here the spin structure is due to frustration on short length scales. Therefore the spin

structure can not be described as a continuous field for which topological properties are well defined.

Moreover the topological Hall e↵ect in these materials is related to a non-zero winding number.

The first experimental study which focused on the topological Hall e↵ect in chiral magnets and

consistently explained it in terms of real space Berry phases was performed in 2009 by Neubauer et

al.[75]. Here however we present the results of a study of the same group with improved accuracy

which also obtained information about the pressure dependence of the THE [85]. In this study
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Figure 4.6: Typical magnetotransport data in single- crystal MnSi at a pressure of 7 kbar under
applied magnetic fields up to 1 T for various temperatures. These figures were taken from Ref. [85].

single crystals of MnSi grown by optical float-zoning under ultrahigh vacuum compatible conditions

with typical dimensions of 2.8 mm long, 1 mm wide and less than 0.2 mm thick were studied. They

were oriented such that the magnetic field was applied perpendicular to the platelet and parallel to

the crystal h110i. This axis was chosen since h110i is neither a magnetically hard nor soft axis for

the pressure range studied, i.e. the crystallographic direction is not distinct in any way. Electrical

currents were applied either in the h100i or h110i direction. The resistivity and the Hall e↵ect

were measured simultaneously in a standard six terminal configuration, c.f. Fig. 4.5. An improved

accuracy compared to an earlier study of the Hall e↵ect in MnSi allowed to identify the THE

contribution. For additional details see [75] and [85].

To observe the additional THE signal in the skyrmion lattice phase, magnetic field sweeps at

di↵erent pressures and temperatures were performed. Fig. 4.6 shows the recorded magnetoresistance

⇢xx, Hall resistivity ⇢xy and Hall conductivity �xy = �⇢xy/(⇢2xx + ⇢2xy) as a function of the applied

magnetic field up to 1 T for various temperature T at a pressure of 7 kbar. The temperatures in

the legend are both stated as absolute and reduced values Tref = (T � Tc)/Tc.

At high temperatures, the transverse magnetoresistance ⇢xx, shown in Fig. 4.6a, decreases with

increasing magnetic field. The Hall resistivity ⇢xy, shown in Fig. 4.6b, displays a gradual field

dependence with a pronounced top-hat-shaped enhancement in a small field and temperature range

BA1 and BA2, somewhat larger than the skyrmion lattice phase at ambient pressure. In other words,

with increasing field the enhancement appears abruptly at a field BA1, and vanishes again equally

abruptly at a field BA2. The magnitude of the top-hat-shaped signal contribution is substantially

larger than a similar signal contribution in the skyrmion lattice phase at ambient pressure.

To distinguish if the signal contribution represents an anomalous or a topological Hall e↵ect, we

the temperature dependence of the magnetisation was measured. No change in the magnetisation was

found which would allow to explain the additional top-hat contribution to the Hall signal due to the

intrinsic anomalous Hall e↵ect. To elucidate the origin of the large magnitude of the top-hat-shaped

signal contribution further, in Fig. 4.6c the Hall conductivity �xy = �⇢xy/(⇢2xx + ⇢2xy) ⇡ �⇢xy/⇢2xx
is shown. The top-hat-shaped contribution in �xy grows much stronger for lower temperatures (and

therefore lower ⇢xx ) than the signal in ⇢xy. As discussed earlier, for the intrinsic anomalous Hall

e↵ect, one expects a universal Hall signal in �xy independent of the scattering time ⌧ , while for

the topological Hall e↵ect ⇢xy is independent of ⌧ (such that �xy increases proportional to 1/⇢2xx).

Therefore, these data suggest that the top-hat signal can be identified with the topological Hall
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Figure 4.7: (a) Phase diagram observed under zero-field cooling (zfc). The Skyrmion lattice is
confined to a small phase pocket (red) just below Tc. (b) Phase diagram observed under field cooling
(fc). For field values in the range of the Skyrmion lattice as observed under zfc, the Skyrmion lattice
phase persists under field cooling as a metastable state down to the lowest T (red shading).

signal which is switched on and switched o↵ when the system enters and leaves the skyrmion phase,

respectively.

Concerning the quantitative size of the THE as compared to the naive theoretical estimate made

above a discrepancy between theory and experiment of an order of magnitude was found. In Ref. [85]

several possible mechanisms which could lead to such a strong reduction of the topological Hall signal

are listed. We refer the reader to the reference for a detailed discussion of the various e↵ects.

In conclusion the study allowed to observe experimentally the emergent magnetic field due to

the topologically non-trivial magnetisation configuration in the skyrmion lattice phase as felt by the

conduction electrons

4.3.2 Unwinding of a Skyrmion Lattice

The detailed, microscopic study of B20 compounds has revealed a great variability in their elec-

tronic properties while small angle neutron scattering (SANS) and Lorentz transmission electron

microscopy (Lorentz TEM) has shown that the magnetic phase diagram of those ordering helimag-

netically is rather generic and always contains a Skyrmion lattice phase. These properties render

chiral magnets ideal candidates for the study of topological phase transitions. In the following we

study how the Skyrmion lattice unwinds by means of hedgehog point defects which can be inter-

preted as emergent magnetic monopoles in the language of emergent electrodynamics. Most of the

results in this section have been published in Ref. [67]. Also note the extensive supplementary ma-

terial which contains the real-time dynamics, results of SANS measurements and additional MFM

data.

In section 4.3.1 we emphasised that Skyrmion lines have a one-to-one correspondence with a

quantised (emergent) magnetic flux. Namely, if one integrates the emergent magnetic flux over a

surface which intersects a single Skyrmion line once, one finds depending on the relative orientation

of the surface normal and the core magnetisation of the Skyrmion plus or minus one emergent flux

quantum. Consequently the removal of a Skyrmion from a system is associated with the change

of the total magnetic flux through a surface intersecting the system by one emergent magnetic

flux quantum. Changes in the Skyrmion number are therefore naturally tied to the appearance of
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Figure 4.8: Typical magnetic force microscopy data for Fe1�xCoxSi (x = 0.5) at various magnetic
field strengths B. Red (blue) colours correspond to a magnetisation parallel (antiparallel) to the
line of sight into (out of) the surface. Panels (A1) through (A5): Data recorded as a function of
magnetic field after fc at 20 mT down to T = 10 K. Panel (A1) displays data immediately after fc.
After the initial cool-down, the field was reduced at a fixed temperature of 10 K (A2 to A5). During
this process, the Skyrmions, visible as blue spots, merge and form elongated, linelike structures.
The left inset shows a Fourier transformation of the real-space signal. Panels (B1) to (B5) enlarge
the region marked by the black rectangle in panels (A1) to (A5). Picture taken from Ref. [67].

sources and sinks of the emergent magnetic field. To observe the unwinding of the Skyrmion lattice

in experiment both magnetic field microscopy (MFM) and SANS studies were performed on a bulk

sample of the chiral magnet Fe1�xCoxSi. For more detailed description of SANS and MFM see

appendix B. An extensive discussion of the magnetic phase diagram of Fe1�xCoxSi can be found in

appendix A, however here we briefly repeat the relevant points in order to give a coherent description

of our study.

Iron-cobalt silicide (Fe1�xCoxSi) is a reasonable choice for MFM measurements as the length

scale of the magnetic modulation is ⇠ ⇡ 90 nm which is large compared to the spatial resolution

of the MFM of �x ⇡ 20 nm. Under field cooling (fc), i.e. cooling while keeping the applied field

constant, several important di↵erences arise as compared to the zero field cooling (zfc) phase diagram

(compare Fig. 4.7a and Fig. 4.7b). First for magnetic field values outside the range of the Skyrmion

lattice one finds a paramagnetic to conical phase transition only. The helical phase is completely

missing from the phase diagram. Secondly cooling the system at field value inside the Skyrmion

lattice phase one finds an metastable extension of the Skyrmion lattice phase down to T = 0 with

the same reversible phase boundaries near TC as for zfc but irreversible phase boundaries below

TC . The irreversible phase boundaries of this extension reflect the metastability of the phase. As a

result, the ability to study the destruction of the Skyrmion lattice at a temperature T well below

Tc is helpful for two reasons. First, as the magnetic moment decreases considerably towards Tc

it is important to choose a temperature low enough to achieve a su�cient contrast in the MFM

measurement for unambiguous information about the state of the Skyrmion lattice. Apart from this

technical reason, conceptually, the topological protection mechanism of the Skyrmion lattice relies

on the fact that the magnetic moments are non-vanishing everywhere. Close to Tc strong thermal

fluctuations may weaken the topological protection. A measurement at low T therefore exposes the

generic unwinding mechanism respecting the topological constraints posed by the phase.
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Figure 4.9: Comparison of the Fast Fourier Transforms (FFTs) (left column) of the MFM data
of Fe1�xCoxSi (x = 0.5) as shown in Fig. 4.8, with small angle neutron scattering (SANS) (right
column) as recorded for the same sample. Data were recorded following the same temperature versus
field protocol. Picture taken from Ref. [67].

Fig. 4.8 summarises typical MFM data after sample preparation by field cooling at +20 mT to

10 K. For each B field value a real-space image is shown (middle), an enlarged section (right) and

a fast Fourier transform (left). Subfigure A1 shows a hexagonal pattern with one of the reciprocal

lattice vectors aligned along the h100i direction. The blue dots mark regions of the surface where

the z-component of the magnetisation points in to the sample, the red surrounding an area where

it points out of the sample. The hexagonal pattern of blue dots is clearly identified as Skyrmions

arranged in a Skyrmion lattice forming its characteristic 6-fold symmetry pattern. Upon reducing

the applied magnetic field to +10 mT, subfigure A2 and B2, Skyrmions start to merge at the surface

forming elongated structures. Upon further reducing the applied field and actually reversing it, the

length of the elongated structures increases and the number of Skyrmions decreases until a strongly

defected, stripy phase is reached (subfigure A5). The stripy phase is oriented with its q-vector in

the h100i direction. The MFM requires a recording time of approximately 17 minutes per image. In

comparison, the time scales of the metastable states depicted in the figures are large as compared

to measurement time as we confirmed by waiting for 15 hours at an unchanged B field (B = 0 T)

and recording an essentially unchanged image.

The MFM is a surface measurement and reveals no information about the bulk state of the

system. Our collaborators performed SANS measurements to identify the bulk behaviour of the

system during the B field reduction and to clarify whether the surface- reflects bulk behaviour. For

comparison with the MFM data our collaborators recorded the SANS di↵raction pattern following

precisely the same temperature and field protocol. Data were recorded at the same decreasing field

values for which MFM data were collected. The time between scans was approximately 50 minutes.

Fig. 4.9 shows a comparison of the FFTs calculated from the MFM data (left column) with the

SANS data recorded from the same sample (right column). Overall the qualitative agreement for

the di↵erent field values is remarkable. In a closer comparison, however, the SANS data show a ring
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of intensity absent in the FFTs of MFM data which we attribute to presence of disorder and the fact

the SANS probes the entire sample while the MFM data show only a tiny region. The data suggests

that indeed the surface- reflects bulk-behaviour and the same process that is visible on the surface

reduces the total Skyrmion count: neighbouring Skyrmions start to merge forming more and more

extended elongated structure modulated parallel to the h100i axis.
To investigate the conversion process in the bulk of the sample we turn to numerical simulations.

Due to the topological winding number of the Skyrmion and its implications for the e↵ective magnetic

field, outlined in the last section, we are especially interested in the topological aspects of the

Skyrmion merging. We performed both a Monte Carlo (MC) simulation and also calculated the

real-time dynamics by numerically integrating the LLG equation. The discretised Hamiltonian used

commonly for chiral magnets is

H =� J
X

r

M̂
r

·
⇣
M̂

r+x̂ + M̂
r+ŷ + M̂

r+ẑ

⌘
�B ·
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r
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r

�D
X

r

⇣
M̂

r

⇥ M̂
r+x̂ · x̂+ M̂

r

⇥ M̂
r+ŷ · ŷ + M̂

r

⇥ M̂
r+ẑ · ẑ

⌘
(4.14)

where the M̂
r

is the normalised, local magnetisation vector arranged on a cubic lattice, J the

ferromagnetic (FM) exchange, B the magnetic field which we choose to lie along h100i direction

and D the Dzyaloshinskii-Moriya (DM) interaction. As the ratio of the FM exchange and the

DM interaction determine the pitch of the helix, we fix the wavelength of helical modulation to

10 lattice sites by choosing D/J = arctan(2⇡/10). We perform our simulation on a simple cubic

lattice consisting of 2 · 303 spins with open boundary conditions in [110] direction and periodic

boundary condition in the other directions. The magnetic field is applied parallel to [110] and thus

perpendicular to the surfaces with the open boundary condition. Eq. 4.14 should be understood as

the discretised version of a continuum model. The discretisation of the continuum model creates

however lattice anisotropies for the otherwise rotationally-invariant continuum model [13, 67]. This

can be seen as follows: On the lattice, the FM exchange term in Eq. 4.14 after Fourier transform

reads

HFM = J
X

k

↵
k

M̂(k) · M̂(k), (4.15)

where we defined

↵
k

= � (cos(kxa) + cos(kya) + cos(kza)) (4.16)

Expanding the cosines in the momentum generates all kinds of higher momentum terms; however

if we contrast this with the Fourier transform of the FM exchange term in the continuum model,

we see that there only the quadratic terms are present. This discrepancy is indeed worrisome as

the ordering wave vector Q for our choice of parameters D and J is not small, |Q|a . 1, since we

use relatively small lattice sizes. Consequently, the contribution of the higher order terms is not

negligible and changes the physics of the model quantitatively. In order to compensate for these

induced anisotropies next-nearest neighbour interactions are added to the Hamiltonian. For a more

detailed analysis of the finite size e↵ects see Ref. [13]. With these additional terms one reproduces

the phase diagram of chiral magnets.

In order track the motion of the emergent magnetic monopoles we periodically took snapshots

of the magnetic texture during its temporal evolution and searched for hedgehog point defects by

calculating the winding number of the 8 magnetic moments around each cube of size 1 in our lattice.

A simple triangulation splits each of the 6 faces into 2 triangles. For every one of the 12 oriented
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(a) (b)

Figure 4.10: (a) Total winding number W (or equivalently number of Skyrmions) per area in units
of the helical wavelength �2h for the front and back surface as demermined by MC while reducing
B averaged over 15 cooling cycles.. (b) Number of monopoles (MP) and antimonopoles (AMP) per
volume in units of �3h averaged over 15 cooling cycles. Picture taken from Ref. [67].

triangles we compute the solid angle spanned by the three magnetic moments at its vertices, M̂i,

i = 1, 2, 3 using the Oosterom and Strackee algorithm [106]

tan

✓
⌦

2

◆
=

M̂1 ·
⇣
M̂2 ⇥ M̂3

⌘

1 + M̂1 · M̂2 + M̂2 · M̂3 + M̂3 · M̂1

(4.17)

Summing the contributions from the 12 triangles and diving by 4⇡ gives the winding number of the

cube

n =
1

4⇡

12X

i=1

⌦i (4.18)

which by construction can only take the value +1, 0, �1. Here n = 1 (n = �1) describes a

singular spin configurations where the magnetisation winds one time (minus one times) around the

sphere when surrounding the cube. This construction is the lattice analogue of calculating the

total emergent flux in units of the flux quantum through a closed surface. Therefore configurations

with n = 1 and n = �1 describe “emergent” quantised magnetic monopoles and antimonopoles,

respectively. Using the same method, one can also calculate the winding number on the surface of

the sample which gives the number of Skyrmions threading the surface. We start by outlining the

general setup and results of the MC study and then turn to the real time dynamics.

Monte Carlo study

The MC calculation reproduces the equilibrium phase diagram [13] and captures the metastable

behaviour, consistent with the micro magnetic simulations and our experiments. For the MC study

we track the metastable state of the system by a Metropolis algorithm based on local updates

(random reorientations of randomly chosen spins). For more detailed, including technical information

about the MC study see Refs. [13, 67]. We have found that the maximal lattice size tractable in

reasonable CPU time is given by N = 2 · 303 spins, which already hosts up to nine skyrmion tubes

in total. Therefore we model the system by 42 x 42 x 30 spins coupled to their nearest neighbours

by ferromagnetic exchange and Dzyaloshinsky-Moriya interactions.

The experiments explore the metastability of the skyrmion lattice using a protocol where the

system is cooled at finite magnetic field to a specific temperature and in a second step the applied
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(a) t=30 (b) t=610 (c) t=7500

Figure 4.11: Typical magnetic configurations shown by contour surfaces for equal magnetisation
component in the [001] direction as computed from the sLLG at three di↵erent times with B = 0
and T = 0.58.

field is gradually reduced at fixed temperature. In the MC study we follow the same protocol and

cool the system slowly at |B| = 0.16J down to various temperatures ranging from 0.4J to 0.7J .

The skyrmion lattice phase stays intact although the conical phase has a lower free energy here.

The Monte-Carlo time dynamics of the phase conversion can be calculated by gradually reducing

the strength of the applied field B in steps of �B. A fixed number local updates are performed for

each step. Upon the gradual reduction of the applied field we observe a gradual conversion from the

skyrmion phase into the helical phase. Fig. 4.10a shows the winding number W of the system as a

function of the applied magnetic field B for T = 0.6J ⇡ 0.65TC . The red and blue curve correspond

to the winding number of the front and back of the system respectively (with the understanding that

[001] is the axis pointing towards the viewer). Starting from an intact Skyrmion lattice (W/A = 1)

the winding number reduces upon reduction of B until at B = 0 only a small density of Skyrmions

survives. This small density is associated with a finite density of defects in the helical phase, c.f.

Fig 4.11c (although the data was recorded in the real-time study). A comparison of Fig. 4.10b

shows the recorded a number of monopoles (MP) and antimonopoles (AMP) per volume in units

of �3h averaged over 15 cooling cycles. A comparison of Fig. 4.10b and Fig. 4.10a reveals that the

destruction of the Skyrmion lattice and the subsequent reduction in the total winding number of

the system is indeed accompanied by a proliferation of emergent magnetic monopoles.

Real time dynamics

The phase conversion observed in the experiment is a non-equilibrium process and therefore the time

scales on which the transition takes place is an interesting observable. Unfortunately the artificial

Monte-Carlo dynamics is impossible to relate to real time scales. Several authors have questioned

the rigour of the method and in certain cases has even been shown to give qualitatively incorrect

results [29]. It is therefore important to ensure that a proper real-time dynamics method gives the

same qualitative result. We calculated the real-time dynamics taking into account the precession

dynamics of the spins, their damping and the thermal fluctuations which drive the phase conversion

(see below). This can be achieved by the numerical integration of th stochastic Landau-Lifshitz-

Gilbert (sLLG) equation with the methods outlined in chapter 3.

For the sLLG study we applied the magnetic field along the [001] direction with open boundary

conditions on planes normal to [001] using the same parameter set (system size 42⇥ 42⇥ 30) as in
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Figure 4.12: Schematic illustration of a magnetic configuration describing the merging of two
Skyrmions. At the merging point the magnetisation vanishes in a singular point (black arrow).
The magnetisation configuration around this point (right) can be interpreted as an emergent mag-
netic monopole, which acts like the slider of a zipper.

the MC simulations described above. The Gilbert damping ↵ that describes the magnetic relaxation

we set to ↵ = 0.04. To prepare our initial state we first initialize the equations with a Skyrmion

lattice with a lattice constant compatible with K/J = arctan(2⇡/10) and relax it for for the time

1000/J at T = 0.5J in a constant field B = (0, 0, 0.16)J using our sLLG code. To investigate how

the dynamics of monopoles and antimonopoles is driving the destruction of the skyrmion lattice, we

suddenly switch o↵ the external magnetic field after relaxation at t = 0 to observe the evolution of

the skyrmions, monopoles and antimonopoles. To suppress spurious monopole-antimonopole pairs

on neighboring sides arising from single spin-flip event, we average the magnetic configurations over

a short time interval (�t = 10/J). Then we determine the total number of skyrmions in each layer

parallel to the surface and the position of all emergent magnetic monopoles and antimonopoles using

Eq. 4.17.

Fig. 4.11 shows typical magnetic configurations at three di↵erent times after the quench as

contour surfaces for equal magnetisation component in the [001] direction computed from the sLLG

with B = 0 and T = 0.58. For the earliest displayed time (t = 30) an intact Skyrmion lattice is

visible with the Skymion lines pointing towards the observer. At t = 610 the first Skyrmion has

started to merge. A point defect has entered the system through the front surface (open boundary

condition) and is moving away from the observer along the negative z-axis merging two Skyrmions

in the process. Fig. 4.11c shows the system at t = 7500. A defected helical phase with the wave

vector pointing approximately in the [111] direction can be seen.

Topological considerations

To appreciate the physics of the merging of skyrmions observed both experimentally and numer-

ically both in the MC study and in the real-time dynamics, we employ the language of emergent

electrodynamics introduced in section 4.3.1. The topological nature of Skyrmions and their inter-

action with the electrons is best described in this language. The emergent electric and magnetic

fields are given by Eq. 4.12. The integral of Be/~ over a surface measures the magnetic flux passing

through it. For a surface intersected once by a Skyrmion line, the magnetic flux is exactly given

by one (negative) flux quantum,
R
Bed� = �2⇡/|qe| = ��0. Fig. 4.12 shows two Skyrmions in the

process of merging. The color code is chosen such that red color indicates a z-component of the
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Figure 4.13: Dynamics of monopoles, antimonopoles and skyrmions after a sudden quench based on
sLLG simulations. At t = 0 the external magnetic field ( B = (0, 0, 0.16)TJ ) is suddenly set to 0,
thus destabilizing an initially prepared skyrmion lattice. As a function of time (in units of 1/J) the
distance to the lower surface (z coordinate) of magnetic monopoles (red) and antimonopoles (blue)
is shown as a function of time. The numbers in the figure denote the number of skyrmions, i.e., the
winding number in each z-layer. The plot shows that the phase conversion is driven by the creation
and motion of monopoles and antimonopoles. The black arrow marks an event where a monopole
and an antimonopole annihilate.

magnetisation pointing along the positive z-axis and blue color along the negative z-axis. The green

surface is a contour plot for equal magnetisation component in the z-direction (here M̂z = 0). If we

calculate the flux through the top surface (with the normal pointing along the positive z-axis) the

value of the integral will be �2�0 while it is ��0 for the surface on the bottom. Sliding the top

surface down the negative z-axis, the value of the integral jumps from �2�0 to ��0 as the merging

point is traversed. Due to the topological nature of the Skyrmion a change in the winding number is

always accompanied by a singular field configuration for which the local magnetisation vanishes at a

point in space. To determine the properties of this point one can imagine calculating the magnetic

flux through a closed surface @⌦ containing the singular point and bordering the volume ⌦
I

Bed� =

Z

⌦

rBedr = ��0(N
S
out �NS

in) = ��0 (4.19)

where NS
out (N

S
IN) is the number of outgoing (ingoing) Skyrmions lines (with the understanding that

the observer is looking along the direction of the applied magnetic field). Hence, when two ingoing

Skyrmions merge there must be a singular configuration at the merging point with a winding number

of +1, which creates one emergent magnetic flux quantum. In this sense the merging point carries

a quantised emergent magnetic charge, i.e. it is an emergent magnetic monopole. Monopoles and

anti-monopoles are related to each other by the transformation M ! �M followed by a rotation

by ⇡ around an axis perpendicular to the magnetic field. Note these transformations applied to the

situation depicted in Fig. 4.12 would exchange incoming and outgoing Skyrmions in consistency with

Eq 4.19. The merging of two Skyrmions at the surface of the Fe0.5Co0.5Si bulk sample as observed

in the experimental data, Fig. 4.8, implies that one of two processes has taken place: Either a

monopole has entered into the bulk from the surface of the sample or an anti-monopole from the

bulk has excited the observed surface.

Figure 4.13 shows as a function of time the z coordinate (distance from the lower surface) of

monopoles (red) and antimonopoles (blue). Monopoles are created at the top of the sample and

move down while antimonopoles come from the bottom and move up. Their motion triggers a
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change of the number of skyrmions. The numbers in the figure 4.13 directly give the number of

monopoles in the system. In the initial state there are 15 skyrmions in each layer. This number

is reduced one-by-one by the creation and motion of monopoles and antimonopoles. This perfect

correspondence of skyrmion destruction and monopole motion is enforced by topology and has been

seen in all of our simulations. The black arrow marks an event where a monopole moving down meets

an antimonopole moving up. In this case, the monopole and antimonopoles were zipping together

the same pair of skyrmions. Therefore they annihilate at their meeting point. Our simulations of the

real-time dynamics show clearly that the magnetic monopoles are the driving mechanism of phase

conversion.

Experiment, numerics and topological considerations suggest that the movement of emergent

magnetic (anti-)monopoles underlies the phase conversion to the helical phase. The rate of phase

should therefore be controlled by two important scales: the velocity with which these singular defects

can move through the sample and the rate at which they are created, either as pairs in the bulk

or single monopoles / anti-monopoles at the surface. An interesting question is therefore how these

quantities depend on the system parameters. We turn to this question in section 4.3.3 below. A

model of the creation process for the monopoles and for the forces acting on the them would allow

to make predictions about the rate of phase conversion which could be compared to experiment.

In Ref. [99] Takashima and Fujimoto investigate the e↵ect the merging of two Skyrmions has on

conduction electrons by calculating induced electric currents. They obtain an adiabatic current which

is dissipationless, and dissipative currents driven by the e↵ective electromagnetic fields including the

e↵ect of spin-orbit couplings. They find that a moving monopole at the merging point turns out

to have both electric charge and magnetic charge, which is likely have observable consequences in

experiment, too.

It is instructive to compare the emergent magnetic monopoles discussed here with the magnetic

monopoles considered in spin ice mentioned above. Monopoles in spin ice are sources of the “real”

magnetic H-field, but their magnetic charge is not quantised and depends on microscopic details. By

contrast, the emergent monopoles that we identify here are sources of the emergent magnetic field

that follows Dirac’s quantisation condition for monopoles; i.e., they carry one quantum of emergent

flux. Furthermore, in spin-ice at zero magnetic field, the monopoles are “deconfined”; i.e., it requires

only a finite amount of energy to separate monopole and antimonopole. In the skyrmion phase, the

situation is di↵erent (similar arguments apply to the helical phase): Deep in the skyrmion phase, it

requires a finite amount of energy per length to zip two skyrmions together. Consequently, there is

a linear potential (i.e., a finite string tension) holding monopole and antimonopole together. Only

during the conversion from one phase to the other, the string tension vanishes or becomes negative.

In disordered materials, the string tension may be a random function that competes with potentials

pinning the monopoles.
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Figure 4.14: (a) Initial magnetic configuration in which a Skyrmion along a [1̄1̄2] direction is embed-
ded into a helical phase. (b)-(d) The Skyrmion unwinds by a monopole-antimonopole (MP-AMP)
pair created in the bulk which is pulled apart.

4.3.3 Dynamics and energetics of emergent magnetic monopoles

In this section we study the energetics of and forces between emergent magnetic monopoles. An

understanding of these properties is vital for any theory which aims to describe phase conversions

from Skyrmion lattices to other phases. Motivated by our study in Ref. [67], outlined in the previous

chapter, we investigate here how Skyrmions are destroyed and replaced by the helical phase. For a

quantitative analysis of the process it is beneficial to simplify the setup and consider only how a single

Skyrmion embedded into a helical phase unwinds instead of a dense Skyrmion lattice as in Ref. [67].

This helps to reduce finite-size e↵ects in the numerics: The energy di↵erence between N and N � 1

Skyrmions is due to boundary e↵ects in conjunction with the Skyrmion-Skyrmion interaction a

function of N . Such problems are absent when N = 1 as considered in the following. We use

two numerical methods to address these questions. First, we perform micro magnetic simulations

based on the stochastic Landau-Lifshitz-Gilbert equations (c.f. chapter 3). Second, based on the

Ginzburg-Landau description for chiral magnets (c.f. chapter 2) we use a numerical minimisation

algorithm to determine the mean-field configuration and free-energy of a monopole in a helical phase.

For the micro magnetic simulations we use the discretised Hamiltonian, Eq. 4.14, to calculate

the e↵ective magnetic field Be↵
r

= ��H/�M
r

. D is the coupling constant which parametrizes

the strength of the Dzyaloshinskii-Moriya interaction and we choose D/J = arctan(2⇡/10) in our

simulations. For the Gilbert damping in the LLG we set ↵ = 0.04. The creation of a monopole in

the system requires an amount of energy roughly given by the core energy of the monopole, thus it

is essential to include the e↵ects of thermal fluctuations to allow the system to provide this energy.

We therefore include random, normally distributed, fluctuating magnetic fields consistent with the

fluctuation-dissipation theorem as outlined in chapter 3. The numerical integration of the system

discretised on a lattice of 35⇥35⇥35 spins is performed by Heun’s method. The boundary conditions

in the x and y direction are periodic, those in the z direction are open. The magnetic field B is

applied in the [1̄1̄2] direction and this is also the direction the single Skyrmion line embedded into

a surrounding helical phase is pointing in. The helical phase has its wave vector q pointing in the

[111] direction, normal to the magnetic field. This setup was chosen since the anisotropies due to the

discretisation (c.f. section 4.3.2) lead to a preferred wave vector orientation in the [111] direction for

the helical phase. If the helical phase is oriented any other way, the thermal fluctuations will cause

it to turn slowly throughout the simulation into its preferred direction. The initial configuration
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Figure 4.15: Typical trajectories of MPs (black) and AMPs (red) after a quench to B = 0 (T = 0.7)
obtained from the sLLG simulations. The vertical axis shows the coordinate parallel to the Skyrmion
orientation s, the horizontal axis the time in units of ~/J . The numbers inside the plots indicate
winding numbers of the magnetic texture.

at t = 0 is depicted in Fig. 4.14a. For the definition of the Skyrmion centre coordinate we use the

topological charge density defined as

⇢top(r) =
1

4⇡
n̂(r) · (@xn̂(r)⇥ @yn̂(r)) (4.20)

with n̂(r) = M(r)/|M| which integrates over a surface to the total number of Skyrmion intersecting

the surface. For the system we are considering here ⇢top(r) is normalised when integrated over the

xy plane which allows us to define the centre of the Skyrmion as the centre of the topological charge

R(z) ⌘
Z

dx

Z
dy ⇢top(r)r (4.21)

The red line in Fig. 4.14a tracks this centre of topological charge. The three figures Fig. 4.14b-d

shows an event recorded as temporal snapshots of the numerical data, where the Skyrmion string is

cut into two by the creation of a monopole-antimonopole (MP-AMP) pair in the bulk of the system

with the (anti-)monopole denoted by a + (-) sign in the figure. The movement of these monopoles

towards the edges of the system is accompanied by a change in the winding number and a shortening

of the two Skyrmion lines.

For B = 0 the generic magnetic phase of chiral magnets is given by the helical phase. The insta-

bility of the single Skyrmion state causes monopoles spontaneously created by thermal fluctuations

to unwind the configuration to the helical state. We initialised our system with the configuration

depicted in Fig. 4.14a and calculated the time evolution using numerical integration for an ensemble

of thermal noise realisations. Snapshots of the magnetic configuration (averaged over short times

to reduce noise) were analysed and the position of all monopoles were determined using Eq. 4.17.

Especially for high system temperatures most of the MP-AMP pairs are created by a single, thermal

spin flip event, do not separate and are short-lived. We developed a tracking algorithm which uses a

proximity search to join the monopole positions found in subsequent snapshots into (A)MP trajec-

tories. We filtered these trajectories removing short trails consisting of only a few events. Fig. 4.15

shows typical monopole trajectories extracted from time evolutions determined by numerical inte-

gration of the sLLG for a vanishing magnetic field. The monopoles move predominantly parallel

to the Skyrmion orientation, so we show on the vertical axis of these plots the projection of the

monopole position onto a [1̄1̄2]-axis. Due to topological constraints monopole creation in the bulk

is only allowed as MP-AMP pair creation, c.f. Fig 4.15a. AMPs move ‘up’, MPs move ‘down’ to

reduce the winding number in the system. Single MPs or AMPs can only be create at the surfaces

with open boundary conditions (top and bottom in Fig. 4.14), c.f. Fig 4.15b. The reverse process

where a MP and an AMP come close together and annihilate can be seen in Fig 4.15c and d.
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Figure 4.16: (a) Average pair creation rate �mm̄ and MP velocity V as a function of system tem-
perature T for B = 0. The error bars indicate the standard deviation of the mean. (b) Average pair
creation rate �mm̄ and MP velocity V as a function of B for two di↵erent temperatures T = 0.7 and
T = 0.8.

For the dynamics of the monopoles two quantities are of central importance: The rate �mm̄

at which MP-AMP pairs are created in the bulk and the typical velocity v with which they move

through the system. The rate �Sm/m̄ at which single monopoles are created at the surface is of minor

importance in the limit of large system sizes as the number of monopoles created in the bulk scales

with the third power of the linear system dimension L, while the surface creation scales with L2. The

monopole trajectories extracted from the ensemble of simulated systems allows to calculate averages

for these quantities. Fig. 4.16a shows the average bulk creation rate �mm̄ (black symbols) and the

average velocity of the MPs (green symbols) as a function of system temperature T for B = 0. The

error bars indicate the standard deviation from the mean. Turning to the creation rate first, the

data points can be consistently fitted within the error boundaries with a simple thermally activated

behaviour of the form

�mm̄ ⇠ �0e�
E0

kBT (4.22)

with E0 ⇡ 5.8J for the chosen parameters. The average velocity of the MPs depends only weakly on

temperature: With increasing thermal disorder there is a slight reduction in the velocities. Fig. 4.16b

shows these two quantities as functions of the applied magnetic field B for two di↵erent temperatures

T = 0.7 and T = 0.8. The creation rate of MP-AMP pairs is strongly B dependent and can be

consistently explained (within the error bars) by an exponential dependence of the form, �mm̄ /
e�B/B0 . The exponential dependence could arise from a linear dependence of the monopole core

energy E0 on the applied field B, E0(B) = E(0)
0 +cB. We determined the constant c and the prefactor

�0 exp(E0
0 from the T = 0.7 data and compared the prediction of this model with the observed data

for T = 0.8. While a model based on this assumption gives an explanation of the observed data,

more numerical data is needed to exclude the possibility of an additional, explicit B-dependence of

the prefactor �0 = �0(B). At this point we must therefore assume that the exponential dependence

arises from a combination of the B dependence of the activation energy E0 and that of the prefactor

�0. The average MP velocity also has a strong dependence on the applied field and is suppressed

by a factor of 3 in the considered B range. We expect that for larger values of the magnetic field

the velocity reduces further. The monopole creation rate however decreases exponentially so that

an exponentially increasing simulation time is necessary to gather the needed data. This limits the

possible range of B-values.

A simple, physical picture emerges for the removal of the Skyrmion line defect from the helical

phase. A free energy EC is needed locally to create a MP. The thermal noise can cause a local energy
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fluctuation which is large enough for a MP-AMP pair to be created in the bulk of the system. Once

the pair is created a constant force F = TS , given by the so called line tension, pulls the pair apart.

This line tension has its origin in the free energy per length of the Skyrmion line defect. The system

gains the energy TS �x when the pair separates a distance �x, thus shortening the length of the

Skyrmion string. Alternatively the line tension TS can also be understood as a result of a linear

interaction potential between MPs and AMPs. The E0 we extracted from the sLLG data gives

approximately twice the core energy of the MP. As we will see in the following E0/2 is essentially

given by EC with a small correction included due to a short-ranged, attractive potential between

MPs and AMPs.

We explore the parameter dependence of the core energy EC and the line tension TS near the

critical field strength Bc using an alternative theoretical approach. The energetics of Skyrmions and

MP-AMP pairs can be determined using the Ginzburg-Landau (GL) description of the free energy.

The standard GL functional for chiral magnet [2], Eq. 2.14,

F [M] = �

Z
d3r

h
(1 + t0) M

2 + (rM)2 +M · (r⇥M) +M4 �B ·M
i

(4.23)

with t0 the distance to the B = 0 mean-field critical temperature, t0 = r0J/D2 � 1 / T � TC . For

our calculations we discretice the above continuum model as describe in chapter 2 on a cubic lattice

of size 50 ⇥ 50 ⇥ 50 and determine the mean-field configuration by numerical minimisation using

a conjugate gradient method (for details see appendix C). Our main goal is to determine the free

energy of a MP-AMP pair as a function of their distance d. For an initial configuration with a MP

and an AMP a distance d apart, the minimal energy configuration depends on the sign of the line

tension. For negative TS the pair moves infinitely far apart, thus removing the Skyrmion line defect

from the system altogether. For positive TS the pair will move closer and closer together, eventually

annihilating and leaving the system with a single Skyrmion line defect which extends through the

whole system. In order to study the free energy dependence of the system as a function of the

separation, one needs to fix the positions of the MP and the AMP. This can be achieved by noting

that in the continuum the magnetisation at the core of each MP and AMP vanishes. We therefore

fix their positions by demanding that the magnetisation vanishes at two lattice sites a distance d

apart. This procedure works only as long as the forces on the MPs and AMPs are not stronger than

the pinning energy due to the site with the vanishing magnetisation. This limits the range of the

GL study to no too large values of t0, not too small distances d and magnetic field values close to

BC where the line tension TS vanishes.

Fig. 4.17a shows the results of the numerical minimisation for t0 = �1.6 and for Bz = 0.15 to

Bz = 0.22 (bottom to top). For large distances the energy is linear in the separation d. The slope is

- by definition - the string tension TS , also shown in Fig. 4.17b as the red line (axis to the right). As

expected TS is exactly given by the energy per length of the Skyrmion line defect. The sign of TS

reflects the stability of the line defect and can be seen to change at a critical Bc ⇡ 0.2. For B < BC

the Skyrmion is not stable, TS > 0 and MP and AMP repel each other at large distances. For

B > BC a helical phase with a single Skyrmion line defect embedded has a lower free energy than

a purely helical phase, hence TS < 0 and the MP and AMP attract each other. We checked that in

the sLLG simulation this leads to spontaneous creation of Skyrmions in this regime. It should be

noted that the bulk phase transition is not given by Bc. Due to Skyrmion-Skyrmion interactions in

a dense Skyrmion lattice here the critical B is lower. In Fig. 4.18 the temperature depedence of TS

and EC is plotted. With the increasing |t0|, t0 < 0, one goes deeper into the ordered phase and the

core energy of the MP increases. The line tension TS can be seen to vanish at a critical temperature

tc.
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Figure 4.17: Results obtained from minimisation of the GL free energy (t0 = �1.6) for Bz = 0.15
to 0.22 (bottom to top).
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Figure 4.18: Core energy, EC (left axis), and line tension TS (right axis) as a function of the distance
to TC , t0, for Bz = 0.2. At the dashed line the TS changes sign.

For TS > 0 the system can always reduce its free energy by creating a MP-AMP pair and

separating it them by su�ciently large distance d. The creation rate is however strongly suppressed

by the fact that for small d the large energy needed to create a MP-AMP pair not compensated by

a su�cient gain in the MP-AMP interaction energy. The main contribution to this energy is the

core energy, Ec, of a single MP or AMP which can be obtained by a linear extrapolation of �E in

Fig. 4.17a to d = 0 and taking half of that value. The figure reveals however that once the MP and

AMP come su�ciently close together, they feel a short-ranged attractive potential. We therefore

expect that instead of 2EC , the maximum E0 = maxD�E controls the MP-AMP pair creation rate.

A surprising observation during the analysis of the sLLG data let us to the realisation that the

energetics governing the creation of single MPs at the edges of the system is more subtle. We found

that the creation rate of a single monopole at the surface of the simulated sample (we used open

boundary condition in the z-direction) is of a similar order of magnitude as the creation rate for

MP-AMP pairs in the bulk. Naively one would expect that the energy needed to create a MP-AMP

pair in the bulk is twice as large as the energy needed to create a single (A)MP at a system edge.

There is of course the argument that the first process scales with the size of the system surface

while the latter scales with the volume. For systems of su�ciently large linear dimension L, bulk
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Figure 4.19: (a) Energy of a MP as a function of its distance to an edge of the system with an
open boundary condition. For large distances the force is linear and therefore described by a string
tension. (b),(c) and (d) Schematic representations of calculation we performed, see main text. The
red dots signify (A)MPs, the blue line a Skyrmion line defect and the wiggly lines open boundary
conditions.

creation will always prevail. However for the small systems we were considering in our simulations

this seemed an unlikely explanation. Indeed the above argument misses an important contribution

to the energy: the surface energy of the Skyrmion. Creating a monopole at the edge means that

the Skyrmion configuration is replaced by a helical configuration at the surface of the sample which

is of higher energy. Fig. 4.19b shows the schematics of the two magnetisation configurations whose

energy di↵erence �E leads to the curves in Fig. 4.17a. The first diagram shows a MP-AMP pair

(red dots) separated by a distance d and the Skyrmion line defect (blue line) that they cut into two

pieces. The wiggly lines signify open boundary condition at the two edges of a system of length L.

From this we subtract a system with a full-length Skyrmion line defect. Indeed extrapolation of the

�E(d) to d = 0 gives 2EC . The creation of a single monopole on the other hand at an edge of the

system is depicted in Fig. 4.19c. Here a MP at a distance d from the edge of the sample is shown

in the first diagram and again a full-length Skyrmion is subtracted. The d ! 0-limit does not give

EC . Instead the asymptotic energy costs also include a contribution from the surface energy of the

Skyrmion which turns out to be negative, thus increasing the total energy cost for MP creation at

the surface. One way to determine this energy cost is to calculate for a cube of size L with open

boundary conditions the energy di↵erence between a single Skyrmion (Fig. 4.19c, first diagram) and

the helical phase (Fig. 4.19c, second diagram), �ES(L). �ES(L) grows linearly with L and the

extrapolated value for L ! 0 is twice (two surfaces) the surface energy of the Skyrmion, �S . For

t0 = �1.6, for example, and Bz = 0.16, we find �S ⇡ 0.5. Indeed Fig. 4.19a shows the free energy

of a single MP at a distance d from the edge of the sample (c.f. Fig. 4.19c, first diagram). For the

same parameters (green curve) the extrapolated value for d ! 0 is ⇡ 2.0 which the sum of EC ⇡ 1.5

and �S ⇡ 0.5. The surface e↵ect thus turns out to be of quantitatively equal importance as the

reduction of the MP-AMP pair energy due to the short-ranged attractive potential, c.f. Fig. 4.17a.

For the same parameter the di↵erence between 2EC and E0 is also 2EC � E0 ⇡ 0.5 (Fig. 4.17a).

The cost for pair creation in the bulk (E0 ⇡ 2.2) is of similar magnitude as the single MP creation

on the edge of the sample (�S + EC ⇡ 2.0), thus explaining the observation in the sLLG data.

A quantitative comparison between the sLLG simulation and the GL calculation was not possible

as the former is restricted to a range of magnetic fields su�ciently small compared Bc to ensure

tractable simulation times and the latter to small line tensions TS and thus B fields close to Bc. A
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qualitative comparison is however possible. The velocity V of the monopoles is expected to be given

by the product of the line tension TS and a e↵ective friction constant. We assume a friction constant

which is approximately independent of temperature and applied field. Based on the temperature

dependence of the line tension in Fig. 4.18 and theBz dependence in Fig. 4.17b the expectation is that

the velocity drops with increasing Bz for Bz < Bc and increases upon lowering the temperature. The

sLLG data reflect indeed both of these trends. More dramatically an approximately linear increase

of the core energy EC with the applied magnetic field B should result in an exponential decrease in

the MP-AMP creation rate as is indeed observed in the sLLG data, c.f. Fig. 4.16.

To extent predictions about the parameter dependence of the line tension and the core energy of

monopoles beyond the regimes available from the numerics, one can perform a scaling analysis of the

discretised continuum model. We start with a discussion of the relevant length scales. Three length

scales are of primary important: (i) the lattice discretisation parameter a, (ii) the typical length

scale on which the direction of the magnetisation changes due to spin-orbit coupling, which is given

by the pitch of the helix, �, and (iii) the length scale of which the modulus of the magnetisation

vector changes, which determines the radius of the monopole, RC . For a Skyrmion embedded in

a ferromagnetic phase (see the following chapter) the size depends strongly on the strength of the

applied magnetic field. In the present case where the surrounding phase is helical this is not the

case and we always work in a regime where the Skyrmion radius is given by the helical pitch �.

Due to the weakness of the spin-orbit interaction, the Dzyaloshinskii-Moriya interaction D is weak

compared to the exchange coupling J , and the resulting helical pitch � is large when compared

to the lattice spacing a, a ⌧ �. Close the mean-field transition, |t0| ⌧ 1 (t0 < 0), the length

of the magnetisation modulates on increasingly large length scales and RC ⇠ �. In real systems

however a fluctuation-induced first order transition (Ref. [48]) preempts the mean-field transition

and we therefore do not discuss this regime. Instead we focus on the cases where RC ⌧ � and

|t0| � 1. One reexpress the rescaled free energy, Eq. 2.14, in its original, physical variables, c.f.

Eq. 2.12, to translate the condition |t0| � 1 into a more physical constraint. It assumes the form

a2D2/J ⇡ Tca2D2/J2 = Tc�2SO ⌧ T�Tc with �SO a dimensionless constant describing the strength

of the spin-orbit coupling and TC the mean-field transition temperature. In this regime, the length

scales on which the direction of the magnetisation changes decouples from the scale on which the

amplitude fluctuates. For the description of the magnetisation configuration up to a distance of the

order of RC from the monopole center, it is valid to make the ansatz M(r) = M(r)⌦̂(✓,�) where

⌦̂(✓,�) describes a spin-configuration winding once around the unit sphere and M(r) the variations

of the magnetisation amplitude on the length scale RC . In this limit, the energetics of the MP core

is thus not a↵ected by spin-orbit coupling but reflects the energy needed to suppress the amplitude

of the magnetisation at the core. With two remaining length scales RC and a in the problem, two

regimes have to be distinguished

1. �2SOTc ⌧ Tc � T ⌧ Tc: In this regime the radius of the monopole core is determined by

balancing the term proportional to t0 and quadratic in M and the exchange coupling term.

With M(r) = M(r)⌦̂(✓,�) this suggests t0M(r)2 = t0M(r)2 ⇠ (rM(r))2 ⇠ R2
CM(r)2 and

therefore Rc ⇠ 1/
p
|t0| ⇠ a

p
Tc/(Tc � T ). The core energy of the monopole therefore scales as

R3
ct0M

2 ⇠ Tc

p
(Tc � T )/Tc withM ⇠

p
Tc � T . The string tension TS is the energy per length

of the Skyrmion, which is determined by the ferromagnetic exchange, the DM interaction and

the strength of the applied field. For not so strong magnetic fields the dominant terms are the

ferromagnetic and DM interaction, which are both quadratic in M . The energy density within

the Skyrmion is proportional to 1/�2SO and the radius to �SO. The total energy per length,

TS , is therefore independent of the spin-orbit coupling and given by TS ⇠ cB(TC � T )/a with
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a prefactor cB of the order 1, which depends strongly on the ratio B/M and is negative for

small B as the Skyrmion costs energy when embedded into the helical phase at low B.

Rc

a
⇠
✓

Tc

Tc � T

◆1/2

,
Ec

Tc
⇠
✓
Tc � T

Tc

◆1/2

,
TS

Tc/a
⇠ cB

Tc � T

Tc
(4.24)

2. T ⌧ Tc: For very low T the magnetisation amplitude M saturates and the core radius Rc

locks in at the microscopic length scale a. For simple models without frustration the crossovers

occur simultaneously at a temperature of the order Tc/2. For temperatures small compared to

this, where Rc ⇠ a and M is saturated, also the core energy saturates at a value determined

by microscopic details. It is dominated to have the magnetisation on neighbouring sites in a

hedgehog configuration instead of a parallel alignment. Generically this costs the energy scale

J ⇡ Tc. Therefore we find in full consistency with the above equations

Rc

a
⇠ 1,

Ec

Tc
⇠ 1,

TS

Tc/a
⇠ cB (4.25)

It is important to note that in the first regime, the creation rate of MPs and antimonopoles

(AMPs) / e�Ec/T is not exponentially suppressed. As our analysis of creation rates and the motion

of MPs relied on the existence of only a small number of MPs, it is therefore not surprising that

the analysis of the stochastic LLG equations was restricted to regime 2. Indeed, for the highest

temperature studied (T = 0.8) the time-averaged local magnetization far away from the MP core is

of the order of 0.7, still close to the saturation value of 1 and in the distance of one lattice spacing

from a MP core we find a magnetization of the order of 0.35.

4.4 Conclusion

In this section we have shown that both experiment and numerical calculations suggest that the

merging of Skyrmions underlies the conversion from the Skyrmion lattice to the helical phase. We

have found that the change of topology, i.e. the unwinding of Skyrmions, is governed by the creation

and motion of topological point defects, which we identify as emergent magnetic monopoles and

antimonopoles. The destruction of the Skyrmions is therefore directly associated with the prolifer-

ation of magnetic monopoles. Two factors dominate the creation rate and the dynamics of these

defects: the core energy of monopoles and the string tension. We found that these quantities are key

to understand the time scales for the creation and destruction of Skyrmions in three-dimensional

bulk materials. An open question is how Skyrmions can be created and destroyed in quasi two-

dimensional thin films. Here one could expect that replacing the z axis with the time axis would

result in an instant on picture for the monopoles. Another interesting question is whether phases of

deconfined monopoles exist, where monopoles and antimonopoles proliferate as independent entities.

A candidate might be the metallic state of MnSi under high pressure, where highly unconventional

“partial” magnetic order on intermediate length scales has been observed [80].
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Chapter 5

E↵ective Mass of the Skyrmion

Systems with solitonic solutions are often characterised by a degeneracy of classical vacua. The

soliton solutions are then described by field configurations which interpolate between di↵erent vacua.

They are classified by an associated topological charge, i.e. a winding number, which decomposes

as a superselection rule the physical state space into disjoined topological sectors. Restricting the

physical system to a specific (non-trivial) sector by an appropriate choice of boundary conditions for

the fields, not only in time but also in space, often leads to a ground state, which breaks translational

symmetry. The spontaneous breaking of this symmetry leads to the appearance of zero modes in

the system associated with translations of the solitonic solution. These zero modes have to be

distinguished from the massive excitations in the system. Mathematically they lead to divergencies

in perturbative expansions around the classical soliton solution. However the introduction of a

“collective coordinate” not only solves these mathematical troubles, but also makes sense from a

physical point of view: these zero modes represent infinitesimal, translations which leads to a spread

of the wave function and eventually a reemergence of translational symmetry [96].

In this chapter we restrict ourselves to the topological sector of a single chiral skyrmion in the

ferromagnetic background. The introduction of a collective coordinate will provide the mathematical

foundation for the particle interpretation of the skyrmion. In the first part of this chapter, section

5.1, we study how massive fluctuations lead to additional terms in the e↵ective equations of motion

for the particle coordinate. The fluctuation eigenstates will fall into two categories: (a) scattering

states (“soliton + meson”) and (b) intrinsic, localised excitations (“excited soliton”). This generates

an e↵ective mass for the skyrmion even at T = 0, a quantum mass. This project is a joint e↵ort in

collaboration with Markus Garst.

In section 5.2 we study the temperature induced fluctuation statistics of the collective coordinate

numerically. These fluctuations are responsible for the di↵usion of the soliton’s position. The analysis

of the velocity-velocity correlation function allows to reconstruct the full frequency dependence of

the e↵ective equations of motion for the skyrmion at finite temperature T and finite Gilbert damping

↵.

5.1 Quantum Mass of the Skyrmion

Before we outline the theory for the skyrmion it is instructive to remember how the collective

coordinate approach and the emergence of an inertia term shows up in a simplified case. For this we

will start with a �4 field theory in (1+1) dimensions possessing a soliton like solution. Subsequently

we will turn to the case of a skyrmion in a chiral magnet.
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5.1.1 E↵ective mass in the �4 field theory

Here we follow Ref. [96] and consider a �4 theory in (1+1) dimensions. The Langrangian of the

system is given by

L[�] = 1

2
@µ� @

µ�� 1

2
m2�2

�
g2�2 � 1

�
, (5.1)

where �(x, t) is a real scalar field, m is “mass” term for the field � and g parametrizes the strength

of the interaction. Although the �2 term is also referred to as a mass term it is not what we are

after. This term determines (conjunction with �4 term) the modulus of �. We are looking for the

e↵ective dynamical mass of solitonic solutions. After rescaling � ! �/g it becomes apparent that

g2 plays the same role as ~ and the latter can be absorbed therein,

Z =

Z
D[�] exp

✓
i

g2

Z
dx dtL[�]

◆

L =
1

2
@µ�@

µ�� 1

2
m2�2(�2 � 1). (5.2)

Here the degenerate vacua are simply given by �0 = ±1. Solitonic solutions therefore exists which

interpolate between these two vacua at spatial infinity, i.e. x = �1 to x = 1 and a winding number

classifies them. The simplest topologically non-trivial, classical configuration �0 is given by a static

solution of the Euler-Lagrange equations of Eq. (5.2),

�@2x�0(x)�m2�0(2�
2
0 � 1) = 0. (5.3)

These solutions break the translational symmetry hence necessitating the introduction of a collective

coordinate. As already mentioned a zero mode appears corresponding to infinitesimal, collective

translations ⇠0(x) ⇠ @x�0(x) of the classical field configuration �0(x).

A collective coordinate R(t) for the fields � is introduced through

�(x, t) = �(x�R(t), t) (5.4)

In addition one considers the massive fluctuations ⇠(x, t) around this classical configuration which

can be expanded in a basis of eigenfunctions ⇠n(x),

⇠(x, t) =
NX

n=1

an(t)⇠n(x). (5.5)

The eigenfunctions ⇠n(x) and corresponding eigenvalues ✏n are defined by

�@2x⇠n(x) +m2�(2�2 � 1) = ✏2n⇠n(x) . (5.6)

which can be retrieved from an expansion of the action, Eq. (5.2), up to second order in the fluctu-

ations. With this ansatz the Lagrangian of the system becomes

L0 =
1

2
�̇2 � Ṙ�̇�0 � 1

2
(1� Ṙ2)�02 � 1

2
m2�2(�2 � 1). (5.7)

This equation only depends on R due to the arguments of the �0s, namely, x - R(t). This depen-

dence can be removed by a suitable reparametrisation of the spatial integration. Eq. (5.7) is then

independent of R but not of its first derivate Ṙ. From the third term in Eq. (5.7) we can see that

in case of this particular field theory an inertia term for the collective coordinate R(t) is already

generated in 0th order in the fluctuations, i.e. �(x, t) = �0(x�R(t)),

1

2
M0Ṙ

2 (5.8)
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Figure 5.1: The geometric meaning of the Berry phase:
R �
0
d⌧

h
1� cos ✓(⌧) �̇(⌧)

i
simply measures

the solid angle enclosed on S2 by the closed path n̂(⌧).

with the rest mass given by

M0 =

Z
dy�0

2
0(y). (5.9)

The overall philosophy carries over to the case of chiral magnets and skyrmionic solitons therein.

However an important di↵erence should be mentioned from the outset: In what follows no inertia

term will appear at 0th order in the fluctuations; instead we have to carry out the analysis up to

second order. This stems from a structural di↵erence in the dynamical terms of the action. While

in the above case the dynamical term is second order in the time derivative, for spin systems, like

chiral magnets, it is given by a Berry phase term with a single time derivative instead.

5.1.2 Model and skyrmion solution

To study the e↵ective dynamics of a single skyrmion in a ferromagnetic background we consider a

two-dimensional magnetic system described by the Euclidean action

S =

Z �

0

d⌧

Z
d2r (Ldyn + Lstat) (5.10)

where ��1 = kBT . The Langrangian comprises two parts, a dynamical term Ldyn and a static

contribution

Lstat =
"0
2

h
(@↵n̂i)

2 + 2Q✏i↵j n̂i@↵n̂j � 22(n̂iĤi � 1)
i
. (5.11)

Here and in the following we use greek indices for two dimensional vectors, ↵ = 1, 2, and latin indices

for three dimensional vectors, i, j = 1, 2, 3. As chiral magnets are characterized by a hierarchy of

energy scales we use the strongest one, the spin sti↵ness, to set the typical energy scale "0. The

strength of the spin-orbit induced Dzyaloshinskii-Moriya interaction is parametrized by Q > 0 which

we choose here to be positive.  > 0 measures the strength of the magnetic field H = µ0✏0
2

m Ĥ with

m the length of the magnetization m = mn̂ and µ0 the vacuum permeability. The energy of the

Zeeman term is measured relative to a static, field polarized magnetization configuration n̂(r) = Ĥ.

In the following we will assume that the applied magnetic field is a static field, orthogonal to the

two-dimensional system, Ĥ = ẑ. The dynamical part of the Lagrangian is given by the Berry phase

term,

Ldyn = � i

a2
~A(n̂)

d

d⌧
n̂ (5.12)

where a is the typical distance between the magnetic moments. The geometric meaning of the Berry
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phase is despicted in Fig. 5.1. Here ~A(n̂) is a gauge potential of a magnetic monopole charge located

at the center of S2,

✏ijk@ ~Aj/@n̂i = n̂k . (5.13)

Since the bosonic fields n̂(⌧) fulfill the boundary conditions n̂(0) = n̂(�) they describe closed paths

on S2. The Berry phase term is proportional to the solid angle subtended by the surface whose

boundary is given by the loop n̂(⌧).

The dynamics of a classical magnet are described by the Landau-Lifschitz-Gilbert equation which

may be derived from the action Eq. (5.10) by taking the Euler-Lagrange equations and subsequent

analytic continuation

@tn̂(t) = n̂(t)⇥ �H[n̂]

�n̂
(5.14)

where the Hamiltonian H[n̂] is given by the static part of the Lagrangian
R
d2r Lstat[n̂].

In the following we will consider the limit of small spin-orbit coupling, i.e. Qa ⌧ 1 is a small

parameter. For large enough  the Zeeman energy is the dominant term in the Hamiltonian and

the fully polarized, static state n̂ = ẑ minimizes the action, Eq. (5.10). As already noted in the

introduction to this chapter, topological charges can be used in the sense of superselection rules to

divide the state space into disjoined subsets. The corresponding winding number is given by

W =
1

4⇡

Z
d2r n̂ · (@xn̂⇥ @yn̂) (5.15)

The ground state lies in the topologically trivial sector, W = 0. We can consider the classical

skyrmion solution n̂s as a large amplitude excitation in the ferromagnetic background. This solution

will be uniquely determined upon supplementing the necessary condition of an extremized action

with suitably chosen boundary conditions for the field configuration, which restrict the system to

the correct topological sector, i.e. W = �1. With the parametrization

n̂s(r) =

0

@
sin ✓(r) cos'(r)
sin ✓(r) sin'(r)

cos ✓(r)

1

A (5.16)

and polar coordinates r = (⇢ cos�, ⇢ sin�)T , a single skyrmion located at r = 0 has

'(⇢,�) = '(�) = �+
⇡

2
. (5.17)

Additionally the polar angle ✓ is a nodeless function of the radius ⇢ only, ✓(⇢,�) = ✓(⇢), with the

boundary conditions

lim
⇢!0

✓(⇢) = ⇡, lim
⇢!1

✓(⇢) = 0 . (5.18)

Substituting this ansatz into the Euler-Lagrange equations of the static part of the action, Eq. (5.11),

we find a second order ordinary di↵erential equation [9], which determines the shape of the function

✓(⇢)

✓00 +
✓0

⇢
� sin ✓ cos ✓

⇢2
+

2Q sin2 ✓

⇢
� 2 sin ✓ = 0 (5.19)

For ⇢� 1 the boundary condition forces ✓ ⌧ 1 and one can expand the trigonometric functions to

find the asymptotic form of the solution. With a similar argument for ⇢⌧ 1 one finds

✓(⇢) ⇡
⇢
⇡ � c1⇢ for ⇢! 0
c2p
⇢e

�⇢ for ⇢! 1 (5.20)
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Figure 5.2

where c1 and c2 are positive constants. The exponential behaviour of ✓(⇢) for large ⇢ identifies

R ⌘ 1/ as the skyrmion radius.

The initial value problem posed by Eq. (5.19) and the small ⇢ asymptotics (✓(⇢0) = ⇡�c1⇢0 and

✓0(⇢0) = �c1 with ⇢0 ⌧ 1) results for arbitrary c1 in solutions with a superposition of an exponen-

tially increasing and an exponentially decreasing function as their large ⇢ asymptotics. By a suitable

choice of the constant c1 one has to ensure that the coe�cient in front of the exponentially increasing

function vanishes in order to have a proper skyrmion solution (lim⇢!1 ✓(⇢) = 0). This numerical

method for solving boundary value problems is called the shooting method as one shoots the param-

eter c1 such that the boundary conditions are satisfied1. Later in this chapter we explain at length

the details of this method. Substituting the solution into the static part of the Lagrangian density,

Eq. (5.11), and integrating over space, one finds the saddle-point action S(0)
s = �Es = �"0E(2/Q2)

with Es the energy of the skyrmion solution. The dimensionless function E determines the energy de-

pendence of the skyrmion solution on the dimensionless parameter combination 2/Q2 = 1/(R2Q2)

and is shown in Fig. 5.2a. For 2/Q2 & 0.8 the energy is positive indicating that the skyrmion

should be understood as an excitation in the ferromagnetic background. For smaller  a negative

energy indicates an instability of the system towards a proliferation of skyrmions. As  = 1/R there

is a maximum radius that the skyrmion can have without violating this excitation picture. In this

chapter we restrict the discussion to the case 2/Q2 & 0.8.

For the parametrization of small amplitude fluctuations around the static skyrmion solution we

introduce a local coordinate system

ê1 = � sin' êx + cos' êy

ê2 = � cos ✓ cos' êx � cos ✓ sin' êy + sin ✓ êz

ê3 = sin ✓ cos' êx + sin ✓ sin' êy + cos ✓ êz (5.21)

The vectors ên, n = 1, 2, 3, form a dreibein with ê1 ⇥ ê2 = ê3 and ê3(r) locally pointing in the

direction of the static skyrmion solution n̂s(r) = ê3(r), see Fig. 5.2b. Translational invariance

is spontaneously broken by the skyrmion: the system is invariant with respect to the choice of its

position and therefore the fluctuation spectrum contains two zero modes associated with translations

of the skyrmion along the x- and y-axis. These modes will be accounted for by the introduction of

a two-dimensional collective coordinate R. The remaining massive modes are represented by the

1

In this metaphorical picture the solution of IVP would correspond to projectile’s trajectory.
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two-dimensional, real-valued vector field ~� = (�1,�2). Explicitly the fluctuations are parametrised

as (summations over repeated indices implied)

n̂(r, ⌧) = ê3(r�R(⌧))
q
1� ~�2(r�R(⌧), ⌧) + ê↵(r�R(⌧))�↵(r�R(⌧), ⌧) . (5.22)

In the following we want to study the influence of massive fluctuations on the e↵ective dynamics of

the collective coordinate R(⌧), which defines the skyrmion position in a particle-interpretation. The

program is to expand the Euclidian action, Eq. (5.10), up to second order in the massive fluctuation

field ~�(r, ⌧). Expressing the fluctuation field in a suitable eigenbasis allows to perform the resulting

Gaussian integral, which generates new terms for the e↵ective action of the collective coordinate

R(⌧).

5.1.3 Fluctuation spectrum and scattering phase shifts

We now expand the action, Eq. (5.10), up to second order in terms of the fluctuation fields �↵. The

resulting eigenvalue problem (EVP) yields the excitation spectrum.

Zeroth order in massive fluctuations �↵

Ignoring the presence of fluctuations and hence assuming a rigid skyrmion leads to equations of

motion for the centre coordinate R known as the Thiele equations [102]. The Lagrangian assumes

the form L(0) =
R
d2r L(0) with

L(0) = "0E(2/Q2)� 1

a2
A(R)i

d

d⌧
R . (5.23)

We already encountered the first term as the energy cost of the static skyrmion solution, Fig. 5.2a.

This term is independent of R and hence does not contribute to the equations of motion. The second

contribution originates from the expansion of the Berry phase term, Eq. (5.12), and describes the

coupling of the skyrmion located at R to an emergent gauge field A↵(R). The gauge field is given

by

A↵(R) = �
Z

d2r ~A(ê3(r�R))@↵ê3(r�R). (5.24)

Since A↵(R) is a static gauge field the associated electric field @⌧A(R) vanishes. The emergent

magnetic field however is finite and given by

✏z↵�
@

@R↵
A�(R) =

Z
d2r n̂s(@xn̂s ⇥ @yn̂s)

= 4⇡W (5.25)

where we recognized the expression for the winding number of the magnetization W . For the single

skyrmion solution W = �1. Taking the Euler-Lagrange equations of the Lagrangian, Eq. (5.23), we

arrive at the classical equations of motion

G⇥ dtR = 0 (5.26)

with the gyro-coupling vector G = �4⇡êz and thus reproduce the Thiele equations. Eq. (5.26)

describes the motion of a massless, charged particle with a Lorentz force acting on it due to an

e↵ective, quantized magnetic field G.
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First order in the massive fluctuations �↵

There are two kinds of terms first order in the fluctuation field �↵: those linear in both the fluctuation

fields �↵ and the collective coordinate Ṙ and those that do not contain any Ṙ. The latter ones vanish

by construction as the single skyrmion is the classical field configuration that extremizes the static

action, i.e. Ṙ = 0. By calculation one can also confirm, that the coupling term between massive

fluctuations and the collective coordinate R linear in the fluctuations vanishes.

Second order in the massive fluctuations �↵

Expanding the Lagrangian density in second order in the fluctuation field � one finds after some

algebra

L(2) =
1

2a2
�↵⌧

y
↵�@⌧�� +

1

2a2
�↵H̃↵��� + L(2)

int (5.27)

where ⌧y is the second Pauli matrix and the expression for H̃↵� is given in the appendix D. The

first term originates from the expansion of the Berry phase term Eq. (5.12). Due to translational

invariance the Lagrangian L(2) only depends on the collective coordinate R through the combination

r � R and its velocity Ṙ. One can therefore eliminate the explicit R dependence2 by a change of

integration variables r�R ! r, e↵ectively assuming a comoving frame of reference.

The Euler-Lagrange equations of Eq. (5.27) have the form of a two-component Schrödinger equa-

tion. The two components in this equation correspond to the two fluctuation directions: The upper

component describes fluctuations along a direction towards or away from the skyrmion centre and

the lower component along a direction orthogonal to both the aforementioned and the local mag-

netisation direction of the static skyrmion solution, c.f. Fig. 5.2b. The last term in Eq. (5.27), L(2)
int ,

describes the coupling between the massive fluctuations �↵ and the collective coordinate R(t). This

term will generate additional contributions in the e↵ective action of the collective coordinate once

the Gaussian integral over the massive fluctuations is performed. One can simplify the interaction

term L(2)
int further with the help of the unitary transformation

~ = U †~�, U =
1p
2

✓
1 1
i �i

◆
(5.28)

with U�1 = U†. Here we introduce a new complex, two-component field ~ . Since ~� is a real-valued

field the new fields ~ possess the symmetry

~ ⇤ = UT ~� = ⌧xU †� = ⌧x ~ (5.29)

The Lagrangian now assumes the simplified form

L(2) =
1

2a2
~ †⌧z@⌧ ~ +

1

2a2
~ †H ~ + L(2)

int (5.30)

with the transformed Hamiltonian H = U†H̃U given by

H↵� = "0a
2
h
� �↵�r2 + 2⌧z↵�

✓
cos ✓

⇢2
�Q

sin ✓

⇢

◆
i@� + 2 + �↵�v0 + ⌧x↵�vx

i
. (5.31)

with r2 = @2⇢ + (1/⇢)@⇢ + @2�/⇢
2 and ✓ in the above equation is ✓ = ✓(⇢) the polar profile function

of the static skyrmion solution.

2

The velocity dependence

˙R remains! Note also that in the first term @
⌧

is only a partial derivative. There is an

additional time dependence of �
�

through its argument r�R(t) which generates a term proportional to

˙R, however

that term is contained in L(2)

int

.
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The scattering potentials v0 and vx are exponentially localized at the skyrmion location (c.f.

Fig. 5.3a) and given by

v0 =
3(cos(2✓)� 1)

4⇢2
� 3Q sin(2✓)

2⇢
+ 2(cos ✓ � 1)�Q✓0 � ✓02

2

vx =
sin2(✓)

2⇢2
+

Q sin(2✓)

2⇢
�Q✓0 � ✓02

2
. (5.32)

They only depend on the radial component ⇢. The potential vx stems from the expansion of the DM

interaction term and is the only one that couples the two components of the Schrödinger equation.

The interaction between the collective coordinate R and the massive modes  ↵ is given by

L(2)
int = � 1

2a2
~ †�� ~ id⌧R� . (5.33)

where interaction vertex assumes the simple form

��↵� = �⌧z↵�i@� � �↵�
cos ✓

⇢
�̂� . (5.34)

and we have defined the di↵erential operator @� = ⇢̂�@⇢ + �̂�(1/⇢)@� where ⇢̂T = (cos�, sin�) and

�̂T = (� sin�, cos�). In summary we the expansion we found has the following structure

L =

Z
d2r L(0)

| {z }
reproduces
Thiele’s
equations

+

Z
d2r L(1)

↵  ↵

| {z }
vanishes

+

Z
d2r  †

↵G
�1
↵� �

| {z }
yields fluctuation

spectrum

� 1

2a2

Z
d2 †

↵�
�
↵� �

d

d⌧
R�

| {z }
coupling between fluctuations and

collective coordinate R

+O( 3)

Normal modes of the fluctuation matrix

In the following we want to study the excitation spectrum of the massive fluctuations. This will

provide us with a suitable eigenbasis to expand the fluctuating fields into. We therefore want to

find the eigenfunction spectrum of the third term in the above expansion summary (ignoring the

presence of the fourth term which is also quadratic in the fluctuation fields however couples them

to the collective coordinate). A Fourier-Laplace ansatz for the complex time dependence of the

fields ~ (⌧) =
P

n" e
�i!n⌧ ~ "an," allows us to obtain the fluctuation modes as the eigenstates of the

equation

H ~ = "⌧z ~ . (5.35)

The Hamiltonian possesses the following particle-hole symmetry which has important consequences

for the eigenspectrum

⌧xKH⌧xK = H , (5.36)

where K means complex conjugation. In particular if ~ is an eigenvector with eigenvalue " then

⌧x ~ ⇤ is an eigenvector with eigenvalue �✏. Eigenvalues therefore appear always in pairs ±".
The Hamiltonian H↵� depends on the polar angle � only through a partial derivate @�. Therefore

the angular momentum is a good quantum number and we can use it to label the eigenstates. For

this we set ~ = eim�⌘m(⇢). With this ansatz we find H(�i@�) ! H(m) and the eigenvalue equation

becomes

H(m)~⌘m = "⌧z~⌘m (5.37)

78



In the following we limit ourselves to positive energies " > 0 in the following. The eigenvectors with

negative eigenenergies are simply given by ⌧xKeim�~⌘m = e�im�~⇣�m where ~⇣�m = ⌧x~⌘⇤m and

H(�m)~⇣�m = �"⌧z~⇣�m. (5.38)

It is noteworthy that the fluctuation theory presented here bears structural resemblance to the

Bardeen-Cooper-Schrie↵er theory (BCS theory) of superconductivity. If one writes out the trans-

formation Eq. (5.28) explicitly one finds

~ =
1p
2

✓
�1 � i�2
�1 + i�2

◆
. (5.39)

We see that the two components are complex conjugates of each other. One can introduce now a

Nambu spinor (for spinless particles) with a complex field  to represent the  ↵

~ =

✓
 
 ⇤

◆
(5.40)

The presence of the skyrmion creates the coupling potential vx⌧x, introduced above, between the

two components of the Schrödinger equation leading to scattering terms of the form  ⇤
1 2 and  ⇤

2 1,

which are in the Nambu language local, superconducting terms of the form   and  ⇤ ⇤. We will

see later that it is only due to these induced superconducting correlations that we get a finite mass

in the zero temperature limit.

For a localized object such as the skyrmion it is helpful to reformulate the above eigenvalue

problem in terms of a scattering problem. For this we separate the Hamiltonian H(m) into two

contributions, H(m) = H0m + Vm. Here we choose the field polarized state (W = 0) as a reference

state: H0m describes magnon waves on top of a collinear (field-polarised) state scattered by an

exponentially localized scattering potential Vm. Therefore H0m describes the system in the absence

of a skyrmion and is given by

H0m = "0a
2
h
1
✓
�@2⇢ � @⇢

⇢
+

m2 + 1

⇢2
+ 2

◆
� ⌧z

2m

⇢2

i
(5.41)

This expression looks so unfamiliar due to the twist in the coordinate system, see Eq. 5.17. The

skyrmion’s scattering potential Vm is given by

Vm = "0a
2
h
v01 + vx⌧

x + vz⌧
z
i

(5.42)

with

vz = �2m

✓
cos ✓ � 1

⇢2
� Q sin ✓

⇢

◆
(5.43)

and v0 and vx as given in Eq. (5.32). Fig. 5.3a shows the three components of the scattering potential

Vm. They vanish exponentially as ⇢ � 1. The potential vx couples the two components of the

wave function ~⌘ and vanishes quadratically for ⇢! 0 and exponentially for ⇢! 1.

Solutions of the free problem H0m~⌘
(0)
m = "⌧z~⌘(0)m only exist for energies " = "0a2(2 +K2) with

K � 0. They are given by

~⌘(0)m," =

✓
1
0

◆
1p

2"0a2
Jm�1(K⇢) (5.44)

where J⌫ are Bessel functions of the first kind. The solutions ~⌘(0)m," simply describe magnons with a

gapped, quadratic dispersion relation in polar coordinates. They are normalized such that
Z 1

0

d⇢⇢~⌘(0)†m," ⌧
z~⌘(0)m,"0 = �("� "0) (5.45)

79



0 1 2 3 4 5

-1
0
1
2
3
4 v0 vx vz

(a)

-0.25
0

0.25
0.5
0.75
1

0 2 4 6 8 10 12 14

(b)

Figure 5.3: (a) The potentials v0, vx and vz in units of "0 plotted as functions of the dimensionless
parameter ⇢. All three potentials vanish exponentially for ⇢ � 1. (b) Exemplary solution of the
eigenvalue problem, Eq. (5.35), for  = Q andm = 0 in the regime 0 < " < "0a22 using the shooting
method [71]. The numerical solution of the two-dimensional root-finding problem gives " = 0.839012
and c1 = �0.331808. For large ⇢ both components of the eigenfunction vanish exponentially and
therefore the wavefunction describes an internal excitation of the skyrmion.

where we used the completeness relation of the Bessel functions

�(K �K 0) = K

Z 1

0

d⇢⇢J⌫(K⇢)J⌫(K
0⇢). (5.46)

We now turn to the solution of the full scattering problem. Depending on the eigenenergy of the

excitation ", the eigenmodes are either (1) spin-wave scattering states or (2) bound states which

appear as internal excitations of the skyrmion. For energies " > "0a22 one finds scattering states

with a continuum of eigenenergies and oscillating behaviour in the large ⇢-limit, for " < "0a22

internal excitation modes of the skyrmion are found which are exponentially localised.

The full scattering problem can only be solved numerically. We employ the shooting method

[71] to find the solutions. We start by analysing the asymptotics of the eigenfunctions. For small

distances ⇢⌧ 1, the Hamiltonian reduces to

H(m) ⇡ "0a
2
h
1
✓
�@2⇢ � @⇢

⇢
+

m2 + 1

⇢2

◆
+ 2⌧z

m

⇢2

i
(5.47)

where we have omitted all terms with O(�1⇢�1) and above. Notice that the skyrmion essentially

inverts the sign in the linear m term compared to the free Hamiltonian H0m. From Eq. (5.47) follows

the asymptotics of the eigenfunction for small distances

~⌘m ⇡
✓

N (⇢)|m+1|

N c1(⇢)|m�1|

◆
for ⇢⌧ 1, (5.48)

with coe�cientsN and c1. While the coe�cientN is fixed by the normalisation condition, Eq. (5.45),

c1 parametrizes the di↵erent initial value problems (IVPs). c1 has to be chosen such that the solution

of the IVP has the correct asymptotics for ⇢� 1.

For 0 < " < "0a22 the energy spectrum is discrete and all eigenmodes are localised near the

skyrmion centre with exponentially decaying asymptotics for large distances. However for arbitrary

c1 one finds that solutions of the resulting IVP have asymptotics of the form

~⌘m ⇡
✓

A Km�1(
p
"0a22 � ✏⇢) +B Im�1(

p
"0a22 � ✏⇢)

C Km�1(
p
"0a22 + ✏⇢) +D Im�1(

p
"0a22 + ✏⇢)

◆
for ⇢� 1 (5.49)
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where I⌫ are modified Bessel functions of the first and K⌫ of the second kind. For ⇢ � 1, I⌫
shows exponentially increasing asymptotics. Therefore one has to choose the eigenenergy ✏ and the

parameter c1 such that the coe�cients B and D vanish

B(✏, c1)
!
= 0

D(✏, c1)
!
= 0 (5.50)

E↵ectively one needs to solve a two-dimensional root-finding problem which can be easily done on

any computer.

In the energy range " � "0a22 the spectrum is a continuum of spin-wave scattering states

with oscillating large ⇢ asymptotics. Here the root-finding problem simplifies as the large distance

asymptotics of the IVP is given by

~⌘m ⇡
✓

A Jm�1(
p
✏� "0a22⇢) +B Ym�1(

p
✏� "0a22⇢)

C Km�1(
p
"0a22 + ✏⇢) +D Im�1(

p
"0a22 + ✏⇢)

◆
(5.51)

where J⌫ is the Bessel functions of the first and Y⌫ of the second kind. In order to have normalizable

eigenfunctions we have to “kill” the exponentially increasing behaviour of Im�1 by choosing c1 such

that

D(✏, c1)
!
= 0 (5.52)

For any " � "0a22 such a c1 can be found numerically.

It is an important crosscheck that the translational modes of the skyrmion are indeed zero modes

of the Hamiltonian H. The generator of translations along the �-direction is given by r� ê3. With

the help of Eq. (5.21) we find

r� ê3 = �✓0⇢̂� ê2 +
sin ✓

⇢
�̂� ê1. (5.53)

which allows to identify the zero modes in terms of the �’s by comparing coe�cents

�1
zm,� =

sin ✓

⇢
�̂�

�2
zm,� = �✓0⇢̂� (5.54)

Using the unitary transformation Eq. (5.28) we find a zero mode with angular momentum m = 1,

~⌘ zm
1 /

⇣ sin ✓
⇢ + ✓0

sin ✓
⇢ � ✓0

⌘
. (5.55)

The second mode with m = �1 is then obtained via the relation ~⇣ zm
�1 = ⌧x(~⌘ zm

1 )⇤. One can then

check explicitly, that H(1)~⌘ zm
1 = H(�1)~⇣ zm

�1 = 0 using the di↵erential equation obeyed by ✓(⇢),

Eq. (5.19).

Fluctuation spectrum

The energy spectrum for the regime 0 < " < "0a22 (local modes) is shown in Fig. 5.4a. In the

regime of a stable field-polarized state 2 & 0.8Q2, see Fig. 5.2a, we find two bound states in addition

to the zero modes (which are not shown). There exists a bound state with m = 0 for all  and an

additional bound state with m = 2 below 2 . 0.95Q2. Interestingly, the energy of the m = 2 mode

decreases to zero at around 2/Q2 ⇡ 0.57 below which it reappears as a m = �2 mode.

The point where the excitation energy of the m = 2-mode vanishes is noteworthy. The pres-

ence of the skyrmion breaks translational symmetry which leads to the appearance of zero modes
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(b) Phase shifts of the scattering states, numeri-
cally exact (solid lines) and in WKB approximation
(dashed lines) for various angular momentum chan-
nels. For large angular momenta or high energies
the WKB approximation renders satisfying results.

(translational modes in x and y direction) which we treat by introducing the collective coordinate

R. The spin-orbit interaction (in the form of the DM interaction in our Hamiltonian) which allows

for the skyrmion as a metastable solution breaks the separate rotational symmetries in spin and real

space. However even in the presence of a finite magnetic field a symmetry operation is allowed which

rotates spin and real space simultaneously around an axis parallel to the applied field through the

skyrmion core. The vanishing of the eigenenergy of the quadrupolar mode, m = �2, at 2 ⇡ 0.58Q2

probably indicates an instability of the single skyrmion for all 2 . 0.58Q2 towards deformation into

a bimeron as previously pointed out by Ezawa [27]. Fig. 5.5b illustrates the space-time dependence

of the relevant bound magnon modes. The bimeron breaks rotational symmetry by picking out a

certain direction, c.f. Fig. 5.5b. One would treat this point by introducing an additional collective

variable (nematic director) which describes the chosen direction. Additional modes are seen to ap-

pear within the unstable regime, for example, a |m| = 4 bound state and also states with larger |m|
for even smaller values of  which we don’t show here. However the spectrum in this region is not

reliable due to the rotationally invariant skyrmion being the wrong ground state. All bound state

we found do not have any nodes, i.e., the corresponding ~⌘m do not have zeros at a finite distance

⇢. There is nothing in principle that forbids local modes with a node however their energies were

simply so high that they lie in the magnon continuum in the investigated -regime.

In Ref. [60], Lin and corworkers use the Lanczos method for a finite system discretised on a

two-dimensional, simple cubic lattice to determine the spectrum of the internal modes. The results

from this numerical study agree with our results with the noteworthy exception of the zero-mode.

In the Lanczos treatment the translational mode has a nonzero frequency because of the intrinsic

pinning caused by the discrete lattice. The frequency depends on the ratio of the skyrmion size to

the lattice constant and it becomes bigger for higher fields because the skyrmion becomes smaller

[60].

Turning to the regime " � "0a22 now, we find that the scattering states obey the following

asymptotics in the limit ⇢� 1

~⌘m ⇡
✓

1
0

◆
1p

2"0a2
(cos(�m)Jm�1(K⇢)� sin(�m)Ym�1(K⇢)) . (5.56)
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(a) Visualization of the m = 0 excitation mode as a sequence of 4 snapshots throughout
one period of oscillation. The skyrmion shows a deformation where it grows and shrinks
periodically which is why this mode is referred to as the “breathing mode”. This mode
does not break the symmetry of simultaneous rotations of spin- and real-space.

(b) Visualization of the m = 2 excitation mode as a sequence of 4 snapshots throughout
one period of oscillation. The skyrmion is deformed into an elongated shape which
rotates slowly about its center.

Figure 5.5

where we introduced the phase shift �m. The second component is exponentially small (c.f. Eq. (5.51))

and has been set to zero. The above equation allows to extract the scattering phase shifts for the

numerically determined wave functions as a function of the energy ✏. The resulting phase shifts are

shown in Fig. 5.4b. While the dependence of the phase shifts on the angular momentum quantum

numberm and energy ✏ is quite rich for small ✏, the structure of the phase shifts at high ✏ significantly

simplifies.

For high energies, approximate phase shifts can be obtained from the Wentzel-Kramers-Brillouin

(WKB) approximation. The details of this procedure are outlined in appendix D. The resulting

phase shifts are plotted in Fig. 5.4b as dashed lines with a matching color code to compare to the

numerically exact phase shifts. For high energies the agreement is excellent.

5.1.4 Fluctuation-induced inertia terms

In the following we study the terms generated by the massive fluctuations for the e↵ective action of

the collective coordinate R. We start by expanding the fields ~ in terms of normal modes of the

fluctuation Hamiltonian H↵� . We can regard the expansion coe�cients as creation / annihilation

fields for the corresponding excitations. Substituting this expression into the quadratic action S(2)

gives the interaction with the collective coordinate in terms of creation / annihilation fields for which

Wick’s theorem holds. Finally we perform perturbation theory in the interaction S(2)
int to find the

terms for the action of collective coordinate.
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Expansion in terms of normal modes

As already mentioned the original fluctuation fields � are real-valued and therefore after transfor-

mation Eq. (5.28) the fields  obey the symmetry

~ ⇤ = ⌧x ~ . (5.57)

This is reflected in the expansion of the ~ ’s in terms of the normal modes, i.e. the eigenfunctions of

the fluctuation matrix. The expansion takes the form

~ (r, ⌧) =
1

2⇡

X

m

eim�
hX

n

⇣
am,n(⌧)~⌘m,n(⇢) + a†�m,n(⌧)~⇣m,n(⇢)

⌘

+

Z 1

�

d"
⇣
am,"(⌧)~⌘m,"(⇢) + a†�m,"(⌧)~⇣m,"(⇢)

⌘i
(5.58)

where � = "0a22 is the lower bound for the energy of the magnon continuum and K a†m,n = am,n

and K a†m," = am," with K complex conjugation. The first contribution in the expansion expands

in terms of the localised, internal excitation modes. Here m labels the angular momentum quantum

number and n is an additional quantum number which labels the number of nodes in the solution.

However we only found internal modes with n = 0 in the investigated  regime. The second

contribution expands in terms of the extended scattering states. Here the continuous variable "

with the lower bound � parametrizes the energy of the scattering solution. For ✏ < � the large ⇢

asymptotics of the solutions change from oscillating to exponentially decaying.

As a short hand notation we omit the second term in the above expression and agree that the

index of the sum
P

n is either discrete or continuos for the bound and scattering states respectively.

Indeed we find for the complex conjugate of the fields  

~ ⇤(r, ⌧) =
1

2⇡

X

m,n

e�im�
⇣
a†m,n(⌧)~⌘

⇤
m,n(⇢) + a�m,n(⌧)~⇣

⇤
m,n(⇢)

⌘

= ⌧x
1

2⇡

X

m,n

eim�
⇣
a†�m,n(⌧)⌧

x~⌘⇤�m,n(⇢) + am,n(⌧)⌧
x~⇣⇤�m,n(⇢)

⌘

= ⌧x
1

2⇡

X

m,n

eim�
⇣
a†�m,n(⌧)~⇣m,n(⇢) + am,n(⌧)~⌘m,n(⇢)

⌘

= ⌧x ~ (r, ⌧) (5.59)

where in the second equality we setm ! �m and in the third we used ~⇣�m = ⌧x~⌘⇤m and ~⌘�m = ⌧x~⇣⇤m.

One can now substitute the above expansion into the quadratic part of the action S(2) =
R
drL(2)

with L(2) given by Eq. (5.30). For the calculation matrix elements between di↵erent wave functions

are needed
Z 1

0

d⇢⇢~⌘†m,j⌧
z~⌘m,j0 = �j,j0

Z 1

0

d⇢⇢~⇣†m,j⌧
z~⌘m,j0 = 0

Z 1

0

d⇢⇢~⇣†m,j⌧
z~⇣m,j0 = ��j,j0 (5.60)

where in the last line we used ⌧x⌧z⌧x = �⌧z. One finds for the quadratic part of the action

S(2) =
1

2⇡a2
d⌧

X

m,n

a†m,n(@⌧ + "m,n)am,n + S(2)
int (5.61)
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(a) (b)

Figure 5.6: Diagrammatic representation of the contributions to Sint. (a) Diagrams linear in A�,m
j0j

couple the particle-particle (hole-hole) channel to the collective coordinate R. (b) Diagrams linear
in B�,m

j0j couple the particle-hole channel to the collective coordinate R.

Since we expand in terms of normal modes the first part of the action assumes a simple form by

construction, where "m,n is the eigenenergy of the normal mode with quantum numbers (m,n).

The expansion of the part interacting with collective coordinate S(2)
int is a little more tricky. In the

angular momentum representation the interaction vertex ��(�i@�), Eq. (5.34), assumes the form

��(m) = ⌧z
✓
�⇢̂�i@⇢ +

m

⇢
�̂�

◆
� 1

cos ✓

⇢
�̂� (5.62)

Throughout the calculation one needs to calculate integrals of the following form which can be

conveniently expressed using the vectors ê±

Z 2⇡

0

d�ei(m�m0)���(m) = 2⇡
X

�=±1

��,m�m�m0+� ê
��
� , with ê± =

1p
2

✓
1
±i

◆
(5.63)

where we introduced the new vertex operator matrix on the right-hand-side

��,m =
ip
2


�⌧z@⇢ � �

✓
�⌧zm

⇢
+

cos ✓

⇢

◆�
. (5.64)

With this one finds the expansion of the interaction in the normal modes

S(2)
int =

1

2a2
1

2⇡

Z �

0

X

m�

X

jj0

h
A�,m

j0j

i

2

⇣
a�m,j0am+�,j ê

�
� � a†�m,j0a

†
m+�,j ê

��
�

⌘

+ B�,m
j0j i a†m,j0am+�,j ê

�
�

i
id⌧R� (5.65)

with the amplitudes

A�,m
j0j =

�p
2
h~⌘Tm+�,j(⌧

z 2m+ �

⇢
� 1

2 cos ✓

⇢
)~⇣m,j0i

B�,m
j0j =

�p
2
h~⌘Tm+�,j(⌧

z 2m+ �

⇢
� 1

2 cos ✓

⇢
)~⌘m,j0i (5.66)

By now we have collected quite a number of indices. It is helpful to introduce a diagrammatic

language at this point for a clearer presentation of the perturbation theory. The action due to the

interaction term S(2)
int , Eq. (5.65) has three contributions: two linear in A�,m

j0j , complex conjugates of

each other, and one linear in B�,m
j0j . We agree on the following code:

1. Time derivates of the collective coordinate Ṙ are represented by dashed lines.

2. Directed, solid lines mark creation / annihilation fields, where an arrow pointing away from

the vertex signifies a creation field, a†m,j , and towards the vertex a annihilation field, a†m,j .
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(a) (b)

Figure 5.7: (a) The contribution quadratic in A�,m
j0j is also finite at T = 0. (b) The particle-hole

bubble quadratic in B�,m
j0j vanishes at T = 0.

3. The matrix element A�,m
j0j is represented by a circle and the matrix element B�,m

j0j by a triangle.

Fig. 5.6 shows two of three contributions where the remaining diagram is easily constructed from

Fig. 5.6a by reversing the solid line directions.

Second-order perturbation theory in Sint

In order to study how the massive fluctuations am,n modify the e↵ective action of the collective

coordinate R we expand the action up to second order in the interaction Sint

e�S ⇡ e
�
⇣
S(0)+S(2)

0 +S(2)
int

⌘

⇡ e�S(0)
h
1�

D
S(2)
int

E

0| {z }
vanishes

+
1

2

D
S(2)
int S

(2)
int

E

0

i

⇡ e�S(0)

e
1
2

D
S(2)
int S

(2)
int

E

0 (5.67)

where S(0) is the quadratic part of the action without the interactions Sint and

h. . . i0 =
1

Z0

Z
D(a, a†) . . . e�S(0)

(5.68)

with Z0 =
R
D(a, a†) e�

R
d⌧ S(0)

. The trace over S(2)
int vanishes as the terms proportional to A�,m

j0j

are not particle number conserving and those proportional to B�,m
j0j only give a finite contribution if

there is a di↵erence of � = ±1 in the angular momentum of the states right and left.

The expectation value of the square of the interaction Sint takes the form of an inertia term for

the collective coordinate R�(⌧)

1

2

⌧⇣
S(2)
int

⌘2
�

0

=

Z
d⌧

Z
d⌧ 0

1

2
id⌧R�(⌧)M�,�0(⌧ � ⌧ 0)id⌧R�0(⌧ 0) (5.69)

with the mass tensor M�,�0 . The expression for M�,�0 is rather complicated however it simplifies in

the zero temperature limit, T ! 0.

Quantum mass of the skyrmion

Considering the structure of Eq. (5.65) we expect to see three types of contributions to M�,�0 : (a)

those quadratic in A�,m
j0j , (b) those quadratic in B�,m

j0j and (c) those linear in both. Contributions

of the last type vanish as they are not particle number conserving. They consist of either three

annihilation fields am,n and one creation field a†m,n or vice-versa. In the diagrammatic language

this is expressed by the inability to connect the diagram in Fig. 5.6a to the one in Fig. 5.6b.

The diagrams of the first two contributions are given in Fig. 5.7. In the zero temperature limit
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contributions quadratic in B�,m
j0j also vanish as the corresponding diagram, Fig. 5.7b, is a particle-

hole bubble and one takes the expectation value with respect to the ground state which is defined

by the absence of all internal and magnon modes. However the hole-hole version of the diagram in

Fig. 5.7a is finite even at T = 0. It is only due to the local, “superconducting” correlations that his

diagram has a finite expectation value.

Subsequently the expression for M�,�0 considerably simplifies and one finds

MT!0
��0 (i⌦) =

1

2⇡

X

m,�,j,j0

1

8
|A�,m

j,j0 |2
i⌦�⌧y��0 + ("m+�,j0 + "�m,j)1��0

("m+�,j0 + "�m,j)2 � (i⌦)2
. (5.70)

The evaluation of the above expression involves matrix elements A�,m
j,j0 of scatter-scatter, bound-

scatter and bound-bound wave function combinations with relative angular momentum di↵erence

of ±1. If one chooses  & 0.95 Q (here  = Q) only the m = 0 bound state exists below the

magnon continuum, c.f. Fig. 5.4a. Therefore no bound-bound wave function combinations exists

with �m = ±1 and for the bound-scatter combinations only the scattering states with m = ±1 have

to be considered. In Fig. 5.8 the frequency dependence of the analytical continuation of Eq. 5.70 is

shown (blue line). We also separated the contributions from the overlaps for two scattering solutions

(green line) from those of a scattering solution with the bound state m = 0 (red line). The scatter-

scatter contributions peak at a characteristic frequency 2� with � the size of the magnon gap, which

is the minimum energy required to emit two magnons. For  = Q the energy of the m = 0 bound

state is given by ⇡ 0.84�. Therefore magnon-bound state contributions are seen to peak at a slightly

smaller frequency than 2� approximately given by ! ⇡ 1.84� which is the minimum energy required

to excite the m = 0 mode and emit a single magnon. It should be noted that the contributions

from overlaps with the single bound state m = 0 are treated without any truncation. Scattering

modes with |m| 6= 1, do note have any overlap with the m = 0 bound state. The contributions

for the overlap of two scattering wave functions on the other have been truncated. Here only the

lowest angular momentum states are considered with m 2 [�2, . . . , 2]. It turns out that solving the

boundary value problem and calculating the matrix elements A�,m
j,j0 for higher angular momentum

states is numerically more di�cult. Unfortunately due to time constraints we were not able to sort

the problems out before writing this thesis. We expect that the weight of higher angular momentum

states is numerically quickly seen to diminish, however a more refined quantitative investigation is

necessary to properly justify this truncation and left for the future.

A scaling analysis of Eq. 5.70 allows to determine how the quantum mass scales with the radius

of the Skyrmion. The scattering wave functions scale due to the normalisation condition, Eq. 5.45,

like ~⌘m� ⇠ 1
⇢
p
✏
. The matrix elements |A�,m

j,j0 | therefore scale (with the two powers of ⇢ from the

integration) according to |A�,m
j,j0 | ⇠ 1

⇢2✏
1
⇢⇢

2 ⇠ 1
✏⇢ . In the ⌦ ! 0-limit the above expression for the

mass is thus independent of the Skymion radius MT!0
��0 (i⌦ ! 0) ⇠ 1

⇢2✏ ⇠ Q2

✏ ⇠ 1. Thus, the

expectation is to find a number for the mass of order 1. It is therefore surprising that the numerical

value is so small, especially as there does not appear to be a small parameter in the theory which

could explain this. Several points should be mentioned here: First of all, it small numbers of order 1

do exist; there is nothing illegal about ReMT!0
�� (!) being small. Secondly, as already mentioned, the

angular momentum number has been truncated (due to numerical problems) and only magnon states

with m values, m 2 [�2, . . . , 2], have been considered. While it can expected that higher angular

momentum states give smaller contribution, there is strictly speaking currently no justification for

this truncation. One possible scenario is that there is really a conservation law which enforces a

vanishing of the mass for T = 0 and the small number seen here is really a 0. The clarification of

these points is left for future work.
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Figure 5.8: Real part of the diagonal entries of the mass tensor MT!0
�� (!) as a function of the

real frequency ! in the T ! 0 limit evaluated from the lowest angular momentum eigenstates
m 2 [�4, . . . , 3]. The green line indicates the contribution from overlaps of two scattering solution,
the red line from overlaps of a bound and a scattering solution and the blue line the sum of the two.

An interesting question now is: what are the observable physical consequences of the presence of

the mass term? Massive particles in an applied magnetic field are known to give rise to gyro modes

oscillating with the cyclotron frequency. Here the numerical value of the mass is extremely small.

With the cyclotron frequency given by !c ⇠ 2

Re M��(!c)
, one finds that due to the strong suppression

of the mass term at higher frequencies no solution of the equation exists and therefore no observable

cyclotron mode arises below the magnon gap.

5.2 E↵ective Equations of Motion from Micromagnetic Sim-
ulations

Compared to the previous section, here we approach the problem of finding the e↵ective equations

of motion for a single Skyrmion in the ferromagnetic background from a complementary perspective.

The approach presented in the last section could be characterised as a bottom-up approach: Starting

from a microscopic description of the system we determine the eigenfunctions of the system and

by integrating these out we extract the e↵ective system description for the macroscopic degree of

freedom, i.e. the Skyrmion position. This allows for instance to determine which microscopic modes

are especially important for the characterisation of the macroscopics. Although the above approach

yields a wealth of information, it is limited by the di�culty to solve the microscopic problem.

The approach presented in this section can be compared to the Langevin treatment of the Brow-

nian motion. There the central degree of freedom is the position of the Brownian particle. One

does not try to understand and model the microsopic degrees of freedom (the particles that make

up the fluid that the Brownian particle is immersed in) but rather retreats to modelling the statis-

tical properties of the surrounding particle ensemble to the extend that it leads to fluctuations of

the Brownian particle’s position. A statistical analysis of these fluctuations then allows to extract

macroscopically observable properties, e.g. the mean-squared displacement. Our approach for the

e↵ective dynamics of a single Skyrmion in the ferromagnetic background will be very similar. Based

on a symmetry analysis we propose a prototypical form for the equations of motion. Numerical

simulations provide the necessary data for a statistical analysis of collective coordinate fluctuations

and velocity-velocity correlations allow to fix the full frequency dependence of the parameters in the
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equations of motion. In a second step we consider the response of a Skyrmion to time-dependent

driving forces and find interesting screening and anti-screening e↵ects.

5.2.1 E↵ective equations of motion for a single skyrmion

Following Kubo [55] in his seminal work about the fluctuation-dissipation theorem we start with

the deterministic part of the equations of motions for Skyrmion position R and add the e↵ects of

temperature and fluctuations later. The Skyrmion position in the two dimensional-plane is deter-

mined by an x- and a y-coordinate and therefore the equations of motion in the presence of a weak,

time-dependent force F(t) will be of the form

Z 1

�1
G�1(t� t0) ·V(t0) dt0 = F(t) (5.71)

where @tR(t) = V(t) and G�1(t) is the inverse of the real-valued 2 ⇥ 2 Green’s function matrix.

Any real-valued matrix can be expressed as superposition of the matrices 1,�x, i�y and �z. We may

therefore expand G�1(t) = D1(t)1 + Dx(t)�x + Dy(t)�y + Dz(t)�z. The dynamics are invariant

under rotations about the z-axis and particularly for ⇡/2-rotations. Note that rigorously speaking

this symmetry is not supported by the microscopic unit cell in the B20 compounds. However,

since the magnetisation changes only on length scales much larger than the atomic unit cell, the

magnetisation dynamics decouples very e�ciently from the lattice and the ⇡/2-rotations emerge as

an approximate symmetry. Under such a rotation �x and �z go to ��x and ��z and therefore

Dx(t) = Dz(t) = 0. We choose to parametrize D(t� t0) with

D1(t� t0) = ↵D(t� t0) +m(t� t0)@t0

Dy(t� t0) = ↵G(t� t0) + ↵�(t� t0)@t0 . (5.72)

The ansatz for the symmetry adjusted equations of motion assumes the form

Z 1

�1
dt0G(t� t0)⇥ Ṙ(t0) + ↵D(t� t0)Ṙ(t0) +m(t� t0)R̈(t0) + ↵�(t� t0)⇥ R̈(t0) = F(t) (5.73)

where �(t) = �(t)ê? and G(t) = G(t)ê?. Here the ‘gyro-coupling’ G acts as an e↵ective magnetic

field oriented perpendicular to the plane, ↵ is the (dimensionless) Gilbert damping and has been

pulled out of G and � for later convenience. ↵D describes the friction of the Skyrmion and m its

mass. � parametrizes a peculiar type of damping proportional to the acceleration of the particle.

We refer to this term as ‘gyro-damping’ since it describes the damping of a particle on a cyclotron

orbit, which can be either stronger (� parallel to G) or weaker (� parallel to G) than for linear

motion.

Thiele [102] found analytic expressions for G and ↵D under the assumption of a rigid spin texture

M(r, t) = M0(r�R(T )) driven by a static force F [26, 88, 25, 46]. One finds

G = ~ 1

M2
0

Z
drM0 · (@xM0 ⇥ @yM0)

D = ~ 1

M2
0

Z
dr (@xM0 · @xM0 + @yM0 · @yM0)/2 (5.74)

with M0 the amplitude of the magnetisation. From the standpoint of applications in spintronics one

is interested in the fast manipulation of Skyrmions. However for weak but rapidly changing forces the

above approximations are too crude and one needs to include the retardation e↵ects contained in the
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time dependence of the parameters in Eq. 5.73. We will regard 3 possible contributions to the time-

dependent force F(t). For a system at finite temperature the Langevin approach models the impact of

temperature fluctuations on the system by the appearance of random, delta-correlated forces Fth(t)

acting on the collective coordinate R(t) resulting in a di↵usive motion of the Skyrmion. A second

contribution comes from the application of a time-dependent current which leads due to spin-transfer

torques to an e↵ective time-dependent, deterministic force Fc(t) =
R t
�1 Sc(t � t0) · vs(t0)dt0 with

vs(t) the time-dependent (spin-) drift velocity of the conduction electrons. The matrix Sc(t � t0)

describes possible screening-e↵ects of the forces due to retardation e↵ects. The last contribution

we will investigate is due to the application of a time-dependent magnetic field gradient. The

Skyrmion has a finite magnetisation and therefore a magnetic field gradient will exert a force Fg(t) =R t
�1 Sg(t�t0) ·rBz(t0)dt0 on the Skyrmion parallel to the gradient direction. Here possible screening

e↵ects are also taken into account by the matrix Sg(t).

In the following it will be advantageous to describe the dynamics in frequency space. The Fourier

transform of the equations of motion for the driven Skyrmion can be written as

G�1(!)V(!) = Sc(!)vs(!) + Sg(!)rBz(!) + Fth(!) (5.75)

where the small ! expansion of the 2 ⇥ 2 matrix G�1(!) defines the terms on the lhs of Eq. 5.73.

For the resulting dynamics of the driven Skyrmion also the frequency dependence of the rhs will

be very important: the application of external forces excites internal modes of the Skyrmion which

change the dynamics significantly.

In order to determine the matrixG�1(!), we turn o↵ the magnetic gradientrBz and the conduc-

tion electron current and analyse the di↵usive motion of the Skyrmion due to the stochastic, thermal

forces Fth(!). Kubo’s fluctuation-dissipation theorem [55] for generalised systems of Langevin equa-

tions links the strength of these fluctuations to the strength of the dissipative mechanisms inG�1(!).

Kubo defines the Green’s function in the system by

G↵�(!) =
1

kBT

Z 1

0

⇥(t� t0)hv↵(t)v�(t0)iei!(t�t0)d(t� t0) (5.76)

The Fourier transform of the velocity-velocity correlation function is then expressed in terms of the

Green’s function as

hv↵(!)v�(�!)i =

Z 1

�1
dt hv↵(t)v�(0)i ei!t

=

Z 1

0

dt hv↵(t)v�(0)i ei!t +

Z 0

�1
dt hv↵(t)v�(0)i ei!t

= kBT

✓
G↵�(!) +

Z 0

1
(�dt0) hv↵(�t0)v�(0)i e�i!t

◆

= kBT

✓
G↵�(!) +

Z 1

0

dt0 hv↵(0)v�(t0)i e�i!t

◆

= kBT (G↵�(!) +G�↵(�!)) (5.77)

The lhs can be linked to the force-force correlation function using the equations of motion, Eq. 5.73

hF↵(!)F�(�!)i = G�1
↵↵0(!)G�1

��0(�!) hv↵0(!)v�0(�!)i
= kBT G�1

↵↵0(!)G�1
��0(�!) [G↵0�0(!) +G�0↵0(�!)]

= kBT
h
G�1

�↵(�!) +G�1
↵�(!)

i
, (5.78)
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In terms of the low-! parametrisation ofG�1, Eq. 5.72, one finds hFx
th(!)F

x
th(!

0)i = kBT ↵D(!) �(!+

!0) and hFx
th(!)F

y
th(!

0)i = kBT ↵�(!) �(! + !0). Indeed the strength of the mechanism for dissi-

pation is parametrized by the dissipative tensor D(!) and the gyro-damping �(!). This is why we

pulled the Gilbert damping ↵ out of these quantities.

By virtue of Eq. 5.76 it is now possible to reconstruct the full frequency dependence of the

Green’s function by tracking the Skyrmion motion R(t) and analysing the correlation function of

the velocity [55]. The trajectories R(t) can be obtained from numerical simulations of the stochastic

Landau-Liftshitz-Gilbert equation as outlined in chapter 3. We therefore perform micro-magnetic

simulations for a single Skyrmion in the ferromagnetic background at finite temperature for an

ensemble of thermal noise realisations. For all of our simulations we chose a Dzyaloshinskii-Moriya

interaction of � = 0.18J and Bz = 0.0278J . Initially a single Skyrmion is embedded into the

ferromagnetic background, then the time evolution in the presence of the thermal fluctuations is

calculated. For the chosen parameters the ground state is ferromagnetic, thus a single Skyrmion is a

topologically protected, meta-stable excitation. For the extraction of the Skyrmion centre coordinate

we tried two tracking algorithms: (i) tracking of the topological charge density and (ii) tracking the

core of the Skyrmion. The topological charge density is defined as

⇢top(r) =
1

4⇡
n̂(r) · (@xn̂(r)⇥ @yn̂(r)) (5.79)

with n̂(r) = M(r)/|M| and integrates to the total number of Skyrmions in the system. For the

system we are considering ⇢top(r) is therefore normalised which allows us to define the centre of the

Skyrmion as the centre of the topological charge

R ⌘
Z

d2r⇢top(r)r (5.80)

For the case of finite temperature this method can, however, not be used directly. Thermal fluc-

tuations in the ferromagnetic background far away from the skyrmion lead to a large noise to this

quantity which diverges in the thermodynamic limit. A similar problem arises when tracking the

center using the magnetization of the skyrmion.

One therefore needs a method which focuses only on the region close to the skyrmion center.

To locate the skyrmion, we use the z-component of the magnetization but take into account only

points where Mz(r) < �0.7 (the magnetization of the ferromagnetic background at T = 0 is +1).

We therefore use

⇢(r) = (1�Mz(r))⇥[�Mz(r)� 0.7] (5.81)

where ⇥[x] is the theta function. A first estimate, Rest = RV , for the radius is obtained from

RA =

R
A r⇢(r) d2rR
A ⇢(r) d

2r
(5.82)

by integrating over the full sample volume V . Rest is noisy due to the problems mentioned above

but for the system sizes simulated one nevertheless obtains a good first estimate for the Skyrmion

position. This estimate is refined by using in a second step for the integration area only D =�
r 2 R2 | |r�Rest| < r

 
where r is choosen to be larger than the radius of the Skyrmion core (we

use r = 1.3
p
N</⇡, where N< is the number of spins with Mz < �0.7). Thus we obtain a reliable

estimate, R = RD, not a↵ected by spin fluctuations far away from the Skyrmion.

From the resulting R(t), one can directly determine the di↵usion constant of the Skyrmion.

Fig. 5.9b plots the mean-squared displacement h(�R)2it = h(R(t0 + t) � R(t0))2it as a function
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of time t. As expected the motion of the Skyrmion is di↵usive: for large times the mean-square

displacement grows linearly in time h(�R)2it = 2Dt with D the di↵usion constant. It is however

surprising that the di↵usion constant decreases with decreasing damping ↵. Usually one expects rate

of di↵usion to increase when the friction of the Skyrmion is reduced. This puzzling behaviour has its

origin in the gyro-coupling G which acts similar to a magnetic field. In the limit of system without

friction the Skyrmion is completely localised on a cyclotron orbit. The di↵usion constant D can be

expressed as the low-! limit of the Green’s function. Upon noting that 2D = @th(�R)2it = hV ·Vit.
We find with Eq. 5.77 and the low-! parametrisation of G, Eq. 5.72

D = lim
!!0

kBT
↵D(!)

G(!)2 + ↵2D(!)2
(5.83)

The gyro-coupling G surpresses the di↵usive motion. For most materials the dissipative tensor D is

of the same order of magnitude as the gryo-coupling G and the Skyrmion motion is characterised by

both small friction and a small di↵usion constant.

The trajectories R(t) extracted from the simulation data can be used to calculate the velocity-

velocity correlation function hVi(t0 + t)Vj(t0)i. An example is shown in Fig. 5.9a which is obtained

after averaging over t0 with 1000 < t0 < 20000 and 50 di↵erent noise realisations for T = 0.1

and ↵ = 0.1. This allows to analyse the dynamics on shorter time scales. Explicitly the low-!

parametrisation of the inverse Green’s function in frequency space is given by

G�1(!) =

✓
↵D(!)� i!m(!) �G(!) + i↵!�(!)
G(!)� i!↵�(!) ↵D(!)� i!m(!)

◆

By virtue of Eq. 5.77 the frequency dependent mass m(!), gyro-coupling G(!), gyro-damping ↵�(!)

and dissipation tensor ↵D(!) can be determined from the velocity correlation function. Fig. 5.10a

(black, solid line) shows these four quantities as functions of the frequency ! for T = 0.05 but the

dependence on both temperature. G and m are approximately independent of ↵, while the friction

coe�cients ↵D and ↵� are linear in ↵. The gyro-coupling G approaches in the limit G(! ! 0) = �4⇡

for T ! 0 as it should due to the topology of the Skyrmion. The dynamics of the Skyrmion can

be seen to have a strong frequency dependence. A characterisitic frequency seems to be !c ⇡ 0.1

where the gyro-coupling G abruptly drops by a factor of approximately a half and the mass m

practically vanishes. A strong frequency dependence arises when internal modes of the Skyrmion
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Figure 5.10: (a) Dissipative tensor ↵D, mass m, gyrocoupling G and gyrodamping ↵� as functions
of the frequency ! for the di↵usive motion at T = 0.05 (solid black). The red and green curve show
the ‘apparent’ coe�cient for current- and force-driven motion. The error bars reflect estimates of
systematic errors arising mainly from discretisation e↵ects. (b) Dissipative strength ↵D, mass m,
gyrocoupling G and gyrodamping ↵� as functions of the Gilbert damping ↵ for di↵erent temperatures
T .

are excited however this does not seem to be the case here. The upper edges of the spin wave gap

lies at !p = B = 0.0278 and therefore ! = 0.1 lies about 3 times higher in energy than any possible

internal mode. However we have seen in the last section that processes involving the emission of

multiple magnons are of great importance for the mass generation. We therefore conjecture that

such a process is responsible for the appearance of the characteristic frequency.

Both the gyro-damping � and the e↵ective mass m have large numerical values. A simple

scaling analysis of the Landau-Lifshitz-Gilbert equation reveals the origin. We investigate a scaling

transformation, where the radius of the skyrmion is enlarged by a factor ⌘, M(r) ! M̃(r) = M(r/⌘).

The Landau-Lifshitz-Gilbert equation is given by

H[M] =

Z
d2r


J

2
(rM)2 + �M ·r⇥M�B ·M

�
.

The three terms scale with ⌘0, ⌘ and ⌘2, respectively. To obtain a larger skyrmion, we therefore have

to rescale � ! �/⌘ and B ! B/⌘2. This implies that the Be↵ term in the sLLG equation scales

with 1/⌘2 and therefore also the time axis has to be rescaled, t ! ⌘2t, implying that all time scales

are are a factor of ⌘2 longer and all frequencies a factor 1/⌘2 smaller. The temperature remains

unscaled. This implies that when M(r, t) is a solution for a given value of �, and B and G(!)

the corresponding velocity-correlation function of the skyrmion, then M(r/⌘, t/⌘2) is a solution

for �/⌘, B/⌘2 with correlation function G(!⌘2). Accordingly, the ! ! 0 limit and therefore the

gyrocoupling G, the friction constant ↵D and the di↵usion constant of the skyrmion are independent

of ⌘, consistent with the analytical formulas, Eq. (5.74). In contrast, the mass of the skyrmion, m,

and the gyrodamping ↵� scale with ⌘2. They are therefore proportional to the number of spins

constituting the skyrmion consistent with our numerical findings. For the chosen parameters we

find m ⇡ 0.3Nflipm0 and ↵� ⇡ ↵0.7Nflipm0, where m0 = ~2

Ja2 is the mass of a single spin-flip in a

ferromagnet which is 1 in our units. For realistic system parameters of J = 1 meV, a = 5Å and

a Skyrmion radius of 200Å, one finds a typical mass scale of 10�25 kg. The observation that the
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dissipative tensor ↵D is independent of the size of the Skyrmion is counter-intuitive, but can be

understood by recalling that a larger Skyrmion has a smoother magnetic configuration, which leads

to less e�cient damping.

In order to understand how lattice discretisation e↵ects a↵ect the numerical simulations, we

have tested numerically the scaling properties for di↵erent skyrmion sizes and find that all features

are quantitatively reproduced. Small variations on the level of a few percent do, however, occur

reflecting the typical size of features arising from the discretisation of the continuum theory. A

conservative estimate of such systematic discretisation e↵ects for the di↵usive motion is given by the

error bars in Fig. 5.10a (all statistical errors are smaller than the thickness of the line).

Fig. 5.10a reveals that the sign of the gyro-damping constant ↵� is always opposite to that of the

gyro-coupling G. This shows that ↵� describes anti-damping: there is less friction for cyclotronic

motion than for linear motion. If the frequency dependence in Eq. 5.84 is ignored. one finds that

the poles of the Green’s function are given by

! =
1

m2 + �2

h
± (D�� Gm)⌥ i(Dm+ G�)

i
(5.84)

In the small-! limit, the numerical value for � is so large that indeed Dm+ �G < 0. This signifies

that it is invalid to ignore the !-dependence as this would wrongly predict that some oscillations of

the Skrymion are not damped, but grow exponentially in time due to the strong antidamping. The

correct way to test the stability of the system is to calculate the extractable power from the system

for di↵erent driving frequencies. One finds that that no driving frequency exists at which power can

be extracted from the system.

5.2.2 Dynamics of a driven Skyrmion

For possible applications of Skyrmions in spintronics fast manipulations of the magnetic texture are

key to responsive devices. First we study the e↵ects of an oscillating magnetic field gradient rBz(t)

in the absence of thermal fluctuations. The Skyrmion’s large magnetic moment Mz
tot relative to the

ferromagnetic background couples to the field gradient and leads to a force acting on the Skyrmion.

In the static limit the force is exactly given by

lim
!!0

Fg(!) = Mz
totrBz (5.85)

UsingG�1(!) from the analysis of the di↵usive motion, the left hand side of Eq. 5.75 is known and we

can determine the frequency dependence of the e↵ective force Sg(!)rBz(!). For this we add to the

constant magnetic field B(0)
z = 0.0278J a time dependent component of the form bg(x� x0) sin(!t)

with x0 the x component of the initial Skymrion position and determine the resulting Skyrmion

trajectory by numerical integration of the LLG. For our simulations we choose a weak gradient

with bg = 2.5⇥ 10�4J/a. Fig. 5.11a shows the real and imaginary parts of the symmetric coupling

matrix Sg as a function of the driving frequency !. For ! ! 0 one obtains the expected result

lim!!0 Sij
g (!) = �ijMz

tot. Above the magnon gap (! > !p ⇡ B(0)
z , the precession frequency of spins

in the external field) a strong frequency dependence sets in. For the velocity response of the Skyrmion

both the internal dynamics, G(!), and the screening of the force, Sg(!), are equally important,

V(!) = G(!)Sg(!)rBz(!). This means that the determination of the coe�cients describing the

internal dynamics such as the mass of the Skyrmion cannot be extracted from a measurement of

the response to a driving field alone. For a more intuitive understanding of the motion caused by

the application of the field gradient it is instructive to calculate the ‘apparent’ dynamics. Here the

frequency dependence of both the internal dynamics and the screening of the forces is described by

94



0 1 2 3 4 5
t / tp

-400

-200

0

200

400

Mz
tot

600
Re

/Im
 S

g
Re Sg

11

Re Sg
21

Im Sg
11

Im Sg
21

(a) Dynamical coupling coe�cients for the force
driven motion(↵ = 0.2, @

x

B
z

= 2.5 ⇥ 10�4J/a).
In the static limit everything but the real part
of the diagonal vanishes. Re S11

g

(!) however
approaches the total magnetization Mz

tot

as ex-
pected. The error bars reflect estimates of sys-
tematic errors.

0 1 2 3 4 5
t / tp

-4 /

-10

-5

0
` D(0)

5

10

R
e/

Im
 S

c

Im Sc
11

Im Sc
21

Re Sc
11

Re Sc
21

(b) Dynamical coupling coe�cients (symbols) for
the current-driven motion (↵ = 0.2, � = 0.1).
These curves follow almost the corresponding ma-
trix elements of G�1(!) shown as dashed lines.
A deviation of symbols and dashed line is only
sizable for Re S11

c

.

a single matrix G�1
g (!) by Gg(!)Sg(! = 0) = G(!)Sg(!). The matrix elements of G�1

g (!) are

shown in Fig. 5.10a as red, dashed lines. The apparent mass of the Skyrmion in the small-! limit, for

example, turns out to be more than three times smaller than the value obtained from the di↵usive

motion. The importance of screening e↵ects is even more impressive when Skyrmions are driven by

electric currents.

For the field-driven motion spatial discretisation e↵ects lead to a di↵erent source of errors. For

very small field gradients and high frequencies the displacement of the skyrmion is much smaller

than the lattice spacing and the response is a↵ected by a tiny pinning of the skyrmion to the discreet

lattice. For larger gradients, however, nonlinear e↵ects set in and for small frequencies the skyrmion

starts to approach the edge of the simulated area. In Fig. 5.11a, we therefore used for the force-

driven motion rB = 0.0005 for ! < 2!P and rB = 0.0015 for ! > 2!P . Error bars have been

estimated from variations of the numerical values when rB was varied from 0.0001 to 0.0015.

Currents couple to the magnetic configuration both via adiabatic and non-adiabatic spin torques

(c.f. Ref. [100]). Even in the static limit two types of forces on the spin texture are obtained. From

the Thiele approach one finds

Fc(! ! 0) = G ⇥ vs + �Dvs, (5.86)

where the first terms due to adiabatic transfer torques and the dimensionless term � parametrises

the dissipative spin-transfer torque. As shown in section 3.2.2 the case of a Galilei-invariant system

is special and here one obtains ↵ = �. In this limit a solution of the LLG is obtained in the presence

of a time-dependent current vs(t) by M0(r �
R t
�1 vs(t0)dt0 where M0(r) is a solution of the LLG

for vs = 0. The Skrymion follows exactly the external current V(t) = vs(t). The coupling matrix

Sc(!) in Eq. 5.75 is therefore simply given by the inverse of the Green’s function, Sc(!) = G�1(!).

The apparent dynamics, Gc(!)Sc(! = 0) = G(!)Sc(!), therefore become frequency-independent

G�1
c (!) = Sc(! = 0) = �D1 � i�yG with the mass and the gyro-damping exactly zero. For the

current-driven motion errors determined by a scaling analysis are so tiny that they are not shown

in Fig. 5.11b.

Even for ↵ 6= � the above statements hold (approximately) true. The dot-dashed, green line

in Fig. 5.10a shows both a very small apparent mass mc and gyrodamping �c. The gyro-coupling

G and dissipative tensor D are to a good approximation given by their static values. Fig. 5.11b
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compares the inverse of the Green’s function G�1 to the coupling matrix Sc(!). The only sizeable

deviation is observed for Re S11
c (!) for which the Thiele equation predicts Re S11

c (! ! 0) ! �D
and Re G�1

11 (! ! 0) ! ↵D in agreement with our numerical result. As the the apparent mass mc

and the gyrodamping �c vanish in the case ↵ = �, one can expect that they are proportional to

↵� �, at least for small di↵erences. Indeed this is the case as can be seen from Fig. 5.12. Here the

frequency-dependence of mc and �c are shown for di↵erent combinations of ↵ and �. For � > ↵

even negative values of the mass can be obtained (without violation of causality3). Compared to the

force-driven motion or the intrinsic dynamics the numerical values are comparatively small. This

shows that retardation e↵ects remain tiny when Skyrmions are controlled by electric currents.

5.3 Conclusion

Here we have shown that single Skyrmions embedded into ferromagnetic backgrounds in chiral

magnets are characterised by a number of unique dynamical properties which are not easily found

in other systems. Due to the smoothness of their texture their damping is small despite the fact

that they are large composite objects. Despite the small damping their topological nature ensures

an e�cient suppression of the thermal di↵usion by the cyclotron motion and their di↵usion constant

remains small. This indicates that the skyrmion position is stable, an important property for possible

future applications in information storage devices. We also determined the response of Skyrmions to

time-dependent external fields. We found that the frequency dependence of the e↵ective dynamical

parameters (gyro-coupling, di↵usion tensor, gyro-damping and mass) is just as important as that of

the screening mechanisms which determine the coupling to the driving field. Here we found that the

Skyrmion’s motion responds to the time-dependent current without delay or retardation even if the

frequency is high. These findings demonstrate the advantages of skyrmions as information carriers.

It is interesting to compare the findings from the analytical treatment outlined in section 5.1

with those found using the numerical integration of the LLG as outlined in section 5.2. First of

3

The important question when judging whether causality is violated or not is whether modes exists which allow to

extract a positive amount of energy from the system. We have explicitly checked this and found that for no driving

frequency the system becomes unstable in this sense.
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all it should be noted that both approaches predict a strong frequency dependence of the e↵ective

skyrmion mass with a pronounced threshold behaviour around a frequency about two times the

magnon gap: for larger frequencies the mass strongly collapses. At the magnon gap neither quan-

tities in the analytical nor the numerical treatment show any signature which highlights the fact

that single magnon emission/absorption is not an important process in strong contrast to pair emis-

sion/absorption. A quantitative comparison of the two approaches however shows large di↵erences.

Not only is the numerical value completely di↵erent but also the predicted scaling behaviour with

the skyrmion radius is di↵erent (the numerical treatment suggested a linear scaling with the area of

the skyrmion, while section 5.1 suggests a mass that is independent of the skyrmion radius). First,

the results of the analytical study are, at best, preliminary as the truncation of the m quantum

number (due to numerical problems) is an approximation which cannot be justified. It should also

be noted here that the parameter regimes of these two studies are very di↵erent from one another.

While section 5.1 studied the quantum mass at T = 0, the temperature in section 5.2 is much larger

than the magnon gap T � �, which leads to a situation where the skyrmion is surrounded by a

bath of thermally activated magnons. The di↵erent suggested scaling behaviour of the mass with

the skyrmion radius may therefore be attributed to a temperature e↵ect, but further studies are

necessary in order to clarify the situation.
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Appendix A

Materials

The symmetry transformations for materials that crystallize in the B20 structure are described by

the space group P213 with a cubic Bravais lattice [38]. With only 12 symmetry operations this space

group is among the smallest compatible with the cubic lattice crystal system. The point symmetry

at the component sites is C3, the cyclic group of 3-fold 2⇡/3 rotations about an appropriate [111]

axis. The nonsymmorphic group P213 contains in addition 3 screw rotations which involve 2-fold

rotations about one of the three [100] axis followed by an appropriate non-primitive translation

(0, 1
2 ,

1
2 ).

Among these MnSi became the first chiral magnet in 2009 where a lattice of chiral skyrmions was

observed by neutron scattering [72]. The series of isostructural B20 transition metal silicides TSi

shows great variability in their electronic properties and was therefore ideally suited to study whether

skyrmion lattices appear generically in magnets without inversion symmetry. Indeed in 2010 the

same group discovered a Skyrmion lattice phase in the doped semiconductor Fe1�xCoxSi [73, 114].

The Skyrmion lattice phase in this material was also later confirmed by real-space images using

Lorentz transmission electron microscopy (Lorentz TEM) [114]. Since then the Skyrmion lattice has

been observed in a variety of di↵erent materials both as a bulk phase as well as in thin films. In this

chapter we give an overview of the variability among the materials exhibiting the Skyrmion phase

and give brief descriptions of four exemplary materials: MnSi (2009, Ref. [72]), Fe1�xCoxSi (2010,

Refs. [73, 114]), FeGe (2010, Ref. [113]) and Cu2OSeO3 (2012, Ref. [90]).

A.1 Iron-Cobalt-Silicide - Fe1�xCoxSi

In 2010 Müenzer et al. [73] investigated the magnetic phase diagram of the series Fe1�xCoxSi using

small angle neutron scattering. The question at hand was whether the appearance of a Skyrmion

lattice in the metal MnSi was just a peculiarity of this particular material or whether one example

of more general phenomenon was found as suggested by the theoretical treatment in Ref. [72]. The

electronic properties of FeSi and CoSi are very di↵erent from those of MnSi. FeSi is a nonmagnetic

insulator while CoSi is a diamagnetic metal. The Fe1�xCoxSi series displays an insulator to metal

transition upon the increase of the copper concentration above a critical x = 0.02. Previously it

had been confirmed [5] to display helimagnetic order in the interval 0.05  x  0.07. The copper

concentration also tunes the helical modulation length from about 200 Å to 2000 Å [5]. In contrast to

MnSi where the crystal structure and the DM interaction have the same chirality, they are opposite

in Fe1�xCoxSi.
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Figure A.1: Magnetic phase diagram for Fe1�xCoxSi for x = 0.2. Panels (A)-(C) show the phase
diagram under ZFC. Helimagnetic order appears below the critical temperature, Tc ⇠ 30 K. Panels
(D)-(F) were recorded under field cooling (FC). For field values outside the range of the skyrmion
lattice, there is only a paramagnetic to conical transition. The skyrmion lattice phase (in panels (E)
and (F)) can be observed as a metastable state down to the smallest observed temperature. Image
taken from Ref. [73].

Similar to MnSi the magnetic phase diagram exhibits three prominent phases: A state with

helimagnetic modulation is found up to a critical B-field of Bc1 with propagation vector parallel

to the [100] for all x. For magnetic fields in the range Bc1 < B < Bc2 the helical modulation

points parallel to the applied field and the system shows a uniform magnetization component in

the direction of B, i.e. conical order. Third, there is a small phase pocket close to TC where the

modulation direction points parallel to the applied field and the system orders in a hexagonal lattice

of skyrmions. As opposed to MnSi, the magnetic phase diagram yields strong hysteric features.

Depending on the cooling protocol used a (metastable) skyrmion lattice phase may be observed over

a large temperature range.

Fig. A.1 shows the magnetic phase diagram for x = 0.2 as measured by small angle neutron

scattering. Panels (A)-(C) show the magnetic phase diagram after zero field cooling (ZFC). Heli-

magnetic order appears below the critical temperature, Tc ⇠ 30 K, with a modulation vector parallel

to [100]. All three phases are found and the skyrmion lattice exists only in a small pocket below

Tc. Well below Tc, the helimagnetic order undergoes a spin-flop transition to conical order. Panels

(D)-(F) were recorded under field cooling (FC). For field values outside the range of the skyrmion

lattice, there is only a paramagnetic to conical transition. The skyrmion lattice phase (in panels (E)

and (F)) can be observed as a metastable state down to the smallest observed temperature. The

reversible phase boundaries near Tc are found to be same as those under ZFC. For temperatures

well below Tc they become irreversible. It is exactly this feature which makes it possible to observe

the destruction of the skyrmion lattice using magnetic force microscopy (MFM) as we will see in

chapter 4.

In Ref. [114] it was shown that in thin plates of Fe1�xCoxSi (thickness less than the helical

period) with the magnetic field applied perpendicular the competing conical phase is forbidden an

hence the skyrmion lattice stabilizes over a wider range of the magnetic phase diagram.
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SkX phase induced by a magnetic field of 1 T.
Taken from Ref. [113].

A.2 Iron-Germanium - FeGe

Already in 1980 Bak and Jensen [2] noted that the helimagnetic order in non-inversion symmetric

FeGe is the result of an instability in the ferromagnetic state due to the presence of DM interactions.

As well as MnSi, FeGe is a helimagnet which crystallizes in the tetraheddral P213 structure. What

sets it apart from MnSi is its extremly high helical transition temperature of 280K. Small angle

neutron scattering revealed that the direction of helical q-vector depends on the temperature T:

below 280 K it points along the [001] direction and changes to [111] as the temperature is lowered

[58]. The flexibility of the q-vector was interpreted as a small magnetic anisotropy and therefore

conjectured to be a possible candidate for magnetic phases with interesting topologies. Indeed first

Lorentz electron transmission microscopy studies [103] on thin plates of FeGe revealed magentic twin

domains in a single crystallographic domain, curved spin stripe and a swiss-role like stripe vertex

stabilised by Berry phases. In 2010 Yu et al. [113] confirmed by Lorentz TEM of thin films of FeGe

that also a skyrmion lattice phase with a lattice parameter of a ⇠ 70 nm exists at a temperature

of around 250 � 270 K. For very low temperatures (⇠ 60 K) skyrmions start to emerge at the

edges of the sample. As the temperature is increased to 180 K the magnetic structures becomes

a mixture of skyrmions and stripy domains, c.f. Fig. A.2a. Around 260 K the structure changes

to a hexagonal skyrmion lattic, c.f. Fig. A.2b. FeGe is therefore the first material which shows

this magnetic vortex phase near room-temperature. For three dimensional samples the conical spin

phase with the q-vector along the field direction is generally favoured in magnetic field and similar

to MnSi and Fe1�xCoxSi thermal fluctuations are necessary to stabilise skyrmions and the skyrmion

lattice phase a confined to rather small region in the magnetic phase diagram[109]. However unlike

MnSi and Fe1�xCoxSi for which large large single crystals exist, only mm-size FeGe crystals can

be fabricated, which impedes the study of FeGe despite its favourable attributes. Recently the

successful realisation of epitaxial thin films of FeGe has been reported [44].
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(a) (b)

Figure A.3: (a) Crystal structure of Cu2OSeO3. The two inequivalent Cu2+ are characterised by
di↵erent oxygen configurations. Taken from Ref. [90]. (b) Local electric polarisation vector p (top
row) and local electric charge distribution ⇢ (bottom row) for the indicated directions of the applied
magnetic field H. Taken from Ref. [89].

A.3 Multiferroic Cu2OSeO3

Helical spin textures have been found to a↵ect the symmetry of the charge distribution and mag-

netically induce electric polarization in compounds such as TbMnO3 [50, 16]. However Cu2OSeO3

is the first multiferroic material which has been demonstrated to posses a skyrmion lattice which

induces electric polarization. Such coupling between ferroelectricity and magnetic structure enables

versatile magnetoelectric responses, e.g. electric field control of spin chirality. From the perspective

of applications in spintronic devices the electric field control of Skyrmions is particularly desirable

as the energy disspation due to the application of an electric field E to an insulating material is

negligible and promises more energy e�cient manipulation without the side e↵ects of Joule heating

found in the current-driven dynamics.

The space group of Cu2OSeO3 is P213 - the same as the the other B20 alloys - however the atom

coordination di↵ers significantly, c.f. Fig. A.3a. The copper sites (spin S= 1
2 ) are surrounded by

either a square pyramid of oxygen atoms (green) or a trigonal bipyramid (blue) with a ratio of 3:1

rendering the two sites inequivalent. The spins on the two inequivalent copper sites align antiparallel

in the magnetic ground state below Tc ⇠ 57 K. Ref. [90] reports a Lorentz transmission electron

microscopy study of thin films of about 100 nm thickness. Similar to the other materials, in the

absence of a magnetic field the compound orders below 57 K helimagnetically in a stripy pattern

with helical modulation period of ⇠ 50 nm. The bulk form of Cu2OSeO3 shows a Skyrmion lattice

phase in a small phase pocket near Tc. In the thin-film form this phase is found in a large region of

the phase diagram for finite magnetic fields down to T = 0.

The dielectric properties of bulk Cu2OSeO3 were investigated in Ref. [89] and it was found that it

hosts magnetically induced polarisation in ferrimagnetic, helimagnetic and Skyrmion lattice phase.

Fig. A.3 indicates the local electric polarisation (top row) and charge distribution (bottom row)

for various magnetic field directions. For H k [001] the Skyrmion can be seen to carry an electric
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quadrupole moment, while for H[110] one finds an in-plane and for H[111] an out of plane electric

dipole moment.
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Appendix B

Experimental Techniques

B.1 Small Angle Neutron Scattering

The first experimental technique used to prove the existence of a skyrmion lattice as a bulk phase

in chiral magnet MnSi [72] was small angle neutron scattering (SANS) which uses elastic neutron

scattering at small scattering angles to investigate magnetic order. Neutron scattering is an ideal tool

for the study of magnetic order in bulk phases as neutrons predominantly scatter from the magnetic

structure in a solid-state system due to their magnetic moment. The lack of an electric charge allows

them to penetrate deep into the system under investigation. During a neutron scattering experiment

a beam of neutrons of a specific wave-length is directed at the sample, typically a powder or a crystal.

The neutrons scatter elastically due to the interaction of their spin with the nuclei and unpaired

electrons of the magnetic atoms in the sample and the scattered neutrons are recorded by detectors

placed behind the sample. The Fourier modes in the magnetic order are recorded as Bragg peaks in

reciprocal space.

A typical neutron scattering set-up is despicted in Fig. B.1a. The incident beam is prepared by

collimators, which define the direction of the beam and monochromators, which define the energy

of the incident neutrons. Together these optical elements select an incident wave vector ki. These

neutron optical elements are never perfect and a certain distribution of incident wave vectors around

an average ki is selected. The sample immersed in a magnetic field B scatters the incoming particles

into a certain direction which is recorded by the detector as a scattered neutron beam. The scattering

vector Q is defined as the momentum transfer between the magnetic structure and the incoming and

final momentum of the neutrons, Q = kf � ki. SANS is employed whenever structures on length

scales of about 10Å to 10, 000Å are of interest. This range of real space lengths corresponds to a

scattering vector Q of magnitude 10�1Å�1 to 10�4Å�1. For elastic neutron scattering the energy

of the in- and outgoing neutrons is identical and the magnitude of scattering vector can be easily

related to the wavelength of neutrons � and the scattering angle ⇥

Q =
4⇡

�
sin(⇥) (B.1)

For the observation of larger structures one chooses therefore a longer neutron wavelength in order

to expand the di↵ractogram. Unforntunately there is little neutron flux at wavelength above 20Å

and typical neutrons of wavelength 10Å to 15Å are employed in SANS experiments.

For a given periodic structure M(r) we can decompose the magnetisation field into Fourier

components M
Q

M(r) =
X

Q

M
Q

eiQ·r (B.2)
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Figure B.1: Typical neutron scattering set-up where the cylindrically shaped sample is immersed
in a magentic field B applied perpendicular / parallel to the direction of the incoming beam of
neutrons.

An incoming neutron scattering o↵ of Fourier component M
Q

of the magnetic structure creates an

event on the dectector in the direction Q̂ = Q/|Q|. In the following we briefly discuss the various

magnetic phases found in chiral magnets and elaborate the neutron scattering setup and Bragg

peak structure. The magnetic phase diagram of chiral magents is rather generic and although we

show neutron scattering data for MnSi as an example here other materials will show very similar

scattering peak distributions. We start with a MnSi sample at vanishing magnetic field B as discuss

the evolution of the peak distribution as we turn on a magnetic field along the z direction.

Taking MnSi as a concrete example for a helimagnetic material, here the helical wavevector Q

pins weakly in the [111] due to crystal field anisotropies and equivalent directions. There are four

equivalent 3-fold axis piercing the unit cell and therefore eight equivalent ordering directions exist.

Typically the magnetic order is not made up of a single domain but various parts of the probe order

in another of the eight directions. The difractogram shows an integrated scattering intensity and

therefore eight Bragg peaks are in principle visible for a sample in the helical phase. Due to the

limited size of the detector (a typical detector has an area of ⇠ 200⇥200 mm2) not all of these peaks

are visible. It depends on the relative orientiation of the sample to the incoming beam of neutron

how many of the eight reflection peaks are visible in the di↵ratogram. Fig. B.2D shows a result of a

neutron scattering experiment on MnSi in the helical phase at B = 0 and T = 15 K. The reflection

peaks are visibly aligned along the [111] or equivalent directions.

Turning on a magnetic field along the z-direction with a magnitude in excess of a critical Bc1 ,

the magnetic structure changes from the helical to a conical phase. Here the ordering wave vector

Q aligns with the applied magnetic field B and for a neutron scattering setup with the incident

beam perpendicular to the applied field B Bragg reflection peaks are visible in the scattering plane

at ±Q. Fig. B.2A shows the neutron scattering of bulk MnSi with an applied magnetic field of

strength 0.19 T along the [110] direction at T = 26 K. Indeed two reflection spots of high intensity

are seen along the direction of the applied field. Since the q-vector in the conical phase aligns with

the applied magnetic field the field direction is usually chosen perpendicular to the incident neutron

beam.

For the Skyrmion phase this proves highly disadvantageous. The SkX is a multi-Q phase consist-

ing of 3 helices at an angle of 120� with mutual phase reltionships such that the magnetic moment

at the center of the Skyrmion is antiparallel to the applied B field. So the six Q vectors lie in place

perpendicular to the magnetic field. In the conventional measurement setup at most two of these

can be brought to lie within the scattering place, c.f. Fig. B.2F. If one applies the magnetic field
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Figure B.2: Neutron scattering data for MnSi in the helical (D), conical (A) and SkX phase in the
measurement setup Fig. B.1a (F) and Fig. B.1b (B,C,E). Adapted from Ref. [72].

however parallel to the beam direction as depicted in Fig. B.1b all six Bragg peaks are visible, c.f.

Fig. B.2B,C & E. For more information about neutron scattering consult, for instance, Ref. [15].

B.2 Real-Space Imaging Techniques

In recent years powerful real-space imaging techniques have been modified and applied to chiral

magnetic systems which allow for a direct visualization of the spatial magnetization configuration.

The advantage of such methods is that not only a single spin texture, but also the crystallization

and melting process during phase conversions can be observed. In chapter 4 we study the topological

implications of a phase conversion using such a real-space technique. Also magnetic-lattice defects

such as edge dislocations were studied using real-space imaging techniques [104].

B.2.1 Magnetic Force Microscopy

In 1987 a new method for imaging magnetic surface configurations was pioneered [66] commonly

referred to as magnetic force microscopy (MFM). Historically, the MFM has been derived from the

Atomic Force Microscope (AFM) one year after its invention in 1986. MFM images forces between

the surface of a sample and the magnetic stray field of a cantilever tip coated with a ferromagnetic

film. The total force acting on the cantilever is inferred from small changes in its resonance frequency.

For a reliable force determination the tip must be kept at constant distance from the sample while

the surface is rastered. Therefore the MFM measurements typically proceed in two steps.

In a first step the topography of the sample is determined. Here the tip is scanned over the

surface in close proximity and then retracted by a predefined amount. In a second scan, the tip

follows the recorded surface topography at constant separation and the phase/frequency shift due

to magnetic interaction forces is recorded. Since the atomic forces are short-ranged as compared to

the magnetic forces, the collected force information is dominated by the magnetic interaction. The

spatial resolution of the scanning probe can be increased by moving the top closer to the sample

which in turn increases the e↵ects of the atomic forces. In typical MFM measurements the tip is held

at distance of 100� 100Å above the sample and spatial resolutions of 50 nm are regularly achieved.
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Figure B.3: MFM data collected from the surface of a bulk Fe0.5Co0.5Si sample with a magnetic field
of 20 mT applied perpendicular to the surface. The measurement was recorded after field-cooling to
T = 10 K. A skyrmion lattice can be seen with the skyrmions (blue) arranged in the characteristic
hexagonal pattern. Image taken from Ref. [67].

In dipole-point approximation the frequency shift �f of the resonance frequency f0 of the cantilever

due to magnetic forces with the surface of a magentic sample parallel to the x-y plane is given by

(see supplementary information for Ref. [67])

�f ⇡ �f0
1

2k
µ0µtip,z

@2HS,z

@z2
(B.3)

where k is the spring constant of the cantilever, µ0 the vacuum permeability, µtip,z the magnetic

dipole moment of the tip in the z direction and HS,z the magnetic field of the sample in the z

direction. The MFM is therefore only sensitive to the out-of-plane component of the magnetisation.

For more information about magnetic force microscopy consult, for instance, Refs. [66, 42, 87].

Fig. B.3 shows MFM imaging data from the surface of a bulk Fe0.5Co0.5Si sample (top view)

with a magnetic field of 20 mT applied perpendicular to the surface at T = 10 K. Blue (red) colors

correspond to a magnetisation pointing parallel (antiparallel) to the line of sight. A skyrmion lattice

phase can be seen with the Skyrmions, visible as blue spots, arranged in a regular hexagonal pattern.

B.2.2 Lorentz Transmission Electron Microscopy

Lorentz transmission electron microscopy (LTEM) is a modification of traditional electron mi-

croscopy in which the Lorentz forces between the electrons in a beam and the sample are utilised to

generate images which allow for the real-space observation of the magnetic structure of materials.

An electron moving at a velocity ~v through a magnetic field B experiences a Lorentz force

~F =
e

c
~v ⇥ ~B (B.4)

where c is the speed of light and e the electronic charge. LTEM uses this interaction to study the

spatial configuration of the magnetization. Electrons accelerated to an energy of around 100 keV

by an electron gun mounted perpendicular to the sample are deflected by the in-place component of

the magnetisation due to the Lorentz force they experience. The sample must be transparent for the

electron beam and therefore in the form of an thin film not more than about 3000Å thick. Magnetic

lenses focus the scattered electron beam onto an image plane where the incident beam is analysed,

c.f. Fig. B.4a. A quantitative evaluation is achieved by combining the observed intensities with a

magnetic transport-of-intensity equation calculation. The method achieves high spatial resolution

and large magnification. These features bring with them not only the ability to examine the magnetic

configuration in greater detail but also have the advantage that the sample under examination does

not have to be more than a few microns across [40]. A drawback of this method is apart from the need

for thin, electron-transparent materials the inability to specify the direction of the magnetisation

normal to the plane (It is in this sense complementary to MFM).
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Figure B.4: Schematics of ray diagram for TEM (a) and Lorentz TEM (b). Image taken from
Ref. [113].

In the conventional high-resolution TEM the deflection due to the magnetic field B ⇠ 2 T

generated by the lens is large enough to shorten the focal length f0 to a few millimetres. This

achieves large magnification at the image plane. However under such a strong magnetic field, the

specimen of the chiral magnet placed inside the objective lens typically field polarises along the

z-direction and no in-plane magnetic field exists which could deflect the electrons. The interesting

region of the magnetic phase diagram at small applied fields is unobservable. The observation of the

Skyrmion phase therefore necessitates the reduction of the magnetic field strength in the lens which

leads to a larger focal length (gray cones in Fig. B.4a). The deflection of the electrons due to the

alteration of the in-plane component of the magnetisation leads to areas of enhanced and reduced

intensity as depicted in Fig. B.4b. The out-of plane component of the magnetisation on the other

hand cannot a↵ect the eletron trajectory and is therefore unobservable.

In the context of skyrmions thin films have the advantage that the competing conical phase is

energetically suppressed and therefore not stabilised when the magnetic field is applied perpendicular

to the plane and the film thickness is less than the helical wavelength. The skyrmion lattice phase

is stabilised in a much larger portion of the phase diagram in these systems. In Ref. [113] the

phase diagram of FeGe is studied using Lorentz TEM for di↵erent film thicknesses. For ever thicker

samples the phase diagram smoothly approaches the bulk phase diagram indicating that the same

skyrmion lattice phase is realized. Fig. B.5 shows a real space image of skyrmions in Fe0.5Co0.5Si at

a weak magnetic field (50 mT) obtained by Lorentz TEM data.
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Figure B.5: Experimentally observed real-space images of the lateral magnetization configuration
in Fe0.5Co0.5Si at a weak magnetic field (50 mT) obtained by Lorentz TEM data. The right panel
shows a magnified view a single Skyrmion. Image taken from Ref. [114].

118



Appendix C

Conjugate Gradient Algorithm

The conjugate gradient method (CG) is probably the most popular iterative method for the solution

of sparse linear equations of the form

A · x = b (C.1)

where A is a square, spase, positive-definite matrix. In this appendix we briefly explain how this

algorithm works and how it may be extended to find local minima of general functials. In section C.1

we introduce the general method of conjugate directions (CD) and in section C.2 the specialisation

that is known as the CG. In section C.3 we describe how the CG may be modified to calculate local

minima of high dimensional functionals. There are a number of good reviews including Refs. [31,

91, 54]. This summary is mainly based on Ref. [91].

C.1 Conjugate directions

Let us assume that the solution to Eq. (C.1) is given by x⇤, i.e. A ·x⇤ = b. An iterative algorithm A
attacks a problem such as Eq. (C.1) by starting from an initial guess x0 and updating it in subsequent

iterations, xi+1 = A(xi). The solution of the equation is a fixed point of the algorithm, x⇤ = A(x⇤).

We define the residual at step n as rn = b �A · xn and the error at step n as en = x⇤ � xn. The

problem posed in Eq. C.1 can be rewritten as a minimisation problem for a bilinear functional. We

define the quadratic form f(x)

f(x) =
1

2
xT ·A · x� bT · x . (C.2)

If A is positive-definite a minimum of the above functional corresponds to a solution of Eq. C.1

f(x⇤) minimal , A · x⇤ = b (C.3)

The idea of the conjuagte directions method is that on finds a set of orthogonal directions d0, . . . ,dn�1

and from the initial position x0 one takes exactly one step in each of these directions of exactly the

right length to line up with x⇤

xi+1 = xi + ↵idi . (C.4)
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The step length ↵i is defined by the fact that after the step the remaining error ei+1 should be

orthogonal to di so that one never has to step in direction di again

dT
i · ei+1 = 0

dT
i · (ei + ↵idi) = 0

↵i = �dT
i · ei

dT
i · di

(C.5)

The right hand side is unfortunately unknown. Knowledge of the error ei would immediately imply

that one already knows the solution of the problem. However one can relax the above condition by

demanding that the search direction should be A-orthogonal instead of orthogonal

dT
i ·A · dj = 0, 8i 6= j (C.6)

In turn one also demands that A-orthogonality of di and ei+1. Indeed this corresponds to finding

the minimum along the line xi+1 = xi + ↵idi,

d

d↵i
f(xi+1(↵i))

!
= 0

f 0(xi+1) ·
d

d↵i
xi+1(↵i)

!
= 0

�rTi+1 · di
!
= 0

dT
i ·A · ei+1

!
= 0 (C.7)

where we used that f 0(xi+1) = b�A · xi = �ri. For the step length ↵i in step i one finds

↵i =
dT
i · ri

dT
i ·A · di

(C.8)

which is perfectly computable from the known quantities in step i. If one were to replace the search

directions with the residuals in the above expression one would simply find that the equations

describe the method of steepest descent.

For the construction of the n A-orthongonal directions a possible route would be to start with

the n linearly independent vectors u0, . . . ,un�1 (e.g. the coordinate axis) and then use a variation

of the Gram-Schmidt algorithm to make them A-orthogonal. We refer to this process as conjuga-

tion. Following this procedure would however defeat the purpose of the iterative procedure as the

assumptions is that the linear system too large to invert directly. For the Gram-Schmidt algorithm

one has to keep all the old search directions in memory and in constrast to the matric A these need

not be sparce. Consequently considerable memory requirements arise. But also the computational

cost in no less than that needed for a direct inversion as the complexity of Gram-Schmidt is O(n3)

with n the linear dimension of A.

As a result the method of Conjugate Directions enjoyed little use until the discovery of the

Conjugate Gradients [91]. The resolution to the mentioned troubles lies in a good choice of the

search directions d0, . . . ,dn�1.

C.2 Conjugate gradients

The method of Conjugate Gradients is simply the method of Conjugate Directions for the special

case where the search directions are obtained by conjugation of the residuals (ui = ri). It turns out
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that this choice implies that the residual ri+1 in step i + 1 is A-orthogonal to all previous search

directions dj , j < i, except for di. It is therefore not necessary to store all the previous search

directions in memory and the complexity of the Gram-Schmidt algorithm drops to O(m) where m

is the number of non-zero entries in A. In summary the conjugate gradients algorithm is given by

Algorithm 1.

1. d0 = r0 = b�A · x0

2. ↵i =
r

T
i ·ri

d

T
i ·A·di

3. xi+1 = xi + ↵idi

4. ri+1 = ri � ↵iA · di

5. If the modulus of ri+1 has dropped below a threshold value, |ri+1| < ✏, exit and return xi+1

as an approximation for x⇤.

6. �i+1 =
r

T
i+1·ri+1

r

T
i ·ri

7. di+1 = ri+1 + �i+1di and goto 2.

C.3 Minimisation of general functions

The generalisation of the CG for the minimisation of a general functional f(x) whose derivative

f 0(x) is known involves three modifications of the above algoritm: (i) the recursive formula for the

residuals (step 4 in the above algorithm) cannot be used, (ii) the computation of the step size ↵i

becomes more complicated and (iii) several choices for �i exist.

In non-linear CG the residual is always given by the gradient, ri = �f 0(xi). The search directions

are computed by conjugation with Gram-Schmidt algorithm as in the linear case. Then a line search

is performed to find the minimum of f(xi+1) in along the given search direction, xi+1 = xi + ↵idi.

One possibility is to determine ↵i by an algorithm which determines zeros of f 0(xi + ↵idi)T · di.

There are several choice for the �’s which are equivalent for linear CG. In the case of non-linear

CG these are no longer equivalent and it is still debated in the literature which one is the best

choice in what situation [91]. Usage of the same formulas as in the linear case (step 6 in the above

algorithm) is known as the Fletcher-Reeves method [32]. The so-called Polak-Ribiere [39] is given

by

�i+1 =
rTi+1 · (ri+1 � ri)

rTi · ri
(C.9)

In all of our calculation we used the Fletcher-Reeves method.
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Appendix D

Appendix Quantum Mass

D.1 Expression for H̃↵�

In the comoving, twisted reference frame the Hamilton operator assumes the form

H̃↵� = "0a
2


��↵�r2 + 2⌧y↵�

✓
cos ✓

⇢2
�Q

sin ✓

⇢

◆
i@� + Ṽ↵�

�
(D.1)

with r2 = @2⇢+(1/⇢)@⇢+@2�/⇢
2. The potential depends only on the radial component ⇢ and is given

by Ṽ12 = Ṽ21 = 0 and

Ṽ11 =
1 + cos(2✓)

2⇢2
� Q sin(2✓)

⇢
+ 2 cos ✓ � 2Q✓0 � ✓02

Ṽ22 =
cos(2✓)

⇢2
� 2Q sin(2✓)

⇢
+ 2 cos ✓. (D.2)

D.2 WKB

With the ansatz ~⌘m(⇢) = ⇠m(⇢)/
p
⇢ and after multiplying Eq. 5.37 with

p
⇢⌧z from the left, we find

[�✏0a2@2⇢ +Mm(⇢)] · ~⇠m(⇢) = ✏ ~⇠m(⇢) , (D.3)

with Mm(⇢) = ✏0a
2


� 1

4⇢2
+

m2 + 1

⇢2
+ 2

�
⌧z + ⌧zVm � ✏0a

2 2m

⇢2
1 . (D.4)

To determine the “classical momenta”, we make the usual WKB approach where the wavefunction
~⇠m(⇢) is devidided into a real-valued function ~um(⇢) and a real-valued phase factor Sm(⇢),

~⇠m(⇢) = ~um(⇢)eiSm(⇢) . (D.5)

In the lowest order WKB approximation we neglect spatial derivatives of the amplitude ~um(⇢) and

higher order spatial derivatives of the phase factor Sm(⇢) and find within this approximation

�@2⇢~⇠m(⇢) ⇡ � (S0
m(⇢))

2 ~⇠m(⇢) (D.6)

where we identify S0
m(⇢) ⌘ pm(⇢) as the “classical momentum”. Within this approxiamtion, the

left-hand-side of Eq. D.3 can be written as a matrix Hm(p(⇢), ⇢) which depends parmetrically on the

classical momentum and the radial coordinate ⇢. From here on we suppress the su�x of the angular

momentum quantum number m. For a given p and ⇢ one can determine the eigenvalues ✏1/2(p, ⇢)

and eigenvector ~⇠1/2(p, ⇢). For a given eigenenergy ✏ the above relation can be inverted to find the
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spatially dependent classical momenta p1/2(⇢; ✏) which are inserted into the eigenvector ~⇠1/2(⇢; ✏) to

find the WKB approximation for the wave functions

~⌘WKB
1/2 (⇢) =

1
p
⇢
~⇠1/2(⇢; ✏)e

iS1/2(⇢;✏) (D.7)

Only one of these has the correct asymptotic behaviour, Eq. 5.56, for ⇢ � 1, the other one can be

discarded. For this wavefunction the usual formulas for the calculation of the WKB phase shift can

be used [30].
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Introduction

The aim of solid state theory is the successful description and understanding of the intrinsic proper-

ties of rigid matter. The complicated interplay of a large number of simple, microscopic constituents

gives rise to often intricate and surprising macroscopic properties. The complexity of these systems

renders exact descriptions of such systems impossible. Even if they were available, physicists would

still need to contruct more abstract descriptions in order to categories the natural phenomena in

a unifying way. Along these lines of thought, free parameters in an approximate model may not

necessarily be understood as a deficiency of the same, but rather they parametrise the unifying

paradigms that allow us identify the mechanism behind a physical phenomenon. In the context of

strongly correlated electron systems such descriptions are often provided by a model Hamiltonians.

Solids consist of positively charged atomic nuclei and negatively charged electrons. In crystals

the much heavier nuclei are arranged in an orderly repeating pattern with a fraction of the electrons

tightly bound to them due to strong Coulomb interactions. The resulting ions provide a periodic

lattice potential for the remaining valence electrons. Often an e↵ective description of this electronic

subsystem already determines to leading order the properties of the solid.

Ignoring the interactions among the valence electrons, the lattice potential splits their dispersion

relation into Bloch energy bands. The eigenfunctions in this periodically-repeating environment

are the Bloch waves and their eigenenergies are commonly referred to as the kinetic energy of the

valence electrons. Due to the Pauli exclusion principle each state, characterised by a complete

set of quantum numbers, can only be occupied by a single electron. Thus already at the non-

interaction level of the description the quantum system has some correlations. However it is the

electron-electron interactions which introduces the true correlations between the valence electrons

and makes the description of many-particle systems so involved. In the limit where the typical

energy scale of the interactions is small compared to the kinetic energy of the electrons, Landau’s

phenomenological Fermi liquid theory successfully describes the normal state of most metals at

su�ently low temperatures. In this e↵ective description interacting electrons are replaced by non-

interacting quasiparticles with a finite lifetime and renormalised properties such as their mass,

magnetic moment etc.

The transition metal oxides constitute probably one of the most interesting classes of solids.

Due to partially occupied, well-localised 3d and 4f valence orbitals the electrons are subject to

strong Coulomb interactions. These materials provide prototypical examples of strongly correlated

electron system which cannot be described by e↵ective single-particle theories. In these materials the

interaction energy of the similar magnitude as the kinetic energy and thus the important paradigm is

the competition between itineracy and localisation. Often both regimes occur in the same material

and a metal-insulator transition occurs as a function of temperature or pressure. The successful

description of these systems calls for non-perturbative methods able to treat both limits reliably.
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The Dynamical Mean-Field Theory (DMFT) is such a non-perturbative approximation for strongly

correlated electron systems which becomes exact in the limit of infinite lattice connectivity. It ne-

glects spatial correlations but takes full account of dynamical quantum fluctuations. In DMFT

the lattice problem is simplified by mapping it onto a quantum impurity problem embedded in a

self-consistenly determined bath of non-interacting electrons. A variety of powerful numerical meth-

ods exist which allow for numerical exact solutions of such problems. Among these the Numerical

Renormalisation Group(NRG) can be considered the state-of-the-art impurity solver for single-band

DMFT at low temperatures.

A new and exciting direction in the material sciences has been the fabrication of artificial het-

erostructures and superlattices composed of di↵erent materials. With recent theoretical and experi-

mental progress in the understanding and control of strongly correlated materials enormous interest

has arisen in multilayered heterostructures involving materials where the electrons are strongly in-

teracting. The sensitivity of intrinsic properties in strongly correlated materials to external fields

promises interesting applications in electronic devices for information technology.

The main focus of this work is on interface e↵ects occurring in strongly correlated heterostruc-

tures. Chapter 1 introduces the generalised electronic Hamiltonian and heuristic derivation of the

Hubbard model is presented. In section 1.2 the single Anderson impurity model that the DMFT

maps the Hubbard model onto is introduced. Chapter 2 briefly outlines the mean-field approach to

magnetic ordering phenomena in the Hubbard model. Chapter 3 starts with a description of the

simplications in the limit of infinite spatial dimensions and goes on to derive the DMFT equations

and the mapping to the impurity problem. The NRG is outlined in chapter 4 and it is explained how

dynamical quantities needed for the DMFT cycle can be calculated. Chapter 5 gives an introduc-

tion to heterostructures and describe the generalisation of the DMFT algorithm to layered systems

including long-range Coulomb interactions which lead to electronic charge reconstructuion at inter-

faces. The last part of the thesis comprises two applications of the framework to strongly correlated

heterostructures. In chapter 6 we investigate the layer-resolved conductivities of heterostructure

made of Mott insulator sandwhiched between two band-insulators. We study the temperature de-

pendence of the layer-resolved optical conductivity. Chapter 7 adresses the transmission probability

through a Mott insulating barrier. We find an interesting temperature dependence which has its

roots in the strongly correlated character of the Mott insualtor.
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Chapter 1

Models of strongly interacting
electrons

Although Bloch band theory with its roots dating back to the 1920s is very successful in describing a

number of so-called weakly correlated materials, many interesting electronic phenomena encountered

in systems with strongly correlated signatures cannot be described within this framework. However

the description of such systems on a similar level of detail as their weakly-correlated counterparts

is a formidable problem. Physicists have retracted to the study of model hamiltonians to trade

the overburdening complexity of realistic descriptions for simple models which still retain the dom-

inant physics. They are aimed at simulating the key physics of notoriously complicated complete

Hamiltonians of large-scale interacting systems.

1.1 Hubbard model

In 1963, Hubbard, Gutzwiller and Kanamori introduced the celebrated fermionic Hubbard model

[43, 60, 53]. The Hubbard model (HM) can be considered as the minimal model for highly correlated

electrons on a lattice as it describes the interplay between kinetic energy gain and cost of Coulomb

interaction. We give an intuitive view on the main driving forces which govern the dynamics of

electrons described by the HM before we present a heuristic derivation. Due to the Heisenberg

uncertainty principle electrons seek to minimise the kinetic energy through dislocations, i.e. hopping

processes between di↵erent atoms. However whenever two electrons come close together a Coulomb

energy penalty has to be paid due to the mutual interaction. The overall movement is hence

complicated and highly correlated, but there are two limits where the dynamics become simple.

In many electron systems screening may lead to an e↵ective Coulomb interaction which is very

short-ranged and the electrons are rather free to optimise their kinetic energy ignoring their mutual

interaction. Strictly speaking such a view is only justified for the quasi particles in a Landau liquid

theory as the screening itself is provided by the electronic system. On the other hand if screening is

absent and the Coulomb energy dominates the energy balance in lattices with a commensurate filling

a situation may arise where the mutual interaction drives the hopping tendency of the electrons to

zero thus localising them. The system enters an insulating state known as the Mott insulator. This

state is in sharp contrast to a conventional band insulator where the interaction between electrons

and atoms gives rise to a potential landscape in which e↵ective single-particle Bloch bands are

completely filled. A Mott insulator on the other hand is driven by the mutual electron interaction

with a gap at the Fermi level which originates from the Coulomb interaction.

153



1.1.1 Heuristic derivation

The complete Hamiltonian H of a condensed matter system can be split into a part which de-

scribes the nuclei HK, a purely electronic part He and a coupling between the two subsystems VKe.

The Born-Oppenheimer approximation [7] decouples the problem of the nuclei from the electronic

subsystem and derives an e↵ective Hamiltonian for the electronic part of the form

He = He + VKe({Ri}) (1.1)

where {Ri} denotes a set of lattice points for the positions of the nuclei and is a mere fixed parameter

for the electronic problem. For a particular nuclei configuration {Ri} the electron-nuclei interaction

in Eq. 1.1 gives rise to an external potential for the electrons Vext = VKe({Ri}). After decoupling

the lattice degrees of freedom the remaining problem of interacting electrons in an external potential

is still much to complicated.

Further progress can be made by removing details of the Hamiltonian which is not necessary

for the basic modelling while still retaining the many-particle structure. This is best done in the

language of second quantisation

He = �
X

i,j
↵,�,�

t↵�
RiRj

c†
Ri↵�

c
Rj�� +

1

2

X

i,j,k,l
↵,�,�,�,�,�0

V ↵�����0

ee ({Ri})c†
Ri↵�

c†
Rj��0c

Rk��0c
Rl�� (1.2)

The electron creation (annihilation) operators c
Ri↵� (c†

Ri↵�
) for electrons with spin � and orbital

character ↵ are written in a localised Wannier basis �(r) at lattice site Ri. The first term describes

the kinetic energy as well as the interaction energy with the nuclei. The second part describes the

electron-electron interaction. The matrix elements are given by

t↵�
RiRj

=

Z

dr �⇤
Ri↵(r)

⇢

~2
2m
�� Vext(r)

�

�
Rj�(r)

V ↵�����0

ee (Ri,Rj ,Rk,Rl) =

Z

drdr0�⇤
Ri↵��

⇤
Rj��0

e2

|r� r0|�Rk��0�
Rl�� (1.3)

A reduction in the overburdening complexity of the model now arises from three simplifications.

In order to model the competition between itineracy and and localisation retaining the full orbital

character of the model is not necessary. Also it is su�cient to keep only nearest neighbour terms

(NN) for the hopping processes. Furthermore the Coulomb interaction is strongest if the two electron

come closest to the same Wannier orbital.

We therefore simplify the model in the following radical way: We assume a model system with

NN hopping between a single Wannier orbital for each lattice site and model the Coulomb interac-

tion Vee(Ri,Rj ,Rk,Rl) only by an appropriately chosen on-site interaction Vee(Ri,Rj ,Rk,Rl) ⇡
U�

RiRj�RiRk�RiRl . Note here that U is not simply given by the on-site matrix element of Vee but

rather a renormalised value which also includes the e↵ects of screening by other bands. With these

simplifications in place the Hamiltonian may be cast in the form of the famous Hubbard model

Hhub = �t
X

hiji�

c†i�cj� + U
X

i

ni"ni# + ✏0
X

i�

ni� (1.4)

The only parameters left are the hopping amplitude t, the so called Hubbard U and the on-site energy

✏0. The hopping term has a negative sign to reflect the gain in the kinetic energy of the system due

to the hopping. The bandwidth W is connected to the size of the matrix element t, obviously a larger

value of t results in a more itinerant behaviour of the electrons and an increase in the bandwidth
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W . An exact analytical solution only exists in the one-dimensional case which we will not discuss

here since in 1D many peculiarities arise compared to higher dimensions (Fermi-liquid theory is

replaced by Luttinger liquid theory, including spin-charge separation,...). For systems in the limit of

infinite spatial dimensions a numerically exact solution exists which is given by the dynamical mean

field theory (DMFT). The physically interesting cases, namely 2D and 3D, are however di�cult to

deal with. The di�culty arises from di↵erences in the summation parts of Eq. 1.4. While the first

sum can be diagonalised in momentum space, the second term is diagonal in real space, however

diagonalising both parts simultaneously seems only possible for tiny systems.

1.1.2 Symmetries of the Hubbard model

SU(2) spin symmetry

Under a rotation of global spin quantisation axis parametrised by the SU(2) matrix U , the annihi-

lation operators transform according to

c0i� = U��0ci�0 (1.5)

In turn the spin operator ~S transform like

S0a
i = RabSb

i

=
~
2
c0

†
i�⌧

a
��0c0i�0

=
~
2
c†i�

�

U�1⌧aU
�

��0 ci�0 (1.6)

with ⌧ the vector of Pauli matrices and Rab a rotation matrix induced by the SU(2) transformation

U�1⌧aU = Rab⌧ b. Although not immediately visible from the Eq. 1.4 the spin quantisation axis can

be chosen arbitrarily and the Hubbard model is thus invariant under global rotations of the spin

quantisation axis. Eq. 1.4 can be rewritten in a way which makes the SU(2) symmetry obvious.

Using the identity
P

i
~S2
i =

P

i�
1
4ni� �

P

i
3
2ni"ni# the interaction part can be rewritten as

U
X

i

ni"ni# = �2U

3

X

i

~S2
i +

NeU

6
(1.7)

with Ne the number of electrons. The last term in the above equation is for a particle number

conserving model such as the Hubbard model a constant and can thus be dropped. The total

Hamiltonian assumes a manifestly SU(2) invariant form. For the first term in the above equation

the interaction energy is lowered in case of repulsive interaction, U > 0, if the total spin at each site

is maximised. If each site has one particle one expects a magnetic ground state where the system

breaks the globals SU(2) symmetry by singling out a specific quantisation axis [31]. In chapter 2 we

further investigate the magnetic properties of the Hubbard model.

U(1) charge symmetry

We are free to choose a global phase change for the one-particle wave functions

c0i� = ei✓ci� (1.8)

Terms with an equal number of creation and annihilation operators are invariant under such a

transformation, hence the U(1) symmetry is nothing but charge conservation. Terms inducing

superconducting correlations however would break particle conservation and the U(1) symmetry.

155



If we couple the Hubbard system to an electromagnetic gauge field (A0,A) the global symmetry

becomes a local symmetry, i.e. ✓ ! ✓(r). In the tight-binding Hamiltonian we must modify the

kinetic energy term so that it assumes the form

�t
X

hi,ji�

c†i�e
ie
~c

R rj
ri

dr·A(r)cj� (1.9)

The integral cancels phase di↵erence picked up at di↵erent lattice sites. Under the local change

of phase ✓(r) = � e
~c⇤(r) the vector potential A changes by A0(r) = A(r) + r⇤(r) and thus the

integral by

A0(ri, rj) =

Z

rj

ri

dr ·A0(r)

= A(ri, rj) + ⇤(ri)� ⇤(rj) (1.10)

The kinetic energy term is now invariant under local changes of the phase. In addition we expect

an electrostatic coupling between the zero component of the gauge field and the particle density

He�static =
X

i�

eA0(ri)c
†
i�ci� (1.11)

and a Zeeman coupling which couples the spin ~Si to the local magnetic field B(ri) so as to align it

along the B(r) direction

HZeeman = g
X

i

~Si ·B(ri) (1.12)

Particle-hole symmetry

In this thesis we will be solely concerned with simple cubic lattice which is bipartite (a union of two

interpenetrating sublattices A and B). For bipartite lattices we find an additional symmetry for the

Hubbard model. Consider the particle-hole transformation

ci" = di"

ci# =

(

+d†i# ri 2 A

�d†i# ri 2 B
(1.13)

The Hamiltonian H(t, U), Eq. 1.4, changes to H(t,�U) + UN" where N" is the total number of up

spins (which is conserved). The total charge Q and the component Sz of the total spin trans form

as

Q ! Sz + 1, Sz ! Q� 1 (1.14)

Thus the attractive and the repulsive Hubbard model map into each other and at the same time spin

maps into charge and vice versa. This means that the SU(2) spin symmetry maps onto an SU(2)

charge symmetry (for fixed U at half-filling).

1.1.3 Limiting cases

It is a good idea to first examine the limiting regimes when trying to understand the physics of the

Hubbard model. In order to make the presentation as compact as possible we will limit ourselves to

the presentation of the half-filled model.
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Strong coupling limit (U > 0)

The simplest situation for the fermionic Hubbard model at half-filling arises when the on-site inter-

action U is the largest energy scale in the problem. We follow here the presentation of Emery[25].

Rewriting the interaction part of the Hamiltonian as in Eq. 1.7 it becomes apparent that for µ = U/2

(half-filling) in the infinite U limit the spin ~S is forced to be largest and hence doubly occupied and

empty sites are forbidden. Only | "i and | #i states are kept in this large U limit at half-filling.

Any spin configuration is therefore an eigentstate of the interaction part of the Hamiltonian. This

massive degeneracy is lifted if one considers fluctuations induced by the kinetic part to leading order

in an expansion in t/U .

We denote the kinetic part by H0 and the interaction part by H1 and perform a (degenerate)

perturbation theory in H0 around the eigenstates of H1. For an arbitrary eigenstate of the full

system H = H0 +H1, H| i = E| i, we can rewrite this equation as

(E �H1)| i = H0| i (1.15)

from which we formally get

| i = 1

E �H1
H0| i

=
P̂

E �H1
H0| i+

X

↵

|↵i h↵|H0|↵i
E � E1

(1.16)

where |↵i enumerates the eigenstates of the interaction part and P̂ is a projection operator onto the

perturbing states

H1|↵i = E1|↵i
P̂ = 1�

X

↵

|↵ih↵| (1.17)

P̂ commutes with H1 so that we can define a basis to expand the eigenstate | i =
P

↵ a↵| ↵i into
by the equation

| ↵i = |↵i+ P̂

E �H1
H0| i (1.18)

where the expansion coe�cients are given by

a↵ =
h↵|H0|↵i
E � E1

(1.19)

Eq. 1.18 is an iterative equation for the states | ↵i and to first order in P̂ /(E�H1)H0 approximated

by

| ↵i ⇡ |↵i+ P̂

E �H1
H0|↵i ⇡ |↵i � 1

U
H0|↵i (1.20)

The last approximate sign follows since for the half-filled lattice H0|↵i is orthogonal to any eigenstate

of the interaction part. Inserting Eq. 1.20 into the expansion | i =
P

↵ a↵| ↵i and that in turn

into Eq. 1.19 one finds

(E � E1)a↵ =
1

U

X

�

h↵|H2
0 |�ia� (1.21)
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which is the same as the Schrödinger equation for the Hamiltonian HU�1 = H2
0/U with the eigenen-

ergy E = E � E1. For the case of half-filling the HU�1 can be rewritten as

HU�1 =
2t2

U

X

hiji

~Si · ~Sj (1.22)

which is the spin- 12 quantum Heisenberg Antiferromagnet with the exchange coupling J = 2t2

U . This

result is valid for the half-filled system in any dimension and lattice [31].

Weak coupling limit

For the weak coupling limit, i.e. U ⌧ t, on the other hand one may think of the interaction H1

as a weak perturbation of the Hamiltonian H0
1. The expectation is that the states of a weakly

interacting electron gas are similar to a free electron gas. This picture know as the Fermi liquid[77]

relies on the main assumption that there exists a one-to-one correspondence between the states of a

free fermion system and those of a weakly interacting one.

For a translationally invariant system it is convenient to transform the kinetic part of the Hamil-

tonian to Fourier space. For a lattice in d dimensions we find

H0 =
X

�

Z

ddk

(2⇡)d
✏(k)c†�(k)c�(k) (1.23)

with ✏(k) = �2
P

ri�rj
t(ri�rj)e�ik·(ri�rj). For the case of nearest neighbour hopping the dispersion

relation is given by a cosine band

✏(k) = �2t
d
X

j=1

cos(kj) (1.24)

The ground is found by filling up the Fermi sea. Thus if N particles are in the system, the total

number of momentum states with energy smaller than ✏ is determined by the constant energy curve

✏(k) = ✏, c.f. Figs 1.1a and 1.1b.

1.1.4 The metal-insulator transition and magnetic order

The existence of a metal-insulator transition in the paramagnetic phase of the half-filled Hubbard

model has been known since the early work of Hubbard [53]. This transition is found in various

transition metal oxides of which V2O3 and Cr are just two examples[9]. The mechanism driving

the Mott-Hubbard metal-insulator transition (MHMIT) is the tendency towards localisation due to

the local Coulomb interaction U between electrons on the same lattice site. The Hubbard model

is the minimal model for the study this transition. Non-perturbative methods fail to describe the

physics near the MHMIT correctly where the U and the bandwidth W are roughly of the same

order of magnitude. The transition can however be studied within the framework of DMFT, a

non-perturbative, controlled approximation, which maps the correlated lattice problem onto self-

consistenly determined single impurity Anderson model.

Many authors have studied the MHMIT by means of the DMFT[9, 45, 86, 102, 92, 98]. Fig. 1.2

summarises the results for a homogenous Hubbard model in infinite spatial dimensions at half filling.

For T < Tc one finds a first order transition with a discontinuous redistribution of weight in the

1Actually for the single band Hubbard model on a simple cubic lattice, the model possesses a perfect nesting
property which causes the system to order antiferromagnetically for arbitrary small interaction parameter U . Therefore
it is only true that H

1

can be understood as a weak perturbation for the eigenstates of H
0

if the system is constrained
to the paramagnetic phase by, say, frustration.
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(a) Constant energy curves for H
0

on a square
lattice (d = 2).

(b) One particle spectrum of H
0

in one spatial
dimension (d = 1).

Figure 1.1

spectral function and a pronounced hysteresis e↵ect. From the side of the metal at weak interaction

the transition sets in at U > Uc2 while from the side of the Mott insulator one finds a transition to

a metallic solution for U < Uc1 . The first order transition line ends at a critical point at T = Tc.

For T > Tc the transition turns into a crossover and dashed lines in Fig. 1.2 indicate the width of

the crossover region. Filled and open circles and the solid line labeled IPT indicate results obtained

from di↵erent impurity solvers. The numerical renormalisation group (NRG) results are denoted by

open circles while the quantum Monte Carlo results[58] are shown by solid circles. The agreement

of these two methods is rather good. The iterated perturbation theory (IPT) is in contrast to the

aforementioned methods (as the name suggests) a perturbative method which is less accurate but

computationally less expensive.

The large variety of physical phenomena that the transition metal oxides show also includes mag-

netic and orbital ordering phenomena and also superconductivity. V2O3, LaTiO3 and the cuprates

are examples which all show metal-insulator transitions, ferro- and antiferromagnetic order and

superconductivity depending on external control parameters.

In the discussion of the metal-insulator transition above the possibility of long-range magnetic

order has been ignored by confining the Hubbard model to the paramagnetic regime. As we have

seen above in the strong coupling limit the physics of the half-filled Hubbard model is described

by a quantum Heisenberg model with antiferromagnetic exchange coupling J = �t2/U . Combining

this insight with a more refined weak-coupling analysis one can infer that the ground state of the

Hubbard model with nearest neighbour hopping at half-filling is always antiferromagnetic. The

important condition is the nearest neighbour hopping which ensures that the HM shows a perfect

nesting property ✏(k) = ✏(k + Q) with Q = (⇡, . . . ,⇡)T which strongly favours ordered insulating

ground states. Indeed if one allows for antiferromagnetic order in the DMFT one finds that the Neel

transition from a metal to an antiferromagnetic insulator always preempts the MHMIT transition.

As can be seen from Fig. 1.3a, for any strength of the interaction parameter U the transition

temperature Tc for the MHMIT lies below the Neel temperature TN . This is however an artefact

of the restriction to nearest-neighbour hopping. As shown by Zitzler et al.[118] the introduction of
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Figure 1.2: Results for the phase diagram of the Mott transition obtained from di↵erent methods:
NRG (open symbols), quantumMonte Carlo (QMC, filled symbols), and iterated perturbation theory
(IPT, solid lines). Taken from [9].

magnetic frustration by next-nearest neighbour hopping uncovers a region of a paramagnetic metal

for small U . Fig. 1.3b shows a schematic of the magnetic phase diagram for the 3 control parameters

temperature T , doping � and interaction strength U . As already mentioned at half-filling the physics

is dominated by an antiferromagnetic insulating phase. For finite doping � > 0 the antiferromagnetic

phase persists up to a critical doping �c. Eventually for very large values of U , the antiferromagnetic

phase is replaced by Nagaoka type ferromagnetism[75]2.

1.2 Single impurity Anderson model

Instead of considering an ensemble of fully correlated lattice sites, in this section we concentrate on

impurity models. Here only a few correlated sites exists within a given host lattice that consists of

otherwise rather weakly correlated or free sites. Similarly to the case of the Hubbard model here we

are again interested in the competition between itineracy and localisation.

When electrons localise they can form objects whose low energy excitations involve spin degrees

of freedom. Such localised “magnetic moments” can be represented by a single spin operator ~S.

Localised moments usually develop in highly localised atomic orbitals such as the 4f shells of rare

earth compounds[18], but also in the slightly more delocalised 3d levels of transition metal oxides.

They are the origin of the so-called “Kondo e↵ect” in metals which greatly alters the nature of

the metallic state. A theoretical understanding of the quantum mechanical origin of local moment

formation was not developed until experimentalists started to systematically study impurities in

metals in the 60s. Detailed studies of magnetic iron impurities in copper showed that the magnetic

susceptibility develops a Curie component indicating the formation of a local moment.

In 1961, motivated by these experiments P.W. Anderson identified interactions between localised

electrons as the driving force behind local moment formation. The essential physics can be under-

2The conjecture due to Nagaoka is one of the few rigorous statements about itinerant ferromagnetism in the
Hubbard model. Nagaoka considered a special case of the Hubbard model, in which the on-site interaction is infinite
and there is exactly one hole, and showed that the unique ground state has the maximum total spin.
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Figure 1.3

(a) Wave functions of Ce in local density func-
tional calculations. The 4f states are seen to be
localised largely within the 5s, 5p core and well
within the Wigner-Seitz radius for ↵- and �-Ce
(indicated by arrows.). Taken from [49].

Local
moment

(b) Phase diagram for the Anderson impurity
model in the atomic limit. Based on [18].

Figure 1.4
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stood from a single spin- 12 state which we refer to as the localised “d”-state. The Hamiltonian of the

Anderson model comprises three parts. We will refer to the part describing the isolated “d” state

including a Coulomb interaction term as Hd.

Hd = ✏d
X

�

nd� + Und"nd# (1.25)

Here the first part describes an isolated atomic d-state of energy ✏d and occupancy nd�. The second

term accounts for the inter-atomic interaction due to the Coulomb repulsion between the up- and

down-state. The host metal is modelled as a sea of free conduction electrons

Hc =
X

k�

✏
k

c†
k�ck� (1.26)

where the dispersions relation ✏
k

of the conduction electrons surrounding the impurity site is de-

termined by the lattice type and c†
k� creates a conduction electron of momentum k, spin � and

energy ✏
k

. When the impurity is embedded into the host metal the d-state starts to hybridise with

conduction electrons which is modelled via the mixing term

Hmix =
X

k�

⇣

V
k

c†
k�d� + V ⇤

k

d†�ck�
⌘

(1.27)

where d†� creates a electron on the impurity site with spin �. The hybridisation matrix element V
k

is determined by the overlap of the localised atomic wave function with the one of the conduction

electrons and given by[49]

V
k

=
X

i

eik·rih�d|V0| rii (1.28)

where �d is the atomic d-state wave function, V0 the ionic potential and  
ri the Wannier function

of the conduction electron located at site ri. In summary the Hamiltonian of the Anderson impurity

model (AIM) can be written in the mixed basis as

HSIAM =
X

k�

✏
k

c†
k�ck� + ✏d

X

�

nd� + Und"nd# +
X

k�

⇣

V
k

c†
k�d� + V ⇤

k

d†�ck�
⌘

(1.29)

In comparison with the Hubbard model, although the Anderson impurity model describes a phys-

ical system which di↵ers in many ways, the two are essentially representatives of the same paradigm:

the competition between itineracy and localisation. In the AIM the itineracy is represented by the

delocalised conduction electrons Hc, while the localising tendencies are found in the isolated d-state

Hd. The competition between the two is introduced into the model via the hybridridisation Hmix

through the coupling V
k

.

The physics described by the AIM is most easily understood by first concentrating on the atomic

part of the Hamiltonian, Hd. The four states of the impurity and their respective energies are given

by

state energy

|d0i 0
|d2i 2✏d + U

|d1"i or |d1#i ✏d
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where the superscript indicates the total occupancy of the impurity site. To obtain a magnetic

doublet as the ground state the following inequalities have to be fulfilled

E(|d2i)� E(|d1i) = ✏d + U > 0 ) ✏d + U/2 > �U/2

E(|d0i)� E(|d1i) = �✏d > 0 ) U/2 > ✏d + U/2 (1.30)

so that U/2 > |✏d +U/2|. The phase diagram of the AIM in the atomic limit, Fig. 1.4b, summarises

the inequality graphically. We see that for a su�ciently strong Coulomb interaction compared to

the level spacing, the ground state indeed becomes magnetic. The excitation spectrum will involve

two sharp resonances at ✏d and ✏d + U .

If we now embed this atomic site into a host metal, i.e. turn on the coupling V
k

, the d-level will

hybridise with the conduction electrons broadening the sharp �-resonances into resonances with a

finite width �(✏), where �(✏) is given Fermi’s golden rule[18]

�(✏) = ⇡
X

k

|V
k

|2�(✏
k

� ✏) (1.31)

When the hybridisation is small one may regard it as a weak perturbation around the atomic limit

as long as we ignore spin fluctuations which lead to the emergence of the Kondo e↵ect as we will see

in the following chapters. The ground state of the system will be essentially that of the atomic limit.

For weak U the hybridisation with the conduction electron sea will produce a single d-resonance

at ✏d of width �(✏d). In Anderson’s model for moment formation the resonance peak splits up for

interaction strengths U in excess of a critical Uc ⇡ ⇡� into two d resonances centred around ✏d and

✏d + U .

This is the essence of Anderson’s mean-field theory for local moment formation. The physics by

which the local moment is quenched at low temperatures however requires a more refined treatment

of the model and is termed the “Kondo”-e↵ect after the japanese physicist Jun Kondo. To make

this introductory section as short as possible we stop here and return to this interesting point in

chapter 4.
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Chapter 2

Itinerant electron magnetism in
the Hubbard model

The Hubbard model was invented by John Hubbard (1931 - 1980) with the intention of explaining

itinerant electron magnetism, primarily the ferromagnetism of Fe, Co and Ni. The initial success

lead to the hope that all major correlation phenomena ranging from (anti-)ferromagnetism, incom-

mensurate magnetic structures, metal-insulator transitions and even high-T superconductivity may

be understood from this simple model [29].

Although the Hubbard model is far from a realistic model for actual materials, the driving forces

of the ordering transition may be understood from it nonetheless. Therefore the Hubbard model gives

a good basis for understanding the anti-ferromagnetism, most prominently the anti-ferromagnetism

of Mott insulators. The Hubbard model supports di↵erent phases of magnetic ordering. The normal

metallic phase without magnetic ordering is referred to as paramagnetic (PM) and characterised by

up- and down-spins on all sites and no ordering except for local correlations. The spin-spin correlator

falls o↵ exponentially with distance. Therefore only short-ranged order in the spin alignments is

found. The ferromagnetic (F) phase is characterised by a net magnetic moment along a particular

direction, while the antiferromagnetic (AF) ordering has an equal number of spin up and down

conduction electrons, however the spin alignments show both short range and long range order.

2.1 Spin susceptibility

A convenient way to test whether the Hubbard model shows an instability towards a certain magnetic

order is to calculate the ~q-dependent spin susceptibility. Instabilities are signalled by a divergent

response to an external magnetic field with a specific wave-vector ~q. In the following we present

a mean-field derivation of the magnetic susceptibility for the Hubbard model. For a more detailed

presentation the interested reader is referred to Ref. [29].

We consider the following Hamiltonian

H = Hhub +Hfield (2.1)

where Hhub is the Hamiltonian of the Hubbard model, Eq. 1.4, and Hfield describes the coupling of

the spins to an external magnetic field. Hfield is given by

Hfield = �gµB

Z

dr ~S(r) ·H
q

cos(q · r) (2.2)

= �gµB

2

h

~S(q) + ~S(�q)
i

·H
q

(2.3)
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where g is the Landé factor, µB the Bohr magneton and H
q

the q-component of the external

magnetic field when expanded into Fourier components. The spin operator ~S(q) may be expressed

by fermion operators as

~S(q) =
1

2

X

p

X

↵,�

c†
p+q,↵~�↵�cp,� . (2.4)

where � is the vector of Pauli matrices. The Hubbard model possesses a SU(2) spin-rotational

symmetry, therefore the spin susceptibility we are interested in must be isotropic. We may thus

choose the magnetic field to point along the x-direction without loss of generality,

Hfield = �gµB

2
(Sx(q) + Sx(�q))Hx

q

. (2.5)

Now we turn to the interaction part of the Hubbard Hamiltonian Hhub = H0 + HU . Using the

identities

n̂j"n̂j# = n̂j" � S+
j S�

j

n̂j"n̂j# = n̂j# � S�
j S+

j (2.6)

we may rewrite HU as

HU =
U

2
N̂ � U

X

j

�

(Sx
j )

2 + (Sy
j )

2
�

. (2.7)

where we used N̂ =
P

j(n̂j"+n̂j#) and S± = Sx±Sy. Under the assumption that both the perturbing

field H
q

and the interaction strength U is small we may make a mean-field type decoupling of the

form [29]

(Sx
j )

2 ⇡ 2
⌦

Sx
j

↵

Sx
j �

⌦

Sx
j

↵2
(2.8)

It is the external field which causes finite expectation values of these averages. The only non-

vanishing average is due to the spin density wave induced by the external magnetic field and therefore

only
⌦

Sx
j

↵

is finite and of the form
⌦

Sx
j

↵

= S cos(q · j) . (2.9)

We may use this approximation now to replace the interaction term HU by a mean-field approx-

imation quadratic in the fermion operators and linear in the spin expectation value S. Noticing

that

2
X

j

⌦

Sx
j

↵

Sx
j =

X

j

S(eiq·j + e�iq·j)Sx
j

= S(Sx(q) + Sx(�q)) (2.10)

we may rewrite HU +Hfield as

HU +Hfield = �
✓

gµBHx

2
+ US

◆

(Sx(q) + Sx(�q)) (2.11)

Assuming that the spin density S is small, S ⌧ 1, we may regard H 0 = HU + Hfield as a weak

perturbation to the free fermion system H0. We wish to calculate the expectation value of hSx(q)i
to find a linear dependence on the external magnetic field Hx and thereby identify the magnetic

susceptibility �(q).

The ground state of H0 is given by the filled Fermi sea, |FSi. The energy correction to first

order in H 0 vanishes, since the expectation value of spin-flip-type operators, i.e. c†"c# etc., with the

eigenstates of H0 vanishes. We calculate therefore the first order correction to the ground state to

166



find the magnetisation along the x-axis. The formula of first order perturbation theory gives for the

perturbed ground state [29]

| 0i = |FSi �
✓

gµBHx

2
+ US

◆

X

p�

"

c†
p+q�cp��

✏
p

� ✏
p+q

+
c†
p�q�cp��

✏
p

� ✏
p�q

#

|FSi (2.12)

Since this state is the Fermi sea with particle-hole pairs of momentum q and �q superimposed

the only contributions to expectation values of operators of the form c†
p+q�cp�� comes from states

with p below the Fermi surface and p + q above it, or vice versa. Using the orthogonality of the

particle-hole superimposed state to the original ground state |FSi we find

h 0| c†
p+q�cp�� | 0i =

✓

gµBHx

2
+ US

◆

f
p

� f
p+q

✏
p

� ✏
p+q

(2.13)

where f
p

= ⇥(✏F � ✏
p

). The above results can be applied to the calculation of the spin expectation

value. For the x-component we find

h 0|Sx(q) | 0i =
✓

gµBHx

2
+ US

◆

�(0)(q) (2.14)

where we have defined the magnetic susceptibility function

�(0)(q) =
X

p

f
p

� f
p+q

✏
p+q

� ✏
p

. (2.15)

Although we have performed a T = 0 calculation the above result can be easily extended to the case of

finite T . In this case f
p

becomes the Fermi distribution. Self-consistency requires h 0|Sx(q) | 0i = S

which finally leads to

�(q) = (gµB)
2 �(0)(q)

1� U�(0)(q)
(2.16)

This expression is the RPA susceptibility familiar from the calculation of the polarisation. �(q)

di↵ers from the non-interacting susceptibility �(0)(q) by an enhancement factor.

In order to find wave-vectors which signal an instability of the system towards a specific magnetic

ordering we are looking for divergencies of the generalised susceptibility �(q). The denominator

vanishes when

U �(0)(q) = 1 (2.17)

which is the so-called generalised Stoner criterion. In the present case we are interested in the

Hubbard model on the simple cubic lattice with nearest neighbour hopping in d spatial dimensions.

The dispersion relation is given by

✏(k) = �2t
d
X

i=1

cos(ki) . (2.18)

For this type of lattice a perfect nesting condition is satisfied by the spanning vector Q

✏(k+Q) = �✏(k), 8k (2.19)
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where Q = (⇡,⇡, . . .⇡). At half-filling ✏F = 0 and T = 0 the susceptibility function, Eq. 2.15, can

be written as

�(0)(Q) =
X

p

f
p

� f
p+Q

✏
p+Q

� ✏
p

=
X

p

f
p

�2✏
p

T=0
=

Z D/2

0

⇢(✏)

2✏
(2.20)

�(0)(q) diverges logarithmically unless ⇢(✏) ! 0 as ✏ ! 0. It follow that the critical interaction

strength UQ

c vanishes, UQ

c = 0. Thus for half-filled bands with a perfect nesting property the mean-

field prediction is that arbitrary small interactions U > 0 cause a transition to a two-sublattice

antiferromagnetic state.

The above statement assumes that the susceptibility for other q 6= Q remains finite. If this is

not the case we have a case of competing instabilities. Indeed for d = 2 the simple cubic lattice

has a density of states which diverges logarithmically at ✏ = 0 and causes in turn the generalised

susceptibility �(q = 0) to diverge. We therefore have a competition between ferromagnetic and

antiferromagnetic order. It turns out that the antiferromagnetic order prevails[29].

2.2 Antiferromagnetic order on the mean-field level

The antiferromagnetic order is the most robust kind of ordering for the Hubbard model. As the

asymptotic model of strong coupling for the Hubbard model is the spin- 12 quantum Heisenberg

model, antiferromagnetic order is certainly expected for strong Hubbard U . On the d-dimensional

simple cubic lattice the situation is special due to the perfect nesting property mentioned above.

In the following we will see that the result is that for all U > 0 a magnetisation gap of finite size

appears and antiferromagnetic order is present at the mean-field level.

2.2.1 Origin of the magnetisation gap

Gaps in electronic spectra are common-place in condensed matter physics and many di↵erent mech-

anism exists which can give rise them. A trivial origin is the periodic arrangement of the ions in

a solid, which causes a periodic potential which breaks translational invariance. However there are

also intrinsic properties which may cause the appearance of a gap. In many of them the gap can be

understood from the hybridisation of electrons with other degrees of freedom. As shown below the

antiferromagnetic gap is one of these cases.

We start with a brief reminder on hybridisation gaps. Consider the following Hamiltonian

H =
X

k

✏(c)
k

c†
k

c
k

+ ✏(d)
k

d†
k

d
k

+ (V
k

c†
k

d
k

+ h.c.) (2.21)

where two di↵erent types of particles c†
k

and d†
k

hybridise with strength V
k

. The imaginary part of

the Green’s function for the c-electrons is easily found

Im[G(k,!)] =
�! + ✏(c)

k

V 2
k

� (! � ✏(c)
k

)(! � ✏(d)
k

)
(2.22)
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Figure 2.1: Imaginary part of the Green’s function for di↵erent hybridisation strengths V : V = 1
(black, solid), V = 0.5 (red, dashed) and V = 2 (blue, dotted). Strong van Hove-singularities can

be seen at the inner band edges. The dispersion relation is chosen to be ✏(c)
k

= �✏(d)
k

= � cos(k) to
give a hybridisation between particle- and hole-like degrees of freedom; see main text.

Two poles appear in the Green’s function located at

w =
✏(c)
k

+ ✏(d)
k

2
±

v

u

u

tV 2
k

+

 

✏(c)
k

+ ✏(d)
k

2

!2

(2.23)

For simplicity let us assume that ✏(c)
k

= �✏(d)
k

with � = ±1 and Vk = V . The positive sign corre-

sponds to two particle-like degrees of freedom hybridising, the negative sign to hybridsation between

electrons and holes.

• � = 1: From (2.23) it is immediately clear that the poles appear at ! = ✏
k

± V . Therefore if

the bandwidth of the dispersion D is greater than V a region of width |D � V | exists around
the Fermi surface that they do not enter. Consequently a gap of with 2(D�V ) appears in the

local Green’s function G(!) =
P

k

G(k,!) at the Fermi surface.

• � = �1: Here the poles appear at ! = ±
p

V 2 + ✏2
k

. As soon as V > 0 a region of with

2V appears that is free of poles. Therefore 8V > 0 a gap opens in the local lattice Green’s

function, c.f. Fig. 2.1.

The logic of the above argument directly carries over to the case of antiferromagnetic order. We

will work on the simple cubic lattice in three spatial dimensions which is a bipartite lattice so that

we have simple AB-sublattice anti-ferromagnetism. Without loss of generality we assume that the

magnetic order arises from spin-" electrons being the majority spin species on the A-sites and spin-#
on the B-sites. Symmetry considerations tell us that

hn̂A�i = hn̂B�̄i (2.24)

which means the expectation value of the particle number operator can be written as

hn̂i�i =
n

2
+ (�1)�meiQ·ri (2.25)

with n = hn̂i"i+ hn̂i#i and m the sublattice spin polarisation m = 1
2 (ni" � ni#)eiQ·ri .
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Performing the usual mean-field decoupling n̂j"n̂j# !
P

� n̂j� hn̂j�̄i � hn̂j"i hn̂j#i we see that

i.e. spin-" electrons see a superposition of the lattice potential plus an average field U hn̂j#i. The

additional field enlarges the periodicity of the potential landscape from a to 2a. Therefore the

e↵ective field has lower translational symmetry than the underlying lattice which halves the Brillouin

zone. The states lying outside the new, magnetic Brillouin zone (MBZ) can be transported into the

new Brillouin by application of a new reciprocal lattice vector ±⇡
a , e↵ectively splitting the formerly

single band into two (Fig. 2.2a). Defining new operators d†
k� = c†

k+Q� and d
k� = c

k+Q� the

mean-field Hamiltonian may be written in the familiar form

H =
2

L

MBZ
X

k,�

✓

1

2
Un+ ✏

k

◆

c†
k�ck� +

✓

1

2
Un� ✏

k

◆

d†
k�dk�

� (�1)�Um(c†
k�dk� + h.c.)� U

X

j

hn
j"i hnj#i (2.26)

where we have used the perfect nesting property Eq. 2.19. We choose µ = 1
2Un to push the model

to the particle-hole symmetric point. Comparing with (2.21) we realise that this is just the case

� = �1 with V = Um. The term linear in the magnetisation m hybridises the particle-like ✏
k

-band

with the hole-like ✏
k+Q

-band. At half filling the enlarged magnetic unit cell contains two electrons

completely filling the lower band while keeping the upper band unoccupied. From Fig. 2.2a we see

that the appearance of a finite magnetisation pushed down the occupied band, while pushing up the

unoccupied. This already hints at the energetical motivation for the symmetry breaking.

2.2.2 Gap equation and spectral functions

The Hamiltonian, Eq. (2.26), can be formally solved by diagonalisation. One finds for the eigenen-

ergies of the state with momentum k

✏±(k) =
Un

2
±
q

✏2
k

+ U2m2 � U
X

j

hn
j"i hnj#i (2.27)
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The ground state energy of the system can be obtained by summing over the occupied states. At

T = 0 and half-filling the lower band in Fig. 2.2a is completely occupied, therefore

E =
MBZ
X

k



Un

2
�
q

✏2
k

+ U2m2

�

� U
X

j

hn
j"i hnj#i

= U

✓

n2

4
+m2

◆

� 2

L

MBZ
X

k

q

✏2
k

+ U2m2 (2.28)

The gap equation is found by considering the above ground state energy as a function of the unknown

parameter m and requiring that E(m) is minimum, @E/@m = 0, with the non-trivial solution

1 =
1

L

MBZ
X

k

U
p

✏2
k

+ U2m2
(2.29)

The term in the sum depends only through the dispersion ✏
k

on the momentum k which allows us

to trade the sum over momenta for an integral over the non-interacting density of states

1 = U

Z W/2

0

d✏
⇢(✏)p

✏2 + U2m2

⇡ U⇢(0)

Z Um

0

d✏
1

Um
+

Z W/2

Um
d✏
⇢(✏)

✏

⇡ U⇢(0) + U⇢(0) ln
W

2Um
(2.30)

where W is the bandwidth and we assumed in the first line that ⇢(✏) = ⇢(�✏). Approximating the

density of states by its value at the Fermi level is only valid if ⇢(0) is finite. This is not the case for

d = 2. For U ⌧ W we expect a small magnetisation m and the above approximation should hold.

The small U dependence of the magnetisation is thus

m ⇡ W

2U
exp



� 1

U⇢(0)

�

(2.31)

Fig. 2.3b shows the magnetisation as a function of the local Coulomb interaction U as obtained

from a self-consistent solution of the mean-field equations. The green line shows the result for two

spatial dimensions. For three spatial dimensions (red line) the mean-field result is compared to the

weak-coupling approximation, Eq. 2.31, and good agreement is found.

A quantity of great interest is the single-particle spectral function. The structure of the local

Green’s function in mean-field approximation is given by[95]

G"(!) =
⇠#(!)

p

⇠"(!)⇠#(!)

Z 1

�1
d✏

⇢(✏)
p

⇠"(✏)⇠#(✏)� ✏
(2.32)

where ⇢(✏) denotes the non-interacting density of states and ⇠�(!) = !+ i0++µ� U
2 n+�Um. With

!± = U
2 n�µ±Um both radiants are positive for ! < !� and ! > !+. For particle-hole symmetric

densities of states the imaginary part of Eq. (2.32) vanishes for !� < ! < !+. Therefore a region of

width � = 2Um exists which holds no spectral weight. For ! close to the gap edges one finds[95]

� 1

⇡
ImGA"(!) =

8

<

:

q

Um
|!�!�|⇢(0) ! % !�

q

|!�!+|
Um ⇢(0) ! & !�

(2.33)

Fig. 2.3b shows a spectral function as obtained from mean-field theory. As expected a region of

width � = 2Um exists which holds no spectral weight. The asymptotic, Eq. 2.33, are depicted as

red and green lines in Fig. 2.3b and fit the mean-field solution very well.

171



0 0.5 1 1.5 2
U

0

0.03

0.06

0.09

0.12

m

(a) Sublattice spin polarisation m as a function
of the interaction strength U for two (green line)
and three (red line) spatial dimensions as ob-
tained for static mean-field theory. The black
shows the weak coupling result, Eq. 2.31, which
is in good agreement with the mean-field pre-
diction.
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(b) Spectral function for U = W/4 as obtained by
static mean-field theory. At the Fermi surface a
gap of width � = 2Um opens. The red in green
line depict the asymptotic at the edge of the gap,
Eq. (2.33).

Figure 2.3
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Chapter 3

Dynamical Mean-Field Theory

Materials with strongly correlated electrons exhibit some of the most intriguing phenomena encoun-

tered in condensed matter physics. The theoretical description of such systems is among the most

challenging of problems in the material sciences. The Dynamical Mean-Field theory (DMFT) pro-

vides an extensive and controlled framework for the study of such correlation phenomena. In this

chapter we review the justification and construction of the DMFT. Detailed accounts can be found

in Refs. [37, 62, 26, 52].

In materials with open d- and f -shells electrons occupy narrow orbitals and experience strong

Coulomb repulsion due to their spatial confinement. The typical approach for the description of

simple metals where the influence of the surrounding particles on a particular electron is modelled

through self consistently determined, static mean-fields fails in these situations where the motion of

each electron is strongly correlated with those of the others. A variety of numerical and analytical

techniques have to been used to treat the physics of strongly correlated electron systems. The

DMFT is one of these methods and, at the same time, stands out as a method which is both

numerically tractable and flexible enough to allow theorists to incorporate material-specific details

into the calculations[26].

The e↵ects of correlations often makes materials extremely sensitive to small changes in external

parameters, such as temperature, pressure and doping. The variety of phenomena ranges from

strong changes in the electrical resistivity in metal-insulator transitions (vanadium oxide), through

substantial volume changes (actinides and lanthanides) to remarkably high transition temperatures

in the superconducting curates[62]. In materials termed “heavy fermion systems” mobile electrons

behave at low temperatures as if their mass was a thousand times the mass of a free electron in

a simple metal[52]. Other materials show great sensitivity in their electrical resistivity to changes

in an applied magnet field resulting in “colossal magnetoresistance”[97]. Such properties spark the

hope for exciting applications of strongly correlated electron physics. The theoretical description of

these e↵ects which often rely on microscopic details is however especially challenging.

The failure of band theory for strongly correlated materials was first noticed in the description of

nickel- and manganese oxide. Both materials have a relatively low magnetic ordering temperature

but large insulating gaps[62]. In parameter regimes where magnetic long-range order is absent band

theory erroneously predicts these materials to be metallic. Neville Mott showed that instead of

understanding these materials from the perspective of delocalised electrons as in density functional

theory the more natural perspective is a simple, real-space picture[73]: adding and removing electrons

from the partially filled shells results in excited atomic configurations. Scattering by the internal

degrees of freedoms of the other electrons causes these excitations to propagate incoherently through
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Figure 3.1: Tight-binding density of states in d=1,2,3,4,5 as compared with the result for d = 1.
Taken from Ref. [110].

the crystal and broaden them to form bands. In the Hubbard model they appear as the upper and

lower Hubbard band. Understanding and especially modelling the metal-insulator transition in such

a set-up where the character of the electrons changes from itinerant to fully localised as a function

of the Coulomb interaction is however very di�cult.

In a well defined limit the DMFT allows for a numerically exact solution of this problem. In

addition this framework paves the way to a systematic extension of the method to more intricate

and realistic systems. In this chapter we start with a review of the simplifications which arise in

the infinite spatial dimension (or more generally infinite lattice connectivity) limit in section 3.1.

A derivation of the DMFT method by means of the cavity method is presented in section 3.3. An

alternative derivation due to Pottho↵ and Nolting is detailed in section 3.5.

3.1 Simplification from the d ! 1 limit

The birth of DMFT can be identified with the discovery of simplifications in perturbation theory in

the limit of infinite spatial dimensions due to Metzner and Vollhardt[72]. We start with a deriva-

tion of the asymptotic density of states for the simple cubic lattice in the limit of infinite spatial

dimensions.

Di↵erent lattices give rise to di↵erent dispersion relations ✏(k). For non-interacting particles

with a Hamiltonian H � µN =
P

k,�(✏k � µ)c†
k�ck� the free Green’s function and the free density

of states are given by

G(0)
k� (!) =

1

! � ✏
k

+ µ
, ⇢(!) =

1

L

X

k

�(! � ✏
k

) (3.1)

For a simple cubic lattice the dispersion relation is given by ✏(k) =
Pd

j=1 cos(kj). An elegant way

to determine the asymptotic density of states for d ! 1 is to invoke the central limit theorem

(CLT). The argument goes as follows. We consider the random variables Xj =
p
2 cos(kj) where

kj is distributed uniformly in the interval kj 2 [�⇡, . . . ,⇡] for each j 2 {1, . . . , d}. The Xj have

zero mean and unit variance Var(Xj) =
R ⇡
�⇡

dkj

2⇡ X2
j = 1. The central limit theorem applies to the

random variables Xj and states that the random variable Xd = 1p
d

Pd
j=1 Xj converges in law in the

d ! 1-limit to a normally distributed random variable X with zero mean and unit variance. The

distribution function of X is therefore given by f(X ) = exp(�X 2/2)/
p
2⇡. The density of states can

be regarded as the distribution function of the random variable
p
2dtXd[26]. Consequently a finite
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density of states is only obtained in the d ! 1-limit if the hopping scales as d�1/2. The resulting

density of states is given by

⇢(✏) =
1

2⇡t⇤
exp

✓

� ✏2

2t2⇤

◆

, with t =
t⇤p
2d

. (3.2)

Fig. 3.1 summarises the d ! 1 limit graphically. The evolution towards the Gaussian density of

states can be clearly observed. Generalising from the case of nearest neighbour hopping on a simple

cubic lattice in d spatial dimensions, each hopping tn must be scaled proportional to 1/
p
Zn where

Zn is the number of sites reachable by tn.

For the simple cubic lattice the bandwidth diverges in the d ! 1-limit (there are counterex-

amples such as the Bethe lattice which converges to a semi-elliptic density of states with a finite

bandwidth in the Z ! 1-limit). One might object that the infinite band edges are problematic for

the application of the infinite-dimensional limit as an approximation to finite-dimensional lattices

(with finite bandwidths). As we will see in the following the dispersion relation enters only through

the density of states into the simplified expression for the local lattice Green’s function. The prac-

tical solution will be to use the non-interacting density of states for the lattice dimension of interest

in all of these expressions. The d ! 1 limit also has consequences for the many body theory in

particular for the self-energy as pointed out by Metzner and Vollhard[72]. In the following we study

the d dependence of the non-local Green’s function Gij� and the e↵ects on the self-energy expansion.

3.1.1 Locality of the self-energy

In the previous section we showed how the hopping strength t has to be rescaled in order to obtain a

finite kinetic energy in the d ! 1-limit for the special case of the simple cubic lattice with nearest

neighbour hopping. This result can be generalised in the following way. For arbitrary, generalised

hopping amplitudes tij connecting lattice sites i and j, tij has to be rescaled according to[72]

tij = t⇤ijd
� 1

2 ||ri�rj || (3.3)

for the kinetic energy to be finite in the d ! 1-limit. Here t⇤ij is d independent and ||ri � rj || is the
shortest number of lattice steps from ri to rj and therefore proportional to the number of lattice

sites connected by tij . The kinetic energy can be expressed through the Green’s function

Ekin =
X

i,j

tij
D

c†i�cj�
E

=
X

i,j

tij

Z 1

�1

d!

2⇡
Gij�(!)e

i!0+ !
= O(d0) (3.4)

Since the double sum yields a contribution of order d||ri�rj || consequently the Green’s function has

to scale like

Gij�(!) = O(d�
1
2 ||ri�rj ||), Gii�(!) = O(d0) . (3.5)

The Green’s function decays rapidly with distance. This has important implications for example for

the perturbative, self-consistent skeleton expansion of the Green’s function.

Here we concentrate on the essential argument which leads to a substantial reduction in the

complexity of the self-energy for the Hubbard model in the limit of infinite spatial dimensions.

For a more detailed account the interested reader is referred to the original paper by Metzner and

Vollhardt[72] and to the review article about the dynamical mean field theory by Georges et al. [37].

Metzner and Vollhardt’s result for the Hubbard model was later generalised by E. Müller-Hartmann

who showed that the simplification is not restricted to Gaussian density of states. He found that
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(a) one-particle irreducible (b) one-particle irreducible (c) one-particle reducible

Figure 3.2: Exemplary diagrams illustrating the concept of “one-particle irreducibility”.

also in more general models interactions between particles on di↵erent sites are shown to simplify

to their Hartree substitute in the limit of large lattice coordination [74].

To make the description as transparent as possible we limit ourselves, for the most part, to the

presentation of the perturbative series in its diagrammatic representation. A more rigorous account

can be found in the two referenced sources. Separating the Hamiltonian for the Hubbard model

H = H0 + HU into a free (H0) and an interacting part (HU ) one can write down a perturbative

series in HU for the Green’s function of the system. We agree on the following diagrammatic code

G(0)
ij�(!) =

Gij�(!) =

Uc†i�ci�c
†
i�̄ci�̄ =

The perturbation expansion in HU for the non-local Green’s function Gij�(!) from the lattice

site i to j then yields a sequence of diagrams of which the lowest orders in HU are given by

(3.6)

Here summation over internal indices is assumed and we have suppressed the spin quantum number

to avoid clutter in the notation. It is fairly obvious that many of the diagrams involve repeating

structures. These can be e�ciently resummed through the introduction of a “one-particle irre-

ducible” self energy. For this we define the sum of those diagrams which cannot be cut into two

pieces by cutting a single solid line as the self-energy ⌃. Fig. 3.2 illustrates the concept. Three cuts

are needed to separate Fig. 3.2a into two pieces, two for Fig. 3.2b and one for Fig. 3.2c. Therefore

Fig. 3.2a and Fig. 3.2b are one-particle irreducible while Fig. 3.2c is not. The diagrams building the

self energy are to lowest order in HU given by

(3.7)

178



The Dyson equation expressed in Feynman diagrams is given by

(3.8)

and indeed substituting Eq. 3.7 into Dyson’s equation Eq. 3.8 yields the expansion Eq. 3.6

The notation can be further compactified by going to the so-called skeleton expansion. So far

we have considered an expansion of the from ⌃[G(0)], where the brackets signify that the self-

energy should be understood as a functional of G(0) since the whole matrix G(0)(!) including its

frequency dependence enters into the Feynman diagrams due to the summation over the internal

vertices (Section 3.5 takes this perspective more seriously and derives the DMFT equations in the

self-energy functional approach). These diagrams still contain self-energy insertions. For instance

the second diagram in Eq. 3.7 has the first diagram as a self-energy insertion. Going to the skeleton

expansion means that we replace free Green’s functions (solid lines) by full Green’s functions (double

lines). In doing this we have to take care not to overcount diagrams. In particular diagrams including

self-energy insertions should not be included in the expansion. To lowest order in HU the skeleton

expansion of the self-energy is given by

(3.9)

Note that the second diagram in Eq. 3.7 has been omitted. The skeleton expansion ⌃[G] is a useful

expansion to analyse the self-energy in the limit d ! 1.

The diagrams in the skeleton expansion series have the property that any two interaction vertices

are joined by at least three independent paths. If there was only a single path the diagram would

be one-particle reducible in contradiction with the rules of the expansion. If there were only two

independent paths one part of the diagram could be understood as a self-energy insertion to the other

again in violation of the expansion rules. The power counting in 1/d for these diagrams now allows

to judge which of them survive the d ! 1-limit. Suppose we have a diagram with an interaction

vertex at site i and one at site k. Let us suppose that i is the coordinate of one of the external legs

and k is an internal index to be summed over.

(3.10)

As there are three independent paths joining the two vertices the three associated Green’s functions

scale according to Eq. 3.5 as O(d�
3
2 ||ri�rk||). The sum over the internal vertex k scales proportional

to O(d||ri�rk||) and therefore the whole diagram is suppressed at least by a factor of O(d�
1
2 ||ri�rk||).

If however i = k the Green’s functions are of order O(d0) and there is no internal sum from k.

We therefore conclude: All diagrams in the skeleton expansion ⌃[G] have the same lattice site

label at all their internal and external vertices. The self-energy is site-diagonal (“local”)

⌃ij�(!) = �ij⌃�(!) (3.11)

In momentum space the self-energy is momentum k independent

⌃�(k,!) = ⌃�(!) (3.12)
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Figure 3.3: DMFT replaces the full lattice of correlated sites with a single site in an self-consistently
determined, e↵ective medium. The medium serves as a reservoir of non-interacting electrons. Taken
from [62].

Also the self-energy is a function only of the local component of the Green’s function as all internal

vertices have the same label. The immediate consequence for the Green’s function is that it can be

written as

G�(k,!) =
1

! � ✏(k) + µ� ⌃�(!)
= G(0)

� (k,! � ⌃�(!)) (3.13)

The local Green’s function depends only through the density of states on the dispersion relation and

hence on the geometry of the lattice

G�(!) =

Z

ddk

(2⇡)d
1

! � ✏(k) + µ� ⌃�(!)

=

Z 1

�1
d✏

⇢(✏)

! � ✏+ µ� ⌃�(!)
(3.14)

where ⇢(✏) is the non-interacting density of states.

In the following we present two derivations for the construction recipe of the functional ⌃[G],

i.e. the DMFT equations. Before we present the derivations however we give the reader a feeling

for the basic philosophy behind the DMFT.

3.2 Idea of the DMFT

In 1992 Georges and Kotliar mapped the Hubbard model onto a self-consistent Anderson impu-

rity model using the simplifications discussed in the previous section [36]. This idea is the basic

construction recipe of the DMFT which allowed to solve di↵erent model Hamiltonians on the lat-

tice using analytical and numerical techniques (Numerical Renormalization Group, Quantum Monte

Carlo, etc.) originally developed for quantum impurity models. The DMFT provides a controlled

approximation which becomes exact in the limit of infinite lattice connectivity.

Mean-field theories in general map many-body lattice problem onto single-site problems with

e↵ective parameters. Often DMFT is compared to the theory of classical magnetism. Here the

spin at a specific site is the degree of freedom and the interaction with the surrounding spins

on neighbouring lattice sites is accounted for (in an approximate fashion) by an e↵ective medium

modelled as an e↵ective magnetic field. For the fermionic case the degrees of freedom are the
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Figure 3.4: In the cavity derivation of the DMFT equations a cavity is created by removing a single
site from the lattice including its adjacent bonds. An e↵ective action is calculated by explicitly
tracing out the all fermions except for removed site.

atomic states of a single site and the rest of the crystal is described as reservoir of non-interacting

electrons that can be emitted to or absorbed from the atom. Fig. 3.3 depicts the process of emission

and absorption. The bath allows the atomic site to transition between di↵erent configurations. In

contrast to the classical case where the e↵ective medium (the e↵ective magnetic field) is represented

by a single number, the quantum case requires a hybridisation function �(!) to describe the ability

of an electron to enter and leave the site on a time scale 1/![62]. When the hybridisation is very

small the electron is almost entirely localised at a single site, instead when it is large it can move

through the whole crystal. The competition between localising and delocalising tendencies is thus

captured in a local approximation which however takes full account of the quantum fluctuations.

3.3 Cavity derivation

The cavity method is used in classical statistical mechanics to derive, for instance, the mean-field

equations for a classical ferromagnet. Here one focuses on a specific site and explicitly integrates out

the degrees of freedom of all other lattice sites in order to derive the e↵ective dynamics of the singled

out site. The general idea can be straight-forwardly extended to quantum many-body models. We

briefly repeat here the derivation. A more detailed account can be found in the DMFT review article

by Georges et al.[37].

One starts by writing the partition function of the Hubbard model as a functional integral over

Grassman numbers Z =
R

Q

i D(c†i�, ci�)e
�S[c†i�,ci� ] where

S =

Z �

0

d⌧

0

@c†i�@⌧ ci� �
X

hiji�

tijc
†
i�cj� � µ

X

i�

c†i�ci� + U
X

i

ni"ni#

1

A . (3.15)

Now the e↵ective action for site 0 is calculated by explicitly integrating out all fermions except those

on 0
1

Ze↵
e�Seff [c

†
0�,c0� ] =

1

Z

Z

Y

i 6=0�

D(c†i�, ci�)e
�S[c†i�,ci� ] (3.16)

To obtain an explicit expression for Se↵ the action is split into three parts S = S(0)+S0+�S, where

S(0) describes the lattice with site 0 removed, S0 is the action of the isolated site 0 and �S the

action due to hopping processes from the lattice with the cavity to the singled out site. Explicitly
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S(0) and �S are given by

S(0) =

Z �

0

d⌧

 

X

�

c†0�(@⌧ � µ)c0� + Un0"n0#

!

�S = �
Z �

0

d⌧
X

hi0i�

ti0
⇣

c†i�c0� + c†0�ci�
⌘

(3.17)

The terms in �S couple the lattice with the cavity to the isolated site. Setting ⌘i = ti0c0� one sees

that the ⌘i play the role of source terms and the integration over the other fermions generates a

connected Green’s function G(0) of the cavity lattice. The e↵ective action assumes the form

Se↵ =
1
X

n=1

X

i1...jn

Z

d⌧i1 . . . d⌧jn⌘
†
i1
(⌧i1) . . . ⌘

†
in
(⌧in)⌘j1(⌧j1) . . . ⌘jn(⌧jn)G

(0)(⌧i1 , . . . , ⌧in , ⌧j1 , . . . , ⌧jn)

+ S0 + const. (3.18)

Due to the scaling properties Eq. 3.3 and Eq.3.5 the expression simplifies significantly in the d ! 1-

limit. We analyse now the scaling properties order by order. For n = 1 the cavity Green’s function

is simply a two-point function, which scales like 1/
p
d
||ri�rj ||

. t0it0j also scales like 1/
p
d
||ri�rj ||

while the double sum yields a contribution d||ri�rj || and therefore the n = 1 contribution is of

order O(1) and survives the d ! 1-limit. For n = 2 the four-point function G(0)
ijkl scales like

1/
p
d
||ri�rj ||

1/
p
d
||ri�rk||

1/
p
d
||rj�rj ||

. On the simple cubic lattice ||ri�rj ||, ||ri�rk|| and ||rj�rk||
are at least 2 if they are not 0. So when i, j, k, l are all di↵erent, the four summations give d2 and the

four factors of t give 1/d2. The second order contribution scales in this case like 1/d and becomes

unimportant for large spatial dimensions. Terms where i = j contain three sums, which give d3, four

factors of t giving 1/d2 and 1/d2 from G(0) and therefore also scale like 1/d. The e↵ective action

therefore reduces to

Se↵ =
X

ij

Z

d⌧d⌧ 0ti0t0jc
†
i�cj�G

(0)
ij�(⌧ � ⌧ 0) + S0 + const. (3.19)

We now introduce the so-called Weiss e↵ective field G0(i!n) as

G0
�1
� (i!n) = i!n + µ�

X

ij

t0it0jG
(0)
ij�(i!n) . (3.20)

One can identify G0
�1
� (⌧ � ⌧ 0) with the amplitude for a fermion to be created on the isolated site

at time ⌧ and being destroyed at ⌧ 0. Creation and annihilation processes on the isolated site can

be understood as hopping processes moving particles from the isolated site into the bath which

describes the surrounding lattice and vice versa. The main di↵erence with a classical mean-field

theory is that the e↵ective field G0
�1
� (⌧ � ⌧ 0) is time dependent to take local quantum fluctuations

into account. Indeed, the mean-field theory presented here freezes spatial fluctuations but takes full

account of local temporal fluctuations. The e↵ective action can be written as

Se↵ = �
Z �

0

d⌧

Z �

0

d⌧ 0
X

�

c†0�(⌧)G0
�1
� (⌧ � ⌧ 0)c0�(⌧

0) + U

Z �

0

d⌧n0"(⌧)n0#(⌧) . (3.21)

In order to obtain a closed set of equations by supplementing the above equation with an expression

relating G0 to local quantities computable from Se↵ itself. Eq. 3.20 relates G0 to the Green’s function

of cavity lattice G(0). It turns out[37] that indeed G(0) is related to the Green’s function without

site 0 removed by

G(0)
ij� = Gij� �Gi0�G

�1
00�G0j� . (3.22)
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The above equation states that the cavity Green’s function accounts for all paths connecting i and

j with those paths removed which pass through site 0. In the d ! 1 limit only those path which

go through 0 once have to be counted and hence G00� is divided in the above equation. Inserting

Eq. 3.22 into Eq. 3.20 one finds that the Weiss mean field is given by

G0
�1
� (i!n) = ⌃�(i!n) +G�1

� (i!n) (3.23)

where G�1
� (i!n) is the local lattice Green’s function G�1

ii�(i!n) with the site indices suppressed since

we consider a homogenous problem and ⌃i�(i!n) is the local self-energy which is related to the local

lattice Green’s function via

G�(i!n) =

Z

d✏
⇢(✏)

i!n � ✏+ µ� ⌃�(i!n)
(3.24)

This provides us with a closed set of equations: Starting from an initial self energy ⌃� the above

equation allows to determine the Weiss e↵ective field G0. Inserting this into the e↵ective action

Eq. 3.21 we calculate the local Green’s function G� and from that the self energy ⌃�. The structure

of the DMFT is thus that of a set of functional equations for the local lattice Green’s function and

the Weiss mean field. The problematic step is of course the calculation of the local Green’s function

given the Weiss e↵ective field. In the next section we show that this problem is equivalent to the

solution of a single impurity Anderson model and therefore the extensive techniques available for

the solution of quantum impurity problems can be used.

3.4 Mapping to a quantum impurity problem

Integrating out the fermions on the other lattice sites i 6= 0 has introduced retardation e↵ects into

the e↵ective action Se↵ , Eq. 3.21, in the form of the Weiss mean field G0�(⌧�⌧ 0). One can now return

to a Hamiltonian formulation by introducing auxiliary (non-interacting) degrees of freedom. For this

we consider the c0� as an impurity and introduce the conduction electrons a
k� as auxiliary degrees

of freedom. The Hamiltonian of the single impurity Anderson model describes such a situation.

Indeed starting from the Hamiltonian HSIAM for the single impurity Anderson model, Eq. 1.29, we

can rewrite it as an action. The impurity degrees of freedom are represented as the Grassmann

numbers dn� and the conduction electrons by the Grassmann numbers c
kn� where � is the spin

of the impurity (electron), k is the momentum of the conduction electron and n is a label for the

Matsubara frequency !n. The action assumes the form

SSIAM[c†
kn�, ckn�, d

†
n�, dn�] =

X

kn�

(�i!n � ✏
k

)c†
kn�ckn� + (�i!n � ✏d)d

†
n�dn�

+
X

kn�

⇣

V
k

c†
kn�dn� + h.c.

⌘

+ U
X

n

nn"nn# (3.25)

where nn� = d†n�dn�. The action is quadratic in the conduction electron degrees of freedom and

therefore we can integrate them out find an e↵ective action for the impurity degrees of freedom.

One finds

S[d†n�, dn�] =
X

n

d†n�G�1
SIAM(i!n)dn� + U

X

n

nn"nn# (3.26)

where we have defined the bath function

G�1
SIAM(i!n) = i!n � ✏d ��SIAM(i!n) (3.27)
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impurity solver Eq. (3.24)

Eq. (3.23)Eq. (3.29)

iterate

Figure 3.5: Illustration of the DMFT self-consistency loop: Starting from an initial ⌃�(z) use
Eq. (3.24) to determine G�(z), then use Eq. (3.23) to find G0

�1
� (z) and determine �SIAM(z) from

that using Eq. (3.29). Solving the impurity problem gives a new self-energy ⌃�(z) and the loop is
thus closed.

with the hybridisation function �SIAM(i!n) defined as

�SIAM(i!n) = �
X

k

Z 1

�1
d!

|V
k

|2
i!n � !

�(! + ✏
k

) (3.28)

The influence of the bath is therefore completely determined by the hybridisation function �SIAM.

The e↵ective action in the DMFT equations, Eq. 3.21, has the same structure the action of the

impurity model, Eq. 3.26 if we identify the bath function of the impurity model with that of the

lattice problem, G�1
SIAM(i!n) = G0

�1
� (i!n). This relates the hybridisation function �SIAM(i!n) to

the Weiss mean field in the DMFT equations,

�SIAM(z) = z � ✏d � ⌃�(z)� G0
�1(z) (3.29)

It is now possible to solve the DMFT equations self-consistently using the solution of the SIAM.

The DMFT algorithm is thus:

Algorithm 1.

1. Start with an initial guess for the self-energy of the system. Often ⌃�(z) = 0 is used.

2. Use Eq. 3.24 to calculate the local lattice Green’s function G�(z) from the current self-energy

⌃�(z).

3. Determine the local Weiss mean field G0
�1
� (z) using Eq. 3.23.

4. Calculate the hybridisation function �SIAM(z) for the impurity problem from the Weiss mean

field G0
�1
� (z) using Eq. 3.29.

5. Solve the impurity problem posed by hybridisation function �SIAM(z) using an adequate im-

purity solver and determine the impurity self-energy ⌃SIAM
� .

6. Identify the local lattice self-energy ⌃�(z) with the impurity self-energy ⌃SIAM
� (z) and goto step

2 if not already converged. Convergence can be tested using any function metric to measure

the change in the self-energy from iteration n to n+ 1, i.e.
R

d! |⌃(n)
� (!)� ⌃(n+1)

� (!)| < �?
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+ + . . .

Figure 3.6: The Luttinger-Ward functional.

3.5 Self-energy functional approach

Pottho↵ and Nolting provide an alternative derivation of the DMFT equations which o↵ers an

illuminating and slightly more abstract view on the approximative nature of the theory[87, 88].

Only a rudimentary derivation and description of the most important properties will be given here.

Throughout this section we will consider Hamiltonians of the form

H(t,U) = H0(t) +H1(U) (3.30)

where H0 describes the ‘free’ dynamics of the system, parametrized by a hopping matrix t and H1

implements any kind of interaction for the interaction parameters U.

The Luttinger-Ward functional (LW functional) �̂[G] [68], regards the system’s full Green’s

function G as a variational parameter, whose exact value is a stationary point of the functional

�̂[G]. It can be constructed by summing all connected skeleton diagrams where free progragators

have been replaced by full propagators, c.f. Fig. 3.6. Generally it cannot be summed up to get a

closed form expression [88]. It provides however a special relationship between static and dynamic

system system quantities

• The grand canoncial potential of the system ⌦ may be calculated by evaluating the LW func-

tional at the exact Green’s function

⌦ = �[G] + Tr lnG� Tr⌃G (3.31)

• The functional derivative of the LW functional with respect to its variational parameter

1

T

��̂[G]

�G
= ⌃̂[G] (3.32)

defines a self-energy functional ⌃̂ which gives the exact self-energy of the system if evaluated

at the exact Green’s function G.

• The functional �̂ is ‘universal‘ in the sense, that it only depends on the interaction part H1 of

the hamiltonian and is independet on the concrete choice of t.

The LW functional provides a convenient starting point for the construction of approximative

theories. Typically one has the self-energies in a theory as functionals of Green’s function ⌃ = ⌃[G].

The equations of motion for these Green functions have to be solved self-consistently and the true self-

energy functionals have to be replaced by approximate ones. However these approximations cannot

be made completely freely by choosing an arbitraty subset of diagrams as violations of conservation

laws (continuity equation, momentum convervation. . . ) might occur as shown by Kadano↵ and

Baym [6]. They showed that approximate self-energies derived from approximate Luttinger-Ward

functionals �̂

⌃[G] =
��̂[G]

�G
(3.33)
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(a) (b) (c)

Figure 3.7: Schematic representation of the Hubbard model (a), an equivalent extension of the model
(b) and a possible reference system (c). Adaption based on [87].

automatically fulfill the required conservation laws, therefore �̂-derivable approximations are called

conserving approximations.

Similar to the case of the Luttinger-Ward functional, Pottho↵’s theory of the self-energy func-

tional rests on variational approach which uses the self-energy ⌃ rather than the Green’s function G

as the basic dynamical variable. Consequently the central building block is the Legendre transform

of the Luttinger-Ward functional rather than the LW functional itself.

F̂ [⌃] = �[G[⌃]]� Tr(⌃G[⌃]) (3.34)

The functional F̂ may be constructed provided that the relation G[⌃] is (locally) invertible ([87] see

appendix A). It can be shown that F̂ shares many of �̂’s valuable properties, most noteworthy: It

is also universal. The functional derivative of F̂ evaluated at the exact self-energy gives the exact

Green’s function.
1

T

�F̂ [⌃]

�⌃
= Ĝ[⌃] (3.35)

The first step is to express the system’s grand canonical potential through F̂

⌦̂
t

[⌃] = Tr ln
�

�(G�1
0 �⌃)�1

�

+ F̂ [⌃] (3.36)

The functional ⌦̂
t

depends explicitly on the hopping matrix t through the free Green’s function G0

and it can be shown that ⌦̂
t

is stationary at the exact Green’s function G.

@⌦̂
t

@⌃
= 0 , G[⌃] =

�

G�1
0 �⌃

��1
(3.37)

Knowledge of the grand potential would allow for the calculation of the exact self energy through

the above relation, but the explicit form of the functional F[⌃] is in general unknown. The above

scheme can however to be used to construct an approximation for the self-energy by restricting the

functional ⌦̂
t

[⌃] onto a subspace of trial self-energies. ⌦̂
t

[⌃] is then minimised on that subspace to

find the best approximation to the exact self-energy.

To be more explicit we suppose that we have a reference system H 0 = H 0
0(t

0)+H1(U) with equal

interaction part H1(U) but di↵erent free Hamiltonian H 0
0(t

0) that we can solve exactly. The exact

free energy of the reference system is given by ⌃(t0). The functional F [⌃] for both systems coincide

as F [⌃] does not depend on the free but only only on the interaction part. Thus the grand potential

of the reference system has the form

⌦̂
t

[⌃] = Tr ln



�
⇣

G0�1
0 � ⌃

⌘�1
�

+ F [⌃] (3.38)
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F [⌃] can now be eliminated from the grand potential of our target system but solving the above

expression of the reference system for F [⌃] and substituting.

⌦̂
t

[⌃] = ⌦̂
t

0 [⌃] + Tr ln
h

�
�

G�1
0 � ⌃

��1
i

� Tr ln



�
⇣

G0�1
0 � ⌃

⌘�1
�

(3.39)

When restricted to the subspace spanned by the self-energies of the reference system, the above

expression is equal to the exact grand potential of the target system. Noting that G0�1
0 � ⌃ is the

Green’s function of the reference system the above expression involves apart from the non-interacting

Green’s function of the target system G(0) only quantities from the reference system. If the reference

system is chose such that it can be solved explicitly an approximation for the exact self-energy of the

target system can be found by ext remising the above expression. The condition @⌦̂
t

[⌃(t0)]/@t0 = 0

gives

T
X

!n

X

↵,�

✓

1

G�1
0 � ⌃(t0)

�G0
◆

↵�

@⌃↵�(t0)

@t0
= 0 (3.40)

The case of the Hubbard model is depicted graphically in Fig. 3.7. The original Hubbard model

is shown in Fig. 3.7a, then a number ns = 4 of non-interacting, decoupled reference sites are

introduced to create an equivalent model, Fig. 3.7b. By changing the hopping a reference system

is obtained, Fig. 3.7c. The ns decoupled sites can be understood as discretised approximations for

the Anderson impurity model. For ns ! 1 they coincide with an AIM with a local self-energy and

hence @⌃ij(t0)/@t0 = �ij . Eq. 3.40 becomes for this particular case

✓

1

G�1
0 (i!n)� ⌃(i!n)

◆

ii

= G0
ii(i!n) (3.41)

which is nothing but the DMFT self-consistency condition.

3.6 Application: Mott-Hubbard metal-insulator transition

The dynamical mean-field theory has been successfully employed to study the Mott-Hubbard metal-

insulator transition for a Hubbard model at the particle-hole symmetric point on a simple cubic

lattice in the limit of infinite spatial dimensions both at T = 0 and finite temperature T by Bulla[8],

Bulla et al.[9] and other authors. Bulla used the non-perturbative numerical renormalisation group

(NRG, [12]) to solve the impurity problem. For T = 0 a first-order phase transition at a finite value

of the interaction strength U = Uc2 was found where the metallic solution vanishes and the system

becomes insulating. At zero temperature a suitable criterion to distinguish the metallic from the

insulating phase is the quasi particle weight

Z =
1

1� @Re ⌃(!)
@!

�

�

�

!=0

(3.42)

which is finite in the metallic phase but vanishes with increasing U when the insulating solution

appears. Fig. 3.8a shows the spectral functions from a DMFT calculation (also using NRG as the

impurity solver) for the Hubbard model on the simple cubic lattice in three spatial dimensions. The

only information from the lattice that enters into the DMFT equations is the non-interacting density

of states ⇢(✏), which depends on the dimensionality of the lattice. However the modification is minor

and we can still discuss the transition along the lines of Refs.[8, 9]. In the metallic phase for large

values of U the spectral function shows a characteristic three-peak structure with a quasi-particle

peak at the Fermi-level and (for the particle-hole symmetric model we are studying here) symmetric
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Figure 3.8

upper and lower Hubbard bands centred about ±U/2. For interaction values close to the transition

the quasi-particle peak stands isolated in a preformed gap (U = 15, orange curve). The width of

the quasi particle peak is proportional to Z. When the interaction strength is increased further the

width of the peak vanishes and the gap in the spectrum appears discontinuously (U = 18, cyan

curve).

In the concrete calculations one observes that above the critical Uc2 the width of the peak vanishes

exponentially with the DMFT iteration. Still a metallic input solution in the DMFT always produces

a metallic solution in the following iteration independent of the applied U as long as U is finite.

This is to be compared to the single impurity Anderson model the Hubbard model is mapped to in

the self-consistency loop: here also the low-energy scale vanishes only exponentially with U and one

has to go to U ! 1 for it to disappear. It is only the condition of self-consistency in the solution

which shifts the critical U value from 1 to a finite value Uc2 in the Hubbard model[8].

Fig. 3.8b shows the imaginary and real part of the self-energy for a value of U = 12 (black curves)

in the metallic phase and U = 18 (red curves) in the insulating phase. For the metallic self-energy

the imaginary part shows a two-peak structure where the weight in the peaks is approximately

independent of U , but the position and width vanish as U ! Uc2 . The low-energy behaviour for the

self-energy is given by

Re ⌃(! + i0+) =
U

2
+ (1� 1

Z
)! +O(!3)

Im ⌃(! + i0+) = �b(Z)!2 +O(!4) (3.43)

as predicted by Fermi liquid theory. The function b(Z) is model specific. Upon approaching the

transition the two peaks are seen to merge into a single pole located at the Fermi energy of weight ↵.

Note that here in the numerical data the width of the single peak is not physical and only due to the

numerical implementation. The width is controlled by the broadening parameter of the numerical

renormalisation group used to solve the impurity problem. The structure of the self-energy can be

understood from the shape of the spectral function. For the underlying single Anderson impurity

model one has the relation (Eq. 3.23 into Eq. 3.27)

⌃(z) = z � ✏d ��(z)� 1

G(z)
(3.44)
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which shows that the self-energy develops peaks where the real and imaginary part of the Green’s

function are small. Therefore for any spectral function which shows a pronounced three-peak struc-

ture the self-energy develops two-peaks.

A coexistence region for metallic and insulating solutions is found in a particular interaction

window Uc1 < U < Uc2 . Coming from the metallic side, the quasi-particle weight vanishes at the

critical interaction strength Uc2 . From the insulating side the insulating solution shows the 1/z pole

in the region of coexistence and at U ! Uc1 the weight ↵ of the pole vanishes. Such hysteresis e↵ects

are expected for first order phase transitions. The first order transition ends at finite temperature

at a critical endpoint Tc as shown in Fig. 1.2. For T > Tc we have a crossover and the two peak

structure in the self-energy gradually evolves in to well-pronounced peak at ! = 0. The critical

values U for T > Tc are defined via the value of U where the spectral function A(! = 0) changes

discontinuously.

We briefly discuss the situation for the Hubbard model away from the particle-hole symmetric

point. In the following the chemical potential is measured relative to the particle-hole symmetric

point, i.e. the on-site energy in the Hubbard model is always ✏d = �U
2 . We first concentrate on the

T = 0 case. Starting at hal-filling (µ = 0) on the insulating side (U > Uc2) due to the existence

of the Mott gap around the Fermi energy no change in the occupation number is observed for a

small increase in the chemical potential, the n(µ)-curve is flat around µ = 0. Once the chemical

potential has been increased enough that the Fermi level start to move into the upper Hubbard

band, the local density of states at the Fermi level A(µ) becomes finite, which leads to an increase in

the hybridisation function of the underlying impurity problem (c.f. Eq. 3.29) which leads to a finite

Kondo temperature TK and the appearance of a Kondo resonance and an increase in the occupation.

The spectral weight in the Kondo peak increases continously from zero as µ is raised and hence n(µ)

is a continous function for T = 0. At finite T the “gap” in the spectrum at µ = 0 is thermally

activated and the occupation immediately increases as the chemical potential is raised. n(µ) is not

flat around µ = 0. The Kondo temperature of the underlying impurity model is TK / �(µ) and

therefore increases as the chemical potential is increased. When the chemical potential hits the upper

Hubbard band the hybridisation strongly increases and so does the Kondo temperature. One can

imagine having a chemical potential dependent Kondo temperature TK(µ) and once the chemical

potential is increased so much that the TK lies above the system temperature T the Kondo e↵ect sets

in, a Kondo resonance appears and the occupation jumps. For T > 0 n(µ) is a discontinous function

which jumps at the µc where TK(µc2) = T . The hysteresis in the disappearance of the metallic in

favour of the insulating solution also a↵ects n(µ). One finds a di↵erenct critical chemical potential

µc1) when starting from the metallic side at finite doping and moves towards half-filling[47].

3.7 Antiferromagnetic order

Although we have derived the mean-field equations in section 3.3 under the assumption that no

long-range order is present, it is straightforward to generalise the DMFT to phases with broken

symmetry. Here we consider the case of antiferromagnetic order on a bipartite lattice. Bipartite

lattices consist of two sublattices A and B such that the nearest neighbours for a site in the A

(B) sublattice are only sites of sublattice B (A). Zitzler et al.[117] studied the phase separation for

the doped Hubbard model using the method presented here. In a later study they determined the

magnetic phase diagram of the magnetically frustrated Hubbard by including next-nearest neighbour
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hopping. Bauer and Hewson[5] analysed the properties of the quasiparticle excitations of metallic

antiferromagnetic states. We start with a Hubbard model in a staggered magnetic field

H =
X

ij�

(tijc
†
Ai�cBj� + h.c.) + U

X

i↵

n↵i"n↵i# �
X

i�

(µ�nAi� + µ�̄nBi�) (3.45)

where ↵ 2 {A,B} and the spin-dependent chemical potential µ� = µ + �h contains the e↵ect of

the staggered magnetic field h. The non-interacting part of the Hamiltonian can be diagonalised in

terms of Bloch states when going to momentum space

H0 =
MBZ
X

k�

C†
k�Mk�Ck� (3.46)

with C
k� = (cAk�, cBk�)T and M is given by

M
k� =

✓

�µ� ✏
k

✏
k

�µ�̄

◆

(3.47)

The k sum runs over the magnetic Brillouin zone and the energy of the Bloch state is given by ✏
k

.

Here we have adopted a special real-space basis in terms of the sublattices A and B, {cAk�, cBk�}.
The choice of basis in chapter 2 given by {c

k�, ck+Q�}, where Q = (⇡, . . . ,⇡)T is the reciprocal

lattice vector for the commensurate spin density wave ordering, is related to our choice here by the

linear transformation
✓

c
k�

c
k+Q�

◆

=
1p
2

✓

1 �1
1 1

◆✓

cAk�

cBk�

◆

(3.48)

For the derivation of the DMFT equations the formulation in terms of the A�B sublattice is however

more convenient. The non-interacting Green’s function G0 is given by

G(0)
k� =

1

(! + µ�)(! + µ�̄)� ✏2
k

✓

! + µ�̄ ✏
k

✏
k

! + µ�

◆

(3.49)

The interacting Green’s function is found by generalising the above expression with the inclusion of

a sublattice dependent self-energy ⌃↵�(!) with ↵ 2 {A,B} and we assumed that the self-energy is

local hence k independent and sublattice space diagonal, so that the Green’s function can be written

as [5]

G
k� =

1

⇠A�(!)⇠B�(!)� ✏2
k

✓

⇠B�(!) ✏
k

✏
k

⇠A�(!)

◆

(3.50)

where ⇠↵�(!) = !+µ� �⌃↵�(!). Due to the symmetry of the bipartite lattice the self-energy fulfils

⌃A�(!) = ⌃B�̄(!) ⌘ ⌃�(!) and thus ⇠A�(!) = ⇠B�̄(!) ⌘ ⇠�(!). It is therefore su�cient to focus

on one sublattice alone, say A. The local lattice Green’s function for sublattice A can be found

by carrying out the k-sum in Eq. (3.50) which can be written as an energy integral due to the k

independence of the self-energy ⌃�(!)

GA�(!) = ⇠�̄(!)

Z 1

�1
d✏

⇢(✏)

⇠�(!)⇠�̄(!)� ✏2
(3.51)

where ⇢(✏) is the non-interacting density of states. Similarly to the paramagnetic case the Weiss

mean field is determined from the equation

G0
�1
� (!) = ⌃�(!) +G�1

� (!) (3.52)

where however all quantities have acquired a non-trivial spin dependence. The single Anderson

impurity model the problem is mapped to has a spin-dependent on-site energy for the impurity
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(a) Single-particle spectral function for the A sub-
lattice of a Hubbard model with U = W/4. The
solid black line is the DMFT result, the solid red
line indicates the SMT result. It can be seen that
for small interactions the agreement is good.
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(b) Same as (a) with U = 5W/6. The solid black
line is the DMFT result, the solid red line indicates
the SMT result. For large interaction strength it be-
comes obvious that the interaction induced increase
in the e↵ective bandwidth is greatly underestimated
by the SMT.

Figure 3.9

given by ✏d� = ✏d ��h. The hybridisation function �SIAM�(!) also acquires a spin-dependence and

is determined in the usual way from the Weiss mean field G0�(!)

�SIAM�(!) = z � ✏d� � ⌃�(!)� G0
�1
� (!) (3.53)

For the solution of the actual impurity problem one needs to employ an impurity solver which can

cope with the broken symmetry. In section 4.7 we describe how this can be achieved with the

numerical renormalisation group (NRG). To find antiferromagnetic solutions once can calculate self-

consistent solutions for a decreasing sequence of staggered magnetic field strengths to see if broken

symmetry solutions exist as the staggered field is reduced to zero.

3.7.1 Application: Antiferromagnetic order in the Hubbard model

In the following we present results for the half-filled Hubbard model on a simple cubic lattice with

nearest-neighbour hopping in 3 spatial dimensions. As expected we find that for all U > 0 the

symmetry broken, antiferromagnetic phase is energetically stable. Fig. 3.9 shows the single particle

spectra for two di↵erent interaction strengths U = W/4 and U = 5W/6, both of which are below the

MHMIT if the system is confined to the paramagnetic phase. The solid black line is the DMFT result,

the solid, red line shows the result of static mean-field theory (SMT). For small interaction strengths

(Fig. 3.9a) compared to the bandwidth of the non-interacting model, U ⌧ W , the agreement is rather

well. The SMT reproduces the essential features of the DMFT which are slightly more smoothed

out. For larger interaction strengths however (Fig. 3.9b) the insu�ciencies of the SMT become

apparent. Most notably the increase in the bandwidth is notoriously underestimated in comparison

with the DMFT result. Fig. 3.10a shows the sublattice polarisation m as a function of the interaction

strength U . The solid black line is the SMT result, the red dots indicate DMFT calculations. The

tendency towards magnetic order is overestimated by the SMT. The reason is that it ignores quantum

fluctuations on the correlated site which the DMFT takes full account of. These fluctuations have a

tendency to disorder the state of the system and hence reduce the magnitude of the order parameter

m. For finite temperatures close to the critical point T = TN where m ⇡ one expects a square

root behaviour from mean-field arguments, m(T ) ⇡ �
p
TN � T . Fig. 3.10b shows DMFT results
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(a) Sublattice polarisation m as a function of the
interaction strength U for T = 10�8. The ten-
dency towards magnetic order is overestimated by
the SMT (solid black line) since it ignores quan-
tum fluctuations on the correlated site which the
DMFT (red dots) takes full account of.
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Figure 3.10

Figure 3.11: Pictorial depiction of the antiferromagnetic order for a bipartite lattice. Red sites are
predominantly occupied by one spin species, green sites by the other.

(red dots) for m as a function of the temperature T . Above the Neel temperature TN ⇡ 0.0044 the

sublattice polarisation m vanishes. The solid black line is fit of a function prototype �
p
TN � T to

the DMFT data where we found � ⇡ 10.16. Indeed the DMFT results fulfil the static mean-field

prediction; the deviation for temperatures much smaller than TN is expected.
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Chapter 4

Solution of the impurity model

4.1 Introduction to the Kondo e↵ect

In 1934 Wander Johannes de Haas [23] discovered a resistance minimum in a gold probe at low

temperatures, c.f. Fig. 4.1a. This behaviour was utterly unexpected because at the time, the resis-

tivity was thought to be determined by two e↵ects: (a) the potential scattering by (non-magnetic)

impurities and (b) scattering due to lattice excitations, e.g. phonons. The expected behaviour

was therefore that the resistivity monotonically decreases as a function of T as T ! 0. At higher

temperatures Curie-Weiss behaviour was observed in the magnetic susceptibility, c.f. Fig. 4.1b, and

so it was conjectured that magnetic Fe impurities in the gold probe might be responsible for the

unexpected behaviour. In 1961 Anderson introduced the single impurity Anderson model (SIAM)

as a minimal model for the description of the e↵ect. The Hamiltonian of the SIAM is given by

HSIAM =
X

k�

✏
k

a†
k�ak� + ✏d

X

�

nd� + Und"nd# +
X

k�

⇣

V
k

a†
k�cd� + V ⇤

k

c†d�ak�

⌘

. (4.1)

where nd� = c†d�cd� is the number operator for spin � =" / # electrons on the impurity d-level. The

SIAM can be understood as a paradigmatic model for local moment physics. The delocalised con-

duction electrons in the gold probe have extended wave functions which subject them to Coulomb

screening rendering their interactions short-ranged. In the SIAM these electrons are modelled as

non-interacting quasi-particles with a dispersion relation ✏
k

. The d-electrons of the impurity on

the other hand are strongly localised and the inclusion of Coulomb interaction U is crucial for

their faithful description. The hybridisation strength V
k

tunnel-couples the impurity to the con-

duction electrons and allows for charge fluctuations on the impurity. If the impurity is empty or

double occupied it has no net magnetic moment and thus only acts as a potential scatterer. It

turns out that potential scattering alone cannot explain the appearance of the resistance mini-

mum. The non-trivial behaviour is associated with the spin-sector. One can restrict the model

to exact half filling by choosing ✏d ⌧ ✏F ⌧ 2✏d + U , where there is a particle-hole symmetry.

states to be
removed.

✏F

oc
c.

st
at
es

em
p
ty

st
at
es

In this parameter regime, changes of the charge state of the impu-

rity only occur virtually. It is therefore permissible to project the

Hamiltonian onto the singly occupied subspace by a perturbative,

approximate canonical transformation known as the Schrie↵er-Wol↵

transformation[106]. The e↵ective low-energy Hamiltonian then as-

sumes the form

HKondo =
X

k�

✏
k

c†
k�ck� + J S · s (4.2)
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a b

Figure 4.1: a) Resistivity for a gold probe with unexpected minimum as a function of temperature;
measured by de Haas[23] b) Curie-Weiss behaviour for iron alloyed copper as measured by Hurd[54].
The number next to the curves measure the concentration in ppm.

where J = V 2/U is the antiferromagnetic coupling between the

spin- 12 local moment on the impurity, represented by the oper-

ator S, and the spin density of the conduction electrons s =
1
2

P

kk

0��0
VkV

⇤
k0

V 2 c†
k�~���0c

k

0�0 , where ~� is a vector of Pauli matrices

and V 2 =
P

k

|V
k

|2. This is the Kondo model, valid for T ⌧ U .

Jun Kondo performed a third order perturbative calculation in

the coupling constant J of the Kondo model, which describes scat-

tering of conduction electrons by a local moment. By including

second-order spin-flip processes to the elements of the T-matrix he

found a ln(T/D) (D the bandwidth of the conduction electrons) cor-

rection term to the resitivity which gave rise to a minimum in the

resistivity. Furthermore, the position of the predicted minimum,

Tmin / c1/5imp (4.3)

with cimp the impurity concentration was in agreement with experimental data. The ln(T ) term

however has an unphysical divergence as T ! 0 which became known as the “Kondo problem”.

In 1965 Abrikosov summed the perturbative series to infinite order in an attempt to remove

the ln-divergence and discovered that the perturbative treatment always breaks down leading to a

divergence of the resistivity (for antiferromagnetic coupling J) at a finite temperature TK , which

would later become known as the Kondo temperature. The main obstacle turned out to be that the

structure of the problem is such that information from all energy scales contribute to the solution.

Hence it is not amendable to solution by perturbative approaches. Theoretically, the objective then

was to find a non-perturbative technique, which allows for the calculation of transport properties

as T ! 0 in the Kondo- and Anderson models. Experimentally the aim was to understand the

behaviour of these quantities for T < TK . The terms responsible for the break-down of perturbation

theory were the log terms, ln(kBT/D), implying that coupling to high energy excitations could not
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be ignored. The idea known as poor man’s scaling, put forward by Anderson in 1964, sought to

incorporate the e↵ect of high energy excitations into a renormalization of the coupling constants.

The technique is similar to the derivation of the Kondo model from the Anderson impurity model,

where one perturbatively accounts for the influence of the empty and doubly-occupied states on the

singly occupied states. However, here virtual excitations occur to excited states located at the edges

of the band (see fig. 4.2 ). As one repeatedly integrates out states within an energy window �D

of the band edges, the coupling constants for the antiferromagnetic isotropic model (J± = Jz = J)

flow according to
dJ

d lnD
= �2⇢0J

2 (4.4)

It was found that the scaling trajectories are characterized by a ‘scaling invariant’, the Kondo

temperature TK ⇠ � exp(�1/⇢J). Nevertheless the divergence problem was still not solved because

the coupling constants diverge as one reduces the e↵ective band width below TK . The Kondo

temperature TK thus marks the entry into a regime of ‘strong coupling’ between the impurity and

the conduction band electrons, which is not accessible from any technique based on a perturbative

series.

This is where the success story of the numerical perturbation group, a non-perturbative numerical

method for the solution of the Kondo model put forward by Wilson in 1975, begins. The method was

initially designed to compute thermodynamic properties of the Kondo model but later was extended

to dynamic quantities and the single impurity Anderson model (SIAM).

4.2 Numerical Renormalization Group

In the early 1970s, Wilson developed a fully non-perturbative renormalisation group transformation

for the Kondo problem. The application of this Numerical Renormalization Group (NRG) to the

Kondo problem gave for the first time the full crossover from the high-temperature regime of a

free impurity spin, to the low-temperature regime where the impurity is completely screened. For

a review, see Ref. [12]. It has become one of the standard tools to study correlation e↵ects in

quantum impurity models. One of its main advantages is that it is non-perturbative with respect

to all system parameters (as opposed to many other renormalization group methods) and thus

can treat interacting quantum many-body systems with a continuum of excitations spread over a

broad range of energies. The fermionic NRG can be applied to systems of a quantum mechanical

impurity with a small number of interacting degrees of freedom, coupled to a bath of non-interacting

fermions, usually with a continuous spectrum. No restriction exists as to the structure of the impurity

subsystem and arbitrary large Coulomb interactions are permissible. The bath however must consist

of non-interacting fermions.

In the following we present a summary of the NRG derivation. We highlight the approximations

and also describe the computational steps for the solution of the impurity problem on a computer.

A more detailed presentation is given in the review by Bulla et al.[12], and Refs. [63, 64]. To make

the derivation as transparent as possible we present, at first, a slightly more restrictive theory, which

relies on a the following assumptions: we ignore the energy dependence of the conduction electron

density of states ⇢ and the k-dependence of the hybridisation V and replace them with their Fermi

level value. This is not a crucial approximation: Bulla et al.[12] show in their generalised derivation

of the NRG how the full energy dependence of the density of states and the hybridisation function

can be retained as required for application within DMFT. We return to this point in section 4.5.
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Figure 4.3: The continuous spectrum is approximated by a series of delta peaks (red) on the loga-
rithmic grid, {�1,�⇤�1, . . . ,⇤�1, 1}.

Transforming the Hamiltonian Eq. 4.1 to an energy representation with the above assumptions

one finds

H/D =

Z 1

�1

d✏

"

✏a†✏�a✏� +

r

�

⇡D
(a†✏�cd� + c†d�a✏�)

#

+
1

D
(✏d+

1

2
U)c†d�cd� +

1

2

U

D
(c†d�cd� � 1)2 (4.5)

where � = ⇡⇢V 2 and the Hamiltonian depends only on the dimensionless parameters ✏d/D, U/D

and �/D. The temperature-dependent properties will be functions of kBT/D only.

4.2.1 Logarithmic discretization

Dealing with this simplified model numerically is a challenging task due to the infinite number of

eigenstates of the system and the interactions. As already mentioned one of the key characteristics of

the Kondo problem is the importance of high energy excitations for low energy properties. Therefore

at the heart of the NRG lies a logarithmic discretisation of the conduction energy band, ⇢(✏). By

introducing a discretisation parameter ⇤Wilson divided the normalised energy range [�1, 1] into 2n

intervals where the nth interval (for positive ✏) extends from ⇤�(n+1) to ⇤n, c.f. Fig. 4.3. One then

approximates the continuum density of states ⇢(✏) between �D and D by a discrete set of poles. The

logarithmic discretisation separates the electron energies into di↵erent orders of magnitude where

energies close to the Fermi level kBT ⌧ D, which determine the low temperature properties, are

well sampled. One expects the low-energy eigenstates of the conduction band to be important for

the description of the physics, which becomes non-perturbative at low energies [3].

To accomplish the logarithmic discretisation, Wilson introduced a Fourier series in each interval

 ±
np(✏) =

(

⇤n/2
p
1�⇤�1 exp

±i!npk for ⇤�(n+1) < ±k < ⇤�n

0 for k outside interval
(4.6)

where !n ⌘ [2⇡⇤n]/[1�⇤�1] and n 2 N�0, p 2 N the Fourier harmonic index and +(�) denotes the

basis for positive (negative) ✏. The conduction electron operators a✏� can be expanded in this basis

a✏� =
X

np

⇥

anp� 
+
np(✏) + bnp� 

�
np(✏)

⇤

(4.7)

where the new operators anp� obey the standard anti-commutation relations and allow one to rewrite

the hybridization term in (4.5) as
Z 1

�1

d✏
⇣

c†d�a✏� + h.c.
⌘

=
p

1� ⇤�1
X

n

⇤�n/2
⇣

c†d�(an0� + bn0�) + h.c.
⌘

(4.8)
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Figure 4.4: Spherical shells in r space despicting the extent of the wave functions of fn.

Notice that only the operators an0� and bn0� couple directly to the impurity operators cd�. States

with finite p only couple indirectly: The term
R 1

�1
✏a†✏�a✏� couples operators of di↵erent p. This is a

direct consequence of the impurity coupling locally in real-space, c.f. Ref. [12].

The wavefunctions created by the operators anp� and bnp� are wave-packet states. They have

energy ⇤�n, spread ⇤�n(1�⇤�1); they are peaked at a distance of ⇤np/(1�⇤�1) from the impurity

and have a radial extent of ⇤�n/(1 � ⇤�1), c.f. Fig. 4.4. The approximation (everything up until

this point has been exact - ignoring the non-essential approximations introduced at the beginning

for pedagogical reasons, c.f. Bulla[12]) of the NRG is to neglect terms containing anp� and bnp� with

p 6= 0. This approximation turns out to be good for two reasons:

1. the coupling of the impurity to operators with p 6= 0 is only indirect and

2. those term have a factor of (1� ⇤�1) which becomes small as |1� ⇤| ⌧ 1.

As first shown by Wilson[113], it is safe to neglect all terms with p 6= 0 even for discretisation

parameters as large as ⇤ = 2.5. Dropping the index p the Hamiltonian is given by

H/D =
1

2
(1 + ⇤�1)

1
X

n=0

⇤�n(a†n�an� � b†n�bn�) +

r

2�

⇡D
(f†

0�cd� + c†d�f0�)

+
1

D
(✏D +

1

2
U)c†d�cd� +

1

2

U

D
(c†d�cd� � 1)2 (4.9)

where we have defined the new operator

f0� =

r

1

2
(1� ⇤�1)

1
X

n=0

⇤�n/2(an0� + bn0�) (4.10)

which describes the eigenstate maximally localized around the impurity. Observe that the eigenstates

created by f†
0� are not orthogonal to the eigenstates defined by the conduction band operators a†n�

and b†n�.

4.2.2 Mapping onto a chain

In order to solve this Hamiltonian iteratively one introduces a set of operators fn� with n > 0 in

such a way that they exhibit only nearest neighbour coupling. The exact details of this procedure
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Figure 4.5: Position density of wilson operators anp� with n = 0 and p = 0 (black, solid), p = 1
(red, dashed) and p = 2 (blue, dotted) for the special case of a tight binding chain with constant
hopping strength t and an impurity which couples only to site 0 with strength V . Notice how the
position density at near the impuriy vanishes for all p 6= 0

are explained in Ref. [12]. The resulting expression for the hamiltonian assumes the form

H/D =
1

2
(1 + ⇤�1)

1
X

n=0

⇤�n/2tn
⇥

f†
n�fn+1� + h.c.

⇤

+

r

2�

⇡D
(f†

0�cd� + h.c.)

+
1

D
(✏D +

1

D
U)c†d�cd� +

1

2

U

D
(c†d�cd� � 1)2 (4.11)

with tn = (1�⇤�(n+1))/
p

(1� ⇤�2n�1)(1� ⇤�2n�3) which quickly approaches 1 for large n and the

new operators fn� again obeying the standard anti-commutation relations. For a more complicated

form of the hybridisation function, as for instance needed when the NRG is used as an impurity

solver in the DMFT, the coe�cients have to be calculated iteratively using a arbitrary precision

routine. The Hamiltonian in Eq. (4.11) now has the desired structure of a hopping Hamiltonian on

a semi-infinite chain, which is often referred to as the Wilson chain.

The structure of the above Hamiltonian becomes more apparent, when one thinks of the one-

particle wavefunctions created by the various operators that we have defined throughout the sequence

of transformations. The wavefunctions |aki that correspond to the operators in (4.5) describe de-

localised, s-wave conduction band electron states which extend through out the metallic lead. In

contrast the wave functions |anp�i and |bnp�i form wave packet states with an extent limited to

their respective phase-space shells. |anp�i has a mean energy ⇤�n, while |bnp�i has a mean en-

ergy �⇤�n, a spread in energy of ⇤�n � ⇤�(n+1) = ⇤�n(1 � ⇤�1) and is peaked at a distance of

⇤np/(1� ⇤�1) from the impurity and a radial extent of ⇤n/(1� ⇤�1). We see that as n gets large

these states become more and more delocalised and resemble more and more the original s-wave

conduction electron states. All of this may be easily confirmed by transforming these operators back

into real-space. Now the nature of the previous approximation becomes clear: throwing away states

with p 6= 0 corresponds to throwing away those states which are peaked away from the impurity.

Fig. 4.5 shows the position density of the Wilson operators for the special case, where the density

of states of the conduction electrons is given by a one-dimensional, tight-binding change of constant

hopping amplitude t, !(k) = �2t cos(k), and an impurity which couples only to the x = 0 site with

hybrisiation strength V . In general, the states |fn�i have a mean energy of 0. Their energy spread
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also decreases dramatically with n. Therefore f0� the only operator, which directly couples to the

impurity has the biggest energy spread and is therefore the most localised of these operators.

4.2.3 Iterative diagonalisation

The transformations performed so far have rendered a form of the Hamiltonian which is amendable

to an iterative diagonalisation procedure. It will be in this iterative diagonalisation procedure that

the RG character of the method finally surfaces. In order to solve the problem iteratively, one defines

a sequence of Hamiltonians as follows:

HN = ⇤(N�1)/2

"

Himp + �̃1/2(f†
0�cd� + h.c) +

N�1
X

n=0

⇤�n/2tn(f
†
n�fn+1� + h.c.)

#

(4.12)

where we have defined the impurity Hamiltonian Himp containing the terms acting only at the

impurity, and the renormalised couplings are given by,

�̃d =

✓

2

1 + ⇤�1

◆

1

D
(✏d +

1

2
U)

Ũ =

✓

2

1 + ⇤�1

◆

U

2D

�̃ =

✓

2

1 + ⇤�1

◆2 2⇢|Vd|2
D

Himp = �̃dc
†
d�cd� + Ũ(c†d�cd� � 1)2 (4.13)

Note that the strength of the coupling between neighbouring chain elements decreases exponentially

due to the factor ⇤�n/2 in front of tn. This behaviour is due to the logarithmic discretisation of the

energy band which leads to a separation of energy scales, between high- and low energy states. It is

only due to this property that a truncation of the high energy states is justified. The full discrete

Hamiltonian, Eq.4.11, is recovered in the limit N ! 1 as

H = lim
N!1

1

2
(1 + ⇤�1)D⇤�(N�1)/2HN (4.14)

The scale factor ⇤(N�1)/2 makes the lowest energy scale in HN of order 1. Information about the

many-electron energy-level structure of H at energies / ⇤�(N�1)/2D is contained in the energy-level

structure of HN at energy / 1. Two successive Hamiltonians in the series are connected by the

recursion relation

HN+1 = ⇤1/2HN + tN (f†
N�fN+1� + f†

N+1�fN�) (4.15)

with the initial Hamiltonian in the series containing the impurity itself given by

H0 = ⇤� 1
2

h

�̃dc
†
d�cd� + �̃1/2(f†

0�cd� + h.c.) + Ũ(c†d�cd� � 1)2
i

(4.16)

In this form the single impurity Anderson model can be e�ciently solved on a computer by tak-

ing advantage of the renormalisation group character of the above description. One starts with a

diagonalisation of H0 which can be easily accomplished numerically. From here on one continues

iteratively using Eq. 4.15. Assuming that we have diagonalised a Wilson chain of length m and that

the eigenstates are given by |r;mi we construct a product basis for the Wilson chain of length m+1

by

|(r,↵m+1);m+ 1i = |r;mi ⌦ |↵m+1i (4.17)
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Figure 4.6: Illustration of the truncation procedure. The iterative diagonalisation splits each energy
level into 4 levels upon the addition of another chain element. In this schematic picture however
each energy level is split into only two levels in order not to make the illustration to cluttered. Due
to the exponential decrease in the couplings it is save to truncate the high energy states without
altering the spectrum of the low energy states. The truncated states are marked red. Here NL = 4.

where |↵m+1i are the eigenstates of the decoupled site |↵m+1i = {|i , |"i , |#i , |"#i}. The matrix

elements of the Hamiltonian for the Wilson chain of length m+1 for this product basis are given by

⌦

(r0,↵0
m+1);m+ 1

�

�Hm+1 |(r,↵m+1);m+ 1i = ⇤1/2E
r,m�rr0�↵↵0

+
⇣

hr0;m| f†
m� |r;mi h↵0| fm+1↵ |↵i+ hr0;m| fm� |r;mi h↵0| f†

m+1↵ |↵i
⌘

(4.18)

The eigenvalue problem for the chain of length m+1 can therefore be solved numerically using only

a knowledge of the eigenspectrum of the chain of length m and the matrix elements of the operators

f†
m�. Diagonalising the Hamiltonian Hm+1, set up in the above product basis, can be described by

a unitary transformation

|r0;m+ 1i =
X

↵m+1,r

U↵m+1

r

0,r |r;mi ⌦ |↵m+1i (4.19)

where |r0;m+ 1i denotes the new eigenbasis of the Hamiltonian Hm+1. For the single impurity

Anderson model the size of the Hilbert space grows exponentially with the length of the Wilson

chain, / 4N . Truncation becomes inevitable after a few iterations as the computational complexity

of the diagionalisation problem scales like the matrix dimension cubed. We thus only use the NL

lowest eigenstates in each iteration for the construction of the next Hamiltonian matrix. This

truncation of high energy states marks the second approximation in the NRG and is well justified

due to the separation of energy scales: High-lying states at one iteration cannot cross over and

become low-lying states at a future iteration due to energy scale separation. Thus it is safe to

discard them if we only wish to focus on the low-energy physics at each step. Ths closesly related to

the renormalisation group structure of the problem - one studies the physics on progressively lower

energy scales, discarding irrelevant high-energy degrees of freedom - as with Anderson’s poor man’s

scaling. Fig. 4.6 illustrates the changes in the many-particle spectrum. In this schematic picture

each energy level is split into only two levels in order not to make the illustration to cluttered.

4.2.4 Renormalisation group transformations

It is instructive to compare the NRG with a standard renormalisation group treatment such as the

“poor man’s scaling” introduced by Anderson. Here one defines a transformation R which maps a
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Figure 4.7: Schematic of the renormalisation group flow. Trajectories depict the flow of parameters
Ue↵ and �e↵ of the Hamiltonian HN as function of the iteration N . Based on visualisation in [63].

Hamiltonian H() parametrized by a set of parameters  to a new Hamiltonian with a renormalised

parameter set 0,

R⇤ [H()] = H(0) (4.20)

where ⇤ parametrizes the step length. For the “poor man’s scaling” the mapping is performed by

perturbatively integrating out the high-energy degrees of freedom at the band edges [�D,�D⇤�1]

and [D⇤�1, D] which leads to a renormalisation of the coupling between the impurity and the

conduction electrons. Important physical limits are often marked by fixed points, i.e. points in the

parameter space ⇤, such that

R⇤ [H(⇤)] = H(⇤) (4.21)

The fixed point ⇤ can be categorised by examining the flow properties in its vicinity. Three di↵erent

types of fixed points have to be distinguished:

1. Stable Fixed points, where any perturbation of the parameters ⇤ leads to a flow back to ⇤,

are referred to as stable fixed points.

2. Unstable For fixed points where all flows are directed away from ⇤, tiny perturbations in

the parameters ⇤ lead to flows away from the fixed point.

3. Marginal For marginal fixed points there exist some couplings which flow towards and some

which flow away from the fixed point.

The fixed points of the SIAM can be obtained by choosing specific values for the renormalised

interaction strength Ũ and the hybridisation �̃ in Eq. (4.12). Fig. 4.7 shows a schematic of the

renormalisation group flow in the SIAM. The three fixed points at the vertices of the coloured

triangle are the free orbital fixed point (H⇤
FO), the local moment fixed point (H⇤

LM) and the strong

coupling fixed point (H⇤
SC). The free orbital fixed point H⇤

FO is obtained when both couplings �̃ and

Ũ are set to zero. The resulting Hamiltonian is just the free-electron Hamiltonian of the conduction

electrons plus a free-impurity orbital of zero energy. For each eigenstate of the conduction electron

system one can construct four degenerate states by combining it with each of the four degenerate

impurity states |i, |"i, |#i and |"#i. Since the free Wilson chain is itself a fixed point of the RG
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Figure 4.8: Flow of the lowest eigenenergies for an single Anderson impurity model with a) V = 0.004,
U = 0.001 and ⇤ = 2; b) V = 0.008, U = 0.0001 and ⇤ = 2. Only odd iterations are shown here.
We use D = 1.

transformation, H⇤
FO must also be a fixed point. The impurity entropy is therefore S = ln(4). If

for fixed hybridisation �̃ the interaction Ũ becomes the largest energy scale in the problem, only

impurity states with |"i and |#i have to be considered for kBT ⌧ Ũ . The impurity is therefore

occupied by a single electron and can be understood as a local moment. This realises the situation

described in the Kondo model. If in addition �̃ = 0 the coupling between the conduction electrons

and the impurity is switched o↵ and the local moment becomes free. This is the local moment

fixed point H⇤
LM. The impurity has two degenerate states and thus the impurity entropy is given

by S = ln(2). Finally we consider the case when �̃/Ũ ! 1. This is the strong coupling fixed point

H⇤
SC where the impurity is so strongly coupled to conduction electron state at the impurity site

that both degrees of freedom are frozen out. A many-body Kondo singlet is formed such that the

local moment of the impurity is dynamically screened by the surrounding conduction electrons. The

impurity entropy is thus zero. As can be seen from Fig. 4.7 in the case of a flat conduction electron

density of states all flows lead eventually to the strong coupling fixed point H⇤
SC.

In the NRG the recursion expression, Eq. (4.15), can be viewed as a renormalisation group

transformation Hm+1 = R[Hm]. For the SIAM one finds a flow of the eigenenergies of Hm as

a function of the chain length. Fig. 4.8 shows the flow of the lowest eigenenergies for a SIAM

calculation. For Fig. 4.8a the parameters are V = 0.004, U = 0.001 and ⇤ = 2. Three regimes can

be distinguished: For iterations N < 25 the system is near the free orbital H⇤
FO, then the energies

cross over to the intermediate local moment fixed point H⇤
LM in iterations 25 < N < 110 before the

system reaches the strong coupling fixed point for N � 125. For the second calculation depicted in

Fig. 4.7b the hybridisation strength was increased to V = 0.008 and the interaction strength reduced

to U = 0.0001. This moves the system away from the local moment H⇤
LM towards the strong coupling

fixed point H⇤
SC as can be seen from Fig. 4.7. Indeed as the flow of the eigenenergies in Fig. 4.8b

indicates the system stays near the free orbital fixed point H⇤
FO for iterations N < 50 and then the

system directly crosses over to the strong coupling fixed point H⇤
SC without flowing close to the local

moment fixed point H⇤
LM. Importantly, the lowest energy physics (reached as N ! 1) is always the

characterised by the strong coupling fixed point in the metallic single impurity Anderson model.
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Figure 4.9: Comparison of single particle spectral functions for the symmetric SIAM (� = 0.01,
U = 0.1, ✏f = �0.05) obtained by the traditional method (“NRG”) and the density matrix procedure
(“DM-NRG”). From [51].

4.3 Calculation of dynamical quantities

The first calculation of dynamical quantities using the NRG were realized by Frota and Oliviera[33],

who calculated photoemission spectra for the single impurity Anderson model. Other calculations

by Sakai et al. [100] and others followed. In the early 90s, the calculation of di↵erent transport

coe�cients also became possible[22, 49]. In the following we will describe techniques to calculate

the single-particle spectra. One of the motivations to calculate this quantity was given by Meir

and Wingreen[71] who showed that the knowledge of the single-particle spectra alone allows for the

calculation of the zero-bias conductance through a quantum dot.

Lehmann resolving the impurity spectral function one obtains

A�(!) =
X

a,b

hb| cd� |ai
exp [��Ea]

Z
ha| c†d� |bi �(! + Ea � Eb) (4.22)

where Z is the total partition function Z =
P

a exp [��Ea], |ai and |bi are a complete set of states

and Ea is the eigenenergy of state |ai. We see that the Lehmann representation gathers the necessary

information to construct the spectrum from knowledge of certain matrix elements encoding hopping

processes between the impurity and the conduction electron band. In the zero temperature limit

these matrix elements only connect the ground state with excited states, while at finite temperature,

excitations to and from all states must be considered. Certain matrix elements may be calculated

in each step of the NRG using the states generated at a particular iteration. Approximate spectral

reconstruction was performed using NRG in Refs. [22, 9] yielding useful results in certain ranges. It

should be noted that also a full basis set of approximate eigenstates can be constructed from the

iterative diagonalisation (see next pages).

However a number of complications arise from the logarithmic discretisation of the conduction

band, which is at the heart of the NRG: the logarithmic energy discretisation ties the collection

of spectral information for a certain energy ! to a specific iteration n. The characteristic energy

scale of iteration n is given by ⇤�n/2. Therefore all spectral information for an energy window of

width ⇤�(n+1)/2 would have to be reconstructed from states of iteration n. This is problemtic in

two ways: the states kept throughout the NRG iterations do not form a complete basis set, indeed

they are not even orthonormal. Therefore double-counting ambiguities[21] arise when patching

together the spectrum from peaks collected at di↵erent iterations[2]. Secondly spectral information
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Figure 4.10: Labelling the states of each NRG iteration as either kept (K) or discarded (D), the
discarded states of each iteration form a complete set of states (all the states from the last iteration
are labeled discarded).

concerning high energy features (such as the charge fluctuation “Hubbard satellites”) is collected

at early iterations. However the correct ground state of the system is only found after many NRG

iterations.1 As pointed out by Hofstetter [51] this problem becomes particularly acute in the presence

of a small, symmetry-breaking magnetic field h. The static magnetisation calculated directly from

the appropriate expectation values during the NRG iterations does not agree with magnetisation

obtained by integrating spectral functions for both spins up to the fermi level. The reason is simply

that most of the spectral weight is tied to high energy charge fluctuation peaks calculated from

early NRG iterations that do not yet “know” of the small symmetry-breaking field. The problems

arising from these circumstances may be easily understood by considering the following: As the

iterative diagonalisation progresses down the Wilson chain, the quantum numbers for the ground

state typically show an even-odd e↵ect. For even iterations it might lie in the Sz = 0-sector while

for odd iterations it resides in Sz = 1
2 . As the small symmetry breaking field is not influential

yet in these early iterations (here only high energy processes contribute) the Sz = 1
2 states show

erroneously a degeneracy which leads to an overestimation of the ground state manifold. For T = 0

the spectral function measures excitations from the ground state manifold and therefore high energy

excitation peaks enter the spectrum which stem from the spurious ground state. This does not a↵ect

the paramagnetic case as these states are always degenerate here.

When using the NRG as an impurity solver for the DMFT to study symmtery broken phases

it is especially important to fix these shortcomings. As all quantities in the DMFT have to be

calculated self-consistenly it is important get accurate single-particle spectra. Although here no

external magnetic field is present an intrinsic, molecular, symmetry-breaking field may be generated

due to di↵erent e↵ective media for the "- and #-spins.
The first ingredient for the remedy was discovered by Anders and Schiller[2] who showed that a

complete set of states can indeed be defined, based upon the states found throughout the NRG iter-

ations. The key idea is to reconceptualise the Wilson chain from growing in each step of the iterative

1How many iterations are necessary exactly is actually an intriguing question. The most general answer to this
question is a tautologic one: The NRG resolves energies of the order of ⇤�n/2 in the nth iteration. The recipe is
that one should keep iterating until this resolution is smaller than the smallest physical energy scale in the problem.
However how does one find the smallest physical energy scale? By solving the problem.
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diagonalisation by one site to being of constant length N (where N is the total number of iteration

that will be performed). Then, at each iteration, the hopping terms of the last (environment-) or-

bitals are iteratively switched on. Anders and Schiller (AS) therefore divided the system into two

parts: a “system” block consisting of the first n coupled sites and an “environment” block of length

N � n. The state of the environment is described by a product state of the individual uncoupled

chain sites and provides a 4N�n degeneracy, while the system block is described by the NRG states

of iteration n. Following Anders and Schiller we will denote the states of a Wilson chain of length

N coming from iteration n  N , |r; eiNn where r labels the diagonalized NRG states and e denote

the N � n environmental degrees of freedom. Denoting the Hamiltonian for the chain of length n

with Hn we find

Hn |r; eiNn = Er
n |r; ei

N
n (4.23)

As the states of the NRG iteration n + 1 are constructed from the kept states of iteration n they

cannot be orthogonal to each other. However the discarded states of iteration n are necessarily

orthogonal to the kept states of that same iteration and consequently to all states of iteration n+1.

Iterating this thought one quickly realises that the discarded states of all iterations are necessarily

orthogonal to each other and form a complete albeit approximate set of states. The construction

of the AS basis is illustrated in figure 4.10. The central approximation (always at the heart of the

NRG calculations) is thus that Er
n from Eq. 4.23 at iteration n closely approximates the true Er

n as

N ! 1.

Having found a complete basis set one could now try to calculate the spectral functions using

the Lehmann representation (4.22). However one is faced with another problem: matrix elements of

local impurity operators hb| cd� |ai can be calculated in each iteration of the NRG, but this means

that only matrix elements involving AS states of the same iteration are known, ignoring spectral

contributions arising from excitations connecting states of di↵erent NRG iterations. The solution

proposed by Weichselbaum and van Delft[112] reformulates the Lehmann sum in terms of the density

matrix instead of the states. This exploits the relation for the thermal average
D

⌦̂
E

= Tr[⇢̂⌦̂], where

⇢̂ is the full density matrix. The density matrix in the AS basis for iteration n is defined as,

⇥

⇢̂AS
n

⇤

rr0
= �r,r0 exp (��Er

n)/Z
n (4.24)

where Ztot =
P

n Z
n and Zn =

P

r exp (��Er
n). The total density matrix of the system can now

be written as

⇢̂tot =
N
X

n

wn⇢̂
AS
n (4.25)

wn = dN�n Zn

Ztot
(4.26)

The weighting factor wn stems from the dN�n-fold degeneracy of the AS states of iteration n due

to the environmental degrees of freedom.2 The utilisation of the matrix elements calculated from

the NRG iterations is complicated by a basis issue: the matrix elements are given in the NRG

basis which includes both kept and discarded states, while the density matrix however has been

constructed using the AS basis (only discarded states). In order to evaluate (4.22) we wish to obtain

2The innocent looking factor w
n

actually allows for a deep look into the information gathering strategy of the full
density matrix approach: w

n

contains two competing factors, the Boltzmann factors in the partition function of the
nth iteration, Zn, and the degeneracy factor dN�n. For low system temperatures and early iterations (high energy)
the Boltzmann factor will be strongly suppressed, however the degeneracy factor will be huge. In general for a given
temperature the function w

n

is seen to peak around the appropriate NRG iteration n (T ⇡ ⇤�n/2) collecting the
bulk of the spectral information from a limited number of appropriately chosen NRG iterations.
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the density matrix in the same basis. Referring the reader to Ref. [85] for technical details we

introduce the “reduced density matrix” through

⇢̂tot =
N
X

n

⇢̂red (4.27)

The part connecting discarded to discarded states of NRG iteration n in ⇢̂red is simply wn⇢̂AS
n .

Therefore for the last iteration ⇢̂redN = ⇢̂AS
N . The kept part of ⇢̂red may be calculated by remembering

that it is the kept states of iteration n which are used to construct the NRG states of iteration n+1.

Therefore performing the inverse of the unitary transformation used to diagonalize in iteration n+1

on ⇢̂redn+1 yields the kept part of ⇢̂redn . Note that this is equivalent to tracing out the environmental

degrees of freedom for orbital (n+1), hence the name reduced. This way all ⇢̂redn can be constructed

iteratively by starting from ⇢̂redN and working backwards.

As a last step the Lehmann sum (4.22) needs to be expressed through the reduced density matrix.

In [112] the appropriate expression is given

A�(!) =
N
X

n

X

r,r0

⇥

[cd�]
n · [⇢̂redn ]

⇤

rr0
· [c†d�]nr0r · �(! � Er

n + Er0

n ) (4.28)

where [c†d�]
n
r0r = n hr0| c†d� |rin are the local impurity elements which connect both kept and dis-

carded states.

We have succeeded in determining the spectral function as a sum of discrete delta peaks. The

discreteness of the data is due to the discretisation of the conduction band. In order to obtain a

continuous spectrum one typically broadens these delta peaks by replacing them with logarithmic

gaussians of the same weight. Details of this process are explained in the next section.

4.4 Broadening of discrete spectra

We have discussed already that the NRG yields spectral functions in the form of a Lehmann sum

over discrete �-functions. These will have to be broadened in a suitable manner to obtain a continuos

function, which should ideally produce uniquely determined spectra independent of the discretisation

of conduction electron band. In practice this is rather di�cult due to the inescapable arbitrariness

of the broadening scheme. However the procedure discussed here has been found to produce rather

accurate results. Indeed, NRG has reliably reproduced exact results in the special cases where these

are known [9, 112].

The smoothed spectral function A�(!) is calculated by folding the discrete numerical data

A�disc(!) =
P

wn�(! � !n) against a certain broadening kernel K(!,!0).

A�(!) =

Z

d!0K(!,!0)A�disc(!
0) (4.29)

There are a number of desirable properties (due to physical implicitness) that K(!,!0) should

respect[112]:

• Frequency-dependent width: Due to the logarithmic discretization of the conduction band,

peaks are logarithmically distributed around ! = 0, i.e. data is more coarse-grained at large

frequencies. Choosing a Gaussian on a logarithmic scale is a natural choice, as a variable

transformation of the data to a linear scale would simply mean replacing delta functions by

Gaussians. Gaussians on a logarithmic scale show a frequency dependent width.
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• Conservation of peak weight : The broadening kernel should be chosen in such a way, that the

weight of individual peaks is faithfully represented. This amounts to the property,
R

d! K(!,!0) =

1 8!0. Of course this also trivially ensures that
R

d! A�(!) =
P

n wn.

• Conservation of peak height : It can be shown[112] that demanding that a constant function

wn = w should be mapped onto a constant continuos function also restricts the integral
R

d!0 K(!,!0) = 1 8!.

The first two properties may be fulfilled by the following broadening kernel

K(!,!0) = L(!,!0)h(!0) +G(!,!0)(1� h(!0))

L(!,!0) =
⇥(!!0)p
⇡↵|!| exp



log |!/!0|
↵

� �

�2

G(!,!0) =
1p
⇡!0

exp
⇥

�(! � !0)2/!2
0

⇤

h(!0) =

(

1 |!0| � !0

exp�
h

log |!0/!0|
↵

i2

|!0| < !0
(4.30)

The choice � = ↵/4 also fulfills the third property.

4.5 NRG as an impurity solver for the DMFT

The NRG can only be applied to impurity systems, where the impurity couples to a non-interacting

bath of electrons. Therefore a direct application to systems of coupled interacting lattice sites is not

possible. Early attempts at an application have led to the development of the density-renormalisation

group (DMRG) [104, 44]. As already mentioned in the last chapter, the DMFT is an approximation

for correlated lattice models (which becomes exact in the limit large lattice connectivity) where

the interacting lattice problem is mapped onto a quantum impurity which needs to be solved self-

consistently. In the process the local self-energy is identified with the impurity self-energy. From the

perspective of the NRG, the DMFT equations provide a closed set of equations which determine a

new hybridisation function �(!) for a given impurity self-energy ⌃(!). The hybridisation function

is manifestly energy-dependent and depends on model under consideration, its parameters, and

even the history of the previous DMFT iterations. It contains deeply non-trivial information on

the structure of the lattice dynamics in the large coordination limit, and cannot be neglected.

The approximation of a constant hybridisation function � and a constant density of states for the

conduction electrons ⇢ is therefore not permissible. The full energy-dependence of the hybridisation

function �(!) has to be taken into account in the logarithmic discretisation and the subsequent

construction of the Wilson chain. Refs. [13] and [12] give a detailed account on how this may be

achieved. In the following, we briefly summarise the key points.

4.5.1 Energy-dependent hybridisation functions

In order to incorporate the e↵ects of an energy-dependent hybridisation function �(!) the Hamil-

tonian in its one-dimensional energy representation, Eq. (4.5), has to be generalised to

H/D =

Z 1

�1

d✏
h

g(✏)a†✏�a✏� + h(✏)(a†✏�cd� + c†d�a✏�)
i

+
1

D
(✏D+

1

2
U)c†d�cd�+

1

2

U

D
(c†d�cd��1)2 (4.31)
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where g(✏) is the dispersion of the conduction electron band and h(✏) parametrizes the hybridisation

strength. Bulla et al.[11] showed that the two functions g(✏) and h(✏) are related to the hybridisation

function by

�(✏) = ⇡
dg�1(✏)

d!
h(g�1(✏)) (4.32)

with g(g�1(✏)) = ✏. Ambiguity exists how the energy-dependence may be divided between g(✏) and

h(✏) for a given �(✏). Note that the constant hybridisation of strength �/D is recovered by the

choice h(✏) =
p

�/(⇡D) and g(✏) = ✏.

With ⇠0 =
R 1

�1
d✏ �(✏) the hybridisation term between the impurity and the first site assumes

the form
r

⇠0
⇡
(f†

0�cd� + c†d�f0�) . (4.33)

The hopping elements of the chain have not the simple form as given below Eq. (4.11) anymore

but acquire a complicated n dependence. In addition, on-site energies for the Wilson sites emerge

when the bath is not particle-hole symmetric. Using a standard triangulation procedure (Lanczos

method) the hopping elements tn and onsite energies ✏n can be calculated from the hybridisation

function �(✏). The details of this procedure are given in Refs. [13, 12]. It should be noted that the

recursion relations for the calculation of these coe�cients are numerically very unstable. In order

to find the true Wilson chain representation of the hybridisation function, high precision numbers

must be used for the algorithm.

For the case of the flat band Campo and Olivera[16] showed that the spectral density of the

coupling between the impurity and the conduction band is systematically underestimated. A dis-

cretisation parameter dependent renormalisation of the hybridisation function fixes this issue

�fixed(✏) =
1

2

⇤+ 1

⇤� 1
ln(⇤)�(✏) . (4.34)

No exact expression is known for the general energy-dependent case - although it can be estimated

- see Ref. [96].

4.5.2 Calculation of the self-energy within NRG

For the DMFT loop one of the quantities of interest is the impurity self-energy, ⌃(!). Bulla et al.[10]

first showed that it is possible to write the self-energy as the ratio of two correlation functions, both

of which can be calculated directly within the NRG. An equation of motion technique is used to

show that the self-energy is given by,

⌃�(!) = U
F�(!)

G�(!)
(4.35)

where G�(!) is the impurity Green’s function defined as

G�(!) = �i

Z 1

�1
dt ei!t⇥(t)

⌦�

f�(t), f
†
�

 ↵

(4.36)

and F�(!) is an auxiliary correlation function given by

F�(!) = �i

Z 1

�1
dtei!t⇥(t)

Dn⇣

f†
�̄f�̄f�

⌘

(t), f†
�

oE

(4.37)

The imaginary parts of F�(!) and G�(!) are calculated from NRG data using the Lehman sum

within the full density matrix approach, with the poles of the spectrum broadened as above. The
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real parts are then obtained by Kramers-Kronig transform. Discretisation artifacts cancel to some

extent by dividing the two quantities. This produces a rather smooth self-energy, which in term can

be used to calculate an improved spectrum for the impurity. Z-averaging [83] can also be used to

furher increase accuracy and resolution.

4.6 Other impurity solvers

It should be mentioned that a variety of di↵erent impurity solvers[37] exists each with its own merits

and drawbacks. Quantum Monte Carlo (QMC) [50] has become a popular choice especially in the

ab-initio community where realistic material-specific calculations are combined with the treatment

of strong correlation physics by the DMFT. Naturally an impurity solver which can cope with a

many orbital situation is desirable and QMC can do just that. The quantum Monte Carlo (QMC)

method considers the single-impurity problem in discretized imaginary time. The e↵ective bath

only enters through G0,and there is no need to discretize the conduction band. The first numerical

solutions of the LISA equations using this QMC method were obtained independently by Jarrell[56],

Rozenberg et al.[116], and Georges and Krauth[38]. QMC is however a rather expensive method [37]

and thus not well suited for our purposes, since we need to solve the Anderson impurity problems

many times per iteration, see above. Furthermore, one cannot access the low temperature regime

and one is limited by the “sign problem” if one desires to study magnetic solutions.

Another solver which should be mentioned here is the exact diagonalisation (ED) [99, 15]. In

this method, the single-impurity problem is approximated by a few orbitals only and solved exactly.

The finite number of orbitals provide a parametrisation of the e↵ective bath. With an appropriate

choice of the geometry of their hopping interconnections the parameters are modelled by the site

energies and hopping amplitudes. It is the physical insight on a particular problem that indicates

the most appropriate choice, which allows one to determine an appropriate parametrization. The

number of orbitals that one can e↵ectively treat is severely limited by the size of an exponentially

growing Hilbert space.

The third choice we want to mention here is the so-called iterated perturbation theory (IPT)

[114, 120]. Here the self-energy of the Anderson impurity model is calculated to second order in the

on-site interaction U . Only two diagrams contribute to this order and the self-energy assumes the

form

⌃�(i!n) = U hn�̄i+ U2

Z �

0

d⌧ ei!n⌧G0�(⌧)
3 +O(U3) (4.38)

For the case of the half-filled Hubbard model at the particle-hole symmetric point the IPT has

proven to be a good, computationally inexpensive method for the solution of the impurity problems.

Not only the physics of the Kondo resonance but also incoherent features of the upper and lower

Hubbard band are captured by this approach. Away from particle-hole the strong coupling limit

is not correctly captured but there have been modifications to the method in an attempt to fix

this[59, 93].

The continuos-time Monte Carlo method [41] is another powerful choice for an impurity solver

and nowadays one of the most important and widely used methods. Here the basic idea to split

the Hamiltonian into two parts H = Ha + Hb and write the partition function Z = e��H in the
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interaction representation with respect to Ha. Expanding in power of Hb one finds

Z = Tr T⌧e
��Haexp

"

�
Z �

0

Hb(⌧)

#

=
X

k

(�1)k
Z �

0

d⌧1 . . .

Z �

0

d⌧kTr
⇥

e��HaHb(⌧k)Hb(⌧k�1) . . . Hb(⌧1)
⇤

(4.39)

The trace evaluates to a number and diagrammatic Monte Carlo methods enable a sampling over all

orders k, all topologies of the paths and diagrams, and all times ⌧1, . . . , ⌧k in the same calculation.

Because the method is formulated in continuous time from the beginning, time-discretisation errors

do not have to be controlled.

4.7 Spin-dependent hybridisation functions

The NRG can be generalised to treat arbitrary spin-dependent hybridisation functions. A description

of this generalisation can be found in Sindel et al.[107] where the interplay between the Kondo

correlations on a quantum dot and itinerant ferromagnetism in the leads is studied. Ferromagnetic

order in the conduction electron system leads to a suppression of the Kondo e↵ect. This can be seen

by considering the extreme limit, where the lead is fully polarised, i.e. only spin species exists: the

e↵ective screening of the impurity simply cannot develop because the spin-flip processes central to the

Kondo e↵ect are suppressed. The simplest way to model the competition between these two e↵ects

is to consider normalised flat bands with a finite spin polarisation. A consequence of the conduction

electron ferromagnetism is that the spin-dependent bands are shifted relative to each other, which

is the so-called Stoner splitting. On the simplest level of description this e↵ect can be ignored. In

this particular case the spin-dependent hybridisation can be parametrized as �� = 1
2�(1±P ). Since

�� = ⇡⇢�V 2 the spin dependence can be shifted from the conduction electron density of states

to a spin-dependent hopping V� between the impurity and the first site of the Wilson chain. The

advantage is that in this case the Wilson chain for the "- and #-electrons is identical and only the

coupling V� between the impurity and the first site of the Wilson chain di↵ers. The intermediate

regime of the spin polarisation, 0 < P < 1, can be investigated with the NRG now.

Fig. 4.11a shows the total occupation of the impurity n and the spin-resolved occupations n� as

function of the spin polarisation P in the leads. For ✏d = �U/2 the system is at the particle-hole

symmetric point and therefore the system remains at half-filling even for a finite spin polarisation

P (not shown). However, with an applied gate voltage of ✏d = �U/3 between lead and dot the total

occupation n decreases for finite spin polarisation P . For P = 0 the spin symmetry is unbroken

and n" = n#. For finite P > 0 the occupation of the "-electrons is enhanced while n# is suppressed,

c.f. Fig. 4.11a. The total single particle spectral function is shown in Fig. 4.11b for di↵erent spins

polarisations P . For P 6= 0 the charge fluctuations on the dot become spin-dependent as the di↵erent

spin species see di↵erent leads. This causes the dot levels to split and the dot magnetisation n"�n#

becomes finite. As a result, the Kondo resonance is split and ultimately suppressed. This means

that Kondo correlations are reduced or even completely suppressed. Note that the data shown in

Fig. 4.11 agree with the data of the original publication by Sindel et al.[107].

In order to treat arbitrary spin-dependent hybridisation functions the mapping to the Wilson

chain outlined in section 4.2.2 needs to be generalised. Essentially the Lanczos tridiagonalisation

procedure which brings which brings the conduction electron Hamiltonian to the form of the Wilson

chain is applied separately to the hybridisation function for the spin-" and spin-# electrons. This
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Figure 4.11: a) Total occupation n(P ) and spin species resolved occupations n�(!) as functions of
the spin polarisation P . b) Total spectral function A(!) =

P

� A�(!) for di↵erent values of the spin
polarisation P . An increase in P results in a splitting and suppression of the Kondo resonance. The
parameters for this calculation were U = 0.12, � = U/6, ✏d = �U/3 and T = 10�20.

leads to a Wilson chain with spin-dependent on-site energies ✏n� and hopping integrals tn�. The

coupling between the impurity and the first site of the Wilson chain also becomes spin-dependent,

⇠0� =

Z 1

�1

d✏ ��(✏) (4.40)

and so the fully discretised Hamiltonian assumes the form

H/D =
1

D
(✏D +

1

2
U)c†d�cd� +

1

2

U

D
(c†d�cd� � 1)2 +

r

⇠0�
⇡

X

�

(c†d�f0�

+ f†
0�cd�) +

1
X

�,n=0

h

✏n�f
†
n�fn� + tn�(f

†
n+1�fn� + f†

n�fn+1�)
i

(4.41)

The spin-dependent on-site energies ✏n� and hopping integrals tn� can be calculated from the spin-

dependent hybridisation function ��(✏) using the algorithm outlined in Ref. [107], Appendix B.
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Chapter 5

DMFT for Heterostructures

5.1 Introduction to Heterostructures

The interface that occurs between two layers or regions of dissimilar solid-state materials is commonly

referred to as a heterojunction. The combination of several such heterojunctions in a electronic device

is called a heterostructure. Multilayered heterostructures in the nano sized realm (also known as

multilayered nanostructures) are the most common electronic devices. Originally these devices were

based on pn-junctions, interfaces between p- and n-type semiconducting materials, but also interfaces

between superconducting materials were manufactured more recently.

The driving principle behind the functionality of these devices is often a non-linearity of one

sort or the other. For instance in pn-junction devices it is the non-linearity of the current-voltage

relation which ensures that current essentially flows only in one direction[76]. A classic multilayered

nanostructure is a tunnel junction consisting of two metallic leads connected by a “weak link”, often

a conventional band insulator. The connection between the two leads is thus governed by inherently

quantum mechanical e↵ects. Delocalised electrons in the metal can leak through the insulating

region by tunnelling into the other lead. The characteristics of the connection can be understood

by studying the overlap of the quantum mechanical wave functions. In the metallic region the wave

function will oscillate while in the insulating region it will decay exponentially. This ultimately leads

to the highly non-linear characteristics of the electronic device.

With recent theoretical and experimental progress in the understanding and control of strongly

correlated materials enormous interest has arisen in multilayered nanostructures involving materials

where the electrons are strongly interacting. One of the prospects which fuels this interest is the

controllability of electronic devices. For example, many heterostructures made from semi-conducting

materials have a voltage gate which can be used to tune the characteristics of the device. As

already mentioned in the introduction of chapter 3 strongly correlated materials are often extremely

sensitive to small changes in external parameters such as external B- and E fields, pressure and

chemical doping and therefore are appealing alternative to conventional metals, semiconductors and

insulators. Particularly interesting is the influence of magnetism in this respect. Inherently quantum

mechanical in nature, the magnetic properties of strongly correlated electron systems might pave the

way towards devices which control the transport of the spin of the electron (spin-tronics). However

due to the strong correlation e↵ects such materials are less well understood and fewer devices have

been made from them.

A range of multilayered nano structures involving strongly-correlated materials has been studied

both experimentally and theoretically. Lee and MacDonald[67] argued that interesting strongly-
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Figure 5.1: Layered system.

correlated two-dimensional electron systems with weak disorder and controllable densities can be

created at the interface between two di↵erent, modulation doped Mott insulators. They showed

that the magnetic phase diagram can be altered by the dopant density. Kancharla and Dagotto[61]

studied the interface between a Mott insulator and a conventional band insulator taking both the

local and long-range Coulomb interaction into account and found by computing the layer-dependent

local density of states also a quasi two-dimensional metallic state at the interface. They also took

the antiferromagnetic correlations in the Mott insulator into account and found that it persists into

the metallic region. Such a set-up had been previously studied by Okamoto and Millis[81, 82] who

were the first to use the dynamical mean-field theory to investigate the electronic properties of such

a heterostructure. They also demonstrated that there is a competition between the ferromagnetic

metallic phase at the junction and the insulating anti-ferromagnetic phase in the bulk.

In this chapter we describe how the DMFT as outlined in the last chapter can be extended to

treat systems with inhomogeneities. Special emphasis will be placed on the mathematical aspects of

the Green’s function matrix inversion problem and it will be shown how the mathematical structure

can be exploited to arrive at an e�cient algorithm (“Quantum zipper algorithm”[17]).

5.2 Inhomogenous DMFT

The foundations for the inhomogenous DMFT were laid by Pottho↵ and Nolting in 1999 [92]. Their

focus was not so much on layered systems but they studied the Mott metal-insulator transition in

the Hubbard model at a solid surface for a semi-infinite lattice by means of the dynamical mean-field

theory. Their interest was the enhancement of correlation e↵ects as the surface is approached [90, 91]

and later on the metal-insulator transition in thin films [89].

The Pottho↵ and Nolting approach to multilayered nanostructures is designed to solve systems of

translationally invariant x�y planes stacked along the longitudinal z direction, see Fig. 5.1. All pa-

rameters that describe the system (hopping integrals, interaction strengths, chemical potentials. . . )

must be constant within a given layer but may change between layers.

In introducing a mixed basis set by Fourier transforming the x- and y-direction into momentum

vectors k
x

and k
y

but leaving the z-direction in real space Pottho↵ and Nolting exploited the

special structure of the set-up. In order to map this problem onto e↵ective impurity problems,
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one is interested in the local layer Green’s functions. We will consider the equations for the non-

interacting Green’s function first. The non-interacting real space Green’s function G(0)
ij (z) satisfies

X

k

[(z + µ)�ik + tik]G
(0)
ij (z) = �ij (5.1)

with �tik the hopping integral between sites i and k. Following Pottho↵ and Nolting in Fourier

transforming the x- and y-axis we find

X

�

[(z + µ� ✏↵kk)�↵� + t↵+1�↵+1� + t↵�↵�1� ]G
(0)
↵�(k

k, z) (5.2)

where kk = (kx, ky)T is a 2-vector comprising the x- and y-component of the momentum, ✏↵kk =

�2tk↵[cos kx + cos ky] is the two-dimensional, non-interacting tight-binding density of states for the

simple cubic lattice and the greek letters ↵, � and � are layer indices.

Writing Dyson’s equation G = G(0)+G(0)⌃G in real space and investing the DMFT assumption,

that the self-energy ⌃ contains only local contributions we find

G↵�(k
k, z) = G(0)

↵�(k
k, z) +

X

�

G(0)
↵� (k

k, z)⌃��(z)G��(k
k, z) (5.3)

The above expression can be used to write an equation similar to Eq. (5.2) for the full lattice Green’s

function, namely

[z + µ� ⌃↵↵(z)� ✏↵kk ]G↵�(k
k, z) + t↵+1G↵+1�(k

k, z) + t↵G↵�1�(k
k, z) = �↵� (5.4)

We can see that for a fixed value of kk the problem of computing the element G↵↵(kk, z) reduces to

the inversion of a tridiagonal matrix. This may seem computationally demanding at first sight. As

we are interested in the local lattice Green’s function it seems that the matrix has to be inverted for

every value of ! and ✏
k

k .

5.3 The mathematics of the inversion problem

Helmes and Rosch[46] pointed out that the inversion problem may be simplified by diagonalising

G↵↵(0, z) using an orthogonal matrix O(!) which may be reused for all ✏
k

k in the calculation of

G↵↵(kk, z). The drawback of this method is however that it can only cope with finite system sizes.

However further simplifications arise when one exploits the special tridiagonal structure of the matrix

and an e�cient computational scheme free of finite-size e↵ects can be constructed. The e↵ect of

the metallic leads in this approach is modelled by semi-infinite tridiagonal matrices attached to the

finite dimensional matrix describing the barrier region by nearest neighbour hopping integrals. In

the following we first discuss how the tridiagonal matrices can be inverted in linear time. Then we

discuss how the attachment of the semi-infinite leads can be accounted for.

5.3.1 Inversion of finite dimensional tridiagonal symmetric matrices

In general a symmetric tridiagonal matrix T of order n has the following form

M =

0

B

B

B

B

B

@

a1 �t2
�t2 a2 �t3

. . .
. . .

. . .
�tn�1 an�1 �tn

�tn an

1

C

C

C

C

C

A

(5.5)
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A natural assumption is that all ti are non-zero. If not, the problem may be decomposed into

2 smaller sub-problems, which may be solved seperatedly [4]. It can be shown [27] that for any

tridiagonal matrix a sequence of vi and ui with i = 1 . . . n exists so that

M�1 =

0

B

B

B

B

B

@

u1v1 u1v2 u1v3 . . . u1vn
u2v1 u2v2 u2v3 . . . u2vn
u3v1 u3v2 u3v3 . . . u3vn
...

...
...

. . .
...

unv1 unv2 unv3 . . . unvn

1

C

C

C

C

C

A

(5.6)

Consequently the problem of finding the inverse of M has been reduced to finding the 2n quantities

{ui}, {ui} or equivalently: it is su�cient to compute its first and last columns. Actually it turns

out that freedom exists in the choice of these coe�cients and we will use the convention here that

u1 = 1. Other algorithms than the one presented here have been constructed[19], but the equations

proved to be numerically unstable in certain situations [20].

We will first outline the calculation of v = (v1, v2, . . . , vn)T . Having chosen u1 = 1 the first

column of M�1 is given by v since Mv = e1. Any invertible matrix permits a UL decomposition.

As M is tridiagonal the UL decomposition assumes a special form

M = UD�1UT (5.7)

where

U =

0

B

B

B

B

B

@

r1 �t2
r2 �b3
. . .

. . .
. . .
rn�1 �bn

rn

1

C

C

C

C

C

A

, D =

0

B

B

B

B

B

@

r1
r2

. . .
rn�1

rn

1

C

C

C

C

C

A

(5.8)

Since
P

i �niUniD
�1
ii UT

in = rn one can devise a recurrence relation for the di

rn = an, ri = ai �
b2i+1

ri+1
, i = n� 1, . . . , 1 (5.9)

Any upper-diagonal matrix U with only non-zero elements along its diagonal is invertible and

U�1e1 = 1
U11

. Therefore the solution of the linear equation Mv = e1 is equivalent to solving

D�1UT v =
1

r1
e1. (5.10)

Plugging in the concrete form of D and U we find

v1 =
1

r1
, vi =

t2 . . . ti
r1 . . . ri�1ri

, i = 2, . . . , n. (5.11)

Repeating this procedure for the last column of M�1 and therefore solving vnTu = en where the

UL decomposition is replaced by a LU decomposition we find

l1 = a1, li = ai �
t2i
li�1

, i = 2, . . . , n (5.12)

un =
1

lnvn
, un�i =

tn�i+1 . . . tn
ln�i . . . lnvn

, i = 1, . . . , n� 1. (5.13)
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We insert this into (5.6) to find

(M�1)i,j = ti+1 . . . tj
rj+1 . . . rn
li . . . ln

(5.14)

(M�1)i,i =
ri+1 . . . rn
li . . . ln

(5.15)

and the problem is solved. Using (5.14) and (5.15) we may prove two identities which will be handy

later on

(M�1)i,i�1

(M�1)i,i
=

ri
ti

(5.16)

(M�1)i+1,i

(M�1)i,i
=

li
ti+1

(5.17)

5.3.2 Inversion of coupled tridiagonal symmetric matrices

A

B

C

tAB

tBA

tBC

tCB

Figure 5.2: Layout of the cou-
pled tridiagonal matrices.

In order to solve the problem outlined in section 5.2 e�ciently it

will be beneficial to understand how the inversion problem may be

divided into coupled subproblems. Consider the situation depicted

in Fig. 5.2, tAB = tBA and tBC = tCB . A, B and C are matrices of

the general form 5.5 and dimension nA, nB and nC . An interesting

question is how the presence of the matrices A and C influence

the inversion problem for the diagonal elements of matrix B. In

order to avoid confusing among the various quantities defined in

section 5.3.1 a matrix superscript (A), (B) or (C) will be added

to these. When we refer to, i.e. ‘the inverse of B‘ what is meant

is the part of the inverse of matrix Fig. 5.2 that lies within the

part occupied by B.

Due to the nature of the recursion relations (5.9) and (5.12) it

is immediately clear that the {lBi } only depend through lAnA
on A

while the {rBi } only depend through rC1 on C. However (5.15) suggests, that one needs to know all

the {lCi } to compute the diagonal elements of the inverse of B. The question now is: Is that really

so? The answer is that if A and C are semi-infinite matrices, then by virtue of the relations (5.16)

and (5.17) one can express the ith diagonal entry in the section of the inverse occupied by B only

though knowledge of rBi and lBi . This can be seen from considering

X

k

Mik(M
�1)kj = (�ika

M
i � �i+1,kt

M
i+1 � tMi �i,k+1)(M

�1)kj

= aMi (M�1)ij � tMi+1(M
�1)i+1j � tMi (M�1)i�1j

= �ij (5.18)

Solving for (M�1)ii yields

(M�1)ii =
1

aMi � tMi+1
(M�1)i+1i

(M�1)ii
� tMi

(M�1)i�1i

(M�1)ii

=
1

aMi � rMi � lMi
(5.19)

where we used (5.16) and (5.17). Hence it has been proven, that to learn the diagonal elements of

the inverse in the part occupied by B, it is su�cient to know lAnA
of A and rC1 of C.
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5.4 The quantum zipper algorithm

Freericks[17] used this insight to construct an e�cient algorithm for the solution of the inversion

problem, Eq. 5.4, that he termed the “quantum zipper algorithm” (QZA). In the following we

describe the algorithm as it is outlined in his book[32].

The equation of motion for the Green’s function, Eq. (5.4), in case � = ↵� n with n > 0 can be

brought to the form

�G↵,↵�n+1(z,kk) t↵�n+1,↵�n

G↵,↵�n(z,kk)
= z+µ�⌃↵�n(z)� ✏k↵�nkk +

G↵,↵�n�1(z,kk) t↵�n�1,↵�n

G↵,↵�n(z,kk)
. (5.20)

In direct analogy to Eq. (5.17) we define a left function by

L↵�n(k
k, z) = �G↵,↵�n+1(kk, z)

G↵,↵�n(kk, z)
(5.21)

which we will slide through the heterostructure left to right (similar to the slider of zipper) by the

following recurrence relation (c.f. Eq. (5.12)) directly derived from Eq. (5.20)

L↵�n(k
k, z) = z + µ� ⌃↵�n(z)� ✏↵�n,kk � t↵�n,↵�n�1 t↵�n�1,↵�n

L↵�n�1
(5.22)

The starting point of this recurrence relation is the left lead in Fig. 5.1. Assuming that deep insight

the lead the correction to the local layer self-energy due to the inhomogeneity of the far away barrier

is negligible we substitute L�1 into both sides of Eq. 5.22 and using for the self-energy the result

of a bulk calculation for the material the lead is made out of. This gives a quadratic equation for

L�1 which is solved by

L�1(kk, z) =
z + µ� ⌃�1(z)� ✏k�1k

k

2
± 1

2

r

⇣

z + µ� ⌃�1(z)� ✏k�1k

k

⌘2

� 4t2�1 . (5.23)

Here t�1 is the hopping integral inside the lead, ✏k�1k

k the dispersion relation and ⌃�1(z) the

result of a bulk calculation. The sign in the above equation is chosen to yield an imaginary part

less than zero for z lying in the upper half plane. The function L�1(kk, z) is not subject to the

self-consistency loop, Fig. 3.5, but it is fixed throughout the calculation. One has to take care that

the approximation of using a bulk solution for L�1 is justified. It can be ensured that this is the

case by adding a su�cient amount of healing layers (with the material parameters of the lead) before

attaching the lead itself. Usually 30 healing layers is su�cient. These 30 layers are self-consistently

determined with L↵ converging to L�1 before attaching the left lead solution. For the right lead

one should proceed accordingly. This approach is justified if the systems heals to its bulk value

before entering the lead. If that is not the case one simply needs to include more healing layers.

Similarly one defines a right function

R↵�n(k
k, z) = �G↵,↵+n�1(kk, z)

G↵,↵+n(kk, z)
(5.24)

and a recurrence relation to the right

R↵+n(k
k, z) = z + µ� ⌃↵+n(z)� ✏↵+n,kk � t↵+n,↵+n+1 t↵+n+1,↵�n

R↵+n+1
. (5.25)
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impurity solver QZA

Eq. (3.23)Eq. (3.29)

iterate

Figure 5.3: Illustration of the DMFT self-consistency loop for a heterostructure: Starting from an
initial ⌃�(z) use the quantum zipper algorithm (QZA) to determine G�(z), then use Eq. (3.23) to
find G0

�1
� (z) and determine �SIAM(z) from that using Eq. (3.29). Solving the impurity problem

gives a new self-energy ⌃�(z) and the loop is thus closed.

Similarly to the left function we solve the the recurrence relation for the right lead R1 and then

iterate Eq. 5.25 up to n = 0. R1 is determined by substituting into both sides of Eq. 5.25 and

solving the resulting quadratic equation. We find

R1(kk, z) =
z + µ� ⌃1(z)� ✏k1k

k

2
± 1

2

r

⇣

z + µ� ⌃1(z)� ✏k1k

k

⌘2

� 4t21 . (5.26)

The sign is chose the same way as in Eq. 5.23. Using the right and left function we can obtain the

Green’s function by, c.f. (Eq. 5.19)

G↵↵(k
k, z) =

⇣

L↵(k
k, z) +R↵(k

k, z)�
h

z + µ� ⌃↵(z)� ✏k
↵kk

i⌘�1

(5.27)

The local Green’s function can be found by summing the above equation over the two-dimensional

momenta kk, which can be replaced by an integral over the two-dimensional tight-binding density

of states

G↵↵(z) =

Z

d✏k⇢2D↵ (✏k)G↵↵(✏
k, z) . (5.28)

For the calculation of certain transport coe�cients knowledge of the o↵-diagonal entries of the

Green’s function G↵�(z) is necessary. The recursion relations Eq. 5.22 and Eq. 5.25 can be used

to shift the individual layer indices of the Green’s functions. For instance, the o↵-diagonal Green’s

function G↵�(z) for ↵ < � is is given by

G↵�(z) = G↵↵(z)
��1
Y

�=↵

⇥

� L�(z)
⇤

(5.29)

This concludes our summary of the QZA. The algorithm for the solution of the inhomogenous DMFT

equations is thus similar to that of the homogenous DMFT:

Algorithm 2.

1. We start with initial guesses for the self-energies ⌃↵(z) of the layers ↵ 2 {1, . . . , N↵} and

determine ⌃�1 (⌃1) by a bulk DMFT calculation for the left (right) lead.

2. We use the the QZA to determine the local layer Green’s functions G↵↵(z).

3. The local, layer-dependent Weiss mean field is extracted by virtue of Eq. (3.23) applied to

each layer individually, G�1
↵ (z) = G�1

↵ (z) + ⌃↵(z).
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4. We calculate the layer-dependent hybridisation functions �SIAM
↵ (z) for the impurity problem

from the Weiss mean field G�1
↵ (z) using Eq. 3.29.

5. The N↵ resulting impurity problems are solved using an adequate impurity solver giving the

impurity self energies for each layer, ⌃SIAM
↵ .

6. We identify the local lattice self-energy ⌃↵(z) with the impurity self-energy ⌃SIAM
↵ (z) and goto

step 2 if any of the layers is not converged.

5.4.1 Numerical implementation

At this point some remarks concerning the numerical implementation and computational complexity

are in order. For a typical nanostructure calculation the number of layers in the barrier region

is around 50. With an additional 20-30 healing layers on either side the typical number of self-

consistently determined layers is of the order of 100. The DMFT algorithm has to be performed on

each plane and thus 100 impurity problems have to be solved for each DMFT iteration and around

⇡ 100 iterations have to be performed for the structure to converge (without long-range Coulomb

interactions included that is; see below). This is a substantial computational complexity and one

necessarily has to think about paralellisation. Fortunately certain steps in self-consistency loop allow

for a natural division into subproblems.

Suppose we have NC computational nodes at our disposal for the solution of the DMFT algo-

rithm. Starting with an initial set of self-energies for the planes the QZA has to be performed to find

the local Green’s function on each layer for all frequencies. As the number of frequencies is typically

much higher than the number of layers the more fine-grained division among processors is achieved

if one divides in frequency rather than in layer space. The frequency space is divided into NC ranges

and each processor calculates the local Greens function on layers 1 to N↵ for that frequency range.

In a distribution step the function parts are exchanged among the nodes and complete local Green’s

functions are assembled. In order to find the local Green’s functions for a specific frequency the

energy integral in Eq. 5.28 has to be evaluated. There are two possible approaches for this. One can

work on a fixed ✏-grid which has to be su�ciently fine to resolve any sharp features on the energy

axis. This approach has the advantage that the recursive relations for the left- and right functions

allow a caching of the result for the calculations of quantities on other layers. Close to the MHMIT

transition however the features in the self-energy become increasingly sharper and more refined en-

ergy grid is needed. This slows down the computation and at some point it becomes advantageous

to abandon the fixed grid and to use a quadrature routine which automatically decides where to

evaluate the integrand and does so in a refined way around the sharp features. However caching is

now not possible anymore, because the routine usually does not evaluate the integrand for di↵erent

layers at the same energies.

The other step which is amenable for parallelisation is the solution of the impurity problems.

After the hybridisation functions have been calculated on each layer the impurity problems can be

solved independent of each other. Parallelisation is therefore trivial and one simply assign the N↵

impurity problem in a round robin fashion among the NC computing nodes. When all impurity

problems are solved the impurity self-energies are exchanged among the nodes in a distribution step.
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5.5 Electronic charge reconstruction

Nanostructures fabricated from di↵erent materials often show interesting e↵ects at the interfaces.

A fundamental issue here has been atomic reconstruction which is driven by the di↵erence in the

surface lattice symmetry from that in the bulk. More recently Okamoto and Millis[81] showed that

some of the observations obtained from an experiment by Ohtomo et al.[78], where an atomically

precise digital heterostructure was fabricated by inserting a controllable number of Mott-insulating

LaTiO3 into a controllable number of planes of SrTiO3 a conventional band-insulator, can be under-

stood from what they refer to as “electronic charge reconstruction” (ECR). In the heterostructure

a mismatch of the chemical potentials at the interface between the two materials causes charges to

leak across the interface e�ciently doping the Mott- and the band-insulator. This leads to a quasi

two-dimensional metallic state at the interface of these otherwise insulating materials. The theo-

retical results obtained from DMFT calculations with a Hartree treatment of long-range Coulomb

interactions are in qualitative agreement to the experimental study. Chen and Freericks[17] also

used DMFT to calculate the electronic charge reconstruction of multilayered inhomogeneous devices

composed of semi-infinite metallic lead layers sandwiching barrier planes of a strongly correlated

material. They studied how electronic charge reconstruction can create well-defined Mott insulating

barriers.

In the following we describe how the DMFT can be modified to include the electronic charge

reconstruction that takes place at the interfaces of di↵erent materials. A more detailed account can

be found in Freerick’s book[32]. A mismatch in the chemical potentials of two di↵erent materials

causes charge to reorder in a such way at the interface that the electric potential created by the

displaced charge compensates the di↵erence in the chemical potentials. Long-range Coulomb inter-

action is necessary for this e↵ect to take place and we treat it in a mean-field sense, consistent with

the local approximation for the self-energy in the DMFT[32]. The basis for the iterative algorithm

remains the quantum zipper algorithm, algorithm 3 above, however an additional contribution to the

layer-dependent self-energy has to be calculated which accounts for electric field due to the charge

displacement.

For a given set of excess charge densities ⇢↵ � ⇢bulk↵ on the layers where ↵ is the layer index, ⇢↵
the electrical charge density and ⇢bulk↵ the charge due to the ionic background in layer ↵, the electric

field E↵ due to layer ↵ when treated as a plane of uniform charge is given by

E↵ = �e(⇢↵ � ⇢bulk↵ )

2✏0✏r↵
e? (5.30)

where e > 0 is the electric charge, ✏0 the permittivity in the vacuum, ✏r↵ the relativity of plane

↵ and e? is a unit vector perpendicular to plane pointing away from it. In the following we will

assume that ✏r↵ = ✏r. The electric potential of a system with translation invariance in the x- and

y-direction is related to the electric field via E(r) = � d
dzV (z)ez. The contribution to the electric

potential at plane ↵ due to the excess charge at plane � is thus given by

V�(↵) = �e(⇢↵ � ⇢bulk↵ )

2✏0✏r
|↵� �| (5.31)

The additional potential energy for an electron on plane ↵ due to the charge reordering in the system

is thus given by eV↵ ⌘ e
P

� V�(↵) or alternatively we can pretend the chemical potential on layer ↵

has been shifted by minus this number. The additional term in the Hamiltonian is therefore given

by

HCoulomb = e
X

↵kk�

V↵c
†
↵kk�

c↵kk� (5.32)
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impurity
solver

Eq. (5.31)

QZA

Eq. (3.23)Eq. (3.29)

iterate

Figure 5.4: Illustration of the DMFT self-consistency loop for a heterostructure including electronic
charge reconstruction (ECR): Starting from an initial set of ⌃↵�(z) and ⇢↵ use the QZA to determine
G�(z), then use Eq. (3.23) to find G0

�1
� (z) and determine �SIAM(z) from that using Eq. (3.29).

Solving the impurity problem gives a new self-energy ⌃�(z) and new occupations ⇢↵ and the loop
is thus closed.

Since the leads are not treated self-consistently we have to require that the electric potential has

become su�ciently small enough before entering the lead. For the system to have a finite energy the

leads have to be charge neutral - an assumption which would be inconsistent with a finite electric

potential extending into the leads. Hence the self-consistently calculated part of the system has

to be overall charge conserving. No charge may thus leak out of this part of the device into the

leads. Electronic charge reconstruction only occurs if the chemical potentials between two layers do

not match. The mismatch is termed contact potential and we introduce layer dependent chemical

potentials µ↵ to model it.

The modified DMFT algorithm including charge reconstruction is thus given by

Algorithm 3.

1. We start with initial guesses for the self-energies ⌃↵(z) and charge densities ⇢↵ on the layers

↵ 2 {1, . . . , N↵} and determine ⌃�1 (⌃1) by a bulk DMFT calculation for the left (right)

lead. The charge density in the lead has to match its bulk value at all times ⇢�1 = ⇢bulk�1
(⇢1 = ⇢bulk1 ).

2. Determine the layer-dependent, electric potentials V↵ using Eq. (5.31).

3. With the layer-dependent chemical potentials µ↵ shifted by minus the electrical potential,

µ↵ ! µ↵ � V↵,we use the the QZA to determine the local layer Green’s functions G↵↵(z).

4. The local, layer-dependent Weiss mean field is extracted by virtue of Eq. (3.23) applied to

each layer individually, G�1
↵ (z) = G�1

↵ (z) + ⌃↵(z).

5. We calculate the layer-dependent hybridisation functions �SIAM
↵ (z) for the impurity problem

from the Weiss mean field G�1
↵ (z) using Eq. 3.29 (again with the chemical potentials shifted

by minus the electric potential).

6. The N↵ resulting, independent impurity problems are solved using an adequate impurity solver

giving the impurity self energies for each layer, ⌃SIAM
↵ .
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7. For each impurity problem the impurity solver is used to determine the charge on the impurity

which is then assigned to the layer charge ⇢↵ = ⇢impurity.

8. We identify the local lattice self-energy ⌃↵(z) with the impurity self-energy ⌃SIAM
↵ (z) and goto

step 2 if any of the layers are not converged.

5.5.1 Numerical implementation

The addition of charge reconstruction makes it much more di�cult to reach the correct physical

fixed point in the iterative scheme described above. First the update of the electric potentials have

to be strongly damped to slow the updating of the Green’s function due to charge reordering. If

that is not done the structure does not converge at all. We found the following strategy which is

also used by Freericks[32] renders satisfactory results

V (n+1)
↵ = ↵V V

(n)
↵ + (1� ↵V )V

update
↵ (5.33)

where V update
↵ is electric potential calculated from the current charge distribution in iteration n+1.

Good values for ↵V are 0.99  ↵V  0.999. The number of iterations needed to converge the

structure is about 2000� 5000. A way to reduce this number is to start from a charge distribution

which is reasonably close to the converged result. This can be achieved by recording the site

occupation as function of chemical potential, n(µ), in bulk calculations for all materials that the

nanostructure is made out of. Knowledge of these functions then allows to solve the non-interacting

Poisson problem to find an adequate initial charge distribution.

As already mentioned the semi-infinite leads add a constraint of overall charge conservation to

the self-consistently determined layers. An explicit implementation of this constraint also helps the

calculation to converge. We define ⇢̄ = 1/N↵
P

↵(⇢↵ � ⇢bulk↵ ) which measures the average excess

electron density per layer. The charge conservation constraint can be enforced when the excess

charge ⇢̄ is uniformly distributed in the system. The expression for the calculation of the electric

potential, Eq. 5.31, thus assumes the form

V�(↵) = �e(⇢↵ � ⇢bulk↵ � ⇢̄)

2✏0✏r
|↵� �| (5.34)

After convergence the parameter ⇢̄ will be close to zero. This has to be checked in every calculation.

5.5.2 Application: A strongly-correlated nanostructure

The e↵ect of electronic charge reconstruction is illustrated in Fig. 5.5. Here we use the algorithm

described above to find the layer-resolved spectral functions and occupations for a multilayered

nanostructure. The structure consists out of 3 regions (I-III) where regions I and III are made

from a weakly-correlated metal with U = 1 and the chemical potential tuned to the particle-hole

symmetric point (µI = µIII = 0) and semi-infinite leads made from the same metal are attached

right and left. The barrier region II is made from a strongly-correlated metal with U = 10 and

µII = �3. The background charges for all 3 regions are set to half-filling, ⇢bulk = 1. The mismatch

in the chemical potentials between regions I and II and II and III creates a contact potential which

causes charge to leak from the barrier into the attached leads, thus hole-doping the barrier region

while particle-doping the leads, c.f. Fig. 5.5a (black line). In response to the charge displacement an

electric potentials builds up over the interfaces which seeks to compensate the change in the chemical

potential, c.f. Fig. 5.5b (black line). The red line in Fig. 5.5 shows the layer-resolved occupation ⇢↵
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Figure 5.5: ECR for a multilayered nanostructure with 3 regions (I-III). Region I and III: 10 layers
of U = 1 material, with µI = µII = 0 (PH symmetric point); left and right, semi-infinite lead same
material. barrier region: 12 layers of U = 10 material, hole-doped due to µII = �3. Black lines:
with correlations as specified above, red lines: U = 0 for all layers.

and electric potential V↵ for a structure with the same geometry and local chemical potentials µ↵ but

with all layers uncorrelated, U↵ = 0. For the chosen barrier thickness of 12 layers the uncorrelated

system reorders the charge such that the generated electric potential (almost) compensates the drop

in chemical potential from region I to region II, �µ = µII � µI = �3 as can be seen from the

minimum at V16 ⇡ �2.9 in Fig. 5.5b. For strong correlations however the length scale on which

the charge reorders becomes larger and consequently the system cannot compensate the drop in

chemical potential by reordering the charge within 6 layers, i.e. the minimum of electric potential

in Fig. 5.5b (black line) is V16 ⇡ �1.5. When the thickness of the barrier is increased the minimum

of the electric potential for the correlated system also approaches V ! �3 (not shown).

Fig. 5.6a shows selected spectral functions for various layers of the correlated heterostructure.

The spectral function for layer 1 (black line) resembles that of a non-interacting three-dimensional

bulk system. The upper and lower band edges (! = 6 and ! = �6) and the van-Hoove singularities

(! = 2 and ! = �2) are slightly smeared out due to the interactions. The wiggles at the top result

from the broken translational symmetry due to the presence of the barrier. The spectral function

for the last layer on the weakly-correlated side before the interface (layer 10, red line) shows a

noticeable alteration from the bulk solution. Due to the strong particle-doping the function has

been shifted to the left. Van-Hoove singularities have been almost completely washed out due to

the hybridisation induced correlations. The first layer made of the strongly-correlated material after

the interface (layer 11, green line) shows the characteristic three peak structure. The upper and

lower Hubbard bands however show a pronounced asymmetry due to the hole-doping from the ECR,

which decreases when going deeper into the barrier (layer 16, blue curve).

Fig. 5.6b shows a density plot of the spectral functions over the energy range ! 2 [�12, 12] for

layers ↵ 2 {1, . . . , 32}. Weakly-correlated regions I and III show a broad range (red) of energies

with large spectral weight around the fermi level ! = 0 with a width of approximately 10t. For the

strongly correlated layers in region II this range is substantially narrower and shows only a width

of approximately 3t to 4t. This is expected as the quasi-particle weight decreases as a function of

the interaction strength as more and more spectral weight is shifted into the incoherent background.

Interestingly one can see bending in the bands on either side of the interface as one approaches it.

Coming from the weakly correlated side, one starts with a particle-hole symmetric band. As the
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Figure 5.6: ECR for a multilayered nanostructure with 3 regions (I-III). Region I and III: 10 layers
of U = 1 material, with µI = µII = 0 (PH symmetric point); left and right, semi-infinite lead same
material. barrier region: 12 layers of U = 10 material, hole-doped due to µII = �3.

interface is approached the negative electric potential (Fig. 5.5b) shifts the band downwards. If the

barrier were thick enough one would start with particle-hole symmetric spectral function coming

from the middle of the barrier where V = �µ. Upon approaching the interface the strength of

the electric potential weakens hence V↵ � µ↵ becomes positive and the spectral functions is shifted

upwards.

5.6 Antiferromagnetic order

The question how the presence of long-range order a↵ects the transport properties of electronic

devices based on multilayered nanostructures made from strongly-correlated materials is natural.

Strongly correlated matter shows an abundance of interesting ordering phenomena and in many cases

restricting the system to a paramagnetic phase only in a DMFT calculation is an approximation

which is di�cult to justify on general grounds. In this chapter we describe how the quantum zipper

algorithm can be extended to allow for AB-sublattice antiferromagnetic order on bipartite lattices

(AFQZA). The general outline of the derivation follows that of the paramagnetic case, section 5.4,

however now the Green’s functions and self-energies aquire a 2⇥ 2-matrix structure similarly to the

generalisation from the homogenous paramagnetic DMFT to the homogenous DMFT that allows

for antiferromagnetic order, section 3.7.

The system should be thought as a stack of two dimensional subsystem connected to each other

via spin-diagonal nearest-neighbour hopping terms similarly to the system considered in the original

QZA. Here however the translational symmetry within the two dimensional system only holds for an

enlarged unit cell which contains one site of type A and one of type B. In order to remove repetitive

clutter from the matrices during the derivation we introduce the following functions

Z↵(!) = ! + i0+ + µ� ✏̄↵ � ⌃̄↵(!)

�↵(!) = ��⌃↵(!) (5.35)

where ✏̄↵ = ✏A↵ = ✏B↵, ⌃̄↵(!) = (⌃A↵(!) + ⌃B↵(!))/2 and �⌃↵(!) = (⌃A↵(!)� ⌃B↵(!))/2. ✏A↵

is the on-site energy of a site in layer ↵ on sublattice A and ✏B↵ on sublattice B. We will assume

225



that these are equal. Similarly ⌃A↵(!) is the local self-energy of a site in layer ↵ on sublattice A

and ⌃B↵(!) on sublattice B.

In the derivation for the homogenous case we worked in the (cAk�, cBk�)T basis, here however we

start in the AB basis and then switch to the (c
k�, ck+Q�)T basis, where Q = (⇡,⇡)T is the ordering

vector. This will be especially advantageous when we derive the left- and right functions for the

leads. The basis are related by the unitary transformation
✓

cAk�

cBk�

◆

=
1p
2

✓

1 �1
1 1

◆✓

c
k�

c
k+Q�

◆

(5.36)

Starting from Eq. 5.4 one can easily write down the generalisation for the AB basis by replacing the

self-energy ⌃↵↵(z) and the Green’s function G↵�(z) with 2⇥2-matrices. The self-energy ⌃
(AB)
↵↵ (z) is

diagonal in the AB basis and so are the hoppings, the chemical potential and the on-site energies. In

exact analogy to the paramagnetic case one introduces the 2⇥2-matrix valued function L
(AB)
↵ (kk, z)

in the AB basis by

L
(AB)
↵�n (kk, z) = �t↵�n+1↵�nG

(AB)
↵↵�n+1(k

k, z)
⇣

G
(AB)
↵↵�n+1(k

k, z)
⌘�1

(5.37)

and derives the recursion relation

L
(AB)
↵�n (kk, z) = (z � ✏̄+ µ� ✏k

↵kk)1 �⌃(AB)
↵↵ (z)� t↵�n↵�n�1t↵�n�1↵�n

⇣

L
(AB)
↵�n (kk, z)

⌘�1

(5.38)

We now switch to the (k,Q) basis by applying transformation Eq. 5.36 to the recursion relation

above to find the relation in the (k,Q) basis

L↵(!, ✏
k

k) = M↵(!, ✏
k

k)� t↵↵�1t↵�1↵

detL↵�1(!, ✏
k

k)

 

L(22)
↵�1(!, ✏kk) L(12)

↵�1(!, ✏kk)

L(21)
↵�1(!, ✏kk) L(11)

↵�1(!, ✏kk)

!

(5.39)

where we have defined the matrix

M↵(!, ✏
k

k) =

✓

Z↵(!)� ✏
k

k �↵(!)
�↵(!) Z↵(!)� ✏

k

k

◆

. (5.40)

Similarly for the right function R↵(!, ✏
k

k) one finds

R↵(!, ✏
k

k) = M↵(!, ✏
k

k)� t↵↵+1t↵+1↵

detR↵+1(!, ✏
k

k)

 

R(22)
↵+1(!, ✏kk) R(12)

↵+1(!, ✏kk)

R(21)
↵+1(!, ✏kk) R(11)

↵+1(!, ✏kk)

!

(5.41)

The relationship between the Green’s function and the right and left function in the (k,Q) basis

takes the same form as it does in the AB basis

G↵(!, ✏
k

k) = [R↵(!, ✏
k

k) + L↵(!, ✏
k

k)�M↵(!, ✏
k

k)]
�1 (5.42)

The local Green’s function on sublattice A and B can be found by transforming the above equation

back to the AB basis and summing over the two-dimensional momenta kk, which can be replaced

by an integral over the two-dimensional tight-binding density of states

GA↵↵(z) =
1

2

Z

d✏k⇢2D↵ (✏k)
⇣

G(11)
↵↵ (✏k, z) +G(22)

↵↵ (✏k, z) +G(12)
↵↵ (✏k, z) +G(21)

↵↵ (✏k, z)
⌘

GB↵↵(z) =
1

2

Z

d✏k⇢2D↵ (✏k)
⇣

G(11)
↵↵ (✏k, z) +G(22)

↵↵ (✏k, z)�G(12)
↵↵ (✏k, z)�G(21)

↵↵ (✏k, z)
⌘

(5.43)

With these relations in place the only remaining di�culty is to find the right and left function of the

semi-infinite leads by solving the quadratic equation that is obtained if the same 2⇥2-matrix valued
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function L�1(!, ✏
k

k) is substituted in both sides of the recursion relation Eq. 5.39. This however is

problematic. In general there are no closed form expressions for the solution of a quadratic equation

of 2 ⇥ 2-matrices. Worse still both existence and uniqueness can fail spectacularly. The special

structure of the problem at hand however still allows for a solution and even an explicit expression.

Deep inside the semi-infinite lead the left and right functions coincide due to translational in-

variance, L�1(!, ✏
k

k) = R�1(!, ✏
k

k). By virtue of Eq. 5.42 the left function can be expressed

as

L�1(!, ✏
k

k) =
1

2

⇥

G�1
�1(!, ✏

k

k) +M�1(!, ✏
k

k)
⇤

(5.44)

The bulk Green’s function G�1(!, ✏
k

k) of the left lead can be written as an integral over momenta

in the direction perpendicular to the planes

G�1(!, ✏
k

k) =
1

2⇡

Z ⇡

�⇡
dk? (5.45)

 

Z�1(!)� ✏k
k

k + 2t�1 cos(k?) ��1(!)

��1(!) Z�1(!) + ✏k
k

k � 2t�1 cos(k?)

!�1

This integral can be solved analytically with a computer algebra program. We used Wolfram’s

Mathematicar Version 8.0. The result is a complicated expression that we will not present here,

but that the interested reader can find in appendix A. Substituting this expression into Eq. 5.44

gives an expression for the left function L�1(!, ✏
k

k) inside the left lead. The expression for the

right function R1(!, ✏
k

k) can be found in the same fashion.

This concludes the necessary steps to generalise the quantum zipper algorithm to allow for

antiferromagnetic order in the nanostructure. The individual steps in the overall iterative scheme

are the same as those in the paramagnetic zipper, algorithm 3, above with all quantities replaced

by their 2⇥ 2-matrix counterparts and we will not repeat these steps here explicitly.
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Part III

Applications
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Chapter 6

Mott-Band-Insulator
Heterostructures

A new and exciting direction in the material sciences has been the fabrication of artificial heterostruc-

tures and superlattices composed of di↵erent materials. The understanding of their electronic prop-

erties is not merely of scientific interest but also indispensable for the design and realisation of novel

electronic devices based on the unique electronic e↵ects found at interfaces but absent in the bulk.

A variety of heterostructure have been fabricated and studied including high-Tc superconducting

cuprates[105, 35, 1], Mott- and band-insulator heterostructures[78] and superlattices of transition

metal oxides[55]. Surprisingly heterostructures comprising Mott- and band-insulators were reported

to have metallic behaviour at the interface and even high mobility. In this chapter we are solely

concerned with this type of heterostructures. A fundamental question is what e↵ects contribute to

the change in the electronic state at and near interfaces and surfaces.

In heterostructures made of Mott insulating LaTiO3 and the more conventional band-insulating

SrTiO3 the transition metal Ti ions on the perovskite B sublattice are identical and only the charge-

controlling A sublattice ions (La, Sr) change across the interface, c.f. Fig. 6.1. It was found that

the electron density in the SrTiO3 region does not depend significantly on the interaction strength

or other strong correlation aspects of the problem, but is controlled mainly by the (self-consistently

screened) potential arising from the La [81]. At the interface charge neutrality is violated which

leads to a redistribution of charge to maintain an electrostatic stable solution.

In analogy to e↵ects of lattice relaxation at interfaces which are referred to as “atomic recon-

struction” the e↵ect described above has been called “electronic reconstruction”1. This observation

has stimulated a considerable amount of theoretical investigations. Okamoto and Millis[81] used

an unrestricted Hartree-Fock approximation to qualitatively explain the experimental findings of

Ohtomo et al.[78] who first discovered the existence of metallic behaviour in atomically precise digi-

tal digital heterostructures by inserting a controllable number of LaTiO3 into bulk SrTiO3. Later the

same authors[82] improved their treatment of the electronic correlation e↵ects when they employed

DMFT calculations with the two-site approximation of Pottho↵ and Nolting for the solution of the

impurity problem. In these studies the existence of strong charge reordering in an approximately

three unit-cell-wide crossover region was found to give rise to metallic behaviour in otherwise bulk-

insulating materials. Pentcheva and Pickett[84] performed density-functional theory calculations

including a Hubbard-type on-site Coulomb repulsion (LDA/GGA + U). In contrast to earlier works

1Originally this term was coined by Hesper et al.[48] to describe the compensation of polar charge at the surface
of bulk K

3

C
60

but Okamoto and Millis have suggested to apply the term more generally to electronic surface and
interface behaviour that is di↵erent from the bulk.
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Figure 6.1: Illustration of the cubic perovskite structure (white spheres denote oxygen). An LaO
layer lies in the center, bordered by two TiO2 layers, with a SrO layer at top and bottom. Taken
from Ref. [84].

that focussed on model Hamiltonians they tried to account for material specific aspects. They found

that the charge mismatch at the interface is compensated by checkerboard charge order of Ti3+ and

Ti4+ sites within the interface layer. For the ideal structure they found the interface state to be a

narrow gap insulator, but atomic relaxation at the interface shifted the Ti3+ lower Hubbard upward

leading to conducting behaviour.

Common to all these studies is the technical challenge to account for strong local, electronic cor-

relation e↵ects in a spatially non-uniform system. The DMFT generalised to inhomogenous systems

with the addition of long-range Coulomb interactions on the Hartree level provides an excellent

tool to study such systems. In addition it allows for the calculation of layer-resolved transport

properties as we will see below. This is important as the study of the transport properties of the

two-dimensional electron gas at the interface has been left unexplored for the most part. Although

previous studies have taken such an approach[82] here the rather crude two-site approximation has

been used for the solution of the impurity problem. The NRG is the state-of-the-art impurity for the

single-band DMFT at low temperatures. In the following we derive expression for the layer-resolved

in-plane conductivity and the Hall conductivity.

6.1 Conductivity calculations in the DMFT

Before we start with the actual derivation of the layer-resolved conductivities let us briefly review the

role of vertex corrections in the calculation of conductivities and the special situation encountered

in the DMFT approximation[37].

The measured current in a system in response to a perturbation of the Hamiltonian H by an

electric field E is given by the sum of two terms

J �(r, t) = hja(r, t)i+ i
e2

!

⌧

@2✏

@k2
c†
k

c
k

�

E�(r, t), (6.1)

with ✏(k) the dispersion relation. The first term is commonly referred to as the paramagnetic con-

tribution while the second one is the diamagnetic term. The paramagnetic term has a contribution

linear in the applied electric field E. The proportionality constant which relates the linearised cur-

rent response J �(r, t) to the applied field E�(r, t) is given by the Kubo formula for the electrical
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c†
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��⌫

�

E⌫e
iq·r�i!t (6.2)

where in the second line we assumed that the electric field E(r, t) has only a single frequency and the

system possesses a translational symmetry. ⇧�⌫(q,!) in the third line is the retarded current-current

correlation function which is defined as

⇧�⌫(q, t� t0) = �i⇥(t� t0)
Dh

j†�(q, t), j⌫(q, t
0)
iE

. (6.3)

For the actual calculation of the correlator ⇧ it is usually most convenient to work in the Matsubara

formalism where it assumes the form

⇧�⌫(q, i⌦n) = �
Z �

0

d⌧ei⌦n⌧
D

T⌧ j†�(q, ⌧)j⌫(q, 0)
E

(6.4)

where the current operator is defined by j(q) =
P

k� vkc
†
k�ck+q� with v

k

the gradient of the disper-

sion ✏
k

. The correlator ⇧ can be written in a series expansion in the usual way by expanding the

S-matrix. The first terms in this expansion are given by

⇧�⌫(q, i⌦n) = �
X

k,i!m,�

v�
k,�G(k, i!m)G(k+ q, i!m + i⌦n)v

⌫
k+q

+
X

k,i!m,�

X

k

0,i!0
m�0

v�
k�G(k, i!m)G(k+ q, i!m + i⌦n)⇥

���
0

kk

0
q

(i!m, i!0
m, i⌦n)G(k0, i!0

m)G(k0 + q, i!0
m + i⌦n)v

⌫
k

0+q�0 + . . . (6.5)

Similar to the one-particle irreducible self-energy ⌃
k

(!) = ⌃(!) also here simplifications arise in the

d ! 1 limit. The two-particle irreducible vertex function � becomes purely local hence momentum

independent, ���
0

kk

0
q

(i!m, i!0
m, i⌦n) = ���

0
(i!m, i!0

m, i⌦n)[119]. This can be easily seen in real-space.

In the derivation of the DMFT we saw that the scaling rules are such that whenever two sites are

connected by at least three independet paths, the corresponding diagram vanishes in the d ! 1-

limit. For � in the real-space representation this is certainly the case. If it were not so, � could be

cut into two pieces by cutting only two propagators in contradiction to the assumption that it is two-

particle irreducible. The momentum sums in the second term Fig. 6.2b can therefore be performed

independently in the left and right particle-hole bubble, ignoring momentum conservation at the
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vertex function. For a dispersion relation ✏
k

that is even under k ! �k the velocity v
k

is odd. Since

the Green’s function G(k, i!m) depends only through the dispersion relation on the momentum k

in the DMFT approximation it is an even function of k. The terms under the momentum sums

are therefore overall odd functions of the momentum and the sum vanishes. That means in the

DMFT the current-current correlation function is given solely by the first particle-hole bubble and

knowledge of the local self-energy and one-particle Green’s function su�ces to calculate it.

6.2 Layer-resolved conductivities

In this section we derive the layer-resolved in-plane component of the conductivity for a multi-layered

heterostructure and Hall conductivity for a magnetic field B applied perpendicular to the planes. In

the following we orient the structure such that the magnetic field points along the z-direction with

planes of the heterostructure parallel to the x-y plane. The system is assumed to posses a transla-

tional invariance along the x and y direction. Voruganti et al.[111] used a path integral formulation

to study the linear response of a two-dimensional Hubbard model to electromagnetic perturbations

at finite temperatures T . Here however the focus lay on non-trivial magnetic ordering phenomena

and the local on-site Coulomb interaction U in the Hubbard model was either ignored completely

or accounted for a crude way by the introduction of phenomenological damping rates in the Green’s

function through finite quasiparticle lifetimes ⌧ . Here we extend their original derivation not only to

multi-layered heterostructures but also consistently implement the description of interaction-induced

correlation e↵ects on the DMFT level.

We start from the non-interacting Hubbard model on a simple cubic lattice with nearest-neighbour

hopping in three spatial dimensions

H0 =
X

hi,ji,↵

tij,↵c
†
i↵cj↵ +

X

h↵,�i,i

t↵�,ic
†
i↵ci� (6.6)

where we have separated inter- from intra-layer hopping processes. We choose to label the sites

in the three-dimensional structure such that the indices i and j label sites within a given layer

perpendicular to the z-direction while ↵ and � are layer indices, i.e. the z-coordinate of the site.

The hopping amplitude tij,↵ describes intra-layer hopping of electrons from site i to site j both

located in layer ↵ while t↵�,i describes inter-layer hopping. Due to the translational invariance

along the x and y direction we can drop the index i in the latter hopping amplitude, t↵�,i ! t↵� . In

the following we are not interested in magnetic symmetry-breaking and restrict the system to the

paramagnetic regime. To remove clutter from the notation we omit the spin-index in the following.

The spin degree of freedom can be accounted for by multiplying the transport coe�cients by a factor

of two. The e↵ect of electromagnetic fields on the dynamics of the electrons can be implemented in a

gauge-invariant way via Peierl’s substitution. Here the hopping integral is modified by a phase-factor

which is determined as the line integral of the vector potential A(r, t) along the hopping path,

ti↵,j�(A) = ti↵,j� exp

✓

ie

h

Z

rj�

ri↵

A(r, t) · dr
◆

. (6.7)

where A(r, t) is related to the applied fields E(r, t) = �@A/@t and B(r, t) = r ⇥ A(r, t). We

approximate the continuum phase factor above by the value of the vector potential at the midpoint

between lattice site i↵ and j�

Z j�

i↵
A(r, t) · dr ⇠ A(Ri↵,j� , t) · ri↵,j� ⌘ Ai↵,j�(t) · ri↵,j� (6.8)
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where ri↵,j� ⌘ rj� � ri↵ and Ri↵,j� ⌘ (ri↵ + rj�)/2. In the following we are interested in situations

where a weak, uniform, layer-independent electric field E is applied perpendicular to the stacking

axis (z), i.e. in x direction, and the applied magnetic field is a weak and both layer- and time-

independent field which points along the z direction. The vector potential Aq↵ therefore consists

of a spatially uniform component aEn↵ (subscript n indicates bosonic frequency ⌦n) modelling the

electric field E and a static contribution aB
q↵ modelling the constant magnetic field B along the

z-direction,

A
q,⌦n = aEn �q,0 + aB

q

�⌦n,0 . (6.9)

We will mainly work in momentum space for the derivation and it will prove advantageous to

introduce the relativistic notation for the momentum and frequency indices, e.g. p ⌘ (p,!m) for the

fermions with !m = ⇡(2m+ 1)/� a fermionic Matsubara frequency and q ⌘ (q,⌦n) for the bosonic

gauge-field with ⌦n = 2⇡m/� a bosonic Matsubara frequency.

For the geometry we consider here it is always possible to choose a gauge where the corresponding

vector potential A has a vanishing z-component. We can already see that since ri↵�ri� points along

the z direction for inter-layer hopping events the phase factor Ai↵,j� · ri↵,j� vanishes. Nontrivial

phases are only picked up in intra-layer hopping events. For the derivation of the linear response

to an electromagnetic perturbation A at finite temperature T we start from the grand-canonical

partition function of the system

Z[A] = Tr [exp [�� (H[A]� µN )]] (6.10)

where µ denotes the chemical potential, � the inverse temperature and N =
P

i↵ c†i↵ci↵ is the total

particle number operator. The partition function may be conveniently expressed as a path integral

over Grassmannian fields ci↵(⌧) and c†i↵(⌧),

Z[A] ⌘ exp��⌦[A] =

Z

D[c†, c] exp

"

�
Z �

0

d⌧ (L0[c
⇤, c,A] + Lint[c

⇤, c,A])

#

. (6.11)

Here ⌦[A] is the so-called grand-canonical potential which will be useful for the derivation of the

conserved currents later. L0[c⇤, c,A] is the non-interacting Lagrangian density and Lint[c⇤, c,A]

describes the local Coulomb interactions U↵. L0[c⇤, c,A] given by the following expression

L0[c
⇤, c,A] = c†i↵(⌧) [(@/@⌧ � µ) �↵��ij + tij,↵(A)�↵� + t↵��ij ] cj�(⌧) . (6.12)

The e↵ects of local Coulomb interactions U↵ can be included on the level of the DMFT description

by adding layer-dependent, purely local self-energies ⌃↵(i!n) to the above Lagrangian density. This

produces the correct DMFT single-particle Green’s function. We will employ the DMFT for het-

erostructures as outlined in chapter 5 to determine the self-energies ⌃↵(i!n) for the concrete system.

The Lagrangian density for an interacting system in this approximation thus assumes the form

L[c⇤, c,A] = c†i↵(⌧) [(@/@⌧ � µ+ ⌃↵(i!n)) �↵��ij + tij,↵(A)�↵� + t↵��ij ] cj�(⌧) (6.13)

Note that this form of the Lagrangian can only be used to calculate the Green’s function Gij in the

DMFT approximation and the conductivity � only in the absence of vertex corrections. Since the

current J couples in the grand canonical potential to the vector potential A, the component � of a

current response in layer ↵ with Fourier component q in terms of a spatially uniform electric field

component aEn and a static magnetic component aB
q

can be expressed as the functional derivative

J �
q↵ = �(1/V )�⌦[A]/�A�

�q↵ (6.14)
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where V is the normalisation volume. Note that the exact current response is given when equation

Eq. 3.36 is used. For the calculation of the conductivity we are interested in the current response

linear in the applied field E while for the Hall conductivity is must be linear in both E and B.

Following Voruganti et al.[111] we thus expand the action S =
R �
0
L in powers of the vector potential

A. Expanding the exponential function in Peierl’s substitution we find that the term of order n � 1

in A is given by

S(n) =
(ie)n

n!

Z �

0

d⌧
X

↵,hiji

t↵c
†
i↵(⌧) (Aij,↵ · rij)n cj↵(⌧)

+
X

ih↵�i

t↵�c
†
i↵(⌧) (A↵�,i · r↵�)n

| {z }

=0

ci�(⌧) (6.15)

where the last term vanishes due to r↵� k êz ? A↵�,i. We now Fourier transform in the x and y

direction and leave the layer index in real space. The Grassmannian fields and the gauge potential

can be written as

ci↵(⌧) =
1p
�L

X

p

exp(ip · ri↵ � i!m⌧)cp↵

Ai↵,j�(⌧) =
X

q

exp(iq ·Ri↵,j� � i⌦n⌧)Aq,↵� (6.16)

where p = (p,!m), q = (q,⌦n), L is needed for proper normalisation and is given by the number of

sites per layer and bosonic Matsubara frequencies ⌦n and fermionic frequencies !m. For each of the

two-dimensional layers in the heterostructure the electronic dispersion relation is defined as

✏
p↵ =

X

hiji

t↵ exp(ip · rij) = �2t↵(cos px + cos py) , (6.17)

where t↵ is the nearest-neighbour hopping strength in layer ↵. We now substitute the expansions

Eq. 6.16 into the the action Eq. 6.15 and after a lengthy calculation[111] one finds for the n � 1

order term of the action

S(n) =
en

n!

X

↵

X

p,q

X

q1...qn

c†p↵

⇣

✏�1...�n
p/2+q/2A

�1
q1↵ . . . A�n

qn↵

⌘

cq↵ . (6.18)

Here we introduced the short-hand notation ✏↵
p

where the subscripts signifies partial di↵erentiation

with respect to the indicated component, i.e. ✏↵
p

= @✏
p

/@p↵. Due to momentum and energy

conservation in the system the four-momenta are constrained by
P

a=1,...,n qn = p � q. Note that

due to the vanishing z component of the vector potential A only partial derivatives of the dispersion

relation with respect to the x and y components appear. From Eq. 6.18 we find that to third order

in the vector potential A the action of the system is given by

�A3 S =
X

p,q

X

↵

c†p↵ (Kpq,↵� + Tpq,↵� + Vpq,↵[A]�↵�) cq�

Kpq,↵� = �pq�↵� (�i!m + ✏
p

� µ+ ⌃↵(i!m))

Tpq,↵� = �pqt↵�

Vpq,↵[A] = e ✏µ
p/2+q/2A

µ
pq,↵ + (e2/2)✏µ⌫

p/2+q/2

X

q1

Aµ
p�q�q1,↵A

⌫
q1,↵

+ (e3/6)✏µ⌫⌘
p/2+q/2

X

q1,q2

Aµ
p�q�q1�q2,↵A

⌫
q1,↵A

⌘
q2,↵ (6.19)
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�
q = 0
⌦n = 0

↵ p,m
↵ ↵

Figure 6.3: The diagram of order 0 in the vector potential A. The contribution from this diagram
vanishes for all even dispersion relations, ✏

p↵ = ✏�p↵.

The notation �Ai signifies that we are expanding up to ith order in A. In the diagrammatic analysis

that follows we will refer to the contribution of order n in Aq↵ as the “V n vertex”. Since the action

is quadratic in the fermionic degrees of freedom we can integrate them out by virtue of the relation
R

D †D exp[ †(K+T+V ) ] = det[K+T+V ]. The Green’s function of the system in the absence

of electromagnetic fields is with the help of the above expression easily found to be

Gp↵� = �pq (Tpp,↵� +Kpp,↵�)
�1 (6.20)

and the e↵ective action can be written as

��⌦[A] = Tr lnG�1 +Tr ln
⇥

1 +G · V [A]
⇤

. (6.21)

Only the second term on the rhs of the above equation has a dependence on the vector potential

and can be expanded using the following identity

Tr ln(1 +G · V [A]) = �
1
X

n=1

Tr(G · V [A])n/n

= �
1
X

n=1

Tr(G · V [A])n/n (6.22)

The component � of the current density �A0 J �
q↵ in layer ↵ to zeroth order in the external fields is

found by expanding the action up to first order in the vector potential A using the above relations

and application of the definition of the current density

�0J �
q↵ =

�

�A�
�q↵

1

�
ln



Z

D[c†, c]e�
P

p↵0 c
†
p↵0 (i!n�µ�⌃↵0 )cp↵0 e

�e
P

pq0↵0 c
†
p↵0 ✏

⌫
p�q0

2
↵
A⌫

q0↵0cp�q0↵0
�

= �i!n,0�q,0
e

�

X

p

G
pm,↵↵✏

�
p↵ (6.23)

where subscript on the Green’s function indicates the fermionic frequency m ⌘ !m. The DMFT self-

energy is momentum independent and hence the layer Green’s function p↵↵ for layer ↵ depends only

through the dispersion relation ✏
p↵ on p. For dispersions with an inversion symmetry ✏

p↵ = ✏�p↵

the term under the sum above is an odd function of p and therefore the right hand side vanishes as

it should. Fig. 6.3 depicts a diagrammatic representation of the above expression. The small, black

circles signify dispersion relation on the layer written next to it (here ↵) and with as many partial

derivatives as wiggly lines are attached (here 1 only). The wiggly lines themselves are bosonic modes

of the vector potential with the component written next to it (here �) and the Fourier component

bosonic frequency below (q, ⌦n). Due to energy and momentum conservation q = 0 and ⌦n = 0. The

solid black line with the arrow indicates a Green’s function between the layers, Fourier component

and fermionic frequency next to it.
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Figure 6.4: Diagrammatic representation of the first and second term in Eq. 6.24.

6.2.1 Longitudinal conductivity

For the calculation of the longitudinal, in-plane conductivity ��⌫
�↵(⌦n) we are interested in the pref-

actor in front of the contribution to the response kernel linear in the electric part of vector potential

�
q0a

E
n which describes a uniform electric field E. The sub- and superscripts indicate that ��⌫

�↵(⌦n)

measures the �-component of the current response in layer ↵ due to the application of the ⌫-

component of an electric field in layer �. Contributions to J �
r� linear in aEn arise from loops with

either one V 2 vertex or two V 1 vertices and they are given by

�E1 J �
q� = �(e2/V )�

q0

A⌫
n�

h

X

p,↵

✏⌫
p

✏�
p

1

�

X

m

G
pm,�↵Gpm+n,↵� �

X

p

✏�⌫
p

1

�

X

m

G
pm,��

i

(6.24)

where subscript n indicates bosonic Matsubara frequency n ⌘ ⌦n. In real time we have E⌦ = i⌦aE⌦ .

One finds that the ⌦n = 0 contribution of the paramagnetic term (first one) cancels the diamagnetic

contribution (second term). Fig. 6.4 shows a diagrammatic representation for the two contributions

above (in that order). The imaginary-time response functions can be used to calculate the real-

time response at any given temperature T by performing the analytic continuation, i.e. i⌦n ! ⌦.

Writing the response to the electric field as �E1 J �
⌦� =

P

↵ �
�⌫
�↵(⌦)E

⌫
↵(⌦) we find the conductivity by

comparison with Eq. 6.24 to be given by

��⌫
�↵(⌦) = �(e2/V )

X

p

✏⌫
p

✏�
p

(1/i⌦)⇧↵�(p,⌦) (6.25)

where ⇧↵�(p,⌦) is the analytic continuation of the bubble function

⇧↵�(p, i⌦n) =
1

�

X

m

G
pm�↵Gpm+n↵� . (6.26)

For the real part of the conductivity we need to find the imaginary part of the bubble function

⇧↵�(p,⌦). We express the Matsubara Green’s functions as the energy integral over the spectral

function times a free Matsubara Green’s function G0(✏, i!m)

Gp↵� = �i

Z

d✏
A↵�(p, ✏)

i!m � ✏

= �i

Z

d✏ G0(✏, i!m)A↵�(p✏) (6.27)

Using standard relations[69] for the analytic continuation one finds (Appendix D)

Im⇧↵�(p,⌦)/⌦ = � 1

⇡

Z

d✏A↵�(p, ✏)A�↵(p, ✏+ ⌦)
nF (✏+ ⌦)� nF (✏)

⌦
(6.28)

In the limit ⌦! 0 for static driving fields E the expression simplifies and we find

lim
⌦!0

��⌫
�↵(⌦) = (e2/V )

Z

d✏
1

⇡

X

p

✏�
p

✏⌫
p

[A↵�(p, ✏)]
2 @nF (✏)

@✏
(6.29)
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For an actual calculation performing the above momentum sum is computationally quite expensive.

One usually prefers to trade momentum sums for one-dimensional energy integrals with a suitably

chosen density of states like we did in the calculation of the local Green’s function. This is also

possible here although due to the factors ✏�
p

✏⌫
p

in the sum it is not simply given by the non-interacting

density of states. For a system on a simple cubic lattice with � = ⌫ such an expression is derived in

Appendix F. The expression for the xx-component of the dc conductivity then assumes the form

�xx
�↵ = (e2/V )

Z

d✏

Z

d✏
p

⇢xx(✏
p

) [A↵�(p, ✏)]
2 @nF (✏)

@✏
(6.30)

with ⇢xx(✏
p

) the transport density of states. In the T = 0 limit the Fermi function nF (✏) becomes a

step function and the derivative a sharp peak located at the ✏ = ✏F . Then the conductivity depends

only on the density of states at the Fermi level. Our dispersion relation is an even function of p

and thus ✏↵
p

is odd and the above expression is finite only if � = ⌫. ��⌫
�↵(⌦) describes the current

response in layer � due to an applied electric field in layer ↵. For a layer-independent electric field

applied along the x-direction the total current in layer � only has a non-vanishing x-component and

is found by summing over all layers in the heterostructure

�E1 J x
⌦� = Ex

X

↵

�xx
�↵(⌦) . (6.31)

The total current through the system is obtained when the sum
P

� is performed. Note that for a

homogenous system the expression Eq. (6.29) after Fourier transforming in the z direction reduces

to the known expression[94]

lim
⌦!0

�xx(⌦) =
⇡e2

2V

Z

d✏
X

p

�

✏x
p

�2
[A(p, ✏)]2

@nF (✏)

@✏
(6.32)

where p = (px, py, pz). Before we turn to the Hall conductivity in the next section we briefly

discuss the role of vertex corrections for the conductivity. Indeed in layered systems one has to be

careful because not all vertex corrections drop out in all cases. For instance if we had calculated

the longitudinal conductivity in the stacking direction of the planes we would be in trouble. Here

vertex corrections cannot be argued to drop out and their neglect is indeed a crude approximation.

For the in-plane component of the conductivity however the same arguments as in the homogenous

system can be invoked (one might think about the system as being made up of unit cells of infinite

length in the z direction) and indeed it su�ces to calculate simply the particle-hole bubble as we

did.

6.2.2 Hall conductivity

For the calculation of the Hall conductivity we are interested in the current response �EB
2 J ↵

q� linear

in both the electric field E and the magnetic field B. Contributions may arise from diagrams with

three V 1 vertices, or one V 1 and one V 2 vertex or diagrams with one V 3 vertex. Recalling that

Aq↵ = aEn↵�q,0 + aB
q↵�⌦n,0 each such diagram gives terms quadratic in either aEn↵ and aB

q↵ or linear

in both. For the Hall conductivity only the latter kind contributes. In real time we have E⌦ = i⌦aE⌦
and B↵

q

= i✏↵��q�aB
q

�
and thus the real part of the Hall conductivity �↵�✏

H ��↵(⌦) requires us to

evaluate the real part of each Matsubara sum to linear order in q and ⌦. As it turns out only three

of the six diagrams linear in aEn↵ and aB
q↵ contain contributions linear in both q and ⌦n. Two are

given by the triangle graphs depicted in Fig. 6.5 (a) and (b) and one is the diagram with one V 1
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Figure 6.5: Triangle graphs, (a) & (b), with three V 1 vertices and the other diagram (c) for the
calculation of the Hall conductivity.

and one V 2 vertex in Fig 6.5 (c). We split the response current �2J �
r� into a contribution from the

triangle graphs (1) and a contribution from the other diagram (2)

�EB
2 J �

q� = �(1)2 J �
q� + �(2)2 J �

q� (6.33)

Under the assumption that the dispersion relation ✏
q

is layer-independent, any layer-dependence in

the response current is entirely due to interaction e↵ects. After a lengthy calculation (Appendix C)

one finds that the contribution due to the triangle graphs is given by

�(1)2 J �
q� =

e3

2
aE⌫
n aBµ

q

X

↵,�

q�
X

p

✏�
p

✏µ
p

✏⌫�
p

⇧
pn� (6.34)

where we have defined the vertex function

⇧H
pn��↵ =

X

m

G
pm,↵�Gpm,↵� [Gpm+n,�� �G

pm�n,��] . (6.35)

The contribution due to the diagram depicted in Fig. 6.5 (c) takes the form

�(2)2 J �
q� = �e3

2
aBµ
q

aE⌫
n

X

↵,�

q�
X

p

✏�
p

✏µ⌫
p

✏�
p

⇧H
pn��↵ (6.36)

Upon summation of the two contributions and comparison with the definition of the Hall conductivity

�EB
2 J �

(q,⌦)� = Eµ
⌦B

⌫
q

X

↵,�

��µ⌫
H ��↵(⌦) (6.37)

one finds for E-field in y-direction, theB-field along the z-axis and the current response in x-direction

�xyz
H ��↵(⌦) =

e3

2

X

p

�

✏x
p

�2
✏yy
p

⇧H
p�(⌦)/⌦ (6.38)

with ⇧H
p�(⌦) =

P

↵� ⇧
H
p��↵(⌦) the analytic continuation of the vertex function. Similar to the case

of the conductivity one can use the standard tricks for the analytical calculation. However here the
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Figure 6.6

calculation is slightly more involved and can be found in Appendix E. After a lengthy calculation

one finds

lim
⌦!0
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Note here that this expression does not only probe the properties of the system at the Fermi level

in the dc limit ⌦ ! 0 for T = 0. To find the total Hall current one performs the remaining sum

over all layers, J � =
P

� J �
� . Under the three sums the terms in Eq. 6.39 can be reordered and one

sees that the first terms cancels the second one. Partial integration of the last term allows one to

combine it with the second to last one to find

lim
⌦!0

⇧H
p

(p,⌦)/⌦ =
2

3⇡

X

↵��

Z

d✏G00
↵�(p, ✏)G

00
↵�(p, ✏)G

00
��(p, ✏)

@

@✏
nF (✏) (6.40)

which only propes low energy properties for T ! 0. After Fourier transformation in the z direction

the above expression agrees with the one found by Pruschke et al.[94] for a homogenous system. We

believe that vertex corrections drop out of this expression in the d ! 1 limit for similar arguments

as in the case of the conductivity, but we haven’t proven this formerly.

6.3 Results

The DMFT generalised for long-range Coulomb interactions as outlined in section 5.5 allows to study

a variety of strongly-correlated heterostructures including charge reordering phenomena at the inter-

faces. Electronic charge reconstruction has profound influence - especially when strong interactions

are involved - on the electronic state of the system near the interface. Transport measurements

provide an e�cient probe for the low-energy degrees of freedom in complex system. Therefore the

study how charge leakage across the interface a↵ects transport coe�cients such as the conductivity
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Figure 6.7: The system is composed of 30 band-insulating layers with U = 1 attached to semi-
infinite, band-insulating lead with the same parameters to the left. The barrier region comprises
20 Mott-insulating layers with U = 16 > Uc followed by 20 band-insulating layers with U = 1 and
capped o↵ with a semi-infinite, band-insulating lead to the right. The numbers in the round brackets
are bulk occupation numbers.

and the Hall coe�cient is key to the successfull understanding of any strongly-correlated inhomoge-

nous device. The temperature in these systems is an important parameter in this regard. We know

from DMFT bulk studies that the first order Mott-Hubbard metal insulator transition has a crit-

ical endpoint at a finite temperature Tc. The phase transition line is shaped such that in certain

parameter regimes of the interaction strength U an increase in the system temperature leads to the

disappearance of the metallic solution and the system becomes insulating. This is surprising as one

usually expects thermal activation of band gaps and therefore an increase in the conductivity when

the temperature is raised. From these considerations one can already expect interesting behaviour

from the interplay between interface doping and quenching of the Kondo e↵ect by temperature

fluctuations.

We concentrate here on Mott-Band insulator heterostructures modelled as single band Hubbard

models on a simple cubic lattice with nearest-neighbour hopping. The restriction to such a simplified

model neglects important orbital degrees of freedom and also any possible atomic reconstruction

which might appear at the interface[84]. This is justified as our motivation is not the quantitative

explanation of experiments but rather to work out the fundamental e↵ects which are key to the

understanding of charge transport for these types of systems. We are also currently not interested

in magnetic ordering phenomena, so we restrict the DMFT equations to the paramagnetic regime

and do not allow for symmetry breaking by the introduction of the AB-unit cell2.

Fig. 6.7 shows the layout of the system we are considering. The first 30 layers have very weak

on-site interaction, U = 1, and their background charge ⇢(0) is set to 0 so as to model a band-

insulator with its single band completely emptied (region I). The central region consists of 20 layers

with a Hubbard interaction of U = 16 which is in excess of the critical U for Mott-insulating

behaviour in bulk calculations at half-filling (region II). The background charge ⇢(0) for these layers

is indeed set to ⇢(0) = 1. The system ends on the right side with another 30 weakly-correlated

layers, U = 1, with their background filling set to ⇢(0) = 2 to model a band-insulator with its

conduction band completely filled (region III). To remove finite size e↵ects we attach semi-inifite

leads right and left to the system with the same parameters as the adjacent layers. To complete

the system description we have to specify the local chemical potential in each of the three regions

2Note that the combination of the DMFT generalisations for electronic charge reconstruction and AB-sublattice
anti-ferromagnetic order can be readily combined in a straightforward manner.
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and the two leads. The potential mismatch at the interface will be the energetic motivation for

charges to accumulate on one side of the interface while avoiding the other. Of course this process

does not continue indefinitely. As more and more charges pile up on one side and more and more

holes on the other the background charges will no longer be compensated and an electric field builds

up in response. Charge will continue to cross the interface and the electric potential will grow

in size until it compensates the jump in the chemical potential. The exact shape of the electric

interface potential will however depend on microscopic details such as the band-structure. In our

calculation we choose a µI = 2 for region I, µII = 0 for region II and µIII = �2 for region III. The

leads are infinite in size and therefore have to be electrostatically neutral as any deviation from this

state would cost an infinite amount of energy. Since the background charge in the left (right) lead

has been set to 0 (2), the chemical potential therefore has to be smaller µL . �6 (µR & +6) so

as to push all of the spectral weight above (below) the Fermi level. For our calculation we chose

µL = �6 and µR = +6. The potential mismatch at the interface between region I and II is therefore

�µI�II = µI � µbulk
I � µII + µbulk

II = (�6� 2� 0 + 0) = �8. Charge will therefore rearrange at the

interface until an electric potential has built up which takes a value of +8 inside region I. For the

right interface we find likewise �µII�III = (6� (�2)� 0 + 0) = 8.

The setup we have chosen here posseses a special symmetry which helps the convergence of the

calculation. The system is invariant under the transformation ↵ ! N↵ � ↵ plus a particle-hole

transformation, where N↵ is the total number of layers not including the leads. Note that above all

chemical potentials change sign under ↵! N↵ �↵. This symmetry ensures that the overall system

is always charge neutral and one does not have to take special precautions in the calculation to make

ensure convergence to the charge neutral point.

Fig. 6.8a shows the layer-resolved occupation ⇢↵ and the electric potential V↵ after convergence

for a system temperature of T = 10�8. Far away from the I-II interface inside region I the occupation

assumes the background value ⇢↵ = ⇢(0)I = 0 and the electronic configuration for layers 1 to ⇡ 20

is that of a band-insulator with an empty band. Closer to the interface charge accumulates thus

particle-doping the band-insulator. The last layer before the interface (↵ = 30) has an occupation

of ⇢30 ⇡ 0.2. The adjacent Mott-insulating layer on the other side of the interface is hole-doped

with ⇢31 ⇡ 0.89. The Mott-insulating layers however quickly return to their bulk charge of ⇢(0)II = 1

within 3� 4 layers and so Layers 34� 47 are locally charge neutral. Due to the symmetry discussed
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Figure 6.9

above we have ⇢↵ = 2�⇢N↵�↵ and V↵ = �VN↵�↵: the electric potential vanishes at the center of the

system. Region II sees an approximately linear electric potential from about V31 ⇡ 5.6 to V50 ⇡ �5.6

and connects with a potential which starts deep in region I at a bulk value of V1 ⇡ 8 and drops

within about 10 layers to the interface slightly. The asymptotic values of the electric potential are

expected from our considerations above. It is however noteworthy that the Mott insulator deviates

only slightly from its bulk charge although the electric potential causes substantial deviations of the

local Fermi level compared to their bulk value. For example for layer 31 in region II the shift of the

local Fermi level from the bulk value is ⇡ 5.6 while for layer 30 in region I it is only ⇡ �1.8, but the

deviation in the background charge is only �⇢31 ⇡ �0.12 while for layer 30 it is larger, �⇢30 ⇡ 0.2.

The explanation for this behaviour is linked to the strong correlations within region II. Initially

the Fermi level lies in a wide Mott gap and substantial potential strength is needed to push it

into either the upper or lower Hubbard band. These bands are centered around ±U/2 = 8. Once

the Fermi level starts to move into, say, the upper band, the local density of states becomes finite

which leads to an increase in the hybridisation function of the underlying impurity model and

the appearance of a finite Kondo temperature TK . If T < TK a Kondo resonance appears and

the occupation deviates from half-filling. The width of the resonance is controlled by the Kondo

temperature. Fig. 6.8b shows the spectral functions for layers 31� 35. A narrow Kondo resonance

can indeed be seen at the Fermi level with a width which decreases rapidly as one goes towards the

region center. For EF ⇡ 5.6 < 8 this resonance will be narrow and therefore the change in occupation

in the Mott insulator is much smaller than the one in the band-insulators on the other side of the

interface. As one walks goes deeper into region the lower Hubbard band moves away from the Fermi

level resulting in ever narrower resonance peaks and in turn ever lower Konto temperature TK . Once

the local Kondo temperature falls below the system temperature T = 10�8 the resonance is cut o↵

by temperature and the corresponding layer falls out of its Fermi liquid states. In principle not only

doping due to the electric potential can create a Kondo resonance. Helmes et al. [46] showed that

a metallic layer imposes due to the tunnel-coupling an e↵ective lower bound on the hybridisation

function of an adjacent Mott-insulating layer. This induces, even at half-filling, a finite TK in the

Mott insulator and a resonance may appear if T < TK . This e↵ect is however much weaker than

the e↵ect of the electric potential in our set-up.

Fig. 6.9 summarises the electronic state of the system. In subfigure (a) spectral functions of

four di↵erent layers are shown. As already deduced from the charge distribution weakly-correlated

layer 1 (black) indeed resemblels a non-interacting three-dimensional density of states which has

been shifted due to the electric potential such that no spectral weight resides below the Fermi level.
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Figure 6.10

The last weakly correlated layer 31 (red) before the I-II interface is indeed heavily particle doped as

some of the spectral weight has been transferred below the Fermi level due to band bending. For

the strongly correlated region II, layer 40 (blue) at the center of region II bears clear signatures

of a Mott-insulating state. The particle-hole symmetric spectrum shows well pronouned Hubbard

bands and a large gap about the Fermi level. Right before the interface the spectrum of layer 31

(green) has been shifted due to the electric potential by �! ⇡ 5.6 relative to layer 40 partly moving

the Fermi level into the lower Hubbard band. This has indeed created a narrow Kondo resonance

peak at the Fermi level resulting in metallic behaviour. The peak reaches up to the non-interacting

value due to the Friedel sum rule. Fig. 6.9b shows a density plot of the spectral weight distribution

in the system. The black arrows mark the upper and lower edge of a non-interacting, particle-hole

symmetric density of states (upper and lower arrow) and the Fermi level (middle arrow). Regions of

high spectral weight are colored red and those with low weight blue. Starting from the right one can

see the conduction band (red) of the band-insulator completely above the Fermi level. Approaching

the interface the electric potential bends the band downward pushing it partly into the Fermi level,

resulting in metallic behaviour at the interface. Strongly-correlated region II shows the linearly

deformed upper and lower Hubbard bands (yellow). Close to the interface metallic states can be

seen as as sharp red lines which end 3-4 layers into the region from either side.

Closer inspection of the weakly-interacting band in region I, reveals an interesting pattern of

interference fringes superimposed onto the area colored red as yellowish lines. Appendix B lists

spectral functions for all layers in the heterostructure. One can indeed see the change in the number

of peaks appearing in the flat part of the density of states as one moves away from the interface. Due

to the mismatch in the band structure delocalised particle states in the weakly-correlated region are

reflected at the interface and interfer. The number of interference peaks at a distance L from the

interface is therefore determined by the number of standing wave states in a box of length L. Closer

inspection of the spectra indeed reveals that the number of peaks grows linearly with the distance.

Fig. 6.10 shows the spectral weight distribution for a higher system temperature of T = 0.004.

The band-insulating region of the heterostructure is only mildly a↵ected. The sharper features -

especially the interference peaks at the top of the density of states - are slightly washed out from

the thermal fluctuations. However the temperature has had a really dramatic e↵ect on strongly-

correlated region II. The metallic states at the interface have almost completely disappeared. We

understand this from the perspective of the layer-dependent Kondo temperatures. With Kondo tem-

peratures decreasing for layers further away from the interface the system temperature is currently

so high that even the layer closest to the interface has its Kondo e↵ect quenched by temperature.
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Figure 6.11

Indeed the corresponding spectral function in Fig. 6.10a (green) shows the on-set of a tiny peak at

the Fermi level which shows that the system temperature is on the brink of the particular TK . In

the following we analyse the layer-resolved conductivity �xx
↵ in this interesting temperature regime.

Fig. 6.11 and Fig. 6.12 present spatially resolved conductivity data calculated from the one-

particle Green’s functions according to Eq. 6.30. As expected for temperatures T = 0.004 and above

Fig. 6.11a shows that the strongly-correlated part of the system is essentially non-conducting and

all charge transport is performed by the doped band-insulator close to the interface. In general

electrical resistivity ⇢xx = 1/�xx in metals increases with temperature and this behaviour is found

here as well. With higher temperatures the number of layers near the interface which contribute to

the transport reduces. For T = 0.009 only the 5 layers closest to the interface take an appreciably

part in the charge transport. One finds that the imaginary parts of the self-energies ⌃↵(!) show

an increase - especially around the Fermi level - upon raising the temperature. This leads to a

reduction in the quasiparticle lifetime and explains the increase in resistivity. Fig. 6.11b shows the

conductivity for the 5 strongly-correlated layers closest to the I-II interface for a variety of di↵erent

temperatures. For a given temperature the conductivity shows an approximately exponential drop

with the distance to the interface. The temperature dependence is very rich. For layers 31-34

the conductivity increases with the reduction of the system temperature. However the enhancement

starts at di↵erent threshold temperatures. One clearly sees that layers further away from the interface

have a lower threshold temperature which is explained by the suppression of the Kondo temperature

away from the interface. Once the threshold temperature TK for a particular layer has been exceeded

the layer turns into a strongly correlated metal and the conductivity increases strongly, i.e. Fig. 6.11b

shows an increase in �xx by a factor of more than 3 for layer 31. For layer 35 one can see a reversal

of the temperature-conductivity relationship. Here, 5 layers from the interface the conductivity has

dropped to such low values that an increase in the conductivity can actually be seen due to thermal

activation of the Mott gap. This is however a tiny e↵ect due to the strong Coulomb interaction

U and the large gap. Fig. 6.13 shows layer-resolved conductivities for the very low temperature

regime where the Kondo e↵ect on the strongly-correlated layers close to the interface has almost

fully developed. Unfortunately the temperature regime below T = 10�5 is numerically di�cult to

access. One has to add a tiny imaginary part to the real-frequency (!+i�) to broaden the delta peaks
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to a finite width. For low temperatures the Fermi distribution becomes a step function which means

that the conductivity formula, Eq. 6.30, essentially probes only the spectral function at the Fermi

energy. Below T = 10�5 the imaginary parts of the self-energies at the Fermi level reach the order

of magnitude of �. Reducing � is however di�cult since this leads to problems with the adaptive

integration routine in the Hilbert transforms due to ever sharper and sharper peaks encountered in

the integration interval.

We regret that due to time restrictions we were not able to finish our calculations with regard

to the Hall coe�cient which is why no data of the same are presented in this thesis. We believe

however that the presented layer-resolved formula is correct and the implementation should be

straight forward (with the appropriate transport density of states given in Appendix F).
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Chapter 7

Transmission through a Mott
Barrier

The response of a system to external fields provides an e�cient probe of its correlation e↵ects. An

extreme form of such a probe is the study of the dielectric breakdown. Here a strong electrical

field is applied to a material in an insulating state and the parameter dependence of the breakdown

of the insulating to a metallic state is studied. Experimental studies of both conventional band-

and strongly correlated Mott-insulators supply the theorist with su�cient information to check

hypothesis extracted from approximate theories for this extremely di�cult non-equilibrium problem

against actual data.

The breakdown of semiconductors with weak correlations can be well understood from Zener’s

theory of electrical breakdown [115] where so called Zener-tunnelling across the valence and con-

duction bands, triggers an electron avalanche which causes the dielectric breakdown. However for

strongly interacting materials the situation is much more involved as one is faced with a many-

body non-equilibrium problem. A simple argument already hints at the di↵erence between the two

types of systems: electron-hole excitations produced by the presence of the field may move freely in

the band-insulator while they interact and eventually become dissipated in the Mott insulator. The

study of such problems has proven very di�cult as instead of a single energy gap between the valence

and conduction band, many di↵erent energy gaps among the many-body levels become important.

Motivations to study this problem especially for strongly-correlated (Mott-) insulators are nu-

merous. As non-equilibrium phase transitions and non-linear transport have become central issues

in the study of strongly correlated systems, the dielectric breakdown as one of the most basic of such

phenomena acquires a special role. As the motion of electrons in Mott insulators at half-filling is

frozen due to strong repulsive interactions and doping of such materials leads to interesting quantum

states such as high-Tc superconductivity a question that is not far to seek is how non-equilibrium

carriers behave in response to a strong electric field. Systematic study of electron systems in the

Mott insulating phase is believed to provide important information to understand such unconven-

tional states of matter. Observing the breakdown of the Mott insulator may therefore provide a

paradigm for strongly correlated electron systems in non-equilibrium.

Also recent progress in the cold-atom community, where realisations of both bosonic[40, 57, 28]

and fermionic[103] Mott insulators have been constructed, have sparked renewed interest into the

dielectric breakdown. Di↵erent experiments on oxides as well as organic materials have given valuable

insight into non-equilibrium transport.
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Figure 7.1: Band-structure diagram. The shaded regions represent zones of forbidden energies in
the presence of an electric field. Spatial tunnelling allows for transitions to energetically higher lying
bands. Taken from Ref. [115].

In this chapter we will use the inhomogenous DMFT to answer the following equilibrium question:

How does temperature T and barrier length L a↵ect the transmission probability through a Mott

insulating region under a linear electric potential connected to non-interacting leads? The motivation

is two-fold. We have seen in the last chapter that such a situation indeed arises when a Mott insulator

is sandwiched between two band-insulators with a chemical potential mismatch and electronic charge

reconstruction is taken into account: the charge redistribution creates on the one hand a linear

electric potential in the Mott insulating region and on the other shifts the spectral function of the

band insulators close to the interface into the Fermi level such that they can be seen as almost

non-interacting leads. The other motivation stems from the hope that such a calculation might

provide important insights into the dielectric breakdown of a Mott insulator. One might wonder

how an equilibrium calculation can ever reveal information about the dielectric breakdown, after

all, the non-equilibrium problem par excellence. Here one should remember Zener’s theory for band

insulators where an electron avalanche e↵ect causes the destruction of the insulating state. For the

earliest moments of the breakdown it can be argued that one is in a situation where the typical

time between tunneling events is large as compared to the equilibration time in the system. In such

a situation an equilibrium theory is justified and one might be able to understand how di↵erent

system parameters a↵ect the earliest moments of the dielectric breakdown.

This chapter starts with a short introduction to past works on the topic. Section 7.2 reviews the

Landauer-Büttiker theory of conductance. In 7.3 we show how the transmission probability T may

be calculated from quantities readily available in the DMFT for heterostructures. We conclude with

a summary of our numerical findings.

7.1 History of the problem

We begin our retrospective of works concerned with the problem of the dielectric breakdown with a

review of Zener’s seminal paper about the breakdown of band-insulators before we sketch the more

recent approaches for Mott insulators.

Zener’s theory of dielectric breakdown for band-insulators

In 1934 Zener[115] studied the problem of the dielectric breakdown in one-dimensional band in-

sulators. Starting from conventional band theory he sought to find an explanation for the strong
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non-linearities found in the I-V characteristic of the dielectric breakdown phenomenon. Realising

that carriers thermally activated across the band gap are not able to account for the ‘sudden rise‘

in current, he deemed a mechanism analogous to the auto-ionisation of free atoms by large electric

fields. Applied to solids the basic realisation is that in a constant electric field, energy bands have

significance only with respect to particular spatial positions as the presence of a linear potential

makes each energy band degenerate with each other, c.f. Fig 7.1. Therefore in the presence of an

electric field an electron may spatially tunnel from one band into another band that would otherwise

lie energetically higher if it were not for the presence of the electric field.

Starting from Bloch’s theorem Zener argued that the crystal momentum of the electrons linearly

increases in time with the field E, k ! k� 2⇡eE
h t which causes the electrons to move in the direction

of the field until they are reflected by the lattice and move back and forth (Bloch oscillations). Each

time the electron is reflected by the lattice a small fraction of the wave packet will pass through the

energetically forbidden zone into another band. The total tunnelling probability per unit time � is

given by the tunnelling probability per lattice reflection p times the period of the oscillatory motion

⌫ = h
eEa .

� = ⌫p (7.1)

The calculation of p where performed using a semi-classical WKB approximation with the assump-

tion that the linear electrical potential can be locally approximated on the scale of a single lattice

constant. Using this ansatz he found the tunnelling probability to depend exponentially on the

strength of the electrical field

� =
eEa

h
exp



�⇡
2

h2

ma✏2

|eE|

�

(7.2)

here a denotes the lattice constant and ✏ the size of the energy gap between conduction and valence

band. The result received from such a simple treatment of the problem is actually quite remarkable

in a number of ways: For typical values of ✏ = 2eV and a = 3 · 10�8cm equation (7.2) becomes

� = 107E10�2·107/E . One can see here that both the magnitude of the critical field strength

(⇡ 106V/cm) and the suddenness of the transition are reflected by the formula.

Modern approaches for Mott insulators

A number of authors have employed a variety of di↵erent methods to attack the problem of dielectric

break-down in Mott insulators. The earliest work on the dielectric breakdown of a Mott insulator

is by Fukui and Kawakami[34]. To be precise they studied a variation of the original problem: they

considered a one-dimensional Hubbard ring at finite U and investigated the e↵ect the introduction

of an asymmetric hopping term on a single site had on the Mottness of the system. The asymmetric

hopping term was supposed to model dissipative tunnelling into the environment, however rendering

the Hamiltonian non-hermitian: the appearance of a asymmetric hopping term can be understood

as the presence of an imaginary gauge potential. These kinds of problem had been previously

studied using the Bethe ansatz and exact solutions were available. Calculating the phase diagram

as a function of interaction strength U and hopping asymmetry, they were able to confirm that the

Mott gap closes monotonically with the strength of asymmetry in the system due to the e↵ect of

dissipative tunnelling driving the system metallic. However as pointed out by Taguchi et al.[108]

who experimentally studied the breakdown of the one-dimensional Mott insulating crystals Sr2CuO3

and SrCuO2 a quantitative comparison with the mentioned work cannot be made due to the lack

of direct correspondence between the asymmetric hopping strength in the theory and the applied

electric field. Nevertheless their work gave important stimuli to the further development of the

theory.
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Figure 7.2: Temperature dependence of the threshold electric-field Eth measured with the use of
200-msec voltage pulses for Sr2CuO3 and SrCuO2. The solid line is a fit of the form of equation
(7.3). From [108].

Taguchi et al.[108] found in their measurements an exponential dependence of the critical field

strength Eth on the temperature of the form

Eth(T )/Eth(0) = exp [�T/T0] (7.3)

This kind of T dependence has often been found in the depinning physics of charge density wave

systems. Here the depinning potential V is weakened due to thermal fluctuations of the CDW phase

� in such a manner as V (T )/V (0) = exp
⇥

�
⌦

�2
↵

/2
⇤

, where
⌦

�2
↵

/2 = T/T0 [70]. Here the conclusion

may be drawn that the exponential dependence of Eth suggests that the collective motion of carriers

is responsible for the strong non-linearities. The critical field strengths were found to be larger than

the depinning field for conventional CDW states pinned by impurities, however weaker than the

typical critical field strength found in band insulators. Also the current switching was accompanied

by a characteristic delay time.

In 2003 Oka, Arita and Aoki[80] sought to explain the phenomenon by properly taking the

presence of the electric field into account. They considered a small (N ⇡ 10) periodic Hubbard model,

where the e↵ect of the electrical field E was accounted for by a time-dependent flux �(t) = eLEt with

L the system size piercing the Hubbard ring and inducing a current due to Faraday’s law. Using a

Lanczos method they determined the ground state of the system and calculated the zero temperature

time-evolution using a numerical integration of the time-dependent Schrödinger equation. They

explained their numerical findings by non-adiabatic Landau-Zener tunnelling: If a parameter of the

Hamiltonian is slowly (adiabatically) varied the energy levels plotted against this parameter contain

anti-crossings as they repel each other and a system initially prepared in the ground state of the

system will stick to this state. However when the parameter is varied with a finite velocity the

state will make a transition across the anti-crossing with a finite probability p 6= 0. The transition

probability depends exponentially on the LZS parameter which is proportional to the velocity that

the anti-crossing is approached with. They suspected that these kind of tunnelling events between

the ground state and the first excited many-body state are the relevant process for the break-down

and indeed found that the expectation value of the current operator collapses onto a single universal

curve when plotted against the LZS parameter. However this picture is not free of problems. While

the theory as described above works fine for finite systems the derived expression for the critical field

strength Eth contains a factor which depends on the system size and diverges in the thermodynamic
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Figure 7.3: Taken from [24].

limit. Therefore for an infinite system the theory predicts that no breakdown will take place.

Ignoring this issues for the moment, at least for finite systems a finite threshold field was found and

upon increasing E beyond Eth a linear dependence of the current upon E. The conclusion here was

that the non-adiabatic tunnelling was a quantum version of dissipation mixing di↵erent states and

driving the system after many level crossings into steady state.

Oka and Aoki[79] revisited the topic and resolved some of the open questions and puzzle their

last paper had left behind. Most importantly using Dykhne-Davis-Pechukas (DDP) formalism they

were able to consider tunnelling events beyond the Landau-Zener picture, resolving the asymptotic

issues found in the thermodynamic limit. Another virtue of their paper was that it finally reconciled

the the Landau-Zener-Schwinger theories for the breakdown with the model which incorporated the

e↵ect of the electric field via non-hermitian Hamiltonians: they showed how within their approach

the Hubbard model in an electric field is mapped onto a non-hermitian hamiltonian.

The first DMFT study of the dielectric breakdown phenomenon was performed by Eckstein, Oka

and Werner [24]. Here a single-band Hubbard with nearest-neighbour hopping was studied and the

time-dependent electric field F was incorporated into the Hamiltonian in a pure vector potential

gauge via Peierl’s substitution. They solved the problem in d ! 1-limit using nonequilibirium

DMFT and solved the impurity problem using the self-consistent hybridisation expansion. For weak

fields F they found that a time-independent current sets in after the decay of the transient behaviour.

Although the system was not coupled to a heat bath and the e↵ective temperature Te↵ rose by a

factor 1.5 during the simulation time j(t) remained constant. Fig. 7.3a shows the time-averaged

current as a function of the driving field F . The current due to the linear response conductivity

at small F which vanishes in the T ! 0 limit can be clearly distinguished from a temperature-

independent contribution at large F . They refer to the latter contribution as the tunneling current

which has a non-zero temperature limit. The data could be fitted with the same law (black line)

that determines the ground state decay rate[79, 80]

jtun(F ) = F�1
tun exp(�Fth/F ), (7.4)

with a threshold field Fth. The values for the threshold field as extracted from their numerical data

is displayed in Fig. 7.3b.
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7.2 Landauer-Bütticker definition of the transmission

Landauer[66] considered a general barrier problem in a 1D conductor realised for instance by a quan-

tum wire in the extreme quantum limit where only one conduction channel exists. Ideal conduction

leads free of scattering connect right and left to the barrier region. Due to an applied bias voltage

these two leads have di↵erent carrier densities parametrised by di↵erent chemical potentials µL and

µR for the left and right lead respectively. We assume that the di↵erence is such that current flows

from the left to the right lead. Landauer thought of these contacts to have a phase randomising

e↵ect1 for the injected and absorbed electrons through inelastic processes such that no phase relation-

ship exists between di↵erent particles. The total current through such an idealised one-dimensional

system may be written as the di↵erence between the flux of the right- and left-moving particles

I =
e

⇡



Z 1

0

dk v(k)fL(k)T (k)�
Z 1

0

dk0 v(k0)fR(k
0)T (k0)

�

(7.5)

where T (k) is the probability that a particle of momentum k is transmitted through the barrier. The

overall prefactor stems from the one-dimensional density of states @n/@k = 1/⇡ and integrations are

over positive k relative to the direction of injection. For low temperatures the Fermi distributions

fL and fR can be approximated by step functions. Then particles up to an energy µL (µR) are

injected into the left (right) lead. Converting to integrals over energy one finds

I =
e

⇡



Z µL

0

dE

✓

dk

dE

◆

v(k)T (E)�
Z µR

0

dE

✓

dk0

dE

◆

v(k0)T (E)

�

=
e

⇡~

Z µL

µR

dE T (E) (7.6)

For small applied voltages the di↵erence in the chemical potentials is small, we can neglect the energy

dependence of the transmission probability T (E) and the integral is approximated by T (µL�µR). It

has been debated in the literature[101, 39, 30] how the di↵erence in the chemical potentials should

be related to the potential drop across the device. The answer depends on the geometry of the

experiment and more specifically on how the drop in the potential is actually measured. A result

of the transmission and reflection about the barrier and the flow of current is a reduction in the

carrier density on the right side while charge piles up on the left side. This charge rearrangement

leads to screening e↵ects and can be accounted for by shifted chemical potentials for the left (µ0
L)

and right lead (µ0
R). The actual voltage drop across the device is therefore given by e(µ0

L � µ0
R)

which is less than e(µL � µR). From self-consistency considerations one can relate the two by

µ0
L � µ0

R = (1 � T )(µL � µR) [14]. If the current is applied through a pair of contacts and the

voltage drop across the barrier measured non-invasively by a separate pair of contacts (4-terminal

measurement) one measures the reduced drop. For standard 2-terminal measurement where the

same leads are used for the current supply and the voltage measurement one finds V = e(µL � µR)

and so

G =
I

V
=

✓

2e2

h

◆

T . (7.7)

This is the celebrated Landauer formula for the single-channel case[65, 66] with the fundamental

unit of conductance given by 2e2/h = 7.748 ⇥ 10�5 S. This quantum-mechanical result expresses

a transport coe�cient in terms of static scattering properties, rather than in the usual temporal

correlation functions of linear response theory.

1In his own words he referred to these contacts as “independent black-body reservoirs”[66]
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Multi-channel case

The generalisation to the multi-channel case is now straight-forward. Such a multi-channel device

can be realised when one departs from the one-dimensional idealisation of the wire and enlarges for

instance one of the two transverse dimensions such that the system is not only restricted to the

lowest mode in the transverse box potential but other low-energy modes are accessible for transport.

A lateral quantum structure develops where the wave functions in the leads might be given by (in

a simple case)

hx, y, z |n kzi =
1p
L
�n(x, y)e

ikzz . (7.8)

Here x and y are the coordinates in the transversal direction and particles move along the z direction

through the device. n is a quantum number that labels the di↵erent conduction channels and �n(x, y)

is the confinement wavefunction in the transversal direction. The eigenenergies in this example would

be given by ✏n(kz) = En + ~k2
z

2m with En the confinement energy for channel n 2 {1, . . . , N}. For

simplicity we consider the case where the number of channels in the right and left lead are equal.

Then an incoming wave in channel i with total energy E has a finite probability, Tij(E) = |tij |2, to
be transmitted to channel j in the right lead and probability Rij = |rij |2 to be reflected into channel

j in the left lead. The transmission and reflection coe�cient can be organised in the 2N ⇥ 2N

scattering matrix

S =

✓

r t
t r

◆

(7.9)

Carriers are fed equally into all channels up to chemical potential µL (µR) in the left (right) lead.

The current injected into channel i on the left side and transmitted to channel j on the right side is

with the same reasoning as in the single-channel case given by

Iij =
2e

h

Z µR

µL

Tij(E)dE ⇡ 2e

h
Tij(µL � µR) (7.10)

where we have again assumed that the energy dependence of the transmission probability Tij is

small in the energy window E 2 [µL, µR]. The total current transmitted through the N independent

sending and receiving channels is thus given by

I =
2e

h

X

ij

Z µR

µL

Tij(E)dE ⇡ 2e

h

2

4

X

ij

Tij

3

5 (µL � µR) (7.11)

=
2e

h
(µL � µR)Tr(t

†t) (7.12)

with t the transmission submatrices. For a two terminal measurement the conductance is thus given

by

G =
2e2

h
Tr(t†t) (7.13)

which is the Landauer-Büttiker formula for the multi-channel case[14].

7.3 Transmission through a heterostructure

In order to apply the Landauer-Büttiker theory of conductance to heterostructures, we need to

relate the transmission probability T through the barrier region to a quantity readily available in

the inhomogenous DMFT. A natural candidate is the o↵-diagonal Green’s function connecting layers

on di↵erent sides of the barrier, which answers a closely related question: What is the amplitude for
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| 0i

Figure 7.4: Schematic illustration of the transmission problem set-up. The scattering potential has
a finite support, x 2 [a, b].

creating a particle on a layer left of the barrier with energy E and transversal momentum kk and

destroying it on a layer right of the barrier? Due to the translational invariance in the transversal

directions, x and y, the corresponding momenta kk are conserved and take no active part in the

transmission problem but merely parametrise a family of one-dimensional scattering problems. We

therefore restrict the derivation of the relation between the o↵-diagonal Green’s function and the

transmission amplitude to one-dimensional problems. The application of the derived formulas to

each member of the family gives the transmission amplitude of the three-dimensional system.

The Landauer-Büttiker theory thinks about transport as essentially a scattering problem. This

paradigm already imposes certain approximations that need to be mentioned here. Usually in

scattering problems one has non-interacting particles incident on a spatially confined potential. In

such a situation the one-particle description is adequate. The strongly-correlated heterostructure

however does not fall into this category. Here the disturbing e↵ect on the incident particle is not due

to a simple scattering potential but rather to the particle entering a region in space where strong two-

body interactions exist. This makes the transmission problem through a correlated heterostructure

inherently a many-body problem. For instance one might think about a situation where a particle

impinges on the barrier region and gets reflected, but leaves the barrier subsystem in an excited

state, which does not thermalise before the arrival of the next particle. Also one could envision

a situation where two incident particles enter into the strongly-correlated region at the same time.

Their mutual interaction will certainly alter their probability to be transmitted or reflected compared

to a situation where they enter one after the other. All of these e↵ects are not accounted for in

the Landauer-Büttiker description of transport. In our set-up we assume that the time between

scattering events is much larger than the typical time scale in the barrier region. An excited barrier

a particle might have left behind is (on average) long thermalised before another particle arrives. In

such a situation the Landauer-Büttiker approach is a meaningful approximation.

Typically, the scattering formalism is described in the following way: an incident particle in state

| 0i is scattered by a localised perturbation V resulting in a scattered state | Si. The incident state
| 0i is assumed to be an eigenstate of the non-interacting hamiltonian H0 with Eigenvalue E

(E �H0) | 0i = 0 (7.14)

For the sake of the argument we will assume H0 to be the Hamiltonian of free particles

H0 =
p̂2

2m
. (7.15)

The incident state in this case will be a plane wave with wavevector k

hr| 0i =  0(r) =
1

N eik·r (7.16)
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Figure 7.5: Contour integration.

We will use a momentum normalisation, therefore N =
p
2⇡. The goal of scattering theory is then

to solve the full energy-eigenstate problem

(E �H0 � V ) | i = 0 (7.17)

The scattered state | Si is defined as

| Si = | i � | 0i (7.18)

We will assume that the perturbation V has a compact support, i.e. is non-vanishing only within

some interval [a . . . b].

We can now choose from two possible routes to find a connection between the Green’s function

and physical observables of the scattering problem, i.e. transmission- and reflection amplitudes. We

could try to relate the T-matrix of the scattering problem to the transmission amplitude by noting

that the scattered wavefunction | Si = G0T | 0i and making the typical assumption that on the

far side at a great distance from the scattering region the full wavefunction | i of the problem is

given by the unperturbed wavefunction | 0i times the transmission amplitude.

hx1| i = ⌧(E) hx1| 0i (7.19)

The remaining task of relating the Green’s function to the T-matrix is easily accomplished by a

series expansion of the full propagator in the potential V. However for the situation at hand the

exact Green’s function may be derived in terms of the scattered wave functions and this direct route

turns out be more feasible here. The scattering solutions  ±(x) of an incoming plane wave from

the left (+) and the right (�) are given by

 ±(x) =
1

N

8

>

>

>

>

<

>

>

>

>

:

e±ikx + ⇢(±)e⌥ikx

⇢

x < a for (+)
x > b for (�)

A(±)(k)u±
k (x) + B±(k)s±k (x) a < x < b

⌧(k)e±ikx

⇢

x > b for (+)
x < a for (�)

(7.20)

where we have used ⌧ (±)(k) = ⌧(k) which follows from reciprocity. u±
k (x) and s±k (x) are possibly

complicated wave functions which describe the particle as it passes through the barrier region.

Explicit expression for the coe�cients A±(k) and B±(k) as well as for the transmission- ⌧(k) and

reflection amplitude ⇢(k) may be derived. Naturally these expression only depend on the values of

the independent solutions of the Schrödinger equation at the borders of the domains.

Assuming that there are no bound states in the energy window we are interested in, we may

express the exact Green’s function of the system as

G(xf , xi;E) =
X

�=±

Z 1

0

dk

2⇡

 �
k(xf ) �

k
⇤(xi)

E + i✏� ~2k2

2m

(7.21)
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Substituting (7.20) into (7.21) we find for xi < a left of the barrier and xf > b right of the barrier

GLR(xf , xi; k
0) =

2m

~2

Z 1

0

dk
1

k02 + i✏� k2

h

⌧(k)eik(xf�xi)

+ ⌧⇤(k)e�ik(xf�xi)

+
⇣

⇢(+)⇤(k)⌧(k) + ⇢(�)(k)⌧⇤(k)
⌘

eik|xf�xi|
i

=
2m

~2
1

2⇡

Z 1

�1
dk

1

k02 + i✏� k2
⌧(k)eik|xf�xi| (7.22)

where E = ~2k02

2m and we used ⌧⇤(k) = ⌧(�k) and ⇢(±)⇤(k)⌧(k)+⇢(⌥)(k)⌧⇤(k) = 0. The integral may

be easily solved using contour integration. In order to preprare the denominator we notice that

k02 + i✏� k2 = (k0 +
p

k2 � i✏)(k0 �
p

k2 � i✏)

= (k0 + k � i✏)(k0 � k + i✏) (7.23)

We consider a contour in the upper half of the complex plane, therefore encircling only one of the

poles of first order. We thus find

GLR(xf , xi; k) =
m

i~2k ⌧(k
0)eik|xf�xi| (7.24)

The transmission probability is defined as T (k) = |⌧(k)|2. With the velocity vk = @E/@k = ~2k/m
we can solve for the transmission probability to find

T (E) = v2k|GLR(xf , xi;E)|2 (7.25)

The o↵-diagonal Green’s functions G↵�(kk,!) are readily available from the inhomogenous DMFT

algorithm by virtue of Eq. 5.29.

7.3.1 System layout

In order to study the transmission probability through a Mott barrier in in-homogenous mean-field

theory we will consider the setup depicted in Fig. 7.6. The arrangement reflects typical experimental

setups: two leads are connected to a barrier of a Mott insulating material with a finite width. The

leads are modelled as a non-interacting region2. The barrier region consists of a varying number of

N Mott-insulating layers which with U > UC . In order to account for the e↵ects of a strong electric

field E across the Mott region, we choose a gauge where a linear gradient potential � gives rise to

E. The e↵ect is analogous to a local chemical potential. We have already seen that doping the

Mott insulator away from half-filling drives the Mott insulator metallic. Therefore we can expect

the e↵ective barrier thickness to be considerably lowered, as the outermost Mott layers will feel a

chemical potential in excess of their charge gap and therefore fall out of their Mott insulating state

due to doping.

The barrier region is sandwiched between two segments which are marked as “healing” layers in

fig. 7.6. These layers are actually part of the lead and therefore non-interacting. The necessity for

these self-consistently calculated lead layers arises from inhomogeneities in the system. The presence

of the barrier region causes deviations of the adjacent non-interacting layers from their bulk state,

which only die o↵ slowly as one walks away from the interface. These deviations must su�ciently

2This is especially important when one considers the case of magnetic ordering in the system as the Hubbard
model on a simple cubic lattice at half-filling shows a perfect nesting property and so our leads would become
antiferromagnetic insulators for arbitrary interaction strength.
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fall o↵ before the semi-infinite leads begin. As these leads are not self-consistently determined, they

should rather be thought of as boundary conditions for the heterostructure. A mismatch between

the physics enforced by the boundary conditions and the physics happening in the first and last layer

would cause finite size e↵ects in the system. For a our calculation We choose 30 healing layers which

ensures that the system has approached the bulk behaviour closely enough so that no visible finite

size e↵ects are apparent in any calculated quantity. In this chapter we are predominantly interested

in the behaviour of the barrier region. We therefore choose to count the layers starting from the

first Mott-insulating layer to the left (↵ = 1).

The lower part of Fig. 7.6 depicts a schematic view of the expected band structure. Particle-hole

symmetric bands in the non-interacting leads connect to the linearly deformed upper- and lower

Hubbard bands of the Mott-insulating barrier region. The strength of the linear potential is chosen

such that it reaches a value of ±U/2 at the left / right edge of the Mott insulating barrier connecting

the deformed Hubbard bands to the non-interacting bands of the leads. This is not an artificial setup

as we have seen in the last chapter: a mismatch in the bands causes charge reordering which shifts

the bands such that they match up. In the spirit of Zener’s breakdown theory electrons may tunnel

spatially from the energetically lower lying Hubbard band into the upper Hubbard band. We study

here the amplitude of these processes.

The system possesses a translational invariance along the x and y direction. It is therefore

useful to Fourier transform in these directions and introduce the conserved in-plane momentum

kk. In section 7.2 we derived the Landauer-Büttiker formula for the conductance in the multi-

channel case. The channel label n is given here by the in-plane momentum kk. We saw that the

eigenenergies of the states in the non-interacting leads comprise two parts, ✏n(kz) = En + ~k2
z

2m . The

confinement potential3 En is given in our case by the two-dimensional in-plane dispersion relation

✏k
k

k = �2t [cos(kx) + cos(ky)] while the plane wave part
~k2

z
2m is replaced by the eigenenergy of a Bloch

wave travelling in z direction, �2t cos(kz). Due to the conservation of the in-plane momentum there

is no inter-channel mixing, i.e. the transmission matrix is diagonal ⌧(!)
k

k
k

0k = ⌧(!)
k

k �
k

k
k

0k .

3We are aware that this term is very misleading for the present case, where the confinement wave functions are
completely delocalised Bloch waves.
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Figure 7.7: Local layer spectral functions for (a) T = 10�10 and (b) T = 10�2.

The square of the velocity in Eq. 7.25 is for homogenous, isotropic hopping integrals t given by

v2kz
= 4t2 � ✏2kz

. In a non-interacting system, the total conductance for particles with energy ! from

the right to the left lead is therefore

G(!) =
2e2

h

X

k

k



4t2 �
⇣

! � ✏k
k

k

⌘2
�

�

�

�

GLR(!,k
k)
�

�

�

2

=
2e2

h

Z 4t

�4t
d✏

k

k ⇢2D(✏
k

k)



4t2 �
⇣
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k

k

⌘2
�

�

�

�

GLR(!,k
k)
�

�

�

2

(7.26)

For an interacting system the above formula is not exact, however it can be used in the tunneling

limit when the time between particle transmissions is the largest time scale in the problem.

7.3.2 DMFT results

To study the transmission through a Mott barrier in a linear electric potential we calculate the

Landauer-Büttiker conductance G from the left to the right lead of heterostructures with the layout

Fig. 7.6 of varying barrier thicknesses N at di↵erent temperatures T . Here the influence of tem-

perature on the breakdown physics is especially intricate. One can already guess at the non-trivial

role temperature will play when one recalls that for a strongly-correlated metal an increase in tem-

perature can actually trigger a transition to an insulating state. On the other hand this reinforcing

role the temperature plays for Mott insulators will not go on indefinitely: Once the temperature

increases so dramatically that thermal excitations across the Hubbard gap become possible, we will

witness a “melting” of the Mott insulator and the system becomes a ‘bad’ metal.

Fig. 7.7 shows spectral functions for the first 5 layers at the very left of the Mott insulating

region of width N = 10 for (a) T = 10�10 and (b) T = 10�2. For the low temperature narrow

resonance peaks appear for all layers ↵. For the first two layers the strong electric potential has

shifted the Fermi level into the lower Hubbard band giving rise to a Kondo e↵ect. Closer towards

the centre of the region as due to the weaker potential less and less spectral density from the lower

Hubbard band lies in the Fermi level the width of the resonance peaks quickly decreases and so does

the respective Kondo temperature TK . For the central layer in the region (↵ = 5) the Fermi level

lies within the Mott gap but due to the Kondo proximity (which provides a lower bound for the

hybridisation function of the underlying impurity model) a narrow resonance peak is induced. Upon

increasing the temperature to T = 1e� 2 the Kondo e↵ect in the system is completely switched o↵.

Even the spectral functions for the first two layers do not reach the non-interacting value anymore.
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Figure 7.8

The resonances in the inner layers are gone and the spectral function for the layer in the centre

↵ = 5 shows a Fermi level centred about an charge gap.

Fig. 7.8a shows the temperature dependence of the conductance for the same system. Starting

with the lowest temperature, T = 10�10, one of the most prominent features is a large conductance

peak at ! = 0 reaching up to unity. The origin of this peak lies in the Kondo e↵ect which causes

the spectral function to take the non-interacting value at the Fermi level and therefore perfect

conductance. The outermost layers of the system are heavily doped due to the presence of the

linear potential. As the total potential di↵erence between the first and last layers of the barrier

is given by U comparing this to the half-bandwidth shows that the outermost 3 � 4 layers will be

doped so heavily by the linear potential that their upper/lower Hubbard bands have been pushed

into the Fermi energy, hence have become metallic. The Mott-insulating core, where the e↵ect of

the potential has left the Fermi energy within the Hubbard gap is however a↵ected by the presence

of the adjacent metal: The “Kondo proximity” e↵ect allows for tunnelling from the these layers

into the Mott core, e↵ectively bounding the density of states at the Fermi energy from below. The

availability of a finite density of states at the Fermi level allows for a Kondo e↵ect and therefore

a resonance peak. The induced Kondo temperature TK of the underlying impurity model, that

the DMFT maps the problem onto, becomes quickly diminished as one walks deeper into the Mott

core of the barrier region. However at T = 0 even the innermost layer will be in a Fermi liquid

state, which e↵ectively pins the value of the spectral functions to the non-interacting value due to

the quadratic dependence of the self-energy on frequency and thereof leads to perfect transmission

through the structure for particles at the Fermi energy. The induced Kondo temperature controls

the width of the conductance peak. For particle energies ! > 0.5 large imaginary parts in the

self-energies give short lifetimes to the quasi-particles and the conductance is strongly suppressed

and drops dramatically by 14 orders of magnitude.

Increasing the temperature from T = 10�10 to 10�8 and even 10�6 leaves the conductance

completely una↵ected. The reason is simply that as long as the temperature stays below the Kondo

temperature of the innermost layer, no change will occur. As the temperature however approaches

T = 10�4 thermal fluctuations suppress the Kondo e↵ect and the innermost layer starts to fall out

of his Fermi liquid state. This can be seen from deviation of the conductance from its value of unity

at the Fermi level. Temperature drives the innermost layer towards a Mott insulating state despite
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Figure 7.9

the presence of the adjacent metal. At T = 10�2 the Kondo resonance has completely collapsed.

Increasing the temperature further thermally activates particles of all energies. The conductance for

T = 10�1 is a constant of particle energy !. The Mott insulators have melted as thermal fluctuations

have become of the order of the Hubbard gap.

To confirm this hypothesis we have calculated the layer-resolved expectation values of the double

occupancy. Fig. 7.9a shows this quantity for various system temperatures. Indeed as one increases

the system temperature from T = 10�10 to T = 10�2 the double occupancy drops. A further

increase in the system temperature starts to thermally activate particles across the Hubbard gap,

doublon-holon pairs are created as one sees from the increase in double occupancy by several order

of magnitudes. These excitations are indeed mobile and lead to a dramatic increase in the kinetic

energy. The Mott insulator has melted. As the value of the linear potential at the first and last layer

of the barrier is fixed to ±U/2 increasing the thickness of the barrier can be understood as reduction

in the slope of the linear potential and hence as a decrease in the strength of the applied electric

field. Again comparing the size of the Hubbard gap to the half-bandwidth shows that the number

of layers with their Fermi energy in the Hubbard gap increases linearly. Therefore we expect an

exponential dependence of the di↵erential conductance on the strength of the electric field. Indeed

such a relationship is suggested by Fig. 7.9b for a temperature of T = 10�2.

As expected the leads are really only weakly a↵ected by the presence of the barrier region. The

most prominent e↵ect is due to the strong doping of the outermost barrier layers. As can be seen

from Fig. 7.10a first and last layer of the barrier have been doped by ⇡ 40%. As the leads are at

half-filling, there is a tremendous charge mismatch between lead and barrier. Usually such a great

mismatch would lead to strong charge reconstructions at the interface. E↵ectively doping the lead

away from half-filling. However as we have turned o↵ the e↵ect of long-range Coulomb interactions

the only e↵ect is the induction of Friedel charge oscillations in the lead with a characteristic period

of 2kF = ⇡. The temperature dependence of these oscillations can be seen in Fig. 7.10b. Friedel

oscillations are due to the existence of a sharp Fermi surface, therefore at non-zero temperatures

Friedel oscillations will be strongly suppressed due to the smeared Fermi surface.

7.3.3 Conclusions

In this chapter we have studied how the thickness of an Mott insulating barrier and the system

tempterature T influence the transmission probability and thus the Landauer Bütticker conduc-
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tance G through the barrier. Indeed we found that the interplay of the strong correlations in the

barrier region and the system temperature produce due to the intricate Kondo physics and inter-

esting temperature dependence. The important physical mechanism for the possibility to transmit

a particle through an otherwise insulating region is the Kondo proximity e↵ect, which induces (at

T=0) narrow resonance peaks even in the innermost layers of the barrier. The width of these peaks

is given by the Kondo temperature Tk. We found that this is the important reference temperature

to look when one tries to understant the temperature dependence of the conductance: When the

system temperature T starts to exceed the Kondo temperature of the innermost layers, the conduc-

tance starts to drop dramatically. Only for very large temperature one has a thermal activation of

the Mott gap and conductance starts to increase again. We have seen that at T = 0 the ! = 0 value

of the spectral function is pinned to its non-interacting value which creates perfect zero-bias trans-

mission independent of the barrier thickness. For finite system temperatures we found that once the

threshold temperature set by the Kondo temperature of the innermost layer has been exceeded by

the system temperature, the conductance drops exponentially with the thickness of the barrier.

In conclusion we can summarize that the dielectric break-down of a Mott insulator is an intricate

problem. The above equilibrium treatment allows to understand some e↵ects early in the breakdown

process (when the tunneling time of electrons is still small) but is far from su�cient description of

this non-equilibrium process. Maybe future works involving non-equilibrium DMFT will be able to

treat this problem appropriately.
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2012.

[53] John Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal Society

of London. Series A. Mathematical and Physical Sciences, 276(1365):238–257, 1963.

[54] CM Hurd. Some magnetic properties of mn dissolved in cu, ag and au. Journal of Physics

and Chemistry of Solids, 30(3):539–550, 1969.

[55] M Izumi, Y Ogimoto, Y Konishi, T Manako, M Kawasaki, and Y Tokura. Perovskite super-

lattices as tailored materials of correlated electrons. Materials Science and Engineering: B,

84(1):53–57, 2001.

[56] M Jarrell. Hubbard model in infinite dimensions: A quantum monte carlo study. Physical

review letters, 69(1):168–171, 1992.

[57] M. Jona-Lasinio, O. Morsch, M. Cristiani, N. Malossi, JH Müller, E. Courtade, M. Anderlini,

and E. Arimondo. Asymmetric landau-zener tunneling in a periodic potential. Physical review

letters, 91(23):230406, 2003.

[58] Jaewook Joo and Viktor Oudovenko. Quantum monte carlo calculation of the finite tempera-

ture mott-hubbard transition. Phys. Rev. B, 64:193102, Oct 2001.

[59] Henrik Kajueter and Gabriel Kotliar. Band degeneracy and the mott transition: Dynamical

mean field study. International Journal of Modern Physics B, 11(06):729–751, 1997.

[60] Junjiro Kanamori. Electron correlation and ferromagnetism of transition metals. Progress of

Theoretical Physics, 30(3):275–289, 1963.

[61] Srivenkateswara S Kancharla and E Dagotto. Metallic interface at the boundary between band

and mott insulators. Physical Review B, 74(19):195427, 2006.

[62] Gabriel Kotliar and Dieter Vollhardt. Strongly correlated materials: Insights from dynamical

mean-field theory. Physics Today, 57(3):53–60, 2004.

[63] HR Krishna-Murthy, JW Wilkins, and KG Wilson. Renormalization-group approach to the

anderson model of dilute magnetic alloys. i. static properties for the symmetric case. Physical

Review B, 21(3):1003, 1980.

[64] HR Krishna-Murthy, JW Wilkins, and KG Wilson. Renormalization-group approach to the

anderson model of dilute magnetic alloys. ii. static properties for the asymmetric case. Physical

Review B, 21(3):1044, 1980.

[65] Rolf Landauer. Spatial variation of currents and fields due to localized scatterers in metallic

conduction. IBM Journal of Research and Development, 1(3):223–231, 1957.

268



[66] Rolf Landauer. Electrical resistance of disordered one-dimensional lattices. Philosophical

Magazine, 21(172):863–867, 1970.

[67] Wei-Cheng Lee and AH MacDonald. Modulation doping near mott-insulator heterojunctions.

Physical Review B, 74(7):075106, 2006.

[68] JM Luttinger. Fermi surface and some simple equilibrium properties of a system of interacting

fermions. Physical Review, 119(4):1153–1163, 1960.

[69] G.D. Mahan. Many-particle physics. Springer, 2000.

[70] K. Maki. Thermal fluctuations of the order parameter in charge-density waves. Physical Review

B, 33(4):2852, 1986.

[71] Y. Meir and N.S. Wingreen. Landauer formula for the current through an interacting electron

region. Physical review letters, 68(16):2512–2515, 1992.

[72] Walter Metzner and Dieter Vollhardt. Correlated lattice fermions in d= dimensions. Physical

review letters, 62(9):1066–1066, 1989.

[73] Nevill Francis Mott and L Friedman. Metal-insulator transitions in vo2, ti2o3 and ti2-x v x

o3. Philosophical Magazine, 30(2):389–402, 1974.

[74] E Müller-Hartmann. Correlated fermions on a lattice in high dimensions. Zeitschrift für Physik

B Condensed Matter, 74(4):507–512, 1989.

[75] Yosuke Nagaoka. Ferromagnetism in a narrow, almost half-filled s band. Physical Review,

147(1):392, 1966.

[76] Donald A Neamen and Boris Pevzner. Semiconductor physics and devices: basic principles,

volume 3. McGraw-Hill New York, 2003.

[77] Philippe Nozières and David Pines. The theory of quantum liquids, volume 6. Perseus books

Cambridge, Massachusetts, 1999.

[78] Akira Ohtomo, DA Muller, JL Grazul, and H Yu Hwang. Artificial charge-modulationin

atomic-scale perovskite titanate superlattices. Nature, 419(6905):378–380, 2002.

[79] T. Oka and H. Aoki. Dielectric breakdown in a mott insulator: Many-body schwinger-landau-

zener mechanism studied with a generalized bethe ansatz. Physical Review B, 81(3):033103,

2010.

[80] T. Oka, R. Arita, and H. Aoki. Breakdown of a mott insulator: A nonadiabatic tunneling

mechanism. Physical review letters, 91(6):66406, 2003.

[81] Satoshi Okamoto and Andrew J Millis. Electronic reconstruction at an interface between a

mott insulator and a band insulator. Nature, 428(6983):630–633, 2004.

[82] Satoshi Okamoto and Andrew J Millis. Spatial inhomogeneity and strong correlation physics:

A dynamical mean-field study of a model mott-insulator–band-insulator heterostructure. Phys-

ical Review B, 70(24):241104, 2004.

269



[83] Wanda C Oliveira and Luiz N Oliveira. Generalized numerical renormalization-group method

to calculate the thermodynamical properties of impurities in metals. Physical Review B,

49:72070–11994, 1994.

[84] Rossitza Pentcheva and Warren E Pickett. Correlation-driven charge order at the interface

between a mott and a band insulator. Physical review letters, 99(1):016802, 2007.

[85] R. Peters, T. Pruschke, and F.B. Anders. Physical Review B, 74(24):245114, 2006.

[86] AI Poteryaev, AI Lichtenstein, and G Kotliar. Nonlocal coulomb interactions and metal-

insulator transition in ti {2} o {3}: A cluster lda+ dmft approach. Physical review letters,

93(8):086401, 2004.

[87] M. Pottho↵. Self-energy-functional approach to systems of correlated electrons. The European

Physical Journal B-Condensed Matter and Complex Systems, 32(4):429–436, 2003.

[88] M. Pottho↵. Non-perturbative construction of the luttinger-ward functional. Arxiv preprint

cond-mat/0406671, 2004.

[89] M. Pottho↵ and W. Nolting. Dynamical mean-field study of the mott transition in thin films.

The European Physical Journal B-Condensed Matter and Complex Systems, 8(4):555–568,

1999.

[90] M. Pottho↵ and W. Nolting. E↵ective mass at the surface of a fermi liquid. Physica B:

Condensed Matter, 259:760–761, 1999.

[91] M. Pottho↵ and W. Nolting. Metallic surface of a mott insulator–mott insulating surface of a

metal. Physical Review B, 60(11):7834, 1999.

[92] M. Pottho↵ and W. Nolting. Surface metal-insulator transition in the hubbard model. Physical

Review B, 59(4):2549, 1999.

[93] M Pottho↵, T Wegner, and W Nolting. Interpolating self-energy of the infinite-dimensional

hubbard model: Modifying the iterative perturbation theory. Physical Review B, 55(24):16132,

1997.

[94] Th Pruschke, M Jarrell, and JK Freericks. Anomalous normal-state properties of high-t c

superconductors: intrinsic properties of strongly correlated electron systems? Advances in

Physics, 44(2):187–210, 1995.

[95] Thomas Pruschke. Antiferromagnetism and metal insulator transition in the frustrated hub-

bard model. Progress of Theoretical Physics Supplement, 160:274–295, 2005.

[96] Thomas Pruschke et al. Energy resolution and discretization artifacts in the numerical renor-

malization group. Physical Review B, 79(8):085106, 2009.

[97] AP Ramirez. Colossal magnetoresistance. Journal of Physics: Condensed Matter, 9(39):8171,

1997.

[98] Marcelo J Rozenberg, R Chitra, and Gabriel Kotliar. Finite temperature mott transition in

the hubbard model in infinite dimensions. Physical review letters, 83(17):3498, 1999.

[99] Marcelo J Rozenberg, Goetz Moeller, and Gabriel Kotliar. The metal–insulator transition in

the hubbard model at zero temperature ii. Modern Physics Letters B, 8(08n09):535–543, 1994.

270



[100] O. Sakai, Y. Shimizu, and T. Kasuya. Single-particle and magnetic excitation spectra of

degenerate anderson model with finite coulomb interaction. J. Phys. Soc. Jpn, 58:3666, 1989.

[101] H Sakaki, T Noda, K Hirakawa, M Tanaka, and T Matsusue. Interface roughness scattering

in gaas/alas quantum wells. Applied physics letters, 51(23):1934–1936, 1987.

[102] J Schlipf, M Jarrell, PGJ Van Dongen, N Blümer, S Kehrein, Th Pruschke, and D Vollhardt.
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Appendix A

Antiferromagnetic quantum zipper
algorithm

The determination of the asymptotic left-/right-functions for the leads turns out to be more di�cult

for the antiferromagnetic than for the paramagnetic zipper algorithm, because closed form expres-

sions for matrix-valued quadratic equations exist only for special cases. The asymptotic form of the

L-/R-functions in the lead is determined by the assumption that deep inside the lead the system is

homogenous. We have R↵(!, ✏
k

k) = L↵(!, ✏
k

k). So we can define the left function L↵(!, ✏
k

k) by

solving

G↵(!, ✏
k

k) = [2L↵(!, ✏
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k)]
�1 (A.1)
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For homogenous systems (t↵↵+1 = t) the local Greens function can be expressed as

G↵(!, ✏
k
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dkz
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Z↵(!) = ! + i0+ + µ� ✏̄↵ � ⌃̄↵(!)

�↵(!) = ��✏↵ ��⌃↵(!) (A.4)

This integral can indeed be solved by computer-algebra software. We used Mathematicar Version

8.0. The resulting expression is long and complicated with some repeating structures. Substitution

into Eq. A.2 yields the 2⇥ 2-valued left and right functions which we call jointly S(ij) here,

L�1(!, ✏
k

k) =

✓

S(11)(!, ✏
k

k) S(12)(!, ✏
k

k)
S(12)(!, ✏

k

k) S(22)(!, ✏
k

k)

◆

(A.5)

R1(!, ✏
k

k) =

✓

S(11)(!, ✏
k

k) S(12)(!, ✏
k

k)
S(12)(!, ✏

k

k) S(22)(!, ✏
k

k)

◆

(A.6)
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where we have defined W1, W2 and W3 for repeating structures to make the final expression more

compact. The

The recursion relation for right function takes the form
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and for the left function
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The expression for the Green’s function has the same structure as in the paramagnetic case, however

now all quantities are 2⇥ 2 matrices.
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The Green’s functions for the sub lattices A and B are now easily derived by transformation Eq. 5.36,

G(A)(!, ✏
k

k) =
1

2

h

G(11)
↵ (!, ✏

k

k) +G(12)
↵ (!, ✏

k

k) +G(21)
↵ (!, ✏

k

k) +G(22)
↵ (!, ✏

k

k)
i

G(B)(!, ✏
k

k) =
1

2

h

G(11)
↵ (!, ✏

k

k)�G(12)
↵ (!, ✏

k

k)�G(21)
↵ (!, ✏

k

k) +G(22)
↵ (!, ✏

k

k)
i

(A.17)

276



Appendix B

Spectral functions for B-M-B
heterostructure
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Figure B.1: Spectral functions for the Band-Mott-Band insulator heterostructure for a system tem-
perature of T = 10�8. Layers 1-30 depict the spectral function for the band insulator (red lines),
layers 31-50 the Mott-insulating layers (green lines), and layers 51-80 band-insulating layers.
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Appendix C

Derivation of the Hall conductivity

Triangle graphs

Adding the two diagrams with three V 1 vertices and keeping only terms linear in AE and AB we

find
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Exchanging ↵ and � labels in the second term and shifting the momentum sum by � r

2 and the

second frequency sum by �⌦n we arrive at
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where p± = p ± r

2 , c.f. Fig C.1a and Fig. C.1b. We are interested in contributions linear in r

therefore using
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we may expand
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Now a number of simplifications arises: Expanding the first Green function in the first term we

see that its contribution is exactly cancelled by the contribution of the third Green function in the

second term and vice versa. Contributions from the Green functions in the middle cancel in the

limit ⌦! 0, which is the limit we are interested in. Therefore the only contributions stem from the

expansion of the dispersion relations. Adding these contributions we get
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Figure C.1: Triangle graphs with three V 1 vertices for the calculation of the Hall conductivity, c.f.
Eq. C.2.
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where we have defined the frequency sum
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V 2 graph

The other contribution stems from a one V 1 and one V 2 vertex diagram and reads
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Shifting the momentum sum by � r

2 we arrive at
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To linear order in r we have
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therefore renaming ↵ and � and again assuming that the fields are layer-independent
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Appendix D

Analytic continuation of ⇧pn↵�

In order to calculate the analytic continuation of ⇧↵�(p,⌦n) it is easiest to express the Matsub-

ara Green functions as energy integrals over the spectral function times a free Matsubara Greens

function, i.e.
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Using standard relations for Matsubara sums [69]
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where I↵�(p,⌦) = Im⇧↵�(p,⌦)/⌦. Performing lim⌦!0 I↵�(p,⌦) and noting that A↵�(p, ✏) =
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Appendix E

Analytic continuation of ⇧H
pn�

We wish to find the analytic continuation of
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We will use contour integration to perform the frequency sum
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i enumerates all the residues of f±(zi) times nF (zi). As I = 0 we find

S± = �
X

i

R±
i (E.10)

The table E.1 summarizes the residues. For the last residue we used that nF (✏3 ⌥ i!n) = nF (✏3)

with !n a bosonic excitation frequency. Consequently S± is given by
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We can now plug this into eq. (E.2) to find
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Remembering the Kramers-Kronig relation
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we find
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Shifting the ✏3 integration in the third and fourth term we arrive at
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In the static limit we find
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Partial integration in the first term
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Under sum
P

↵� one may relabel ↵ and � which leads to a “transposition of the second and third

column”. We see that the second and seventh term and the third and fifth term cancel and finally
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arrive at
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Appendix F

Approximate expressions for
various densities of states

Rather than using the exact expressions for the densities of states, we will derive here approximate

expressions. The reason is simple: the exact expression are expensive to evaluate and as DMFT

is a threory which is concerned with local quantities, we have to perform k-sums quite regularly.

Here we will use an approach similar to the one Uhrig [109] used for the three dimensional density

of states: Based on our knowlegde about the asymptotics of the exact expression, we will make an

appropriate ansatz and fix the parameters by demanding that the first non-trivial moments of the

distributions coincide.

The two-dimensional density of states of a tight-binding hamiltonian on a hypercubic lattic is

given by

⇢2D(✏) =
1

2⇡2ta2
K

 

s

1� ✏2

(4t)2

!

(F.1)

where a is the lattice constant, t the hopping amplitude and K is related to the complete elliptic

integral of the first kind. Closer examination of the function reveals a peak at ✏ = 0. Our aim will

be to find the nature of this peak. Elliptic integrals are classically defined as integrals of the form
Z

r(x, y(x))dx (F.2)

where r is a rational function of x and y, and y2 is a cubic or quartic polynomial in x. If y2 is

linear or quadratic in x, then the integral can be evaluated using logarithms and rational functions

of x and y, but if y2 is cubic quartic then the integral is said to be elliptic and is not in general

expressible in terms of elementary functions [42].

Legendre showed that only three non-elementary functions are needed to express all elliptic

integrals. The one we are concerned with in the case above is

RF (x, y, z) =
1

2

Z 1

0

1
p

(x+ t)(y + t)(z + t)
dt (F.3)

The function RF (x, y, z) which is symmetric in x, y and z is called the elliptic integral of the first

kind. The definition of the complete elliptic integral of the first kind is

RK(x, y) =
1

⇡

Z 1

0

1
p

t(x+ t)(y + t)
dt (F.4)
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Figure F.1: (a) D(✏), (b) ⇢2D(✏)�D(✏)

m0 0.141458
m2 0.000646212
m4 -0.0000115157

Table F.1: Fit parameters

which are related via

RK(x, y) =
2

⇡
RF (x, y, 0) (F.5)

The function K(k) in formula F.1 is related to RK(x, y)

K(k) =
⇡

2
RK(1, 1� k2) (F.6)

Gustafson[42] derived assymptotic expressions for the elliptic integrals and we can make use of his

result
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16x
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We find that
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1

4⇡2ta2
RK

✓

1,
✏2

(4y)2

◆

(F.8)
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This insight might motivate the following ansatz for the density of states

D(✏) = � 1

4⇡2ta2
log(✏2) +m0 +m2✏

2 +m4✏4 (F.10)

Demanding that the first zeroth, second and fourth moment coincide we arrive at Table F.1. In

order to calculate the various response functions to electromagnetic fields evaluations of momentum

sums are needed. Typically one evaluates such a sum by noting that the summand depends only

through the dispersion relation on momentum and rewriting the sum as an energy integration weight

by a density of states (DOS). This is the numerically most feasible way to evaluate such sums and

multi-dimensional integration is always costy.

In the calculation of optical conductivities the situation is a little more involved as one usually

finds the summand to be dependent on the dispersion relation as well as partial derivatives of the

dispersion with respect to di↵erent components of the momenta. Here we will deduce di↵erent

“transport DOS” to ease the calculation of such sums.
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Transport density of states for the ordinary conductivity

Let us start with the following type of sum
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In order to evaluate this sum let define the following DOS
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where i 2 {1 . . . N}. Noting that
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In the last line we have assumed symmetry of the density of states with respect to the di↵erent

components of the momentum vector. We find
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Assuming a hypercubic lattice
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We can make use of the approximate DOS D(✏) we found above to derive an approximate expression

for ⇢xx(✏)
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Figure F.3: (a) Dxy(✏), (b) ⇢xy(✏)�Dxy(✏)

Transport density of states for the Hall conductivity

For the calculation of the Hall conductivity we need to evaluate sums of the form
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with f some arbitrary function. Therefore we will define the following density of states
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Using eq. F.13 we find
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Again assuming a hypercubic dispersion relation we have
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We can now plug this into our expression for ⇢xy(✏) and find
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Using our approximate expression for ⇢(✏) and ⇢xx(✏) we find
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• P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J.
Kindervater, S. Mhlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, A.
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