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Zusammenfassung

Viele noch unerklarte Phanomene im Bereich der korrelierten Elektronensysteme werden mit
den auflergewthnlichen Eigenschaften von Quantenphaseniibergéinge [1, 2] in Verbindung ge-
bracht, dass heifit mit Phasentiibergangen, die am absoluten Temperaturnullpunkt unter Vari-
ation eines aufleren Kontrollparameters wie z.B. des Druckes stattfinden. Das theoretische
Verstédndnis von solchen Phasentiibergingen und deren Auswirkung auf physikalische Eigen-
schaften bei endlichen Temperaturen sowie deren eingehenden experimentellen Untersuchung
steht erst am Anfang und ist eines der aufregendsten Forschungsbereiche der heutigen Physik.

Diese Arbeit besteht aus zwei Teilen, die sich jeweils mit solchen quantenkritischen Phano-
menen beschaftigen. Im ersten Teil wird vorwiegend der Quantenphaseniuibergang betrachtet,
der mit einer magnetischen Instabilitat in itineranten Elektronensystemen verbunden ist. Im
zweiten Teil steht die Physik von gekoppelten Storstellen im Mittelpunkt. Im folgenden soll
ein kurzer Uberblick iiber die einzelnen Kapitel dieser Arbeit gegeben werden.

Im Vergleich zu den klassischen Phasentibergangen, die bei einer endlichen Temperatur
stattfinden, sind Quantenphaseniibergange streng genommen experimentell nicht zuganglich,
da sie nur am absoluten Temperaturnullpunkt vorkommen. Der Experimentator ist deswegen
darauf beschrankt, deren Einfluss auf die physikalischen Eigenschaften bei endlichen Temper-
aturen zu analysieren. Physikalische Groflen wie z.B. die spezifische Warme, deren Divergenz
an einem klassischen Phaseniibergang tuiblicherweise wichtige Folgerungen auf dessen Univer-
salitatsklasse ermoglichen, sind jedoch an einem Quantenphasentibergang nicht vergleichbar
singular. In Kapitel 1 wird erlautert, dass der Gruneisen Parameter, das Verhaltnis zwischen
thermischer Ausdehnung und spezifischer Warme, an einem durch Druck kontrollierten Quan-
tenphaseniibergang notwendigerweise divergiert und deshalb eine wichtiges experimentelles
Werkzeug fiir die Analyse von quantenkritischen Phanomenen darstellt vergleichbar mit der
Rolle der spezifischen Warme an einem klassischen Ubergang. Durch eine Skalenanalyse
wird gezeigt, dass die Divergenz des Gruneisen Parameters durch den kritischen Exponenten
v der Korrelationslange charakterisiert wird. Erstaunlicherweise wird der Vorfaktor dieser
Divergenz ausschliellich durch eine Kombination von kritischen Exponenten bestimmt und
ist in diesem Sinne universell. Diese Universalitdt hat ihren Ursprung tatsachlich in der
verschwindenden Restentropie bei Temperatur Null, d.h. im dritten Hauptsatz der Thermo-
dynamik. Weiterhin wird darauf hingewieflen, dass der magnetokalorische Effekt die analoge
Grofle zum Griineisen Parameter ist im Falle eines durch das Magnetfeld kontrollierten Quan-
tenphaseniibergangs. Die Ergebnisse von Kapitel 1 sind in Ref. [3] publiziert.

Um die Vorhersagen der Skalenanalyse in einem bestimmten Modell zu uberprufen, wird
in Kapitel 2 zunéchst eine Theorie von J. A. Hertz [4] vorgestellt, die in einfachster Weise die
magnetische Instabilitat in itineranten Elektronensystemen bei Temperatur Null beschreibt.
Weiterhin wird in die Renormierungsgruppe (RG) eingefithrt, die A. J. Millis [5] auf das
Hertz Modell angewendet hat, um dessen Temperaturverhalten zu untersuchen. In Kapitel
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3 werden wir schliellich diese RG dazu verwenden, um zusatzlich zur spezifischen Warme,
die schon in den Refs. [5, 6] berechnet wurden, auch die thermische Ausdehnung und den
Gruneisen Parameter des Hertz Modells zu bestimmen. Wir finden, dass die Korrekturen
zur Skalenanalyse aus Kapitel 1 hochstens logarithmisch sind, und wir identifizieren deren
Ursache.

In Kapitel 4 wird eine anisotrope Version des Hertz Modells betrachtet, um den theo-
retisch erwarteten dimensionalen Ubergang in dem Schwerfermion System CeCug_,Au; zu
beschreiben. Um dessen auflergewohnliches thermodynamisches Verhalten zu erklaren, wurde
von A. Rosch [7] vorgeschlagen, dass zweidimensionale Spinfluktuationen das kritische Ver-
halten von CeCug_,Au, dominieren. Diese wurden dann in Neutronenstreuexperimenten [8]
auch tatsachlich identifiziert. Die magnetische Ordnung, die unterhalb der Néel Temperatur
beobachtet wird, hat jedoch dreidimensionalen Charakter, so dass die zweidimensionalen Spin-
fluktuationen nur ein Vorlaufer zur tatsachlichen magnetischen Ordnung darstellen. Nahe des
Phasentibergangs wird deswegen ein Crossover von zwei- zu dreidimensionalem kritischen Ver-
halten erwartet, den wir durch die anisotrope Hertz Theorie modellieren und verstehen wollen.
Experimentell wurde der dimensionale Crossover im kritischen Verhalten jedoch noch nicht
entdeckt weder in den Neutronenstreudaten noch in thermodynamischen Groflen. Unsere
theoretische Analyse sagt voraus, dass die Signaturen dieses Crossovers besonders ausgepragt
sind in der Temperaturabhangigkeit der thermodynamischen Ausdehnung. Diese Grofie ist
demnach gut geeignet, um den Crossover experimentell zu detektieren. Weiterhin bestimmen
wir siimtliche Ubergangslinien im Phasendiagramm. Dazu werden drei verschiedene Metho-
den verwendet. Die erste Methode ist eine Modifikation der Renormierungsgruppenmethode
von A. J. Millis. Um den dimensionalen Crossover zu beschreiben, wird dabei der RG Fluss
in zwei Phasen unterteilt. In der ersten Phase wird dieser Fluss von dem zweidimensionalen
Fixpunkt und in der zweiten Phase von dem dreidimensionalen Fixpunkt dominiert. Der Pa-
rameter, der die Abweichung von dem isotropen Modell kontrolliert, ist wahrend der ersten
RG Phase eine relevante Grofle im RG Sinne, was zu einem zusatzlichen singularen Beitrag
in der thermischen Ausdehnung fihrt. Die zweite Methode, mit der das anisotrope Hertz
Modell undersucht wird, ist bekannt unter dimensionaler Reduktion und besteht aus der Her-
leitung einer effektiven Theorie fiir die Matsubara Nullmode. Die dritte Methode schlieflich
ist eine Analyse, die im Limes N — oc exakt wird, wobei N die Anzahl der Komponenten
des Ordnungsparameters ist.

Im zweiten Teil der Arbeit beschaftigen wir uns mit der Physik von gekoppelten Storstellen.
Es wird eine Variante des zwei-Storstellen Kondo Problems betrachtet, das in einfachster
Weise den Wettbewerb zwischen Abschirmung der lokalen Momente durch den Kondo Effekt
und magnetischer Ordnung beschreibt. Man geht davon aus, dass der Wettstreit zwischen
diesen zwei Mechanismen den magnetischen Phaseniibergang in den Schwerfermion-Systemen
dominiert. Die meisten Studien haben sich auf das zwei-Storstellen Kondo Modell mit einer
SU(2) symmetrischen Austauschwechselwirkung zwischen den Storstellen konzentriert. In
dieser Arbeit soll jedoch eine anisotrope Kopplung zwischen den magnetischen Momenten im
Mittelpunkt stehen. Dies ist unter anderem motiviert durch die anhaltende Kontroverse uber
die Rolle von Unordnung in der Nahe eines magnetischen Ubergangs, worauf in Kapitel 5
eingegangen wird. Wir schlagen vor, dass dieses Modell die Dynamik von kleinsten magnetis-
chen Clustern beschreibt, die generisch in der Nahe eines Quantenphaseniibergangs in einem
stark anisotropen itineranten Magnet mit Unordnung entstehen.

In Kapitel 6 wird gezeigt, dass das effektive Niederenergiemodell des stark anisotropen
zwei-Storstellen Kondo Problems gegeben ist durch ein Zweikanal Kondo Modell. Dies ist

11
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deshalb so von Interesse, weil das Zweikanal-Kondo Modell zu einer der Universalitatsklassen
gehort, die sich durch eine lokale Nicht-Fermifliissigkeit auszeichnen. Sie bieten sich daher
als alternativen Erklarungsversuch fiir das ungewohnliche Verhalten in den Schwerfermion
Systemen wie etwa CeCug_zAu, an. Wie auch in vielen anderen Modellen, die durch ein
effektives Zweikanal Kondo Modell beschrieben werden, ist auch hier ebenfalls ein effektives
Magnetfeld vorhanden, das die interessante Nicht-Fermiflussigkeitsphysik unterdriickt. Ein
ausgepragtes Nicht-Fermifliissigkeitsverhalten wird deshalb nur in einem sehr engen Parame-
terbereich erwartet.

Im darauf folgenden Kapitel 7 schranken wir das betrachtete anisotrope zwei-Storstellen
Kondo Problem weiter ein, indem wir annehmen, dass die lokalen Momenten jeweils an sepa-
rate fermionische Béder koppeln. Wie schon von N. Andrei et al. [9] erkannt wurde, werden
gewisse Systeme von gekoppelten Quantenpunkten durch ein solches Modell beschrieben. Ins-
besondere wurde von diesen Autoren betont, dass dieses Modell einen Quantenphaseniiber-
gang von einer Singulett zu einer Dublett Phase zeigt. Die Universalitatsklasse als auch die
Signaturen des Phasenubergangs in Transportgrofien blieb jedoch unbeantwortet. S. Kehrein
und M. Vojta [10] erkannten, dass fiir bestimmte Werte der Parameter dieses Modell durch
die Physik des Anderson Modells wiedergegeben wird. In Kapitel 7 wird gezeigt, dass die kri-
tische Theorie des Quantenphaseniibergangs tatsachlich durch die Niederenergietheorie eines
verallgemeinerten Anderson Modells beschrieben wird. Diese kritische Theorie kann als ein
effektives Cluster Kondo Modell interpretiert werden. Wir erhalten das verallgemeinerte An-
derson Modell durch Bosonisierung des anisotropen zwei-Storstellen Kondo Problems und
Anwenden einer unitidren Transformation mit anschliefender Refermionisierung. Die uni-
verselle kritische Theorie wird durch eine Schrieffer—Wolff Transformation hergeleitet, wobei
kollektive Anregungen im Hochenergiesektor beriicksichtigt werden. Nachdem wir die kri-
tische Theorie als Cluster Kondo Modell identifiziert haben, konnen wir folgern, dass der
Quantenphaseniibergang zwischen der Singulett— und der Dublett—Phase der Kosterlitz—
Thouless Universalitatsklasse angehort. Dies wird bestatigt durch eine Analyse mit der nu-
merischen Renormierungsgruppe, die von M. Vojta und T. Pruschke durchgefithrt wurde
und deren Ergebnisse zusammen mit den hier vorgestellten in Ref. [11] publiziert wurden.
Der Phaseniibergang hinterlasst erstaunliche Signaturen in Transportgrofien. Je nach ex-
perimenteller Realisierung erwarten wir am Ubergang einen universellen Sprung in der Leit-
fihigkeit von einem Wert G = 2e/hcos? 7/(2v/2) nach 2e¢/h oder einer Anomalie in der
Spannungsabhéngigkeit G ~ |V\’2(ﬁ’]).

Am Ende sei noch erwédhnt, dass im Anhang B.6 die Anderson—Yuval-Hamann Renormie-
rungsgruppengleichungen fiir das Kondo Modell im Rahmen der Bosonisierung hergeleitet
werden. Dies ermoglicht eine Interpretation der RG Transformationen als Sequenz von in-
finitesimalen unitaren Transformationen.
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Introduction

Nowadays it is widely claimed that a route for understanding many open problems in the
physics of correlated electrons is offered by the peculiarities of quantum critical phenomena [1,
2], i.e. phase transitions at zero temperature. The theoretical study of their influence on finite
temperature properties and the corresponding experimental investigations are still in their
infancy and constitute one of the most fascinating fields of physics today.

This thesis is divided into two parts each with several self-contained contributions to
the physics of quantum critical phenomena. The first part mainly concerns quantum phase
transitions in itinerant magnets such as the heavy fermion compounds, while the second part
focuses on the physics of coupled impurities. Below we give a short overview of the different
chapters.

In contrast to their classical finite temperature counterparts, quantum phase transitions
(QPT) are in a strict sense not experimentally accessible since they occur at zero temperature,
and the experimentalist is rather limited to analysing their traces at non-zero temperature.
As a consequence, quantities such as the specific heat are not expected to be as singular
near a QPT as they are close to classical finite temperature transitions. In Chapter 1 we
show by a scaling analysis that the Griineisen parameter (the ratio of the thermal expansion
and specific heat) diverges close to a pressure tuned QPT, and similarly the magnetocaloric
effect close to a magnetic field tuned QPT. This divergence is characterized by the correlation
length exponent v of the QPT, and due to the third law of thermodynamics the prefactor of
this divergence is universal and solely given in terms of critical exponents. The Griineisen
parameter therefore plays an essential role in the pursuit of quantum critical phenomena, as
important as, for example, the specific heat in classical phase transitions. The content of
Chapter 1 is published in Ref. [3].

In order to confirm the above results for a specific model, we then in Chapter 2 review the
standard theory for zero-temperature magnetic instabilities in itinerant magnetic systems due
to J. A. Hertz [4] and rederive the renormalization group (RG) equations of A. J. Millis [5]. In
Chapter 3 we calculate the thermal expansion and the Griineisen parameter in addition to the
specific heat, which has been previously obtained [5, 6], and we compare them to the results
of the scaling analysis of Chapter 1. It is found that for this specific case the corrections to
scaling are at most logarithmic, and their origin is identified.

In Chapter 4 an anisotropic Hertz theory is proposed in order to make predictions about
the dimensional crossover expected to occur in the heavy fermion compound CeCug_,Au,.
In neutron scattering experiments [8] two-dimensional spin fluctuations have been observed,
confirming a scenario proposed by A. Rosch [7] to account for the peculiar properties observed
in the specific heat and the resistivity. However, the crystal structure of CeCug_,Au, is of
a three-dimensional character, and it is believed that the dominance of two-dimensional spin
fluctuations is only transient, eventually giving way to three-dimensional ones sufficiently
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close to the phase transition. Experimentally this dimensional crossover has not yet been
found either in neutron scattering or in thermodynamic quantities. We analyse it theoret-
ically within the anisotropic Hertz theory of Chapter 4, and find that thermal expansion
measurements are a likely candidate to detect the dimensional crossover in CeCug_;Au, ex-
perimentally. The crossover lines in the phase diagram are also identified and their signatures
in thermodynamic quantities are determined. To this end three different methods are applied.
The first method is a generalization of the Millis renormalization group of Chapter 3 adapted
to the anisotropic Hertz theory. In order to account for the dimensional crossover a two-stage
RG is used: in the first stage the theory flows to the primary, two-dimensional fixed point,
and during the second stage the flow is governed by the secondary fixed point describing
the three dimensional theory. The parameter controlling the anisotropy of the theory is a
relevant quantity in the RG sense with respect to the three-dimensional fixed point, which
results in an additional singular contribution to the thermal expansion. The second method
applied to the anisotropic Hertz theory is known as dimensional reduction, which involves the
derivation of an effective finite-temperature theory for the zero-Matsubara mode. Finally, the
third method is a large IV analysis.

The second part of this thesis is concerned with the physics of coupled local moments and
considers a variant of the two-impurity Kondo model. This model has aroused interest since
it provides a relatively accessible example of the competition between Kondo screening and
magnetic alignment of local moments, which is believed to be at the origin of the magnetic
phase transition in heavy fermion compounds. Most studies of this model have focused on an
SU(2) invariant exchange coupling between the local moments. Here, however, we consider
the strongly anisotropic version, i.e. an Ising-like coupling between the impurities, which is
motivated by the controversy of the role of disorder effects near magnetic instabilities, as
discussed in Chapter 5. This model is suggested to mimic the dynamics of small magnetic
droplets, which are likely to be generated close to a quantum phase transition in strongly
anisotropic itinerant magnets in the presence of disorder.

It is shown in Chapter 6 that the effective low-energy theory of strongly Ising-coupled local
moments is given by a two-channel Kondo model. This is particularly interesting since the
two-channel Kondo model belongs to one of the universality classes of impurity problems that
are characterized by local non-Fermi liquid behavior. They thus offer an alternative route
to explain the unusual physics observed in heavy fermion materials such as CeCug_;Au,.
It is argued that the magnetic droplets might provide a generic realization of two-channel
Kondo physics. Unfortunately, as in other proposals of effective two-channel Kondo models,
such as the quadrupolar Kondo effect [12], the effective model is invariably accompanied
by an effective magnetic field that suppresses the interesting non-Fermi liquid physics, and
fine-tuning is therefore required for it to develop.

In Chapter 7 the Ising-coupled two-impurity Kondo model is considered with each local
moment coupled to its own fermionic bath, which is a crucial restriction on the model not
present in the version of the preceding Chapter 6. Certain double quantum dot systems are
naturally represented by this model, as was realized by N. Andrei et al. [9]. They pointed
out the existence of a quantum phase transition within this model from an impurity doublet
to a singlet phase. However, both the nature of the transition and its associated signatures
in transport remained unresolved. A first step in this direction was provided by S. Kehrein
and M. Vojta [10], who realized that for a certain parameter set this model exhibits the
physics of the Anderson model. In Chapter 7 it is shown that the critical theory of the
quantum phase transition of this impurity model is indeed given by the low-energy theory of
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a generalized Anderson model and can be interpreted as an effective cluster Kondo model.
The generalized Anderson model is obtained by bosonizing the original two-impurity model,
applying a unitary transformation and refermionizing. The critical theory is derived via a
Schrieffer-Wolff transformation that takes into account non-trivial excitation effects in the
high-energy sector. After having identified the critical theory as a cluster Kondo model we
can conclude that the quantum phase transition of the original model between the doublet
and the singlet phase is in the Kosterlitz Thouless universality class. These conclusions have
been confirmed by a numerical renormalization group analysis carried out by M. Vojta and
T. Pruschke [11]. We show that these results have interesting consequences for transport
properties. Because the critical degrees of freedom of the electrons are complicated solitonic
excitations of the Fermi seas, their phase shift undergoes a universal jump which is the
analogue of the universal jump of the superfluid density in *He films at the vortex binding—
unbinding transition [13]. Depending on the experimental set-up, this jump is reflected in
either a universal jump in the dimensionless conductance from a value g = cos? 7/(2v/2) to
1 at the transition or a characteristic zero-bias anomaly g ~ \V\*Q(ﬁfl). The results of
Chapter 7 have been published in Ref. [11].

Finally, we mention that Appendix B.6 is self-contained, and considers a re-derivation
of the Anderson Yuval Hamann RG equations of the Kondo model within the bosonization
approach. It is shown that within this formulation the RG transformations can be understood
as a sequence of infinitesimal unitary transformations.
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Chapter 1

Universally Diverging Gruneisen
Parameter

In section 1.1 we briefly review the concept of a quantum critical point. In Section 1.2 we
introduce the Grineisen parameter and the magnetocaloric effect, which are expected to
reveal many characteristic features of a quantum phase transition. We investigate this in
detail in the framework of a scaling analysis in Section 1.3. It is shown that the Griineisen
parameter and the magnetocaloric effect necessarily diverge near quantum critical points.
We also explain that due to the third law of thermodynamics the form of this divergence
is universal. For these reasons the Griineisen parameter and the magnetocaloric effect are
argued to be very important tools in the analysis of quantum criticality. In Section 1.4 we
comment on experiments which have utilized the Griineisen parameter to characterize the
quantum critical point in certain heavy fermion compounds. The essence of this chapter is
published in Ref. [3].

1.1 Introduction

A quantum mechanical system may possess different ground states depending on the values
of its coupling constants. A transition between these ground states, i.e. phases, can be
induced by varying a certain coupling constant. Since the ground state is a zero-temperature
property of the system this phase transition is triggered by quantum fluctuations, in contrast
to the thermal fluctuations which drive the familiar phase transitions at finite temperatures.
Phenomenologically, the distance to such a quantum phase transition is described by the
control parameter 7, which is some complicated function of all the coupling constants and the
applied fields. The quantum phase transition occurs when the control parameter r vanishes
and the position » = 0 in parameter space is called the quantum critical point. Physically,
the control parameter might be tuned by varying pressure p, doping z, magnetic field H
or some other quantity. In the immediate vicinity of the quantum critical point the control
parameter can be linearized in these physically accessible fields, e.g. in the case of pressure
tuning r =~ (p — p.)/po, where p. is the critical pressure and py a certain pressure scale, or in
the case of magnetic field tuning r ~ (H — H,.)/H, with the critical field H. and a certain
field scale Hy.



1.1. Introduction

Often the quantum critical point is the zero- A classical
temperature endpoint of a line of second or- regime
der phase transitions in the control parameter :
temperature plane (r,T). A generic phase dia-
gram is shown in Fig. 1.1. It is important to un-
derstand that the quantum critical point which
separates the two different phases at zero temper-
ature T = 0 is qualitatively different from the rest

- X quantum critical
RN regime

temperature T

ordered

of the phase boundary at finite 7. Near the phase phase , low_T
transition the physics will be dominated by the : regime
correlation length ¢, which diverges at the phase QCP -
transition. The peculiarity at zero temperatures 0

is that there is not only a divergent correlation control parameter r

volume in space, £%, but also in (imaginary) time,

Ter < €7, where d is the space dimension and z the Figure 1.1: Schematic phase diagram
so-called dynamical exponent. The phase transi- with order present at finite temperatures.

tion at zero temperature — the quantum phase

transition is therefore characterized by a divergent correlation volume with an effective
dimensionality d + z. The critical fluctuations at zero temperature are exclusively of a quan-
tum mechanical nature. Their typical energy scale is given by fi/7. o £ # and vanishes as
the phase transition is approached, £ — oo, a phenomenon known as “critical slowing down”.
In terms of the zero-temperature control parameter the correlation length is given by

Eoc|r|™” (1.1)

where v is the correlation length exponent of the quantum phase transition.

How is the situation changed when the temperature T is finite? Then the quantum
fluctuation are complemented by the thermal fluctuations with their characteristic energy
scale of kgT. They will have to compete with each other and the winner happens to be the
one with the larger energy scale,

quantum fluctuations: R)Ter o< £°

thermal fluctuations: kT .

For low temperatures away from the quantum critical point the quantum fluctuations around
the quantum ground state still prevail. Their dominance is however challenged when the
temperature is comparable to their typical energy scale fi/7.,,

kpT ~ B/Ter o €% o |r] 72 (1.2)

This identifies the crossover to the quantum critical regime, see Fig. 1.1. In the quantum
critical regime the competition between quantum and thermal fluctuations are especially
fierce and it is precisely the existence of this regime that makes the study of quantum phase
transitions interesting. The fierce battle between fluctuations of thermal and quantum origin
is reflected in unusual, exciting finite temperature properties, e.g. non-Fermi liquid behavior
in metallic systems. Moreover, the quantum critical regime can extend to relatively high
temperatures depending on the microscopic energy scales. Although the quantum phase
transition only occurs at zero temperature it thus influences drastically the physics at finite
temperatures.
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Within both regimes there might exist additional sub-regimes which arise, for example,
due to the presence of dangerously irrelevant operators. Such a case is discussed in Chapter 3.

Finally, the quantum fluctuations have to give in suffiently close to the finite tempera-
ture transition initiating a crossover to the classical regime. The phase transition at finite
temperature is only triggered by thermal fluctuations and quantum mechanics is not of im-
portance for the critical degrees of freedom: the system behaves classically in the classical
regime. In particular, at the classical transition only the fluctuations in space are critical and
the divergent correlation volume is thus confined to only d dimension, £%. In this sense the
quantum-—classical crossover is analogous to a dimensional crossover of a system from d + z
to d dimensions. The classical finite temperature transition is therefore, as mentioned before,
qualitatively different from the quantum phase transition. Technically speaking, they belong
to different universality classes. Nevertheless, the portion of the phase diagram around the
finite temperature phase boundary that can be described exclusively in terms of classical de-
grees of freedom is quite small near the quantum critical point. The classical regime shrinks
quickly to zero as the temperature is lowered. In fact, the critical behavior associated with
the classical phase transition is practically unobservable at low enough temperatures.

We know that the importance of fluctuations
increase with decreasing dimensionality of the A
system. When the spatial dimensionality d of the
physical system is sufficiently low, i.e. below the quantum critical
lower critical dimension, the thermal fluctuations regime
will totally suppress the phase transition at finite
temperatures, although the existence of the quan-
tum phase transition might still be secured due to
its enhanced dimensionality d + z. A phase dia-
gram of such a system is depicted in Fig. 1.2. An v regime
example is the Heisenberg ferromagnet in two di- ¥
mensions, whose magnetization has the internal | ordered at T=0 ‘ QPC

temperature T

h% ’
A /
/ low-T
)

symmetry O(3). It possesses a quantum phase 0 =
transition but the ordered state is destroyed at control parameter r

finite temperatures by the would-be Goldstone

modes [14]. Figure 1.2: Schematic phase diagram

For a more comprehensive inroduction into without order at finite temperatures.
quantum critical phenomena we refer the reader
to Refs [2, 1].

1.2 Great expectations: Grineisen parameter

In the last section we stressed the fact that the phase boundary in the phase diagram Fig. 1.1
consists of a line of classical finite-temperature transitions ending in a quantum critical point.
In the (r,T) plane there exists only a single preferred direction to approach the classical
transition, namely the direction perpendicular to the phase boundary; however, there are two
independent directions to approach the quantum critical point. We expect that the variations
of, for example, the entropy along these two directions yield complementary information about
the nature of the quantum phase transition. This has not been appreciated before. It is shown
in the following that this basic observation leads to interesting and very useful results.



1.2. Great expectations: Griineisen parameter

Consider the total differential of the entropy in the (r,T) plane

oS
dsS = 9T

dT—i-%

1.
o dr (1.3)

T

T

It is characterized by two derivatives specifying the sensitivity of entropy to changes in either
temperature 1" or control parameter r, the two axes of the phase diagram in Fig. 1.1. The
first derivative is the variation of entropy S with respect to variations in temperature. It is
measured by the (molar) specific heat coefficient which is indeed often investigated in the
pursuit of quantum criticality,

_ N4y 08

TTN ar

where N4 is Avogadro’s number and N is the number of particles in the system. The second

derivative in (1.3) is the variation of the entropy with respect to variations in the control

parameter and is the quantity complementary to the specific heat. Depending on the experi-

mental realization this derivative can also be identified with well-known and experimentally

accessible thermodynamic quantities. In the case of pressure tuning, r =~ (p — p.)/po, it is
proportional to the thermal expansion «,

(1.4)

r

1 0V 1 9*F 1 0S

Lo LoV 190°F 108 _ 1 0§
'_Van_VaTap_ V op

= 1.5
T Vp(] or ( )

T

where F' is the Gibbs free energy, F' = F(p,T), which depends on pressure p and temperature
T. If the quantum phase transition is controlled by the magnetic field H, r =~ (H — H.)/H),
this is the derivative of the magnetization M with respect to temperature,

O*F 08

g OTOH OH

oM
oT

_1os
T HO or

(1.6)

T

where the free energy is now given by F = F(H,T).

We will pay special attention to the constant entropy curves T'(r)|g in the (r,T) plane.
The derivative along these curves is related to the ratio between the two partial derivatives
discussed above. We will discuss this constant-entropy derivative in the form of the parameter,

14T
T dr

1 (8S/dr)r

g s~ T (98T,

(1.7)

In the case of pressure tuning this combination is proportional to the Griineisen parameter
I', [15, 16], the ratio of thermal expansion and (molar) specific heat ¢, =y T,

r a T
P ey poVim

(1.8)

where V;, is the molar volume. For this reason we will often sloppily refer to the general
relation (1.7) as the Griineisen ratio irrespective of the actual physical controlling field. If
the magnetic field is used to control the quantum phase transition the generalized Griineisen
ratio (1.7) can be identified as a magnetocaloric effect T'j7,

_ . _1or| _ 1(0S/0H)r _ (0M/dT)y
Hy T O0H|g T(05/0T)y cy '

Ly (1.9)

9
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Whereas in the case of pressure tuning the thermal expansion and specific heat have to be
measured separately in order to determine the Griineisen parameter, in the case of magnetic
field tuning the magnetocaloric effect can be directly obtained experimentally.

What do we know about the Gruneisen parameter? We now examine some classical
arguments which suggest that unusual behavior occurs at the quantum critical point; this
will be verified by a scaling analysis in Section 1.3.

If the system is dominated by a single energy scale Ej, such as the Fermi energy in the
case of fermions or the Debye frequency in the case of phonons, the entropy can be cast into

a simple scaling form [16]
T
= — 1.1
= <E0> (10

where 1) is some scaling function. Putting this scaling form into the formula for the Griineisen
parameter (1.8) we obtain,
« 1 (9S/op)r 1 O

r,=—=— = .
P e TV,, (0S/0T), V,, Ey Op (1.11)
P (05/0T) D

i.e. I'y is just given as the logarithmic derivative of the energy scale Ey with respect to
pressure'. In particular, the Griineisen parameter is independent of temperature. This result
is known as the Griineisen law (see e.g. Ref. [16] §67). However, the physical situation we are
interested in is quite unusual in the sense that the typical energy scale near a quantum phase
transition, Fy ~ £ 7, is about to vanish! Taking formula (1.11) literally, though naively, over
to the scenario of quantum criticality would suggest a diverging Griineisen parameter at the
quantum critical point.

Another indication that interesting behavior is to be expected of the Griineisen parameter
in quantum critical systems comes from the theory of classical second order phase transitions.
It is known that the specific heat, ¢,, diverges at a classical second order phase transition with
the same critical exponent as the thermal expansion, « (see Ref. [16] §148). In particular,
in the ratio of thermal expansion and specific heat this divergence cancels. This can be
understood by writing the molar entropy in the form [16]

§=S8(T,p—p(T)) (1.12)

where the function p.(7T) identifies the phase boundary in the phase diagram of Fig. 1.1. The
derivative of the entropy with respect to its second argument becomes infinite for a second
order phase transition as p — p.. Retaining only the divergent terms we obtain for the specific
heat near the transition

as IS(T,p — pc(T)) dp. dp.
@ Tear|, ¢ ap ar T

(1.13)

In the immediate vicinity of the finite-temperature phase boundary T, (p), i.e. in the classical
regime of Fig. 1.1, we therefore expect the Griineisen parameter to behave as
1 dTe
P VT dp

(1.14)

'In the literature one often reads that the Griineisen parameter equals the logarithmic derivative of the
energy scale Ey with respect to volume V' instead of pressure p. This would result from considering the specific
heat in the ratio (1.8) at constant volume and not at constant pressure. While the latter is more suitable for
our purposes, the physical content of the Griineisen law however remains unchanged.

10
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The Gruneisen parameter is thus just given by the logarithmic derivative of the phase bound-
ary T.(p). As the line of second order phase transitions approaches zero temperature, T, — 0,
it follows from the above formula that the Griineisen law is in a certain sense maximally
violated at the quantum critical point: the Griineisen parameter diverges! In the following
section this prediction is borne out by a scaling analysis which will also specify the nature of
this divergence.

1.3 Scaling theory

In this section we analyze the quantities introduced in the last section in the framework of
scaling theory [17]. To this end we introduce the scaling dimensions of the parameters in-
volved. Traditionally, the scaling dimension of the control parameter is given by 1/v and the
temperature scales with the dynamical critical exponent z. Furthermore, we introduce the
scaling dimension ¢ for the critical part of the free energy per mole, f... When hyperscal-
ing [17, 18] applies this scaling dimension is equal to the effective dimensionality, ¢ = d + 2.
Upon rescaling the unit length by a factor [ an interval in space Az is changed to Az’ = Az (™!
and therefore has scaling dimension —1,

Azx — Az =Azxl !

r — 7! — v
for — fér = fer 19

Here we have introduced the dimensionless temperature 7 = T/Ty, where T is some tem-
perature scale.

1.3.1 Scaling Ansatz

The scaling Ansatz we use is based on the assumption of scale invariance near the quantum
critical point. This implies that as far as singular dependences are concerned the correlation
length £ is the only relevant length in the system: the quantum critical physics is independent
of the microscopic details. Mathematically, the scale invariance at criticality is expressed by

19 for(r, T) = for(r 17, T 17), (1.16)

i.e. the scale transformation of the control parameter and the temperature in the arguments
of the free energy per mole can be absorbed into the scale factor of the free energy itself.
From equation (1.16) some remarkable properties of the Griineisen parameter can be derived.
First of all let us determine its scaling dimension. Putting the scaling Ansatz (1.16) into the
definition of I", (1.7), we obtain

lﬁmmﬂ<ymm7»1

Lo (r,T)

T ordT aT?
L LU fu(r YT ER) (0170 for(r 1YY, T 17)) - (1.17)
- T oroT oT? '

—I

o 1 P e (r YT 1) (0 for(r 1MV, T 12)
T 12 0(r 1/)0(T 1) O(T 17)2

—1
) :l]/V Fcr('r l]/’/ale)'
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guantum-—critical
regime

temperature T

low-T regime v low-T regime
—_— -

0 ® -
0
control parameter r

Figure 1.3: Two regimes in the (r,T) plane. The crossover lines are defined by the condition

| ~ TV,

That means that the Griineisen parameter has the scaling dimension —1/v, i.e. minus the
scaling dimension of the control parameter r,

|dim [T,] = —dim[r] = —1/v ] (1.18)

This has some interesting consequences for the properties of I' in quantum critical systems.

1.3.2 Divergent Griineisen parameter

From (1.18) it follows that the Griineisen parameter diverges upon approaching the quantum
critical point. However, we have to distinguish how exactly the quantum critical point is ap-
proached. Depending on the relative values of control parameter and temperature there exist
two different regimes, sketched in Fig. 1.3. The two regimes are separated by the crossover
line at which the scale-invariant combination |r| 7~/ is of order one. In the quantum
critical regime this combination is small, |r| 7~ '/(*?) <« 1. To determine the behaviour of T
in this regime we choose a definite value for the arbitrary scale | in equation (1.17), namely
such that 71> = 1. The leading behaviour of the Griineisen parameter is then given by

To(r,T) =T 7 Topr T 72,1) 8 T 5 Top(0,1)  for |r|T 75 <1, (1.19)

i.e. the Griineisen parameter diverges with decreasing temperature with an exponent —1/(vz).
In the other, low-temperature regime |r| T-Y#2) > 1, we choose instead the scale such that
7| 1"/ =1 and get

Lor(r,T) = %Fcr(sign(r),TV”z) ~ %Fcr(sign(r),O) for |r| T 7> 1. (1.20)
Hence, in the low-temperature regime the Griineisen parameter also diverges with the inverse
of the control parameter r, which is a direct consequence of (1.18).

The scaling analysis thus indeed confirms the conjecture of Section 1.2. The Griineisen
parameter (1.8) or the magnetocaloric effect (1.9) necessarily diverge algebraically near a
quantum critical point driven by pressure or magnetic field, respectively. The quantity T’
therefore provides a tool to identify unambiguously the very existence of a quantum critical

12
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point, because it carries the negative scaling A
dimension of the relevant operator, i.e. the
control parameter r. If there is no such rele-
vant operator r to which pressure or mag-
netic field couples, i.e. no quantum criti-
cal point, the Gruneisen parameter will not \
diverge algebraically. In particular, if the l
quantum critical point is washed out to a ‘

quantum critical line (see Fig. 1.4) by, say,
disorder, the scaling dimension of the con-

quantum-—critical
line

temperature T

Y

control parameter r

trol parameter is at most marginal along
this line, i.e. dim[r] = 0. Accordingly, the
Griineisen parameter diverges at most loga-
rithmically with temperature in the quantum critical regime

Figure 1.4: Phase Diagram with a quantum
critical line

Lo ~log T . (1.21)

The quantity I' thus offers a criterion for determining the existence of a quantum critical
point.

Furthermore, a divergent I'., implies that the specific heat coefficient v = (9S/9T), is less
singular than the quantity (0S/0r)r /T, which is either proportional to «/T or (OM/0T) i /T
for pressure or magnetic field tuning, respectively. As a consequence, the thermal expansion
«a and the temperature dependence of magnetization can be advocated to be the preferred
quantities for the investigation of quantum critical phenomena.

1.3.3 Universality

We can learn more about the prefactors I'(0,1) and I'(1,0) appearing in Egs. (1.19) and
(1.20), respectively, by going back to the original scaling Ansatz (1.16) for the free energy per
mole f.,. Differentiating once with respect to temperature we obtain the scaling form for the

molar entropy,
Ser(r,T) = Iote Ser(r l]/ya T 7). (1.22)

Repeating the procedure of the last section it is convenient to rewrite the entropy by choos-
ing certain scales in two different ways suitable for either the quantum critical or the low-
¢—z

<T£0> - o <T <T£0>WZ)> (1.23)

) sy (sign(r), Trv%) = |r9=2) wi) (Tz ) ,
0

temperature regime,

d—2z

T = Ser(r 'Tf]/(”z), 1)

Ser(ry,T) =

with the corresponding a priori unknown universal scaling functions ¥qcr and \III{ET. Note
that in the low-temperature regime we have had to introduce two scaling functions, \IfﬁT and
V.., for positive and negative values of the control parameter r respectively. Moreover, we
traded the dimensionless temperature 7 for the dimensionful constant Ty in order to make
explicit that the scaling functions and their arguments have the engineering dimension zero.
To obtain the leading behavior of the molar entropy in the two regimes we must expand the

13
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scaling functions for small arguments. The function Wqcr is expected to be regular for small
arguments since there is no phase transition at » = 0 for finite 7',

Vocr(z) = ¥ocer(0) + Uocer(0)z + ... for z—0. (1.24)

An important attribute of quantum phase transitions comes into play in the consideration of
the other scaling function \II%T. This scaling function describes the low-temperature behavior
of the phases to the left and right of the quantum critical point (see Fig. 1.1). Upon approach-
ing zero temperature the entropy has to vanish according to the third law of thermodynamics.
This requirement restricts the small argument behavior of \I/]i:T in an essential way. We will
assume that the entropy vanishes algebraically so that the low-temperature expansion of \I/%T
has the form

UE (z) =CEa% +...  for z—0, (1.25)

where CT are constants and the positive exponents yoi > ( characterize the power-law behavior
of the specific heat in the low-temperature regime, ¢ ~ T%. For example, if the low-energy
excitations are bosons in d spatial dimension with a dispersion w ~ kP the exponent is given
by yo = d/p, e.g. d and d/2 for an insulating antiferromagnet and ferromagnet, respectively.
Gapped systems in which the entropy vanishes exponentially in the low-temperature regime
are discussed in Appendix A.1. The limiting behavior of the two derivatives of the molar
entropy with respect to either temperature or control parameter are easily obtained,

$—22

1 ¢— N
14—z Tacr(0) <—> for |r| (T/T0)7')_2 <1
8scr T[] z T[]
Yer = = L (126)
or 1 T\% ! 1
—ytct | /(—2=2v0) for |r|(T/Ty) » > 1
T To
and
6=z _ 1
ber(0) <T> - for |r| (T/Ty) o < 1
JE— T vz
0s¢r i QeR Ty 0
or yE
1 /TN
g~z )€ e (1) for |r] (T/Ty) % > 1.
r \ 1o
(1.27)
The behavior of the general Griineisen parameter (1.7) follows readily:
P 0 T\ " ve
e ?\;R( )(0) (?> for |r|(T/Ty) v < 1
-z
Per = Qe ’ (1.28)

Hp— )

" for |r| (T/Tp) 7= > 1.
40

Whereas in the quantum critical regime |r| (T/To)frf]_z < 1 the unknown scaling function
enters the p]lrefactor of the divergence, it disappears completely in the low-temperature regime
\r| (T'/Ty) v»= > 1. The prefactor is just given by a combination of critical exponents. To

make this result manifest we give here the low-temperature behavior both of the Griineisen

14
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parameter, I';,. ,, for a pressure-tuned QCP and of the magnetocaloric effect, I, f, for a
magnetic-dield-tuned QCP, obtained using hyperscaling ¢ = d + z:

v(d — zyg) 1
v Vm(p—po)
v(d — zy) 1 1

1 - =
Pt = — for |H — H|T v > HyT, ** .
cr ygi H—Hc c 0

_1 -=
FCT,P == for ‘p - pc‘ T v: > pOTg v

(1.29)

The exponent y(jf is understood to be either yg' or y, for positive or positive control parame-
ters, p—p. and H — H., respectively. All the exponents v, z, d and yoi (and the molar volume
Vin) can be determined by available means. When they are known the Griineisen parameter
is unambiguously determined. The scaling analysis is thus not only able to determine the
divergence but also its prefactor. In this sense the behavior of the Griineisen parameter is
universal in the low-temperature regime. This is the main result of this chapter. The under-
lying reason why the scaling analysis is so powerful here is the third law of thermodynamics,
i.e. the absence of a residual entropy, which requires the expansion (1.25).

A possible application of the universal result (1.29) is for example the determination
of the location of a putative quantum critical point. In principle, a measurement of the
Grineisen parameter at different pressures p allows extrapolation to the critical pressure p..
Alternatively, systems such as heavy fermion materials can often be tuned to their quantum
critical point either by pressure p or doping z. Assuming that they are related, p—p. x = —z.,
measurements at ambient pressure on samples with different doping levels could lead to the
determination of the critical doping z..

In the quantum critical regime I'., can also be put to important experimental use, although
the prefactor is not universal: (using hyperscaling ¢ = d + z)

z2Whegr(0) 1 1 1 _1
Perp=-— QcR — T v for |p—p| T v < poTy **,
d¥qcr(0) v, poz
v o) mP0To (1.30)
z 1 _ 1
Do gy = — ——2C8 T for |H — H,|T 7 < HoT} ** .

— d ‘IIQCR(O) HOT[; i

The striking feature is obviously the divergence with falling temperature with the exponent
1/(vz). The most important application is therefore the determination of the combination of
critical exponents vz by measuring ... In addition, the prefactor of this divergence allows

an estimate of the crossover line in the (p,T) or (H,T) plane between the quantum critical
1 1

and low-temperature regimes because it is inversely proportional to poTj, “* and HyT, “*,

z \II’QCR(O)

Toor(0) 18 expected to be of order one.

respectively. The numerical prefactor

1.3.4 Restrictions
There are several restrictions which should be mentioned. They are listed below.

1. In an experiment usually I', = /¢, is measured, rather than the ratio of the critical
contributions I'¢,, = @ /cerp. There may be leading non-critical contribution which
have to be carefully subtracted in order to extract the scaling behavior of the Griineisen
parameter. A specific example, the Gruneisen parameter of CeNiyGey, is presented
below.
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Figure 1.5: Ezperimental data [22] showing thermal exzpansion and specific heat of CeNiy Ges.
They agree with the prediction of the scaling analysis for the quantum critical regime leading
to a diverging Grineisen parameter.

2. There may be corrections to scaling. Generally, the scaling Ansatz (1.16) is expected to
hold only below the upper critical dimension (d+z < 4 in ¢* theories). Above the upper
critical dimension corrections due to dangerously irrelevant operators may arise which
can destroy scaling. In Chapter 2 it is shown for a particular case, the spin-density wave
transition described by the Hertz model, that the corrections on the paramagnetic side
are at most logarithmic. It is also worth mentioning that truly Gaussian theories also
obey the scaling Ansatz (1.16).

3. The third caveat of our scaling treatment is of a more fundamental nature, and it con-
cerns the underlying assumption of the scaling Ansatz (1.16). We assumed that at the
quantum critical point only a single diverging time scale characterized by the dynamical
exponent z plays a role. However, there might be scenarios where this assumption does
not apply. For example, in a nearly magnetic metal there are two types of low-energy
degrees of freedom, magnetic fluctuations and fermionic quasiparticles, both of which
exhibit critical slowing down [19]. Furthermore, a local quantum critical point [20, 21],
at which local degrees of freedom are driven critical by (critical) long-wavelength mag-
netic fluctuations in two dimensions, would also require a modification of the scaling
Ansatz (1.16).

Nevertheless, for a wide class of quantum critical materials the considerations of the last
section are applicable. Because of the many experimental possibilities it offers we expect
that the Griineisen parameter becomes a widely-used tool in the investigation of quantum
criticality. Indeed, it has already been applied to two heavy fermion systems as outlined in
the following.
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Figure 1.6: FExperimental data [22] showing thermal expansion and specific heat of
YbRhy (Sig.95 Geg.o5)2. The Grineisen parameter diverges, I'c, o< T, but the exponent x
seems to be incompatible with the conventional spin-density wave scenario.

1.4 Experiments

The theoretical prediction of a diverging Griineisen parameter has already been tested ex-
perimentally by R. Kiichler et al. [22] in two metallic heavy-fermion compounds exhibiting
an antiferromagnetic quantum phase transition, CeNigsGey and YbRhyoGey. They are espe-
cially suited for studying quantum criticality since at ambient pressure they are located very
near to the magnetic instability making them amenable to thermal expansion measurements.
(Thermal expansion is rather difficult to measure under pressure.) Furthermore, they are
stoichiometric and therefore clean with a low residual resistivity ensuring that the role of
disorder is minimized.

In Fig. 1.5 the thermal expansion and the specific heat of a CeNisGey single crystal are
shown. In zero magnetic field the thermal expansion divided by temperature is described by a
non-Fermi liquid divergence a/T ~ 1/v/T over more than two decades in temperature ranging
from 6 K down to 50 mK. Only after applying a magnetic field does the divergence give way to
the saturation expected for a Fermi liquid. This well-pronounced non-Fermi liquid behavior
suggests that CeNioGes is quantum critical at ambient pressure, i.e. the critical pressure is
pe ~ 0. Below 3 K the specific heat coefficient can be well fitted with ¢/T" = vy — ¢v/T, where
the square root dependence on temperature is attributed to the quantum critical contribution.
One has to be careful to subtract the non-critical contribution -y in order to obtain the correct
critical behavior of the Giineisen parameter I'... The inset of the graph showing the thermal
expansion in Fig. 1.5 establishes that the exponent measured in the quantum critical regime
for the Griineisen parameter (1.30) is 1/(rvz) = 1. These experimental findings agree with
a conventional three-dimensional antiferromagnetic spin-density wave scenario described by
the Hertz model (see Chapter 2): v =1/2, z = 2 and ¢ = d + z = 5. Taking into account
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Chapter 1. Universally Diverging Griineisen Parameter

for the molar volume V,,, the dimensionful prefactor of the critical Giineisen parameter (1.30)
has been determined [23] to be Ty/py ~ 1.5 K/GPa. This identifies the crossover line in the
pressure temperature phase diagram between the quantum critical and the low-temperature,
Fermi-liquid regime. It remains to be seen if this can be confirmed by directly measuring the
pressure induced crossover to Fermi-liquid behavior in CeNiyGes.

Previous measurements [24] on the stoichiometric compound YbRhyGey have revealed
a very small Néel temperature T of about 65 mK, which can be further suppressed by
doping it slightly with Ge. Fig. 1.6 shows the thermal expansion and specific heat of
YbRhy(Sig.95Geg.05)2 of R. Kiichler et al. [22]. Tt can be clearly seen that at an energy scale
of about 300 mK the thermodynamic behavior changes. Up to now it is not yet clear which
physical mechanism is associated with this energy scale. Nevertheless, the critical behavior
is assumed to set in only below 300 mK. The Griineisen parameter is again found to diverge.
The extracted exponent 1/(vz) = 0.7 however has to be taken with a pinch of salt since the
fit included data points well above the existing temperature scale of 300 mK. Nevertheless,
it seems that the divergence cannot be explained in the framework of an antiferromagnetic
spin-density wave instability which would require an exponent 1/(vz) = 1.
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Chapter 2

Hertz Theory and Millis RG

In a seminal paper J. A. Hertz [4] pointed out the importance of quantum phase transitions
for the physics at finite temperatures. After 30 years the model he considered has become the
standard theory for magnetic instabilities in itinerant electronic systems at zero temperature.
Its finite-temperature properties have been derived within a renormalization group treatment
(RG) developed by A. J. Millis [5]. Its most prominent feature is the non-Fermi liquid behavior
above the zero-temperature instability , and it is used to describe several experiments on heavy
fermion compounds.

In Section 2.1 we shortly review the Hertz model. The RG treatment proposed by
A. J. Millis will be presented in Section 2.2. Some subtle points in its derivation will be
discussed and minor errors appearing in the original paper [5] corrected. The solution of the
RG equations is given in the following chapter, where we compare the results for the thermal
expansion and Griineisen parameter with the scaling treatment of Chapter 1.

2.1 Hertz’ effective action

The treatment of Hertz starts by considering the Hubbard interaction Hamiltonian. Its local
density density interaction can be separated into a charge- and spin-density part

U U
Hyupbard = U Y _ nigngy = BY > (nir +miy) - Bl > (nip —nip)? (2.1)

where ¢ labels the number of sites. Near a spin-density wave transition the charge density
fluctuations will be very fast in comparison to the critical slow modes and can be neglected.
Furthermore, the spin-density part can be recast into a form where the spin rotation symmetry
is manifest. This can be achieved by using the Fierz identity for Pauli matrices [25]

Onp0y§ = 6,15575 — 2€(X7655 (2.2)

where o is the three-component vector of Pauli matrices and € is the antisymmetric tensor.
With this identity the spin-density part of the Hubbard interaction can be rewritten as

2

HSDW:_%Z T—nw :—]Z Z\IINIQ aﬁ (23)
7 7
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Chapter 2. Hertz Theory and Millis RG

where U is the electron operator and the exchange coupling J = 2U/3. In the continuum
limit the corresponding partition function is given by Z = [ DU*DW¥ e~ with the action

B
S = /deT' /drdr'z\ﬂi(T, r)g, (1 — 1, —1)V, (7, 1) (2.4)
B ' 2
J/dT /dr Zm;(T,r)%aaﬁqfﬁ(T,r)
0 ' ab
The Fourier transform of the free electron Green function is go(iwn, k) = [~iw, + &),

where £ is the electron energy with respect to the chemical potential. The spin-density
coupling of fourth order in the fermions can be decoupled by applying a Hubbard Stratonovich
transformation® on the real spin-density field /.J/2 Y08 ¥a0,5Vs,

B

7 =7y <exp - /d’T /er\I/Z(T,I') [—\/Zo'(m@(ﬂr)
. . o

0

Wy(r, 1) > . (2.5)
W, d

The average has to be taken with respect to the real bosonic Hubbard Stratonovich field @,
which is a three-component vector, and the fermionic field W,

(O)g = Z%/D@ O exp —;/Bdr/dr@?(m) (2.6)
0

B
(O)y = ZL /D\I!*D\I! Oexp |- /deT' /drdr' Z Ui (r,r)gy (1 — 7', r — )T, (7', 1)
0 a
(2.7)

with Z¢ = (1)¢ and Zy = (1)y. The bosonic and the fermionic fields are coupled and it is a
priori not clear to which category the critical degrees of freedom belong. In the Hertz theory
it is assumed that the critical modes are well described by the bosonic field alone in the sense
that an expansion of the effective action in ® is well-behaved. In Section 2.1.1 we will shortly
comment on the validity of this assumption. The fermions are integrated out and one ends
up with a Ginzburg Landau free energy functional € for the Hubbard Stratonovich field ®:

8

Z 1 1

= = —/D@ e M with Q@] = /dT/dr—q)Q(T, r) —trlog{l — VGo}. (2.8)

Zv  Zo 2
0

'The Hubbard Stratonovich transformation for a real field # uses the identity

/ dridzs .. .dzy

1or o oro| —1/2 1,1,
R exp {757’ AT + 7 y} = (detA) exp | 5§ Ay

where A is a matrix.
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2.1. Hertz’ effective action

The matrices V and Gg are given by

[J
V = 67’,7”61',1" 50'(77(71(1)(7', I‘) (29)
GO = 57’,7”51',1"5(7,(7’90 (T - T’, r— I'I) . (210)

The trace is therefore meant to extend over time, space and spin variables. The Hertz theory
assumes that the field ® fluctuates around a vanishing expectation value, i.e. it describes
only the disordered phase. Generally, there are two classes of magnetic instabilities to be
distinguished. In the case of a ferromagnetic instability the magnetic order is homogenous
and the Fourier components of the order parameter field only carry small momenta. The
ferromagnetic order parameter in space is represented by a real field with three components,
®(7,R). On the other hand, in an antiferromagnet the critical degrees of freedom carry a
finite wave vector £Q,

o(1,R) = e'Wdq(1,R) + ¢ "RIG (1. R) . (2.11)

The fluctuations around the modulated magnetic structure are in general described by a
complez field, q(7,R). An exception is the commensurate antiferromagnet where a mul-
tiple of the modulation vector Q coincides with a lattice vector, in particular ¢?QR = 1.
One can easily convince oneself that in this case @ (7,R) = ®q(7,R) and a real field suf-
fices to describe the critical modes. More generally, the system might be instable against
a non-homogenous magnetic structure characterized by several different modulation vectors.
Such a critical theory comprises several in general complex fields, each associated with the
corresponding ordering wave vector.

In the magnetically disordered phase the logarithm in expression (2.8) arising from the
functional determinant of the electrons can be expanded in the fluctuations ® = (¢', ¢2, ¢?)
around the disordered ground state. The interesting lowest order terms are listed below?.

e First order

= tr{(VGg)} =0 (2.12)

The contribution of this diagram vanishes trivially in the absence of a magnetic field
since the trace over spin indices gives zero, tr{o’} = 0.

e Second order

1 J 1
= -tr {(VGo)’} == —> xu(p)2" (p)2(-p) (2.13)
2 2BV &
*The following spin traces are needed
%tl‘ ono_m} — 6nm , %tl‘ {o_nom,ol} — ienm,l , %tl‘ {O’nﬂmﬂ'lﬂk} — Jnm,(slk, o 6nl6mk + Jnk(;ml )
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Chapter 2. Hertz Theory and Millis RG

We use the four-dimensional notation p = (iw,, k) for the fermionic Matsubara fre-
quency and the momentum. The so-called Lindhard function i, is given by

1

v > 90(i€n, @)go (i + iwn, q + k). (2.14)

Qm,q

x(p) = x1.(iw,, k) =

where Q,,, = 2rmT is here and in the following always a bosonic Matsubara frequency.
The Lindhard function is the basic fermionic vacuum loop and is also known as the
polarization diagram [26].

e Third order

= fétr{(vgo)f“} (2.15)

2
3

J\*? 1 3
(3) s X Ve (Xm0 i )67 0o )
Pj j=1

j=1,2,3

The three field components appear in an antisymmetric combination. As a consequence,
the three-point correlation function y(3) (p1,p2, p3) has to be antisymmetric with respect
to each pair of its three arguments. This drastically restricts its behavior at large spatial
and temporal distances, i.e. for small momenta and frequencies.

For a ferromagnetic instability a possible lowest-order term in a gradient expansion
satisfying the antisymmetry conditions is

X (p1,p2,p3) = A (ki — ko) (k3 — ki) (iwp2 — iwn3) + cycl. perm.) (2.16)

It leads to the following term in the Ginzburg-Landau functional for the field ®(¢,R):

2/ J\? 0
~ 3 <§> 24)\/de1€ V26(t, R) (E@(t,R) x B(t, R)) C(2.17)

However, according to power counting [27] this term is irrelevant in the renormalization
group sense for the space dimensions of interest and can be neglected.

In the case of a non-homogenous magnetic instability the important critical degrees of
freedom are the Fourier components of the field ® with a momentum that fluctuates
around finite ordering wave vectors. Depending on the symmetry of the non-homogenous
magnetic structure there are two cases one has to distinguish. First let us assume that
no three of the ordering wave vectors happen to add to zero. As a consequence, the
fields @ are required to carry collectively a rather large momentum fluctuation in order
to fulfill the momentum conservation demanded by the delta function in (2.15). Such
Fourier components of the fields do not however influence the critical behavior and the
third-order term (2.15) can be discarded in the analysis of criticality. In particular,
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2.1. Hertz’ effective action

this applies to the case of the antiferromagnet with a single ordering wavevector Q.
The second possibility is the special case of a magnetic modulation that allows for a
combination of ordering wave vectors Q; + Q2 + Q3 = 0. In such a case the third-order
term (2.15) may be important.

Fourth order

1 1\ 1 5 24
7 J=1
j=1,2,3,4

X (5”’“5“ — gnkgml 4 6"15’"'“) X (01,02, D3, 04) 8" (1) 8™ (02) D" (03) ' (p4)

7\’ :
=%<§> ﬁ ST Ve [ S p | X5 01,0203, 94) 8" (1) 8" (92) 6™ (p3) 6™ (pa) -
Pj J=1

7=1,2,3,4

In the last line we introduced the symmetrized four-point correlation function, Xgl), by

incorporating the different contractions of the internal degrees of freedom of the fields.
The unsymmetrized four-point correlation function is given by
(@) _ !
XV (prp2,pspa) = - g > 90(@)go(q +p1)go(q + p1 + p2)go(q + p1 + p2 + p3)
q=(1n ,q)

(2.19)
Its frequency and momentum dependence is irrelevant in the RG sense and can be
neglected, reducing it to a local contact interaction. However, the resulting contribu-
tion to the Ginzburg Landau functional depends on whether the magnetic structure is
homogenous or not.

Up to irrelevant terms, for the ferromagnet we simply have

1/J

~ 3 (5)29((4)(0,0,0,0)/0%7 /dR (87 (r,R)®(r,R))>.  (2.20)

Note that in contrast to the contribution of third order in the field ® there are no symme-
try restrictions which require the local contact interaction to vanish. (Loop and vertex
corrections, however, lead to important corrections, see discussion of Section 2.1.1.)
The situation is more elaborate in the case of an antiferromagnet. In order to satisfy
the momentum conservation demanded by the delta function a field ®q of (2.11) is
always accompanied by its complex conjugate @a. Taking into account all possible
combination we finally arrive at the expression for the antiferromagnet

1/J\? 1 1
zi 5 —,34V4 E BVo Epj (2.21)
p;j Jj=1
i=1,2,3,4

X (A¢g (p1)¢G (p2) G (03) G (pa) + B ¢ (01) 4 (p2) G (03) G (p4)) -
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Chapter 2. Hertz Theory and Millis RG

where we again neglected irrelevant terms. The constants, A and B, are given in terms
of the four-point correlation function,

—

P2.9-9-9+xY(-Q,-9,Q.9)
=7Q,-2Q - Q+xQ Q-9 +x(-QQ,-QQ (22
XS‘4)(_Q3Q7Q3_Q)‘

=X

Only for the commensurate antiferromagnet does this fourth order interaction reduce
to the simple form (2.20).

The theory originally proposed by Hertz considers only a real field ®. It is therefore appro-
priate for the ferromagnet (with certain restrictions explained below) and the commensurate
antiferromagnet. We extend the field to N components giving rise to an O(N) internal sym-
metry and making the Hertz theory amenable to large N methods. Combining all important
terms the Hertz theory reads?

— i — i 75Hertz[¢'}

Tierts = 5o == | Do (2.23)
SHerts[®] = SP[®] + SW [ (2.24)
SO] = g 3 587 k) X () @i, k) (2.25)

wn k

B 2

SWe) = g/ dr /dR (@7 (r,R)®(7,R))" . (2.26)

JO .

The normalization Zg = /det (8V) in front of the path integral can alternatively be absorbed
into a renormalization of the fields ®(iw,, k) — +/BV ®(iwy,, k). In particular, this should be
done in order to obtain the form of the Hertz theory as in Refs. [4] and [5]. We prefer not
to do this final step and keep instead the familiar factors 1/(8V) in front of the Matsubara
and momentum sums. The propagator in any case is given by xo which derives from the
low-frequency, low-momentum behavior of the Lindhard function (see Appendix A.2),

1 — Jxr(iwn, k) ~ xg ' (iwn, k) = 6 + & k? + LT{ (2.27)

Tokz 2
where we introduce the dynamical scaling exponent z. For an antiferromagnetic instability the
dynamical exponent is z = 2 and for a ferromagnetic instability z = 3. (Again, higher order
corrections to the propagator are important, cf. Section 2.1.1.) The parameters dg, &y, Ty and
the quartic coupling g depend on microscopic details. For the antiferromagnetic instability the
exact correspondence between the bare parameters and the microscopic parameters depends

3For completeness we cite here the convention we use for the Fourier transform:

1 .
®(r,R) = ,BV Z e MR=wn ™) P (i, k)
®(iwn, k) = /dR /drp*’(“R “n7) &(r, R)
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2.2. Millis’ renormalization group treatment

on the specific band structure of the material under consideration. For a ferromagnetic
instability, on the other hand they can be evaluated and are given by

o = 1—JNp (2.28)
2 _ %fl\g (2.29)
T, = %XTFF (2.30)
g = %QX(‘*)(O,O,O,O) ——i—é/%%f@q)zi—;/\fé’- (2.31)

The explicit value for £2 has been obtained with the assumption of a quadratic energy dis-
persion ¢, = k2/(2m*). In the bare theory, i.e. on the level of perturbation theory, the
ferromagnetic instability occurs if the mass vanishes, 6o = 1 — JNg = 0. This condition is
just the well-known Stoner criterion.

2.1.1 Validity of the Hertz theory

In deriving the effective theory (2.23) we integrated out the electronic degrees of freedom and
expanded in the magnetic order parameter ®. We have already mentioned that in doing so
we might have missed some important subtle physical features.

It was realized by D. Belitz, T. R. Kirkpatrick and and T. Vojta [28] that in the case of
the ferromagnet in zero magnetic field this procedure is indeed doomed to fail. They pointed
out that the Fermi liquid possesses soft particle hole excitations that are distinct from the
magnetic order parameter fluctuations but nevertheless might couple sufficiently strongly to
the latter to influence their critical behavior. In the case of the ferromagnet these soft modes,
which have been integrated out, show up as non-analyticities in higher order corrections to the
polarization diagram [28, 29, 30] that have been neglected in the derivation of the last section.
These non-analyticities render the resulting effective theory for the magnetic order parameter
® non-local and hard to analyze. The Hertz theory in its simple form (2.23) therefore does not
apply to the itinerant ferromagnet. However, in the presence of a magnetic field the SU(2)-
spin rotational invariance is broken and, as a consequence, the non-analyticities are cut off.
It is therefore believed that the Hertz theory with a dynamical scaling exponent z = 3 is the
proper description for the quantum critical endpoint of magnetic first order transitions [31].

The antiferromagnet on the other hand has a non-homogenous order parameter and car-
ries a non-zero ordering wavevector. The fermionic soft modes are only soft for a vanishing
wavevector and their coupling to the antiferromagnetic fluctuations are not expected to spoil
the Hertz theory. The effective theory (2.23) with a dynamical scaling exponent z = 2 there-
fore expected to describe correctly the quantum phase transition in itinerant (commensurate)
antiferromagnets [32].

However, this issue remains contentious and is the subject of current research.

2.2 Millis’ renormalization group treatment

In this section we review the renormalization group (RG) treatment of the Hertz action
(2.23) introduced by A. J. Millis [5]. The main complication in the RG analysis of (2.23)
is the inclusion of the Matsubara frequency dependence. Since the Matsubara frequency
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Chapter 2. Hertz Theory and Millis RG

at finite temperature is not a continuous variable like the momentum, the extension of for
example Wilson’s momentum shell RG to the dynamical, i.e., frequency-dependent part of
the Hertz action is not straightforward. The solution of Millis was to perform the RG not
on the Lagrangian level but rather directly on the free energy after converting all Matsubara
sums into integrals.

2.2.1 Derivation of the RG equations

First consider the free energy due to the Gaussian part of (2.23) only. It is given by

e BFa  _ 1 D e SVN® — (detXal)il/Q
Z |
N . N w
—Fa = o3 > logxg (iwn, k) = 2 > log{50+£3k2+ leZQ} (2.32)
wn,k wn,k ’

The sum over Matsubara frequencies can be converted into an integral and (in the limit
V — o0) is given by

NV [Ndk [TF7de | Tye 127 ¢
fo=-Tog a — coth -== arctan ——- 2.33
¢ "2 fﬁi / (2m)d ,/g ™ o 2T arctan 5o + k2 ( )

where A and T" are (dimensionless) cutoffs. The inclusion of the momentum in the upper limit
of the energy integral in the case of a ferromagnet z = 3 is not contained in the Hertz action
as it stands (2.23). It is rather justified with hindsight, since we know that the natural cutoff
for particle hole excitations in the case of a ferromagnetic instability scales with momentum &
(see Appendix A.2). Furthermore, the momentum and frequency integrals have been rescaled
so that the parameters Ty and &y can be absorbed in the measure of the free energy and
the temperature. The microscopic length scale &; is presumably of the order kE]. Note that
the prefactor V/¢4 in front of (2.33) is then basically the number of particle in the system,
ng ~ N 4. This implies that the free energy we are dealing with is not explicitly dependent
on the volume. Its extensitivity is rather connected to the number of particles. Moreover,
we can adopt the viewpoint that the mass is controlled by the pressure and we can identify
the thermodynamic potential as the Gibbs free energy which is a function of temperature,
pressure and particle number, F' = F(T,p, N'). This will be important later when we analyze
the thermal expansion. In the following it will be convenient to consider the dimensionless
free energy density F = FEL/(TpV) and the dimensionless temperature 7 = T/T.

The correction to the Gaussian part of the free energy can be obtained with a linked
cluster expansion in the quartic coupling g. Up to second order in u the result is (for details
see Appendix A.3)

2
F =Fg+gN(N+2)I*+ % [SN(N +2)*I%] + 8N (N + 2)K] + O(¢”), (2.34)
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2.2. Millis’ renormalization group treatment

where we have introduced the three functions

1 1
I =— ) n,k y J=—— , n,k . 1 naik 3
i kao(ﬂu, ) AV ZXU(“U )x0(—iw )

Wn, wnk

<i ki) B <li wm) (2.35)

i=1

1
K:—W Z vV

Wnj 7k]'
j=1,2,3,4

X x0(twin, k1) xo(twan, ko) xo0 (iwsn, k3)xo (iwan, ki)

expressed in terms of the propagator (2.27). The important point for the RG process is that
the functions I and J are just derivatives of the Gaussian free energy (2.33) with respect
to the bare mass 0y, I = (2/NV)0Fq /00y and J = 0I/0dy. At first sight the function K
does not have this property. To understand its contribution in the Millis RG let us digress a
moment to the usual momentum shell RG. In the momentum-shell RG it is known [27, 18]
that the second order diagram contributing to the renormalization of wu,

results in a momentum dependent quartic coupling. This means that the corresponding
interaction in real space is non-local. However, this momentum dependence is known to be
irrelevant [27] and only the momentum independent term is to be kept in the RG process. The
contribution K now stems exactly from the diagram in the linked cluster expansion which is
obtain by pairing the two open legs at one vertex of the above diagram with the legs of the
other vertex,

(2.37)

(It is actually a sum of two diagrams with different contractions of the internal indices of
the fields involved; the dashed line represents the quartic interaction g. The first diagram on
the right hand side of the equation is of order O(N?) and the second diagram of order O(N)
where N is the number of field components.) The momentum dependence which this diagram
induces in the momentum-shell RG manifests itself in the structure of the function K: all
four momenta and frequencies appear in the delta functions. The analogous step of neglecting
the induced momentum dependence in the momentum-shell RG is to demand frequency- and
momentum conservation, represented by the delta functions of K, only with respect to two
frequencies and two momenta. However, there are (;1) = 6 possibilities to choose two out of
four,

4 4 4
Ve (Z k) 8o <Z wn) —— <2> Vi (ki + ko) B0 (win + wan) - (2.38)

If we manipulate the delta functions in this way the function K collapses to 61%.J. Effectively,
the function K thus leads to a contribution in the Millis RG process corresponding to 612.J.
The corrections are irrelevant in the RG sense. In Millis’ original paper he swept these
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Chapter 2. Hertz Theory and Millis RG

subtleties under the carpet and as a starting point for the derivation of the RG equations
used the expansion of the free energy with K substituted by 612,

2
F =Fg+gN(N+2)I? + % SN(N + 2)(N + 8)I%.J + O(g*) + irrelevant terms.  (2.39)

We do not want to dwell on the justification of the above statement but rather continue
with the derivation of the RG equations. They are derived from (2.39) in the spirit of the
momentum-shell RG but on the level of the free energy: a momentum shell [A, A/b] is sepa-
rated from the momentum integrals of the functions Fi, I and J. This shell will renormalize
the bare mass dg and the quartic coupling g. Afterwards the integrand is rescaled which,
via the momentum dependence of the upper limit of the frequency integral, induces a second

renormalization from the frequency shell. This finally yields the following RG equations®
OF(b) 1
oo = [+ 2F0) 5N 60, T0) (2.40)
oT)
dlogb z T (b) (2.41)
000) - _ g 5(b) + 4 (N +2) ulb) f2(6(8), T(8)) (2.42)
dlogh oI T2 ’ '
Ou(b) = (4—d—2)ud) —4(N +8)u®(d) f12(5(b), T (b)) (2.43)

Odlogb

where F = F¢E/(TyV) is the dimensionless free energy (per particle), u = g¢4/(TyV) the
dimensionless quartic coupling and 7 = T'/Tj the dimensionless temperature. We have intro-
duced the three functions

]—\AZ—Q
de € A% % e d'k 2r r k22
— d == - - —
fo(6,T) = KA / - coth 27,alrctan5+A24—'/ o) = coth 27,alrctan5+k2
0
0
ROT) = o fol0.T) (2.44)
0
f4(5a7-) = 7%]02(5’7-)
and . :
_ _ (od—1_d/2 -
Kd'/ Gy = (2 7 F(d/2)) (2.45)

is the surface of the d-dimensional sphere in momentum space. The first term of the function
fo arises from the renormalization due to the separated momentum shell ~ momentum is set
on shell K = A — whereas the second term is the renormalization due to the frequency shell

frequency is set on shell € = I'. It turns out that the main effect of the contribution of the

* The above RG equation differ from the equations in Millis’ paper [5] in the following points. The factor
—N/2 is missing in front of the function fo. The minus sign stems from the transformation of the Matsubara
sum to an integral in the expression for the Gaussian part of the free energy. The factor N comes from the
summation over the internal degrees of freedom and the factor 1/2 is due to the fact that the fields ® are real
and not complex. The inverse of the same factor 1/2 is involved in the factor 4 in front of the function f» where
Millis has only a factor of 2. Moreover, there is an additional factor of 2 in the function f4 in comparison to
Millis. Similar differences occur in the functions I and J defined above.
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2.2. Millis’ renormalization group treatment

frequency shell is to renormalize zero temperature properties only. The additional corrections
at finite temperatures due to the frequency shell are exponentially suppressed,

Oode € 2z ¢ _
Fol0.T) = £0(6,0) = KyA® / = (coth 5= = 1) arctan =— £+ 0 /7). (2.40)
0

The leading contribution to the thermodynamic quantities like specific heat and thermal
expansion therefore comes from the temperature dependence due to the separated momentum-
shell.

2.2.2 Classical limit

Technically speaking, the difference between the Hertz theory and the conventional “clas-
sical” ¢*-theory is the additional dependence on the Matsubara frequency of the Gaussian
propagator (2.27). If we just neglect the non-zero Matsubara modes the remaining field cor-
responding to a Matsubara frequency wy = 0 is indeed governed by such a classical ¢*-theory.
After rescaling this field by @(k) = /2 ®(0,k) (cf. discussion after (2.23)), the action of
the zero Matsubara mode reads

1

Selass|®] o7 2@ () (90 + €3K) G-k (2.47)
k

4
o o Vo (Z ki) (" (k1)@ (k2)) (7" (ka) Plkes)
=1

ki,ka k3 ks

with a “classical” quartic coupling which depends on temperature, v = u/f. Formally, the
Hertz theory thus reduces to the classical theory (2.47) when the influence of the non-zero
Matsubara modes can be neglected. This is the case for temperatures larger than the energy
cutoff | 7 > I'A* 2. The Hertz theory and in particular the form of the propagator (2.27)
is, of course, not justified in this limit and therefore should not be interpreted physically. (In
its derivation we used the limiting behavior of the Lindhard function (2.14) for frequencies
less than momentum, w < k < 1.) Nevertheless, in this limit the Millis RG equations should
formally reduce to the well-known RG equations of the classical ¢*-theory. The consideration
of this limit therefore provides a crosscheck for the validity of the Millis RG equations (2.40—
2.43).

To reduce Millis’ RG equations to the classical ones we substitute u(b) by v(b) = u(b) T (b).
Moreover, we have to take the high temperature limit of the f,, functions, which amounts to
replacing the coth functions in the integrand by the inverse of their argument. After taking
the limit I' — oo one ends up with the classical RG equations of ¢* theory [18]

Slffg”)b — 20(b) + 4 (N +2)v(b) % (2.48)
8U(b) = - v — 1)2 LA(Z
alogh (T AN EHTE) (6(b) +A2)* (2:49)

As pointed out by S. Sachdev [2] for small but finite temperatures 0 < T < T'A*"2 the
effective theory is indeed given by (2.47), but with the bare parameters strongly renormalized
by the non-zero Matsubara modes. This leads to a conceptually different point of view to the
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Chapter 2. Hertz Theory and Millis RG

Millis approach and we will refer the reader to Refs. [2, 33]. Nevertheless, if in the following
the leading contribution of some quantity is due to the high-temperature limit of the f,
functions we will refer to it as resulting from “scaling into the classical regime”.

2.2.3 Running mass and correlation length

The RG equation for the mass J can formally be integrated. After separating the trivial
scaling dimension of the mass 1/v = 2 by substituting §(b) = R(b) b> we get

log b
R(b) = 0g + 4 (N +2) /0 ; dz e 2 u(e®) fo(R(e¥) e**, Te*®), (2.50)

where gy is the bare mass appearing in the propagator x¢ in (2.23). It is convenient to
introduce the running mass at zero temperature,

logb
A(b) =6 +4(N +2) /0 dz e u(e®) fa(A(e®) e*®,0). (2.51)

Since we are interested only in the behavior of the theory in the vicinity of the quantum
critical point we can expand in A,

log b log b
A(b) = dp +4 (N +2) f2(0,0) / dr e ?®u(e®) — 4 (N + 2) £4(0,0) / dz u(e®) A(e")
0 0

logb
~ (09 — d.) exp [—4(N +2) £4(0,0) /0 : dx u(em)] : (2.52)

In the second line we already extracted the behavior of A for large scales b by solving the
implicit equation of the first line, which can be identified with a first-order linear differential
equation. In doing so, we introduced the critical bare mass ., which identifies the position
of the quantum critical point,

de = —4 (N + 2) f2(0,0) /000 dz e u(e®). (2.53)

With the help of (2.51) we obtain the temperature correction to the running mass, which is
of first order in the running quartic coupling wu,

logb
R(b) — A(b) =4 (N +2) / dz e ** u(e®) (fQ(R(eI) e* Te™) — fo(A(e¥) €22, 0))
Jo
= Ryp(b) 4+ 6R(b) = Ryp(b) + O(u?), (2.54)
where we have introduced the quantities

log b
JR(b) =4 (N +2) /0 ) dze *"u(e”) (f2(R(e") e*™,0) — fo(A(e") €*,0)) , (2.55)

logb
Rr(b) =4(N +2) /0 ) dz e 2 u(e®) (fQ(R(em)e%’,Te”’) - fQ(R(em)e%’,O)) . (2.56)

The contribution of the term JR is of higher order in 4 and has to be neglected. The running
mass converges eventually for large scales to the correlation length,

R(b) = A(b) + Rp(b) =~ ¢ 2. (2.57)
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2.2. Millis’ renormalization group treatment

2.2.4 Quantum-—classical crossover: Estimate of the critical temperature

It is tempting to determine the finite temperature phase transition in the (r,7) plane by the
condition of a vanishing effective mass, R(b) ~ £ 2,

E2rT)=0 at T =Tir). (2.58)

However, we will explain in the following why the parameter region where ¢ 2(r,T) = 0 is
beyond the reach of the perturbative RG equations (2.40-2.43).

As we have already mentioned the phase transition at finite temperatures is governed by
an effective classical ¢* or Ginzburg-Landau theory. In such a theory the phase transition
is identified with a sign change of the mass, R « T — T,. Near the critical temperature
T. the thermodynamical quantities are very sensitive to variations in the mass. Hence, we
can identify the quantum classical crossover in the (r,T') plane by comparing different con-
tributions to, for example, the specific heat: the quantum contribution which arises from
the explicit temperature dependence of the Hertz propagator, and the classical contribution
which arises from the sensitivity of the renormalized mass, R, to temperature variations.
The RG trajectory of the running mass R(b) itself depends on the temperature and it is
this implicit temperature dependence which starts to dominate the thermodynamics at the
quantum-classical crossover [34].

Below four space dimension, however, the finite temperature phase transition is not
captured by the Gaussian fixed point, but is rather described by the Wilson-Fisher fixed
point [35]. Therefore, there will be a further crossover in the (r,7) plane from a Gaussian
to the non—Gaussian behavior of the Wilson—Fisher fixed point. Since the physics embodied
by the Wilson Fisher fixed point is beyond the scope of the Millis RG analysis this crossover
is associated with the breakdown of the perturbative Millis RG treatment. This Gaussian to
non-Gaussian crossover is determined by the Ginzburg temperature (see below). So, strictly
speaking, we are not able to locate the phase boundary since the region where ¢ 2(r,T) = 0
is beyond the applicability of the RG equations (2.40-2.43). Nevertheless, having pointed this
out we still use the vanishing mass criterion in the following to get a first estimate of the
location of the phase boundary.

2.2.5 Gaussian—non-Gaussian crossover: Ginzburg temperature

The Ginzburg temperature T;(r) defines the Gaussian non-Gaussian crossover in the (r,T)
plane just alluded to. It is based on the Ginzburg criterion which can be formulated in
several ways [18, 17]. It arises naturally when the effective classical Ginzburg Landau theory
in less than four space dimensions, which describes the finite temperature phase transition,
is considered as a crossover phenomena. Upon approaching the phase boundary at a finite
temperature the singular part of the free energy density will asymptotically satisfy the usual
scaling form [16]

b fiing(R(D)D' 067" ) ~ [R(B)]" fuing (L, v [R(B)] ") (2.59)

with the classical quartic coupling v = « T introduced in section 2.2.2. In the Gaussian region
the exponents are given (up to logarithmic corrections) by the Landau values, v = 1/2 and
yy = 4 — d. The singular free energy exhibits a crossover depending on the size of the so-
called Ginzburg parameter v [R(b)] ¥"
can be treated perturbatively. In the non-Gaussian region, however, it becomes large and the

. In the Gaussian region this parameter is small and
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Chapter 2. Hertz Theory and Millis RG

physics crosses over to the realm of the Wilson—Fisher fixed point. The crossover occurs at
the Ginzburg temperature where the Ginzburg parameter attains a value of order one,

VR =uTR% ~1 at T=Tar). (2.60)

The Ginzburg temperature 7 (r) defines a crossover line in the (r,T') plane of the phase dia-
gram beyond which the Millis RG treatment breaks down. Consequently, in the non-Gaussian
region beyond 7 (r) we cannot extract any reliable information from the perturbative RG
treatment presented in this chapter.

2.2.6 Physical quantities
Free energy

Integrating the RG equation for the dimensionless free energy we can rewrite it as an integral
along the RG trajectory, after accounting for the trivial scaling dimension d + z

NOO

F(b)b @+ 2% F 5
0

da e~ AT fo(R(e”) 2, T 7). (2.61)

Again we recall that F is the free energy measured in units of TyV/£4. The important point
to note is that the free energy F has an explicit temperature dependence via the second
argument of the function fy and an implicit 7" dependence due to the running mass. The RG
trajectory of R(b) itself depends on T [cf. (2.50)] which has to be taken into account when
computing the entropy.

Entropy

Correspondingly, there are two terms when the derivative with respect to temperature is
taken (measuring the entropy in units of V/£4),

S=—-—=2S8qcp + ScL- (2.62)

The first term is due to the partial derivative with respect to temperature,

OF N [ 0
Sqcp = N i) i dg e~ (dt2)e Wfo(R(ew) X T %), (2.63)

and the subscript indicates that it is this term which leads to the peculiar temperature
dependences typical for quantum critical phenomena. The second term stems from the implicit
temperature dependence of the RG trajectory of the running mass,

dRr(e”)

N o0
Scr = — 5 /0 dz e?=4=2)% fo(R(e%) €2$aT€Z$)7- (2.64)

It is this term which is most singular near the phase boundary at finite 7" initiating the
quantum classical crossover.
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2.2. Millis’ renormalization group treatment

Specific heat

We will consider here the specific heat coefficient v = C/T, which is just the derivative of
entropy with respect to temperature. We will measure the specific heat coefficient in units of
V/(¢4Ty) in the following. There are two important contributions to the specific heat. The
quantum critical contribution is given by

8SQCP N > —(d+2)x 82 T\ 2T 2T
Tacp = % —3/0 doe T o (R(E) 2, T ¢77). (2.65)

Near the phase boundary the temperature sensitivity of the RG trajectory of the running
mass takes over,

oo
vou = [ dne o pyren) 7o) (LD
2 Jo aT
It should be noted that there is also another term, the partial derivative of S¢r, with respect
to temperature. However, the leading contribution in the quantum and classical regimes are
Yqcp and ey, respectively. The quantum-classical crossover can be estimated by comparing
these two contributions with each other.

Thermal expansion

The thermal expansion is defined as the change in volume as the system temperature is
changed with pressure p and particle number N held constant:

10V 1 0°F 108 (2.67)
o= ——— —_ T = = = - .
V 8T va V 8p8T V ap T,N

Using the Gibbs free energy, F' = F(T,p, N'), we have rewritten the thermal expansion as a
derivative of entropy with respect to pressure. Near a pressure tuned quantum critical point
the control parameter is proportional to the distance to the critical pressure, r = (p — p¢)/po,
where pq is an a priori unknown pressure scale. Up to a proportionality constant we recognize
that the thermal expansion is actually the change of entropy upon variation of the control
parameter r,

1 0S8
o0=———-. 2.68
Vg Or ( )
From now on we will measure the thermal expansion in units of 1/(£gpg). Again we can
distinguish between a contribution due to the quantum critical point,

dSqprc _ N [™ (9 4 o) OR(e") O 2
_ _ 2)x v (o x 2T 9.
aqQep or 2 /0 e o ar 2 ) e T e, (2.69)

and a classical contribution dominating near the phase boundary,

acL = 785CL _ 7N / dr 6(47(17;;),1: f4(R(€T) ler,’Tezm)
8']" 2 0

AR (e7) dR(e")
dT dr

(2.70)
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Griineisen parameter

The thermodynamic Griineisen parameter, I'; is the ratio of the thermal expansion to the

specific heat
Q

r=—.
T

(2.71)

In the following we will measure I' in units 1/(Vpg).
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Chapter 3

Solution of Millis RG Equations

In this chapter the solution of the RG equations is obtained. The results obtained earlier
by U. Ziilicke and A. J. Millis [6] for the specific heat in three spatial dimensions are com-
plemented by its calculation in 2D. The thermal expansion and the Gruneisen parameter
presented here have not been calculated within Hertz’ theory so far. We will compare the
results with the prediction of the scaling treatment of Section 1.3.

The Hertz model can be successfully treated within a perturbative Millis RG treatment
because for the physical systems of interest its effective dimension d + z is above or at the
upper critical dimension, d + z > 4, where the quartic coupling u is either an irrelevant or a
marginal perturbation, respectively. In the Millis RG however not only the quartic coupling
u is treated as a small parameter. We will also expand in the distance to the quantum critical
point, which is measured by both the control parameter r and the temperature 7. In doing
so we obtain universal finite temperature properties of the Hertz model associated with the
fixed point of the quantum phase transition.

It turns out that space dimension d = 2 plays a special role. It is known from a theorem
due to N. D. Mermin and H. Wagner [14] that generally in two space dimensions systems with
a continuous symmetry and finite-range interactions do not show a spontaneous macroscopic
magnetization at finite temperatures. The underlying reason is the existence of logarithmically
divergent fluctuations of would-be Goldstone modes. Technically the divergence stems from
the IR part of the momentum integral

1
d—1 . _
/dkk o S ~ —logm for m—0 in d=2. (3.1)

We will refer in the following to divergences of this kind as Mermin Wagner divergences. In
general, they appear in two space dimensions irrespective of the internal symmetry of the order
parameter O(N). The Mermin Wagner divergence is reflected in logarithmic corrections to
several thermodynamic quantities in d = 2.

For N > 2 there is indeed no magnetically ordered phase at finite temperatures in two
space dimension, as one expects from the Mermin—Wagner theorem. However, the XY model
has N = 2 and although in d = 2 there is no spontaneous macroscopic magnetization it does
exhibit the peculiar Kosterlitz—Thouless transition, which is of topological nature. Finally,
the infamous Ising model, N = 1, has only a Zs symmetry and the Mermin Wagner theorem
does not apply. The continuous phase transition in two space dimension of the Ising model as
well as the Kosterlitz—Thouless transition of the XY-model are, however, beyond the Millis
RG approach and we will not perceive any signatures of the onset of order in these systems.
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Chapter 3. Solution of Millis RG Equations

In order to familiarize the reader with the confusing number of crossovers in the (r,7T)
plane of the phase diagram we have sketched them in Fig. 3.1. The regime of applica-
bility of the perturbative Millis RG is given by the region on the right-hand side of the
Gaussian—non-Gaussian crossover line associated with the Ginzburg temperature 7. It will
turn out that the quantum classical crossover, where the leading behavior to the specific heat
and the thermal expansion starts to
stem from the sensitivity the effective A non-Gaussian
mass [34], is located within the non- regime
Gaussian region. Whereas for exam-
ple in regions I, II and III the con-
tribution aqgcp (2.69) to the thermal
expansion dominates, the contribution
acr, (2.70) takes over only within re-
gion IV. The non-Gaussian region IV
might be separated by the phase bound-
ary from a magnetically ordered phase.
We can only get an estimate for the phase
phase boundary since it is located in
a regime that is beyond the applicabil- QC
ity of the perturbative RG. In particu-
lar, for space dimension d = 2 Mermin-—
Wagner divergences suppress this esti- control parameter r

mate to zero, suggesting that no ordered .
state exists at finite temperature. Re- Figure 3.1: Phase diagram of the Hertz model.

gions I and III comprise the so called I: Fermi liquid regime, II+III: quantum critical
quantum critical regime where the tem- regime, 1V: classical and non-Gaussian regime.
perature dominates the thermodynam-

ics, T > |r|"*. It is this regime which is associated with the peculiarity of the quantum
critical point. The specific heat as well as the thermal expansion show here a pronounced
non-Fermi liquid behavior. Region II and III are separated by a crossover in the behavior of
the correlation length. Finally, the crossover to region I, 7 < |r|"?, is accompanied with a
restoration of the usual Fermi liquid like dependences of the thermodynamics.

quantum critical

T req.llMe

111

temperature T

ordered

Fermi liquid
regime

-

The following sections are organized as follows. Initially, the quartic coupling, the corre-
lation length and the Ginzburg temperature are calculated. First this is done for the system
above its upper critical dimension, d + z > 4, and afterwards for d + z = 4, in which case
additional logarithmic corrections to scaling are expected. After that thermodynamic quan-
tities  specific heat, thermal expansion and the Griineisen parameter  are determined in
terms of the correlation length. In the final section the results are summarized and discussed.

3.1 Above the upper critical dimension: d + z > 4

3.1.1 Quartic coupling

Above the upper critical dimension, d 4+ z > 4, the scaling dimension of the quartic coupling
u is negative and the contribution of order O(u?) in the RG equation (2.43) can be ignored.

36



3.1. Above the upper critical dimension: d + z > 4

The scale dependence of the quartic coupling is then given by
u(b) = ubt4-7 for d+z >4, (3.2)

where u is the bare quartic coupling of the theory.

3.1.2 Correlation length ¢

The expression for the running mass at zero temperature (2.52) can simply be integrated and
yields,

4(N +2) f4(0,0) u

bli)rgo A(b) = (dp — d.) exp 1—d— =r. (3.3)

We introduced the control parameter r < §y — . and absorbed the exponential factor into its
units of measurements. The correlation length is given by equation (2.57),

€7 = Tim {AQD) + Rr(b)} =r +4(N +2) Ky A= 472 (3.4)

/ /dv 4v (cothv — 1) e(—2+22)z “(ea:Ang)

5 .
_ 2

We have made use of expression (2.46) for the f,, functions in deriving the leading contribution

of the temperature dependent part Ry (2.56). The leading behavior of the remaining integral

can be extracted in the two limits corresponding to the quantum critical regime, r 7-2/% <« 1,

and the Fermi liquid regime, r T-2/% > 1.

Quantum critical regime: 7 2/* <« 1

We have to distinguish between the space dimensions d = 2 and d > 2.

z>d—2>0: Inthe quantum critical regime for d > 2 we can neglect the dependence of

the integrand in expression (3.4) on R(.)7 ?/*. Moreover, we can extend the lower limit of

the z-integral to minus infinity thereby neglecting contributions of order O (A7 ~1/%) (d72)7z,

&? = r+4(N+2)%r<1+ﬂ>g<1+d )«/T“”. (3.5)
ZCOS(Wﬂ') z z

where I' is the Gamma function and (¢ is the Zeta function!. We can subdivide the quantum
critical regime further in two regimes where either the first or the second term dominates
giving rise to the two sub-regimes II and III indicated in Fig. 3.1.

'The following integrals have been used:

/Ooody @Y ynr(my¢(n)  and /O‘X’dy y _

sinh? y 1+ y? ~ 2 cos (aw/2) "
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Chapter 3. Solution of Millis RG Equations

d = 2 : As explained at length in the introduction, in two space dimension we have to
struggle with Mermin—-Wagner divergences (3.1). These divergences are associated with the
effective classical theory and correspondingly we expect them to originate from the scaling
into the classical regime, i.e. from the IR-part of the v-integral of (3.4) (cf. discussion in
Section 2.2.2).

Consider only the double integral in (3.4) with the running coupling constant (3.2). In
d = 2 the combination R7~?/# acts as an IR-cutoff for the v-integral. Without this term
the integral would diverge logarithmically. We can extract this logarithmic divergence by
integrating by parts with respect to x,

o0 [e.e]
- / dr x (]i @ 417) (cothv — 1) 622513
log T1/2 /A 2 / 7T (R(emAT*;)T—wzeQm + 1) 4 (2 e“v)Z

where we set explicitly d = 2. The surface term is of order O(7 /A?log 7T /A?) and has been
neglected. We expand the hyperbolic function for small v, evaluate the v-integral and obtain
in leading order

o

d 1
— / dr v — - .
A7 1 4 R(e AT~ =)T 2/z¢2
log 71/% /A

To evaluate the remaining integral we will use a trick which proves to be useful throughout
the rest of this chapter, and so we now explain it in some detail. After taking the derivative

. . . . 2
and multiplying both numerator and denominator with (1 + 5727'72/%21) we get,

o

2z

/ da re . (3.6)
(1 _*_5727'72/;:62:1:)

log T1/2 /A

(1 _*_5727'72/;:623:)2
(1 _i_R(emAT*%)TfQ/zeQa:)

5 (2R AT )T 2 4 RI(e"AT 1)e"AT )

The term in front of the curly brackets is a strongly peaked function with a maximum located
at Tmax ~ log ET'/%. Around this maximum the remaining term in the bracket is only slowly
varying and the argument of the running mass at the maximum, et AT % = (N — oo,
tends to infinity in the universal limit A — oo. That means that around the maximum the
running mass has almost converged to its limiting value £~2. The leading contribution can
therefore be obtained by a saddle point approximation which in the universal limit A — oo
amounts to taking the slowly varying term in the bracket at the maximum value zya, giving

o0

—27—-2/z 2%
dz 228 T e —logé TV,
(1 +£727'72/z621)2

Putting this result in the formula for the correlation length we obtain for d = 2

_ K 1
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3.1. Above the upper critical dimension: d + z > 4

Above the quantum critical point, r = 0, we can solve the implicit equation for the correlation
length iteratively and obtain in leading order

_ K, 1 1
¢ 2(7«:0):4(N+2)7du7'logu7_172/z+0(uTIoglogW) . (3.8)

Fermi liquid regime: r 7 %/% > 1

In the Fermi liquid regime up to sub-leading temperature corrections the running mass in
the integrand can be replaced for low temperatures by the control parameter . The leading
contribution of the remaining integral can then be evaluated,

[e.e]
/ /du 4v (cothy — 1) e?-d+2)z
T (pT—2/2 21+1) (2€Z$1))2

log T1/= /A 0

¢ 2xr+4(N+2)

- Tdv 4 th (2-d+2)z
—r AN +2) KguT2r 5 dv_dv(cothv—1) e (3.9)
T (27 41 (2 7',,47;;/2ez,’r,,v)2
lOgrl/Z//\ 0

To lowest order the term 77 %/2 can be neglected in the denominator of the integrand.
Moreover, for 2 —d+ 2z > 0 the lower limit of the z-integral can be extended to minus infinity

. . 2—d - . .
inducing an error of order O (T]/Q/A) " For 2—z+d > 0 the remaining z-integral is
convergent and we obtain

dv 4v (cothv — 1) e(2-d+2)z
T 2:13 + 1)

oo oo
¢? ~ T+4(N+2)Kd11T2 Tz /dT/
—00 0

2 d—
12 qm( & 7r)

d— 2

= r+4(N+2) — KquT?r 7 (3.10)

where the temperature dependent contribution is sub-leading.

3.1.3 Estimate of the critical temperature

We can obtain an estimate for the critical temperature 7.(r) from the criterion (2.58) that
the correlation length is infinite at 7.. We find that this can only be fulfilled for negative
values of the control parameter, r < 0. As explained in detail in Section 2.2.4, the value of 7,
determined in this way is only an estimate since it falls into regime beyond the applicability
of the Millis RG approach. We will distinguish between the cases d > 2 and d = 2.

Critical temperature for d > 2
Using the expression for the correlation length (3.5) we obtain the critical temperature

r——MF<1+%> c(l_*_d_2>u7'cd+

Z COS (%ﬂ') z

—2

N

S}

(3.11)
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Critical temperature for d = 2

The Mermin Wagner divergencies (3.1) in two space dimensions prohibit a solution of £ 2 =
0 at finite temperatures. It appears that no ordered phase exists at finite temperatures.
According to (3.7) the effective mass ¢ 2 decreases exponentially for » < 0 upon lowering the
temperature but never vanishes at finite temperatures,

7|r|

5—2 . 7—2/26_ (N+2)uT (312)

3.1.4 Ginzburg temperature

The Ginzburg temperature (2.60) determines the crossover line between Gaussian to non-
Gaussian behavior, see Fig. 3.1. With the results for the correlation length (3.5) and (3.7) we
can determine 7 (r). Again we distinguish between the cases d = 2 and d > 2.

d > 2 : Putting the expression (3.5) for the correlation length into the definition (2.60) we
get an equation which implicitly defines T¢(r),

4—d

4(N +2) K d—2 d—2\  ax=2)
uTg = 7"—!-7( d—)2 dr<l+—> C<1+—> uTe : (3.13)
z cos (Wﬂ) z z
The Ginzburg temperature differs from the critical temperature (3.11) by
22 d—2
_ ——~— COS s -2 2-d
T —Te _ dtz—2 () (un)i—j T. = . (3.14)

Te  4AN+2 K D (14+L£2) ¢ (1+42)

z

d = 2 : Putting the definition of the Ginzburg temperature for d = 2, £ 2 = uTg(r), into
the expression for the correlation length (3.7) we obtain

1 1
uTeq?

3.2 At the upper critical dimension: d+ z =4

This section considers two-dimensional spin fluctuations in a antiferromagnetic metal, d =
z = 2. The corresponding Hertz theory is at its upper critical dimension, and it is plagued
by logarithmic corrections of different origin.

3.2.1 Quartic coupling

At the upper critical dimension the quartic coupling is marginal and we have to take into
account the u?-term in its differential equation (2.43). The solution reads

u
(b) = for d+z=4 3.16
u(b) T+ 4N +8)ugh) 8 ¢F7 (3.16)

logb
g(b) = /U dz f4(R(e")e**, Te*™). (3.17)
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3.2. At the upper critical dimension: d + z = 4

In the vicinity of the quantum critical point, i.e. for small temperatures and small running
mass, the quartic coupling is given approximately by

u 1 1\t
(b)) ~ = log b e (N+8) fau 3.18
u(b) 1+ 4(N +8)ufslogh 4(N +8)fa (Og ¢ ) : (3.18)
where X
fa= f4(0,0) = 72 : (3.19)

Note that f4 is independent of the cutoffs A and I', i.e. it is universal. It is the product of the
surface of the two-dimensional sphere in momentum space, Ky (2.45), and the surface of the
sphere in frequency space, 1/.

3.2.2 Correlation length ¢

In contrast to the case d + z > 4, the exponential factor in the expression for the running
mass at zero temperature (2.52) now does not converge leading to a scale dependent mass
gap,

5o — O
A(b) = T ~ with r= 0 % . (3.20)

5 Nt2 Nt2
<10g [b2 P } ) (2N +8) fau) Vs

The logarithmic dependence of the zero-temperature mass A on the scale b is characteristic
for a ¢* theory at the upper critical dimension, d+z = 4. For € = 4—d+z > 0 the correlation
length exponent v will deviate from its Landau value 1/2 and the leading correction is known
to be linear in €, see e.g. Ref. [36]. At the upper critical dimension, ¢ = 0, logarithmic
corrections to scaling occur and are materialized in the scale dependence of A. In particular,
that means that we cannot simply take the limit & — oo neither in the expression for the
rescaled quartic coupling (3.18) nor in the expression for the mass gap A. Choosing the scale
A(b)b?> = A% we obtain the following correction to the correlation length exponent v
-1
N+2
A = — " g,z 2leA | W

N+2

12 \ Nos dlogr " log A
A2 \ N¥8 og
(log m) A(b)

(3.21)

where we have introduced a “renormalized” cutoff A, which depends on the bare quartic

coupling constant u
)
s

A= AedN+8) Kau (3.22)

The expression for v agrees with the result of the epsilon expansion of the ¢* theory [36] if we
A

VA®b)

and identify the correlation length with
7207 ~ R(b)b? = A? — R(EAN) ~ €72, (3.23)

identify e = 1/ log At finite temperature we will instead choose the scale R(b)b* = A?

In the following the limiting behavior of the temperature correction (2.56) will be evalu-
ated, (R = limy_,o R7(b)),
oo

— - 5 (3.24)
™ (R(€$A775)77162m+1) + (2 e2zp)?

RT:4(N+2)K2T / dr

log T1/2/A 0
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N+2
N+8

Quantum critical regime: r <log Aj) LT

The same arguments as in the analysis above the upper critical dimension in d = 2 lead to
the leading behavior,

d u(e"AT 2)
i 14 R(eAT~ )7'71621

Rr ~ —4(N+2)KyT /
]0gT1/2//\
2z u(e“”AT*%)R( mA’T*%)TfleQ:I:
dx . _
(1 + R(e*AT )T~ 1(,2T>

~ AN+2) K, T / (3.25)

log 7"1/ 2/A
In contrast to what happens above the upper critical dimension, the running quartic coupling
constant now is only logarithmically varying. The integrand can thus be separated into a

product of a strongly peaked function at the position Zmax = log £7# and a slowly varying
part which includes the quartic coupling u. Applying a saddle point approximation we obtain

Ry ~ 4 (N +2) Ko Tu(e™™ AT 2)Zpax . (3.26)

Using the expression (3.18) for the running quartic coupling we obtain the implicit equation
for the correlation length

N +2 T log (£27) B r N +2 T log (£27)

,QN T = — A .
C A TR T g (@) (log (€2A7)) 35 N+8 | log (€212)

(3.27)

There exist a sub-regime II (see Fig. 3.1) where the control parameter still governs the corre-
lation length,

— T i T o, (108 —)%_ﬁ
(lOg A2 ) %713 lOg T
2~ B 3.28
‘ N +2 _log log A2 10\ —Nis (328
T i UL v (log A—Q) T« T%.
r
N + 8 log ? IOg

Note that the asymptotic expansion in the regime III is not very revealing since the con-
vergence is very slow. It is only meaningful in the negligible small sub-region of III where
log log > 1.

N+2
N+8

Fermi liquid regime: r <log A:) LT

In the Fermi liquid regime the correlation length will be dominated by the zero temperature
N+42
2\ T N8

contribution ¢ 2 ~ A ~ r (log A . After a convenient substitution we can extract the

temperature correction from expression (3.24)

4v (cothv — 1) €2 u(e¢A)
R(em€M)€2e™ +1)° + (2T € e2v)’

Rr ~4(N +2)K,T%¢? / / (3.29)

—log(€A) 0
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3.3. Thermodynamics

In the Fermi liquid regime we can neglect the term 7 £2 in the denominator of the integrand.
This leads to

o

7TK2 ) 6’2I T
Ry ~4(N +2) = T€ / dx (Rleen)eei 117 u(eEA) . (3.30)

—log €A

The remaining integral can again be evaluated with a saddle point approximation. Taking the
running quartic coupling at the saddle point, znmax = 0, we obtain for the correlation length

2~ A+

 N+2 T° r 7> N+ 272 (1 A?)ﬁﬁ] 51
— — ~ -+ — ——— | log — . .

r

The temperature dependent correction is characteristic of a Fermi liquid.

3.2.3 Ginzburg temperature

At the upper critical dimension the quartic coupling, u, as well as the correlation length are
scale dependent. Choosing the scale b = £/A we obtain the Ginzburg temperature u7g(r) ~
€72 as a set of two equations parameterized by &,

To = D800 (222)

2

o ) 3.32
roo= &7 (logPA%) Ve (1 - N;— : log <N7r+ : tog (£2A2)>> . o

2

The asymptotic behavior of the Ginzburg temperature can be obtained by solving these
equations iteratively,

, N42
Ta (log —) Ve A2
T o Ta A
r o~ — _ N 4+ 2)loglog — — . 3.33
N T3 log 22 (( ) log BT 7r> (3.33)

3.3 Thermodynamics

3.3.1 Specific heat

In the following the expressions (2.65) and (2.66) are evaluated. Using the leading-temperature
contribution of the f, functions (2.46) we get for expression (2.65) (after two convenient sub-
stitutions)

00 T -1 —2/z 2% z—d)x
N s oaqp [ 20 \2 (BEAT 5T 22 41) o0
veep = 5Kd7- ’ dx 7w \sinho 1 2 2
0 b (R(emA'T*;)7'72/z62:L’ + 1) + (2 e*T 'U)
(3.34)

log 71/% /A
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Quantum critical regime: r 7 /(¥ « 1

z > d: We can neglect the RT~?/# terms and extend the lower limit of the z-integral to
—d
zero, neglecting contributions of order O (TI/Z/A)Z . The leading behavior reads

N K d d —z
Yqcp = Ei‘ldr(u—)c(u—) T
zZ COS (Zﬂ-) z z

z = d: In the case z = d the leading contribution of the specific heat will depend on the
cutoff A. We approximate the z-integral by log A/T'/% and we get

(3.35)

N27rKd A

race = 5 10g7.1/z. (3.36)

z < d < 3z: In this case the leading contribution is given by the cutoff.

[ee]
Yoo _ E 2m K, Adfz B N d;z /dfr ,I.zfdfl /OO @ 20 2 (2,7,'3 1))2
QCP 2 3((172) 9 J LT . T sinh v 1+(2.’EZ'U)2

N 27TKd d— N Kd < d) < d> d—z
= o d a2 oy )¢(14+2) T
2 3(d—-=2) QZcoq(Qd ) z ¢ z

(3.37)

We have neglected contributions of order O (TI/Z/A) %74 Note that the temperature depen-

dent part is negative due to the fact that cos (%w) ‘COS de )‘

Fermi liquid regime: r 7-1/(#2) > 1

Substituting the running mass R(.) by the correlation length, ¢ 2, in the integrand we obtain
for the leading contribution

N dv 20 2 2% 4 1) elz—d)z
vace = - Ka (¢ / (]’I’/ ‘ ( : ) 2
2 sinh v (BZm + 1) 4 (2 ng 2T 7))
—log&A
N 27 K, _gyd=z e(z d)x
Ny de ————. .
2 3 (5 ) ’ / Tz 1+ 62,'1“, (3 38)
—log €A

In the second line the term T &% in the integrand has been neglected and the v-integral
performed.

—Zz

z >d: Neglecting contributions of order O ({A)d we get

N 7r2Kd
2 3 sin (%dw)

d—z

€= (3.39)

YQCcp =

z=4d: Asin the quantum critical regime the integral over z leads to a logarithmic depen-

dence on the cutoff, log éA:
N 21w K
vacr = 5 4 log €A (3.40)
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3.3. Thermodynamics

d—2< z<d: Theleading contribution stems from the cutoff

E 21 K4 Az _ EQW Ky (572),1%2 /00 P e2e
2 3(d—2) 2 3 NS 14 e
N 2r Ky N 7Ky

- NGz 22 © e
2 3(d-2) HEE sin (Z547)

~

YQCP

(€)% (3.41)

We neglected contributions of order O (fA)di%Q. Note that the temperature dependent part
corresponds to a negative correction, since sin (ngw) < 0.

These results for the specific heat differ from the results obtained by U. Ziilicke et al. [6]
by a factor of 2. This factor can be traced back to the factor 1/2 in the RG equation for
the free energy (2.40) which originates from the fact that the fields ® in the Hertz model
(2.23) are real. This factor was missing in Millis’ original paper [5] (compare also footnote on

page 28).

Classical regime

Near a classical phase transition the specific heat diverges with diminishing distance to the
phase boundary according to C' ~ R™®, where R is the effective mass of the classical theory.
The exponent « is given by hyperscaling [17], & = 2 — dv. In the vicinity of the finite
temperature transition the specific heat coefficient is therefore dominated by (2.66) which
gives the most diverging contribution for a vanishing running mass R(.). Using the leading
behavior of the f,, functions (2.46) the expression (2.66) becomes

N x (T 2 P I N2—2 ¢ pld—d—2)z R(e®) 2% 4+ A2
dAd/dx<8R(e)> %Coth( ¢ ) e ( (ef)e™ + )

Yo = 5 K 2 i
2 87- Vs 2T€ ((R(e’r) 62,’12 + A2)2 + (A27Z 6)2>

It is convenient to perform two substitutions, first €¢/(27 e¢*”) — v and then e — Ae”,

N
Nt = K T2ehd+e

2 oT

7 i <8R(A£em)>2 7od1) 8 coth v eld—d+2)z (R(Aé’e"”) e?re? 4 1)
r [ ————=—~ — 5
 lop(Ag) b T ((R(Agen) 262 +1) + (26 Terrw)’)

The leading contribution will come from the scaling into the classical regime, so we expand the
hyperbolic function for small arguments keeping only the leading contribution. Afterwards
we can perform the v-integral,

o ﬁ 4—d T 8R(A§€T) ) 2 (GQI + 1)2 eld—d)z
ver = 5 KaT¢ / dz { ( 57 R @ T 12 [ @ T 1F

—log(A€)

This integral can be evaluated with a saddle point approximation. The integrand consists
of a product of a slowly varying term in the curly brackets and a strongly peaked function
with the peak located at zmax = %log %. The argument of the running mass at the peak
maximum is already very large, Aée™»x and the running mass therefore varies only slowly
at the peak position. Taking the value of the curly bracket at the peak maximum we can
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Chapter 3. Solution of Millis RG Equations

evaluate the remaining integral. In the universal limit A — oc the corrections to this saddle
point approximation vanish (compare also Appendix D of Ref. [6]),

N CLaENE T e N @ drKa g ardpe (062N
= KT [ = /d = 2 ( ~ > .
L= aT¢ < oT ) ! (e2 4+ 1)2 2 4sgindr T (5 ) oT

2
(3.42)
The specific heat diverges when the correlation length grows to infinity. The divergence is
consistent with the above mentioned hyperscaling relationship with the Landau value v = 1/2,
a =2 —d/2. The crossover to the actual classical, Wilson—Fisher fix-point value vwp # 1/2
occurs at the Ginzburg temperature Tg. Let us estimate the quantum classical crossover

at which the classical contribution to the specific heat, oL, starts to dominate over the
quantum contribution yqcp. Using the expression for the correlation length (3.5) we find
that the classical part is of order ycr, ~ 0(54*d1t27'(z+2d*4)/z) whereas the quantum part
yqcp ~ O(T42)/%). The classical contribution takes over if the correlation length is of

order,
4 2(d+22-4)

§ 2 vuTdT 2(-d) (3.43)
Since the temperature is very small we can conclude that the classical contribution 7y, is only
important in the immediate vicinity of the finite-temperature phase transition. In particular,
the condition (3.43) should be compared with the definition of the Ginzburg criterion, £ 2 =
(uT)?/ 4=, the latter will always be fulfilled first as the phase transition is approached.
This means that the quantum classical crossover of the specific heat is located within the
non-Gaussian region, see Fig. 3.1.

3.3.2 Thermal expansion

In this section we will evaluate the expressions (2.69) and (2.70) for the thermal expansion.
Again we start with the contribution due to the quantum critical point. Using the leading-
temperature contribution of the f,, functions (2.46) we get (after two convenient substitutions)

N d—:
aqer = 5 KaT = (3.44)
« / I 8R(emAT*%) /00 dv < 20 )2 o(2+z—d)z
eds 8— —_— . h 7; 72 2 .
log 71/ /A TS0 TSI (R AT ) T 1)+ (260 0)?

Quantum critical regime: r 7 /(¥ « 1

z>d—2>0: For space dimension d > 2 the running mass in the denominator of the
integrand can be neglected in the quantum critical regime,

OR("AT ) /% ( 20 ) (4
or 0 1+ (2e7%v)?

o
N .
aqer = — Ky T / dx

2 :
log T1/2/A

T sinh v

Proceeding as before we take the argument of the running mass at the saddle point value of
the double integral and obtain for A — oo

N Ky d—2 d—2\ 0672 _a-»
qep = — —————T (24 —= 1 = 4
waor = oty T (20 10) (10 557) BT (3.45)
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3.3. Thermodynamics

d=2: As was the case for the correlation length in two space dimension we have to expect
logarithmic corrections from scaling into the classical regime. Before expanding the hyperbolic
function we perform the trick of integrating by parts (setting d = 2)

oo
N
aqQep = _EKd / dz x (3.46)
logT'l/Z/A

y d OR(e"AT =) / dv ( 20 )2 e*”
- - a - . 2 k)
dx or Jo m™ \sinhwv (R(e”ATfé) T-2p2 1) 4 (2e 1))2

where the surface term is sub-leading. Expanding the hyperbolic function to leading order
and performing the v-integral we obtain

oo 1
N d EANT = 1
aqgep ~ ——Ky / dr z —aR(P T ) - 5 . (3.47)
2 dx or R(e®AT =) T Ze2 +1
log T2 /A

The saddle point approximation leads to (A — o0)

_. (3.48)

~-——K o~
@acp I dxg 2722041 2 2 Or Ogg—QTf;

2 or

— 00

N 8527Od d | _NKgo¢ 2 |

Fermi liquid regime: r 7-1/(#2) > 1

Proceeding in the same way as for the correlation length we obtain for the leading behavior
in the Fermi liquid regime

N n? (d-2) Ky dz2852
@ =— — T : 3.49
Classical regime
Proceeding similarly as for the specific heat in the classical regime we obtain
oL = ——————— —= . 3.50
acL 2 4sin % dﬂ ¢ oT or ( )

The thermal expansion shows the same divergence in the classical as the specific heat. This
holds generally for a phase transition of the second kind (see Ref. [16] §148). In the following
we consider the quantum—classical crossover for the thermal expansion. Using the expression
for the correlation length (3.5) we find that the classical contribution is of order acy ~
O(£47 4y T(@+272)/2) and the quantum one of order agcp ~ O(T(*~2)/%). Comparing these
two we find the condition for the quantum classical crossover to be

2

2~ (uT)T4d | (3.51)

which coincides with the Ginzburg criterion. As for the specific heat, the classical regime is
located within the non Gaussian region, see Fig. 3.1.
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3.3.3 Griineisen parameter

In this section we list the ratios between the critical contributions to the thermal expansion
and specific heat.

Quantum critical regime: r 7 /(¥ « 1

1
3 108 o727z 0¢ 2

=d=2: Tu=— 3.52
z cr Ar 7. log Tq\/z 8’[“ ( )
d —2
0s (4 , 1
pAd=2: Tg=—— (Zm) o og o (3.53)

2 (2+4)¢ (14 9)

42 a2y 1ol
PP L Gl RS G e I (1 A) K g

27 z cos (L2m) BT or
os () T(2+L£2) ¢(1+ L2 2
otherwise : Lo = eos (de;) ( + Zd) C( + S ) T*%ag (3.55)
cos (Gm)  T(2+2)C(1+5) or
Fermi liquid regime: r 7-1/(#2) > 1
1 062
d=z: Ta=3 (€2)7" (log€A) ™! g (3.56)
r
z—d, o 0672
d#z: TDeg= (et £ (3.57)
2 or

Classical regime

In the Griineisen parameter the divergences of specific heat and thermal expansion cancel,
and it measures essentially the pressure dependence of the critical temperature,

02
acL or
Ter = = _— . 3.58
CL T’)’CL 7_8572 ( )
oT

With the restrictions mentioned in Section 2.2.3 we can define a critical temperature by setting
€ 2(T.(r),r) = 0. With the help of this definition we can rewrite the Griineisen parameter in
the vicinity of the phase boundary as

dlog Te(r)
dr ’

The Gruneisen parameter in the classical region near the phase boundary essentially measures
the pressure dependence of the critical temperature T, [16].

Ter = (3.59)

3.4 Summary of results and discussion

The results of the rather lengthy derivations of the last sections are summarized in the fol-
lowing. We list explicitly the results for d, z = 2,3 and show the resulting phase diagrams for
z=2and d=2,3.
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3.4. Summary of results and discussion

The regime of applicability of the perturbative Millis RG is confined to the right-hand side
of the Ginzburg line T¢(r) in the (r, T) plane of the phase diagram, see following Figs. 3.2 and
3.3. Depending on the spatial dimension and the internal symmetry of the order parameter
O(N) there might exist a finite temperature phase boundary originating in the quantum
critical point and extending to higher temperatures. However, it will be located in the non-
Gaussian region not accessible with the approach of this chapter. Nevertheless, a critical
temperature 7.(r) can be estimated in space dimensions d > 2.

The scale invariant combination 77~ 1/¥% of the control parameter and the temperature de-
fines an important crossover line that separates the phase diagram into a Fermi liquid regime,
rT~1/7% > 1, and a quantum critical regime, r7Y/** <« 1. As the name suggests, in the
Fermi liquid regime the thermodynamics is that of a conventional Fermi liquid. The quantum
critical regime on the other hand is characterized by peculiar temperature dependencies of
the correlation length, specific heat and the thermal expansion — the thermodynamics at
finite temperatures is strongly influenced by the presence of a quantum phase transition.

The thermal expansion divided by temperature, /T, which approaches a constant in
a Fermi liquid at low temperatures, exhibits a distinct divergence in the quantum critical
regime in agreement with the scaling treatment of Chapter 1. For example, it diverges as
a/T ~ T-'/? in the three dimensional (commensurate) antiferromagnet (d = 3,z = 2).
This should be contrasted with the temperature dependence of the specific heat divided by
temperature, C'/T = +, which also saturates towards a constant in a Fermi liquid at low
temperatures. Its behavior in the quantum critical regime however is less spectacular than
that of the thermal expansion. It either approaches a constant with peculiar temperature
corrections for d = 3,z = 2 or it diverges rather slowly, e.g. logarithmically for d = 2,2z = 2.

As a consequence, the ratio of these two quantities, the Gruneisen parameter, diverges
as a function of temperature in the quantum critical regime. This bears out the prediction
made in Chapter 1. In particular, we can now compare the properties of the Griineisen
parameter of a specific model, the Hertz theory, with the general scaling predictions (1.30)
and (1.29). The (zero-temperature) Hertz model is above or at its upper critical dimension
for d, z = 2,3 and scaling is not necessarily expected to apply due to the quartic coupling wu,
which is a dangerously irrelevant operator. Nevertheless, we observe that the results agree
to within logarithmic corrections. These logarithmic corrections abound and it is interesting
to examine their origin. Firstly, for d + z = 4 the zero-temperature theory is at its upper
critical dimension which leads to a logarithmic temperature dependence of the denominator
of I'¢, in the quantum critical regime. Secondly, for d = 2 the effective finite temperature
theory is at its lower critical dimension resulting in a logarithmic temperature dependence of
the numerator of I';, in the quantum critical regime that can be traced to a Mermin Wagner
divergence (3.1). Thirdly, for d = z the universal prefactor in the Fermi liquid regime (1.29)
expected from the scaling treatment is supposed to vanish. This is reflected in a further
logarithmic dependence of I, for d = z.
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non-Gaussian o
regime . ru T
Ta(r) )
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/

/
/

regime

temperature T

ordered

phase
Fermi liquid
regime

|

control parameter r

Figure 3.2: Phase diagram of the Hertz’ model for d = 3 and z = 2. In regime I Fermi liquid
behavior is observed in all thermodynamic quantities. The quantum critical regime consists of regime
II and IIT which are separated by a crossover in the behavior of the correlation length. The Ginzburg
line T (r) identifies the breakdown of the perturbative RG and gives the crossover line to the non-
Gaussian regime. The critical temperature T.(r) is an estimate for the Néel temperature. Units: &2
is measured in units of &2, T in Ty, v in V/(4Ty), a in 1/(&dpo) and T in 1/(Vpg). The control
parameter is given by r = (p — p.)/Po-
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d=3;2=2 formula,
quantum critical regime II4+IIL: » 7! < 1
for T r>>uT?
_ r or [I: r>uT>2
g 2 (N+2)<(§) , N (35)
\/§7r3/22 uT2 forIII: r<«€uT>
V2m15¢ (3) N . 1
or = 6“22 T3 =-0.0798 N T> (3.37)
Ver3¢(3)N
gy = Y2736 GIN 71 0622 N T (3.45)
3272
2¢ (3
Lo = — ‘ (g) T '=-07789 T (3.55)
5¢(3)
Fermi liquid regime I: » 7! > 1
2=y (3.10)
N 1
Yer = *ﬁ T2 (341)
N 1
Qor = 57 Tr2 (3.49)
[
P =—=r (3.57)
2
Ginzburg temperature
o2 (N +2)C(3/2) 3/2
r=u TG - W u TG (313)
Estimate of the critical temperature
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temperature T
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Figure 3.3: Phase diagram of the Hertz” model for d = 2 and z = 2. Fermi liquid behavior is seen
in regime I. Region II and III form the quantum critical regime. They are distinguished by different
logarithmic corrections to thermodynamic quantities. Beyond the Ginzburg temperature T (r) starts
the non-Gaussian regime where the perturbative RG breaks down. In two space dimension an estimate
for the critical boundary could not be obtained due to the Mermin Wagner divergence (3.1). Units:
€2 is measured in units of &2, T in Ty, v in V/(£3To), o in 1/(Edpo) and T in 1/(Vpo). The control
parameter is given by r = (p — p.)/Po-
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d=2,z=2 formula,
. 2 27
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g T
-2 N+2 -loglog % 3.97
o~ WT log % (3.27)
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Chapter 4

Anisotropic Hertz Theory

The work of this chapter was motivated by the observation of quasi two-dimensional an-
tiferromagnetic spin fluctuations in neutron scattering experiments on the heavy fermion
compound CeCug_,Au, [7, 8]. The crystal structure of this system is essentially of a three-
dimensional character and the two-dimensional spin fluctuations are only a precursor to
the three-dimensional magnetic ordering observed below the Néel temperature. Why two-
dimensional fluctuations dominate an intrinsically 3D alloy is, however, only poorly under-
stood. At sufficiently low temperatures one expects that the apparently very small coupling
of the spin fluctuations in the third dimension becomes important leading to a dimensional
crossover in the thermodynamic quantities, although the experimental confirmation of such
a crossover has so far proved to be elusive.

The presumed scenario of a 2D—-3D crossover in the vicinity of the quantum critical point
in CeCug_zAu, is sketched in Fig. 4.1. The quantum critical point is housed in a pocket
where 3D spin fluctuations dominate the quantum critical dynamics. From the measured
phase diagram of CeCug_,Au, (right panel of Fig. 4.1) the quantum critical point has been
associated with a doping level of x = 0.1 after extrapolating linearly the Néel temperature

0.05} region with quantum critical

3D spin fluctuations

_ % regime
< P
=
| extrapolated ; 05 ordered
QCP regime
0.0 - N
0.08 09 01 0.11 0.12 A3 0.14 0.0 - ' ' '
N 01 P2 03 04 05 06

Figure 4.1: The right panel shows the phase diagram of CeCug_,Au, [37] as a function of
doping ©. The zoom in the left panel is a sketch of the presumed 2D-3D dimensional crossover
scenario.
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for various doping levels z > 0.1. Thermodynamic measurements [7] as well as neutron
scattering experiments [8] on CeCujgAug; have not observed any signatures of 3D spin
fluctuations at the lowest temperatures. One could argue that the temperatures reached
were still not low enough to detect the tiny coupling between the two-dimensional planes.
Another line of argument suggests that the extrapolated quantum critical point at a doping
level of x = 0.1 may not coincide with the actual location. In the three-dimensional pocket
the functional dependence of the Néel temperature on doping might deviate from the linear
behavior observed for higher doping levels, as indicated in the left panel of Fig. 4.1. As a
consequence, the alloy CeCuz.gAug,; might not be located well inside the 3D pocket or might
even fall outside it which would serve as a simple explanation of why 3D spin fluctuations
have not been seen at lowest temperatures. The error in the location of the quantum critical
point determined from an extrapolation of the experimental data can, however, be estimated
theoretically. This is one of the purposes of this chapter. We will further clarify how the
dimensional crossover is reflected in thermodynamic quantities: correlation length, specific
heat, thermal expansion and the Griuneisen parameter.

Local quantum criticality

Apart from the specific questions posed by experiment the 2D 3D dimensional crossover
scenario is also of interest for the notion of locally critical phase transitions in metals. Q. Si et
al. [20, 21] have proposed a scenario for heavy fermion systems where the critical fluctuations
of the local magnetic moments coexists with the extended two-dimensional spin fluctuations
of the conduction electrons. They are interwoven and nurture each other in such a way
that they become critical together. In contrast to, for example, the Hertz theory where the
critical fluctuation modes are all extended the important feature of this new scenario is the
inclusion of locally critical modes, which is the reason why this scenario has been dubbed a
local quantum phase transition.

The scenario of a local quantum phase transition has also been proposed for CeCug_,Au,
in order to explain the infamous w/T scaling of the susceptibility [38].

A necessary condition for the development of local quantum criticality is the existence of
two-dimensional spin fluctuations. The associated local spin susceptibility is characterized
by a logarithmic divergence of the Mermin—Wagner type (3.1). This singularity feeds back
into the coupling to the local moments giving rise to important nonlinear effects that are
eventually responsible for why the extended and local modes become critical in a coordinated
fashion. In three dimensions, however, the susceptibility is non-singular and such feedback is
harmless: the conventional scenario of the Hertz model is expected to apply. Accordingly, in
a material with a non-vanishing coupling in the third dimension the local quantum criticality
should pass away when the 2D to 3D crossover occurs. All the predictions of local quantum
criticality are therefore restricted to a regime where the two-dimensional spin fluctuations
prevail, i.e. to high temperatures, and do not apply to the immediate vicinity of the quantum
critical point. The position of the dimensional crossover in the phase diagram will therefore
also clarify where the scenario of local quantum criticality is expected to break down.

Model

We are interested in the limit when the spin fuctuations are almost two-dimensional, i.e. when
they prefer to propagate in two-dimensional planes and their mobility between the planes
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Figure 4.2: Sketch of a fluctuation mode with (I) high momentum corresponding to a corre-
lation length & smaller than the stretched distance between the planes &€ < 1//nA? ~ a/\/7,
where a is a lattice constant and n is the anisotropy parameter, and (II) low momentum that
extends over several planes and is effectively three dimensional, & > 1//nA% ~ a/\/7.

is restricted. In a tight-binding picture we can associate a hopping amplitude ¢ with the
movement of the spin fluctuations in the planes and an amplitude ¢ describing their hopping
between the planes. Their two dimensional character is reflected in the ratio of these hopping
amplitudes, n = t'/t < 1. The resulting energy—momentum dispersion is given by

e(k) =t (2 — coskya — coskya) +t' (1 —coskyia) ~ & (k! +nkl) for k.,ki <A~1/a.

(4.1)
where £y = a\/t/_Q and a is a lattice constant. The momentum component &, is perpendicular
to the planes and k., k, and k, are the components in the plane. The approximation is valid
for small momenta with the inverse lattice constant as a momentum cutoff, A ~ 1/a, and
it describes the long-distance behavior that controls the critical behavior. The contribution
of the perpendicular momentum component is weighted with the small number n = ¢'/t. In
the limit » — 0 the perpendicular component of momentum does not contribute and true
two-dimensional physics is recovered. With an appropriate substitution of the perpendicular
momentum we can rewrite the above dispersion relation as

1
ek) =& (k2 + k1) for k <A~ - and k| < /nA? ~ ? (4.2)

The dispersion now seems to be isotropic in momentum space, but the cutoff for the perpen-
dicular component now corresponds to an inverse stretched lattice constant of a/,/7. This
provides an alternative physical picture that will be suitable for an intuitive understanding of
the dimensional crossover in criticality. By incorporating the anisotropy parameter in a new
stretched lattice constant a/,/n = (J\/TW the approach to the two-dimensional limit n — 0
can be interpreted as an increased separation of the two-dimensional planes; for n = 0 the
planes have an infinite separation and therefore do not communicate with each other. The
crossover from 2D to 3D criticality occurs when the correlation length ¢ has increased such
that it starts to extend over several stretched distances a/,/7, see Fig. 4.2.

We are going to describe the dynamics of the antiferromagnetic spin fluctutions with the
Hertz theory (2.23) with a dynamical exponent z = 2. The above considerations motivate
the modifications of the Gaussian propagator (2.27),

Xo (iwn, k) = 0o+ & (k2 +nk?) + |wnl/To . (4.3)
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Chapter 4. Anisotropic Hertz Theory

The action of the three-dimensional anisotropic Hertz theory then reads (compare with (2.23))

1 1
San[®] = — > =& (iwn, k) x ' (i, k) ®(—iwn, —k) + SW[@]

BV 2
1 4 4

S ]_gﬁ4v4 S Vi)Y ki B w (4.4)
Wnj K 7=1 j=1

x (7 (iwn1, k1) P (iwna, k2)) (D7 (iwn3, k3) @ (iwna, ka)) -

We have just explained that for momenta in the range between [\/nA, A] the spin fluctuations
are effectively two dimensional; they do not extend over a distance of the stretched lattice
constant 1/4/nA?. In particular, for such momenta the perpendicular component of momen-
tum becomes a dead label of the fluctuation modes ®. The dead label can be absorbed by
introducing effective two dimensional fields,

VZD dk A_
Pop (iwn, k, Z(I) iwn, k) = '/A g@(n‘)mk ) = ;@(zwn,k”) fork, € [nA,A].

(4.5)
For high momenta the action will only be a functional of ®9p and the effective theory is
therefore a two-dimensional one. It is instructive to relate the quartic coupling of the effective
2D theory to the quartic coupling g appearing in (4.4),

SO [Dyp] = A54V4 Z Vand ka 86 an, (4.6)

U-’nyy n7
2,3,4

x (@31 (iwn1, ki1 ) @op (iwna, ki2)) (@2p (iwns, ki3) @op (iwna. ki) -

The prime on the summation indicates that the momenta are restricted to the intervall k,; €
[/nA, A]. We can read off the effective two-dimensional quartic coupling

A
gQD:W__(] — ggn/ dk—i:g. (4.7)
A —A 2

We are mostly interested in the almost two-dimensional limit, i.e. in the case where the
anisotropy parameter 7 is small. The anisotropic Hertz theory is then effectively two-dimensional
except for the small momentum range [0,+/nA2]. We will see that for high temperatures
T > nA? this momentum range leads only to small corrections to the thermodynamics. In
the following we will adopt the point of view of high temperatures: we will measure all quanti-
ties in units appropriate for the effective high-temperature, high-momentum two dimensional
theory.

Particularities

To what extend does the anisotropic Hertz model differs from its true 2D and 3D counterparts
analyzed in Chapter 37 Are there any qualitatively new features to be expected?

The most significant difference is the presence of the anisotropy parameter n which tunes
between the 2D and 3D limits. It will turn out that the anisotropy parameter 7 is a relevant

o8



A €72 =nA?

I
5 Il quantum critical <’
g Te regime T
o ",‘)‘ ,_/"
E ‘\_‘ K I
5 3D pocket *,
nA?- \
ordered \
VX' /Fermi liquid
phase _
regime
0 y I -
0 nA?

control parameter r

Figure 4.3: Phase diagram of the anisotropic Hertz model. Three-dimensional spin fluctu-
ations dominate in the shaded pocket around the quantum critical point. Two-dimensional
spin fluctuations prevail in the non-shaded part of the phase diagram. The quantum critical
regime inside the fan spanned by the solid lines is divided into four sub-regimes with different

behaviors of the correlation length. In particular the crossover from sub-region II to sub-region
IIT happens for €2 ~ nAZ.

quantity with respect to the two-dimensional fixed point. We will show that it carries the
same scaling dimension as the control parameter r. In Chapter 1 we explained in detail that
the thermal expansion is sensitive to relevant operators to which the pressure couples. If it
is possible to vary not only the control parameter but also the anisotropy parameter with
pressure, both will contribute to the thermal expansion. Moreover, since they carry the same
scaling dimension both contributions will be equally important when the flow is governed by
the two-dimensional fixed point. In particular, the additional contribution to the thermal
expansion stemming from a pressure dependence of the anisotropy parameter 7 is

Aa=——=— —. (4.8)

This additional contribution constitutes a new feature of the anisotropic Hertz model.

In Fig. 4.3 we offer the reader a glimpse of the phase diagram of the anisotropic Hertz
model which we will derive in detail in the forthcoming sections. It should be compared to
the diagrams displayed in Section 3.4 for d = 2,3 and z = 2. To avoid a clutter of lines we
have omitted the crossover to the non-Gaussian regime. As before, the physics of the ordered
regime (dark gray area) is beyond the scope of the Hertz theory and will not be discussed here.
Around the quantum critical point (indicated by the light gray area) the physics is dominated
by the 3D fixed point. In this regime the crossover lines as well as the leading thermodynamic
behavior coincides with the isotropic Hertz model of Chapter 3. The dimensional crossover
to the 2D regime occurs upon increasing the temperature or the control parameter above the
inverse stretched lattice constant /nA2. Interesting new features emerge in the 2D regime,
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Chapter 4. Anisotropic Hertz Theory

which are all linked to the cutting off of the Mermin—Wagner divergence (3.1) present in the
true 2D Hertz model. In particular, this divergence prevented an estimate for the critical
ordering temperature 7.. As was explained in detail in Chapter 3 these divergences are
associated with the effective classical theory. In the anisotropic Hertz model the associated
logarithmic divergence is cut off by the anisotropy parameter 5 and an estimate for the critical
temperature can be obtained. The location in the phase diagram where these logarithmic
Mermin Wagner divergencies are neutralized is given by the condition ¢2 = nA2, and it is
associated with a dimensional 2D-3D crossover of the effective classical theory.

Methods

We are going to apply three different methods to investigate the properties of the anisotropic
Hertz model. In Section 4.1 we apply a Millis RG treatment. We modify the solution already
presented in Chapter 3 to the anisotropic case. It turns out that we have to apply a two-step
RG process. In the first stage the anisotropic Hertz theory is rescaled with respect to the 2D
fixed point. During this first stage the anisotropy parameter 7 is a relevant quantity in the
RG sense: it will grow. At a certain RG scale it will have reached the isotropic 3D limit n = 1
and the RG flow stops. In the second stage the resulting effective isotropic 3D Hertz theory
is treated within the standard approach of Chapter 3. In Section 4.2 we use the method
of dimensional reduction put forward by S. Sachdev [33, 2], which will allow us to compute
the crossover functions for the correlation length as a function of temperature, anisotropy
parameter 7 and control parameter r. Finally, in Section 4.3 we apply the large N method
which provides reliable information about the functional dependence of the Néel temperature
on 7 and 7.

4.1 Millis’ RG analysis

In this section we will modify the RG method of Section 2.2 to take into account the anisotropy
in momentum space of the propagator (4.3). The idea is to use a two-step RG process. First
the theory is scaled towards the fixed point in space dimension d = 2. Under this scaling the
anisotropy parameter 1 will grow and the model will low toward an isotropic Hertz theory.
The anisotropy parameter is therefore a relevant operator during the first stage. The RG
equations which will govern this flow will be derived in the following sections. At some scale
however the isotropic limit = 1 will be reached and the theory can be treated with the usual
isotropic RG equations of Chapter 2. In this second stage the model flows towards the 3D
fixed point.

Cutoff procedure

In order to derive the RG equations we have to specify the cutoff procedure we are going to
apply. We will choose an anisotropic cutoff procedure which interpolates between the pure
two-dimensional and the pure three-dimensional case. For the perpendicular component of
the momentum we take A as a cutoff: —A < k; < A. For the radial part of the parallel

component we choose the bound: 0 <k, < /A% — nki. The momentum-space volume then

becomes
1 \ 1 /A VAZnkZ .
W dk—F'AdkL/o dk, 2k, = 27 (1—5) (4.9)
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2D Ak, Ak, Ak, 3D

anisotropy parametes,

Figure 4.4: Evolution of the sphere in momentum space during the flow towards the isotropic
3D limit according according to the cutoff procedure (4.9).

which interpolates nicely between the value 47/3 for the 3D limit, n = 1, and the value 27
of the 2D limit, n = 0. Fig. 4.4 represents the evolution of the momentum-sphere and its
enclosed volume as the anisotropy parameter, 7, increases under the RG flow. In the isotropic
3D limit the usual three-dimensional sphere in momentum space is recovered.

Gaussian contribution

It is instructive to consider first the Gaussian contribution only. The Gaussian free en-
ergy (2.33) modified for the three-dimensional anisotropic Hertz model with the above cutoff
scheme applied reads (z = 2)

A \//\2*77/%2 0
N dk d
7750 AFn = —— T /—L / c —E co‘rh— — 1) arctan%
VTA 2 A T . T oo + k7 +nk?
_A 0 0

N A "Az d€ €
- 2K dk k2 ( ‘rh——l) fan —— .
2 2 / nAQ \/— / X /0 T CcO T arctan 50 + k;2

2D part 3D part

(4.10)

We have subtracted the zero temperature contribution and introduced the dimensionless
temperature 7 = T/Ty. The surface of the d-dimensional momentum sphere K; was de-
fined in (2.45). In the second line after performing an integration by parts with respect to
the perpendicular momentum component k; the Gaussian energy separated into two parts.
We can interpret the part associated with a high momentum £ as the two-dimensional con-
tribution and the low momentum part as the three-dimensional contribution. The modes
with a high momentum probe only a small region in space and therefore do not perceive the
coupling between the two-dimensional planes. These high-momentum modes are effectively
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Chapter 4. Anisotropic Hertz Theory

two-dimensional. The modes with sufficiently small momenta, however, cannot resolve the
spatial distances between the planes and therefore live in three-dimensional space, see Fig. 4.2.

4.1.1 Flow to the isotropic limit
RG equations

During the flow towards the isotropic limit the two-dimensional fluctuations are integrated
out step by step leading to a renormalization of the coupling constants. The RG equations
are derived in the spirit of Millis’ original treatment, described in Chapter 2. In particular,
we will always measure the free energy and the quartic coupling in two (!) dimensional
units F = Fr&d/(ToVA), u = gn&d/(ToVA) and temperature T = T/Ty, where V is the
three dimensional volume. Using the same conventions the RG equations for the flow to the
isotropic limit read

gig = (A 2) F(B) — 5 N ag(d(B), (). m(b))

gf(g”l — 21(b)

7
gli(gb)b = 26(b) +4(N + 2) u(b) as(5(b), T (b), (b))

gﬁ)(;)b — (d—d—2)u(b) — 4(N +8)u’(b) as(5(b), T(b), n(b))

where d = z = 2 is implied. The four RG equations are now supplemented by an additional
one for the anisotropy parameter 7, which has the scaling dimension 2 and is therefore a
relevant quantity. The functions a,, are given by

I de €
ag(6,T,n) = K2A2/ — (’othﬁar("ram(s_I_A2
A dky VA k] kydk, 2T r
— coth — arctan — 55
A27r ™ 2T O+ ki +nk]
0
(1‘4(53 Ta 77) = 7% (12(5’ Tan)

and K, is defined in (2.45). The leading correction at finite temperatures stems from the
contribution due to the renormalization of momentum

* de 3
ao(0,T,n) —ag(6,0,m) = KQAQ/ & (coth % — 1) arctan
0

s

= A2 +O< *F/T) . (4.13)

4.1.2 Crossover parameters

The solution of the RG equation for the anisotropy parameter is n(b) = nb?. The scale b*
where the theory reaches the isotropic limit, n(b*) = 1, can therefore be identified as

b*

S

(4.14)
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In this section we are concerned with the values the parameters attain at this crossover scale.
These rescaled parameters then act as the initial or effective parameters for the isotropic
3D flow. The derivation of the crossover values follows along the lines of the calculations
presented in chapter 2 and the presentation will therefore be kept concise.

Quartic coupling

During the flow to the isotropic limit the theory is at its upper critical dimension: the quartic
coupling is marginal. The RG equation for the quartic coupling u can be rewritten as an
integral

U

ud) = AN+ 8wl (4.15)

logb
glb) = / dz as(R(e”)e®®, Te* ne®?) . (4.16)
0

In the vicinity of the quantum critical point the quartic coupling is given by

Uu
14+ 4(N +8) uays logh  4(N +8)ay <

1 —1
u(b) ~ log b e4(N+8) a4 “) , (4.17)

where

B KoVT 2nA2 2nA2
aqg = aq4(0,0,n) = oon \/W <2 arctan (1 + T — 2arctan | 1 — T

I+ nA2 2I'nA2 K A?
+log AV ) 2<1+o(” ))

I +7A2 — \/2T'yA2 m r

At the crossover scale b* = 1/,/1 the quartic coupling takes the value

1 N\t
E (b*) ﬁ (logn]/Q 64(N+8) a4u> . (418)
a4

Effective mass

As in Section 2.2.3 we separate the trivial scaling dimension of the running mass, §(b) =
R(b)b?. The result for the zero-temperature running mass, A(b), follows the derivation of
(3.20),

T*

A(b) ~ . (4.19)

N2
2 1\~
<10g |:()2 64(N+8) aa u,:| )

The control parameter r* of the primary, two-dimensional fixed point reads

1 —log \/n

r* > (60 +4 (N +2) as(0,0) /
(2(N + 8)aqu) N+s Jo

dz eQmu(em)> . (4.20)
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The temperature correction Rp(b) (2.56) to the running mass, R(b) = A(b) + Rr(b), at the
crossover scale b* = 1/,/7 is given by

Rr(b*) = 4(N +2) KT (4.21)

log T'/2/(\/TIA) 00

X / dx e** u(AT*% e”) /

log T1/2/A 0

dv 4v (cothv —1)
= 5 .
T (R(AT*% er)T —le? + 1) + (2€270)?

The temperature correction depends on two parameters. In the quantum critical regime the
magnitude of the parameter 7 /(nA?) appearing in the upper limit of the z-integral determines
whether the contribution from the RG trajectory towards the isotropic limit is significant.
Similarly, the Fermi liquid regime is divided into two sub-regimes by the parameter r*/(nA?).
In the 3D regime the contributions from the 2D flow can be neglected to leading order. The
interesting case here is the 2D regime which we will consider in the following.

Temperature correction in the quantum critical 2D regime: 7 > nA2 and A < T

As in the case of the 2D isotropic theory a logarithmic divergence is expected in the 2D regime
from scaling into the classical region. In the isotropic case this divergence was cut off by the
running mass in the denominator of the integrand of the temperature correction (3.24). In
the anisotropic case the divergence for the effective mass at the crossover scale is either cut
off by the combination R(.)/7 in the denominator or by the upper limit of the z-integral in
(4.21). The result will therefore depend on the combination R*/(nA?).

We will proceed as in the case of the isotropic theory in d = 2. After integrating by parts
with respect to the z-integral expression (4.21) becomes

Rr(b*) =4 (N +2) Ky T (4.22)
a=log 7'/ /(\/7A)

7 4 2z ho — 1
X mu(AT%ew)/d_“ : e“"v (cothv 2)
" 2t —le2z 21 ,,)2
0 (R(A'T 2e?)T e +1> + (2 €27v) o tog TV/2/A
lOng/Q/(\/ﬁA)
dv 4¢e*y (cothw — 1)

d oo
— / d’r’rd— u(AT*%e )/— 1 5
x i _1 _ 2
log T1/2 /A 0 (R(AT 2 e?)T le2r 4 1) + (2 €%*0)
First let us consider the surface term,

e=log T'/? /(\/iA)

[ee]
-77“(A7-7% e’) / @ 1 4 e*ry (cothv — ;)
0 " (R(AT7§ er)T —le? + 1) + (2 @va)2

z=log T1/2/A

[e.e]
1/2 71/2) / dv 4 n%u (cothv — 1)

T T
— ) ; P +0 <uﬁ log ﬁ) (4.23)
(R*/(nA2) + 1) + (2 Wv)

]/2 1 A2 A2 7— 7—
B PO S VoA . A= e e 2 oe
log\/ﬁAu(n )(1+R*/(77A2)+O<7' log T>>+O(UA210gA2>
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In the last line we extracted the leading contribution in the 2D regime 7 > nAZ?. It stems
from small arguments of the hyperbolic function, i.e. from scaling into the classical regime.
The integral of (4.22) can be treated along the lines of the derivation of the correlation
length at the upper critical dimension in the isotropic theory of Section 3.2.2. The origin
of the leading contribution lies in the fluctuations which lead to the logarithmic Mermin

Wagner divergences (3.1) and which come from small arguments of the hyperbolic function.
Expanding the hyperbolic function the integral of (4.22) becomes in leading order [cf. (3.25)],

log 7172/ (7iA) 1 1
/ p 22z u(e® AT 2)R(e®AT 2)T le?*
T :

1 ] (4.24)
(1 + R(e*AT 2)T ! 621)

log 7"1/2//\
This can be evaluated with a saddle point approximation. The integrand consists of a function
strongly peaked at . = log 7'1/2/]%*1/2 and a slowly varying part. The leading behavior of
the integral then depends on whether the position of this peak is located within the integration
region or not.

Sub-regime R* > nA?: In this sub-regime the peak lies in the integration region and the
integral can be approximated by the saddle point contribution,

log T1/2 (/i)
Tmax u(€"mx AT 7) da

log T1/2/A

2 R(eTmx AT 2)T 1 e
2
(1 +R(emmaxA7'f%)7-fle2m)

2
= Trnax u(efr,maXATfé) <1 + O <77FA/;* >>

The surface term is negligible in the subregion R* > nA?. Using the expression (4.17) for the
running quartic coupling constant the effective mass at the crossover scale becomes in leading
order [cf. (3.27)]

N+2 logL
R —AdrnatiT g’% (4.25)
N+8 " log 11}2*
where we have introduced the “renormalized” cutoff
1
A = Aet(N+8)asu (4.26)

Sub-regime R* < nA?: When the peak is beyond the integration region the integral is sub-
leading and the contribution from the surface term dominates. In leading order we obtain,

N+2 log  %»

R=A+tn T 2 . (4.27)
log |:e4(N—|—8) asu /n:|

N +8

Temperature correction in the 2D Fermi liquid regime: A > 7nA? and A > T
Following the derivation of (3.31) we obtain in leading order for the temperature correction
72 N + 2 T?

6 N+8 A log (AA*%)

R*=A+ : (4.28)
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4.1.3 Flow towards the 3D fixed point

After the theory has reached the isotropic limit at the scale b* = 1/,/n the flow is governed by
a new set of RG equations: the RG equations of the 3D isotropic Hertz model (2.40-2.43) for a
dynamical exponent z = 2. However, since we have chosen units of measurements with respect
to the two-dimensional theory the function f,, of Egs. (2.44) should be multiplied by /A, so
that effectively the surface of the three dimensional momentum sphere K3 appearing in the
fn functions (2.44) gets replaced by K3zn/A = Ky/A. Furthermore, the initial conditions for
the 3D flow are given by the 2D running parameters at the crossover scale b* = 1/,/7,

FO) = F*
§(b*) = & = R'b*? (4.29)
u(b*) = u*,

Solving the new RG equation for example for the quartic coupling (2.43) we obtain
u(b) = uw*d*b"!  for b>b*. (4.30)

i.e. the quartic coupling decreases for scales larger than b*. The quartic coupling is irrelevant
with respect to the three-dimensional fixed point.

4.1.4 Correlation length

Following the derivation of (3.4) the correlation length is given by the expression

3
ES * Tl_
€2 = A+Rp(b")+4(N +2) Kou \/W (4.31)
r T 4v (cothv — 1) e”
y / dx/d—v 11) (cothwv )S .
T _ 1
B P R e e

The zero temperature gap A is to be taken at the scale set by the correlation length b = £A
(compare with Section 3.2),

( r* ) ) y
log ATZ) e
£ 2
A~ (
* N+2 72 f2(0,0 N+2 1 1 . _
— v + Nisﬂgjj\zg(z )] - - NiSKl x if A% > P
[\ (e 55) Y v 8 Vn?
nA

(4.32)
Note that f(0,0) is non-universal and depends on the cut-off.

In the following we list the results for the different regimes of Fig. 4.3.
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Quantum critical 2D regime: 7 > nA? and A < T

Up to corrections of order O(T/(nA?))~3/? the correlation length is given by the effective
mass R*. Using the results obtained in Section 4.1.2 we get in leading order

log T /&2 ) 2
W fOI' 5 > nA
Ny o ‘ (4.33)
N+8 log T/ (nA?) for 62 < pA2
g A/A7) S

where the “renormalized” cutoff A was defined in (4.26). Solving this implicit equation
iteratively as in the derivation of (3.28) and discarding (logarithmic) corrections we obtain
three different sub-regimes denoted as I, IT and III in Fig. 4.3

( N + 2 Tloglog (A?/T)
A for . nA2 >
or n\- L N8 og (AQ/T)

N +2 T loglog (A%/T)

<A

N +2 T loglog (A%/T)

2= = for I:  |A[,nA =
‘ "N+8 log (A2/T) o Al <<7TN+8 log (A%/T)
N +2 __log (T/(nA?)) N + 2 Tloglog (A?/T) 9
- for ITI: |A = A
TN+8 " log (A2/(nA2)) AT "o ) <
(4.34)

Upon approaching the phase boundary in the quantum critical 2D regime the temperature
dependence of the correlation length involves some complicated logarithmic corrections, which
can be traced back to the fact that (a) the effective zero-temperature theory is at its upper
critical dimension d+2z = 4 and (b) the effective finite temperature theory is at its lower critical
dimension d = 2 leading to Mermin—Wagner divergences (3.1). When the crossover between
regions IT and III is reached for ¢ =2 = nA? the fluctuations start to notice the small coupling
in the third dimension, ultimately allowing a classical finite-temperature phase transition
which would be prohibited in 2D. Accordingly, the logarithmic temperature corrections are
modified upon entering region III.

uantum critical 3D regime: 7 < nA?2 and A < T
g n

Now the flow towards the isotropic limit is negligible and the correlation length is given by

(3.5),

- r(3)¢@) . 7”7
¢?2 = A+4(N+2)K, 2\/5 2/, —-

with u* given by (4.18). With the limiting expression (4.17) for the coefficient a4 this formula
simplifies to

(4.35)

o 3 3\ N+2 T2
£&? = A+\/§7TF(2>C(2> N8 JohT log (A2 (7)) (4.36)

Depending on their relative values either the control parameter r via A or the temperature
dominates the correlation length, indicated by the shaded part of regions I and region IV
respectively in Fig. 4.3.
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Figure 4.5: The location of the extrapolated QCP is ambiguous because of logarithmic cor-
rections in the functional dependence (4.39) of the critical temperature on r.

2D Fermi liquid regime: A > nA? and A > T

The mass R*, now given by expression (4.28), again determines the correlation length,

2 2
_9 ™ N +2 T
=A+ — = . 4.37
¢ 3 N+8 Alog(A?/A) (4.37)
3D Fermi liquid regime: A < nA? and A > T
The leading contribution to the correlation length is given by expression (3.10),
N+ 273 1 2
N e T (4.38)

N +8 6 log (A2/(nA2)) VA /A2

In both Fermi liquid regimes the temperature dependence is sub-leading.

4.1.5 Estimate of the phase boundary

Strictly speaking the position of the phase boundary cannot reliably be determined within
the RG analysis of this section, as was explained in detail in Section 2.2.4. Upon approaching
the phase boundary from the disordered side higher order interactions increase in importance
since the effective finite-temperature theory is below its upper critical dimension, and so
the Ginzburg criterion is fulfilled before the phase boundary is reached. However, we will
nevertheless use the results of the correlation length to get an estimate of the position of
the finite-temperature phase transition. The result obtained will be confirmed by Sachdev’s
method of dimensional reduction in Section 4.2 as well as the large N analysis in Section 4.3.
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Setting the correlation length in expressions (4.33) and (4.36) to infinity we obtain

( N+2 T, log|[Te/(nA%)]

- : for nA? < T,
N +8 nA* (l A2 ) ~Nte !
Y o8 ux 29 (4.39)
nA? m/2¢(3/2) N +2 1 7.\ )
- ‘ NI 5 for T. < nA*.
\/E N +8 1 A2 lfN—+8 HA
(105 352

The corrections to the control parameter from the scaling towards the secondary, 3D fixed
point are subleading and have been neglected, r ~ r*, see Eq. (4.32). The phase boundary
in the 2D regime, nA%2 < 7., depends on temperature as 7.log7./(nA?), i.e. the linear de-
pendence of the critical temperature on the control parameter has logarithmic corrections.
This implies that one cannot unambiguously extrapolate the phase boundary from high tem-
peratures. The location of the extrapolated quantum critical point depends sensitively on
the range of critical temperatures used in the extrapolation process; this is indicated by the
thin lines in Fig. 4.5. In particular, this prevents us from using the extrapolated QCP of
CeCug_,Au, (see Fig. 4.1) to draw any conclusions about the value of the anisotropy param-
eter nAZ.

The phase boundary is logarithmically suppressed in comparison with the crossover line
between the quantum critical to the Fermi liquid regime, A ~ 7. The logarithmic suppression
is rooted in the Mermin—Wagner divergence (3.1) which prohibits a phase transition for a
truely two dimensional system (with N > 2). The asymmetry between the slopes of the Néel
temperature and the quantum critical-Fermi liquid crossover line is therefore a qualitative
measure of the anisotropy present in the material.

4.1.6 Thermal expansion

It is reasonable to assume that the coupling between the 2D dimensional planes is affected
when pressure is applied, which means that the anisotropy parameter 7 is generally dependent
on pressure. This leads to an additional contribution to the thermal expansion,

Ao =——— 21 (4.40)

where the derivative (On/dp) is approximately constant for weak pressure dependence. This
is a novel effect not encountered in the isotropic Hertz model.
Solving the RG equations we obtain for the interesting part of the entropy [cf. (2.63)]

log T'/2 /(\/TiA) ) )
N X dv 2uve =T 2 e“T
SQCP = —Ky T / dx / aw zve arctan € v
Jo R(

2 , T sinh? v eIAT*%)TfleZ:r_‘_l
log 71/2/A
N T% T © dy 2ue 3% 262y
+ Ky — / d’I’/ — — ‘2 arctan - . (4.41)
2 V/nA? o 7™ sinh®wv R(e"AT 2) T 1le2® +1
log T'/2/(\/TA)

The first term is due to the scaling process towards the isotropic limit and it will dominate
in the 2D regimes. The second term results from the RG flow of the effective 3D isotropic
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model and therefore dominates in the 3D regimes. From the isotropic model we are already
familiar with the contribution agcp, which measures the pressure dependence of the control
parameter r [cf. (3.44)]

log T2/ (\/mA) : )
N 8R(6$AT7§) * du 492 27 ginh—% v
aQep = EKQ dz — — : ' 2 n
log T1/2/A 0 (R(emAng)TfleQm + 1) + (2 e2T 1))
Ny YT / gy OB(AT 2) / X dv 40 ¢” sinh 2o
o B2 T /== T ——MM = - .
2 AQ 87" 0 e . 1 1o 2 9% 9
V1 log T1/2 /(\/TiA) (R(e AT 2)7' e2r 4 1) + (2 e 7))
(4.42)

In addition, we now have to consider the derivative of the entropy (4.41) with respect to 7.
There is an explicit dependence of the entropy Sqcp on the anisotropy parameter appearing
in the limits of the z-integral. Moreover, there is an implicit 7 dependence hidden in the
running mass R(.), whose RG trajectory itself depends on the choice of 7. However, the
contribution due to the implicit dependence is always sub-leading, since it is at most of order
d¢2/dn ~ O(u), and it can be neglected. The new contribution to the thermal expansion in
the anisotropic Hertz model therefore reads

o — 8SQCP
T a(nA?)

[e.e]
NK, [ T \*? X dy 2ve 3T 2 v
=55 = dr — —— 5 —arctan T .
2 2 \nA g ™ sinh®v R(e*AT 2)T Te?r + 1

log T'/2/(\/MA)

(4.43)

where «,, is measured in units of (9(nA?)/9p)A/(n&}). Interestingly the contributions of the
derivative with respect to the arguments in the limits of integral in expression (4.41) for the
entropy cancel each other.

The behavior of the thermal expansion can be classified according to the four regimes
already encountered above for the correlation length. The analysis of expression (4.42) closely
follows the derivation of Section 3.3.2, except in the quantum critical 2D regime which will
be presented in some detail.

Quantum critical 2D regime: 7 > nA? and A < T

In the quantum critical 2D regime we can neglect the sub-leading second term in the expression
for the thermal expansion aqgcp (4.42). The following analysis will resemble that of the
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correlation length in this regime. Following Section 3.3.2 we perform an integration by parts

N
aqer = 5 Ks (4.44)
. log T'/2/(y/nA)
y OR(e™ AT~ 2) /OO dv 402 €2® sinh 2 v
g\ 2 ) -
or 0 Q T -1 —1,2z 2 2z 9,2
(R(e AT 2)T le? + 1) + (2e2v) log TV/2/A
log T'/2/(y/nA) . )
/ p d | OR(e*AT %) /OO dv 4v?% 2® sinh™ v
_ rp— [N 2 ) -
d 0 _1 2
log 7172/ A L " o 7 (R(e“"'A’T 2) T le? + 1) + (227 1))2

The lower limit of the surface term yields a negligible non-universal contribution of order
O(T/A?*log T/A?). After substituting the effective mass R* = R(1/,/1) by the correlation
length, which is permissible in the 2D regime, the upper limit gives

. T]/Q 8672 /oo@ 41)27'/(77[\2) sinh=2 v
S\VIR) o o T (€2 A%) + )T+ 2T/ (A )’

TR e 1 nA?. A
_log<¢ﬁA> or <1+£2/<nA2)+0<71°g?>>‘ 445)

The leading contribution of the integral which remains after integrating by parts can be
extracted in a similar manner to that for the thermal expansion in Section 3.3.2 in 2D. The
hyperbolic function is expanded to leading order and the v-integral is performed to yield

log 7'/2 /(\/nA) .
d OR(e"AT =) 1
drx —

dr Or  R(esAT H)T ie2r+1

(4.46)

log 7'/% /A

This expression is evaluated with a saddle point approximation. The maximum of the peaked
function is located at Zmax = log T/2. As for the correlation length the behavior depends
on whether this maximum is located within the integration region or not.

Sub-regime ¢ 2 > nA?:  For this sub-regime the maximum is located within the integration
region and the saddle point gives the leading contribution. Furthermore, the surface term is
sub-leading. The thermal expansion is given to leading order by

N 9¢2 T

Sub-regime ¢ 2 <« nA?: Now the saddle point is beyond the integration region and the
leading contribution to the thermal expansion results from the surface term,

N 9¢2 T

. = ———log—=. 4.48
aQer = g o 8 nA? (4.48)
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Using the formulae for the correlation length of Section 4.1.4 in the quantum critical
2D regime and its iterative solution (compare Section 3.3.2) the leading behavior can be
summarized as

for TIT1:  ¢2 <« nA?

log log == Tloglog &=
aqep ~ N % for I: pA?2 < ¢ 2 and AK % (4.49)
87 A2\ N+8 0g
(ve)
log L T'loglog 2

_r forI: nA’< ¢ and A> <
log A2) ¥ T
| (10g %)

For the anisotropic contribution «; we obtain the leading contribution from the scaling
into the classical regime, i.e. for small arguments of the hyberbolic function,

NEK 82 I 2%
oy = NI (%) / dz e [ log ¢ +o()]  (4.50)
2 2 \nA R(e* AT 2) T e 41

log T1/2/(\/MA)

log 77% for III:  ¢72 <« nA?
~ N Ky log _ T ~ N K3 ] loglog ]\—7-2 for II: A2 < ¢ 2and A K ML
26 672 + 77A2 2 6 7Wllog]?
log for . A2 <& 2and A> %
08 7

The derivation of the leading behavior in the other regimes follows Section 3.3.2 and we
simply present the results below.

uantum critical 3D regime: 7 < nA?2 and A < T
g n

_ N+42
Var3C()N (RN VT NaKy T (4.51)
o = 0 —— and ap=——"—= .
Qcr 321 & A2 A2 "7 273 A2
2D Fermi liquid regime: A > nA? and A > T
N mKy T
T d e = 4.52
QP E Ty M MT R Ty (4.52)
3D Fermi liquid regime: A < yA? and A > T
Nn A2\ v T NrnKy T
, lo _— d o= ——F— 4.53
aQep = 24 < 0g A2> \/W\/T“ an Qp 2 3 7IA2 ( )

As anticipated in the introduction the additional contribution c,, due to the anisotropy
parameter is as important as aqcp in the 2D regimes. In the 3D regimes, on the other hand,
it gives only a sub-leading contribution.
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4.1.7 Specific heat

The leading contributions of the specific heat in the 2D and 3D regimes conform with the

isotropic theory with the corresponding space dimensions. Following the derivation of (3.34)

for the specific heat we get
log T'/2/(/TIA)

N
YQcp = EKQ

™

o[ G G
' R

= (- .
log 7172/ A sinh v eIA’T’%)T”eQ“} + 1) + (2% 1))2

i gy [ 20 \2  (BEAT )T ' 1) e®
+ha / d"”./od<2 >(R<( 2

2 /A2 sinh 1 2 '
M e AT AT T 12 +1) + (26270)’
(4.54)
The leading contributions are given below
Quantum critical 2D regime: 7 > nA? and A < T
N A?
= log — 4.
vocr = 5 log — (4.55)
Quantum critical 3D regime: 7 < nA? and A < T
1 N V2r15¢(3)N VT
YQCp = —log — + — — C(Q) \/_ (4.56)
12 °7 "6 641 A2
2D Fermi liquid regime: A > nA? and A > T
N A N A
YQep = G logm ~ % logm (4.57)
3D Fermi liquid regime: A < 7A? and A > T
N 1 N Nr Jr
- _ log—+__-_V 4.58
NPT R8T T e (4.58)

In the 3D regimes the critical contribution is sub-leading. The background is universal in the
sense that it depends only on the anisotropy parameter 7.

4.1.8 Effective critical exponents

The scaling analysis for quantum critical points of Chapter 1 predicted critical exponents for
the specific heat and thermal expansion. These exponents depend on the scaling dimension,
¢, of the free energy (1.15). When the so-called hyperscaling hypothesis is obeyed this scaling
dimension is simply given by the dimensionality of the zero-temperature theory, i.e. ¢ = d+ 2.

In the anisotropic Hertz model where we observe a dimensional crossover between two-
and three-dimensional behavior hyperscaling is trivially violated since the effective spatial
dimensionality varies between d = 2 and d = 3.. Accordingly, there exist no well-defined
critical exponents characterizing the whole critical regime. However, we can consider effective
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Figure 4.6: Effective critical exponents for the specific heat (left panel), v = vy + TP, and
the two contributions to the thermal ezpansion (right panel), agcp = TP and o,y = TP". The
crossover shown corresponds to the line nA?> = 10 r in the phase diagram of Fig. 4.3.

exponents which in turn lead to the concept of the effective dimension deg when applying
(effective) hyperscaling with ¢ = deg + 2. In the quantum critical regime the scaling analysis
yields for the specific heat (1.26) and the thermal expansion (1.27) (using yp = 1, z = 2 and
v=1/2)

e o T (e =2)/2 and gy ~ Tlder=2)/2 (4.59)

In Fig. 4.6 the effective exponents of specific heat and thermal expansion are plotted, as
calculated from the Gaussian part of the anisotropic Hertz model. The quartic coupling
will only induce logarithmic corrections to the thermal expansion in the quantum critical
2D regime II of Fig. 4.3, see (4.49) and (4.50); for an analysis of the effective exponents
these corrections will be neglected. Three different exponents p,, p, and p, are shown,
corresponding to the critical part of the specific heat yqcp and the two contributions to the
thermal expansion aqgcp and «y;, respectively. They were determined with the formula

T og < 4 (7) ) (4.60)

P= Tog T *® \dlog T

where f(7T) represents the quantity of interest. The formula is constructed in such a way that
it automatically eliminates a constant background contribution. For example, the specific
heat coefficient for a Fermi liquid at low temperatures is given by v = vy + A T2, which yields
a temperature exponent of p = 2.

For high temperature both the specific heat and the thermal expansion depend only
logarithmically on temperature, leading to vanishing effective exponents. Upon entering the
quantum critical 3D regime the exponents of yqcp and aqcp increase as expected to 1/2.
The exponent of «;, however grows to 1 and is therefore only sub-leading. At even lower
temperatures the quantities reach their Fermi liquid values.
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4.2 Dimensional reduction analysis

In this section we apply a method proposed by S. Sachdev [33, 2] to the anisotropic Hertz
model. It is based on concepts originally developed to describe critical phenomena in finite-size
systems, and can be naturally transfered to the theory of quantum criticality. The quantum
phase transition occurs at zero temperature and its critical properties are characterized by an
effective dimensionality d 4+ z. When the temperature is finite, however, the dynamics along
the imaginary-time dimension is restricted by the inverse temperature § = 1/7. Whereas the
critical fluctuations can still extend to infinity in d spatial dimensions they are now limited
in the other z dimensions attributed to imaginary time. This means that we can think of
quantum criticality at finite temperatures as the critical behavior in a system which is infinite
in d dimensions and finite in z dimensions.

This method offers the possibility of deriving crossover functions in closed form. It is
therefore especially suitable for the investigation of the anisotropic Hertz model, in which
the finite-temperature crossover is complemented by the dimensional crossover triggered by
the anisotropy parameter 7. The method consists of two steps. First, applying a standard
renormalization group the Hertz theory is scaled towards the zero-temperature fixed point.
An effective theory is then derived which describes the finite temperature properties.

4.2.1 Flow to the zero-temperature fixed point

In order to derive the RG equations governing the zero-temperature flow we apply the fol-
lowing cutoff procedure. We introduce a single cutoff A for the integral over Matsubara
frequencies, which are dense at zero temperature, and the three momentum integrals,

A2 VAT & VAZ—nk? —w
/A ™ / dw dk | / LTI 1
= - a5 o TRy
X A 27 2 (2m)? S+ k2+nk? + |wl
—A? —VA—w 0
A A2 A2
! /dk /d /d ! (4.61)
— €T . .
472 L ) y, 0+ x
0 nki Y

The susceptibility x is given by (4.3) with the bare mass §y replaced with the running mass
0. Moreover, we assume that the theory has been rescaled appropriately to eliminate the
scales £ and Ty. As in the Millis” RG treatment of the last section, the theory is initially
rescaled with respect to the d = 2 fixed point. Under this scaling the anisotropy parameter
n grows with the scaling dimension 2, n(b) = nb%. The RG flow is governed by the standard
RG equations of ¢* theory [18] which for a finite cutoff renormalization A — A/b read

A
§ o= v 5+4(N+2)u/ % (4.62)
JA/b
A
U, — b4fdfz u— 4(N+8)“2 / X2 , (463)
JA/b
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where d = z = 2. The primed values on the right hand side are the renormalized quantities.
In the limit of an infinitesimal scale transformation, logb < 1, these equations simplify to

d6(b) 1 A? n(b)

= 200) +4(N+2) —ul) —5 | 1 — — 4.64
Dlogh (b) +4(V +2) 575 u(b) 5 +A2( 3 (4.64)
du(b) Lo n(b)

= —4(N+8) —u(b) |[1-——=]. 4.65
dlogh (V+ )27r2u (®) ( 3 (4.65)

The running quartic coupling is readily obtained
42 1

u(b)

u
) N (4.66)
L+4(N+8) gu(lnb+gn(1-17)  4(N+8), [b%%]

At the upper critical dimension the limiting behavior of the running mass A(b) = §(b)b~? is
given by the differential equation

9A(b)  2(N +2) 2,2 n(b)
Dot~ u(b) (b~°A* = A(b)) (1— T) (4.67)
which has the solution [cf. (4.19)]
A(b) ~ - oy (4.68)

2 N+8
(log [bQ e (N+8) u])

where we introduced the control parameter r.

We will now consider now the theory at a certain scale b chosen in such a way that the
quartic coupling constant u(b) can be treated perturbatively. To do so either the scale must
be sufficiently large so that the running coupling constant is sufficiently small, or the theory
must have reached its isotropic limit, i.e. n(b) = 1 for b = b* = 1/,/5. At the isotropic limit
the zero-temperature Hertz theory is above its upper critical dimension, d 4+ z > 4 for d = 3
and z = 2, and is therefore well described by mean field theory. The essence of Sachdev’s
method is that in the vicinity of the quantum critical point the finite temperature properties
can also be derived by treating the quartic coupling as a perturbation.

4.2.2 Effective theory for the zero Matsubara mode

At finite temperatures the critical fluctuations are restricted in imaginary time but can still
develop in the three spatial dimensions. In the language of Matsubara and momentum space
this means that the available momenta are still continuous but the Matsubara frequencies
are gapped. The critical finite-temperature properties will be determined by the gapless, zero
Matsubara mode. In the following an effective model for this zero Matsubara mode is derived
by perturbatively taking into account the influence of the gapped modes. It has been pointed
out by S. Sachdev [33, 2] that all ultraviolet divergences, i.e. all cutoff dependences, of the
zero temperature theory can be absorbed by appropriate counterterms (see also e.g. Ref. [25],
Chapter 10.2), resulting in a universal T' dependence of the correlation length.
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We will start from the anisotropic Hertz theory whose parameters have been scaled ac-
cording to the zero—temperature RG equations above,

S[® Z

1/T )
+ u(b) /0 dr /dR (@ (1, R)®(7,R))

(iwn, k) [AD) D> + k2 +n(b) kT + |wn|] ®(—iwn, —k)

(4.69)
The scale b is understood to be fixed and smaller than the crossover scale b* = 1/,/n. It is
important to note that under scaling the temperature 7 has also grown with the dynamical

exponent z, T(b) = T b*. The effective finite-temperature action for the zero Matsubara
modes @(k) = (T(b))/? ®(0,k) reads (compare also the discussion of Section 2.2.2)

3
Selg] = % / (d—kgaT(k) [RO) + K+ (b) K] #(-1) (4.70)

3
/ H : k Sk ) (7 () @) (& (ks)@(ka)) -

The effective parameters U(b) and R(b) result from integrating out the gapped Matsubara
modes. To lowest order the effective quartic coupling U(b) is just given by the rescaled
coupling u(b),

U(b) = u(b) + O(u?(b)). (4.71)
The effective mass R(b), however, is modified in first order in u(b) by the gapped modes,

A3k 1

R(b) = AWM +4(N +2) u(b)/W () w%;OA(b)bukun(b) e
dw 1
/EA(b)bukun(b) ki+|w}+0(u2(b))- (4.72)

The last term is an appropriate counterterm chosen in such a way that for zero temperature
the running mass reduces to R(b) = A(b)b?.

4.2.3 Correlation length

Within the effective theory (4.70) we can again apply perturbation theory in order to evaluate
the correlation length £. To lowest order it is given by

d*k 1

(2m)3 €2(b) + k2 +n(b) k2

£ =€¢72(b) = R(b) + 4(N +2) U(b) T (b) / (4.73)

where the factor b again accounts for the trivial scaling dimension. Using expression (4.72)
we can express the correlation length in terms of the zero temperature mass gap A(b),

43k 3 7 (b)
(2m)* | =, ALY + k2 4+ n(b) k2 + |w,|

E20) = A(b)b2+4(N+2)u(b)/ (4.74)

_/d_w 1 N T(b) }
2r A(D)b? + k2 + n(b) k? + |w|  £72(b) + k2 +n(b) K |
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Following Refs. [33, 2] we separate this expression into three terms
£20) = AD)D® +4(N + 2)u(d) (R (b) + Ra(b) + R3(b)) , (4.75)

where

[ Pk T(b) _ [ !
w0 = [ (Z SoF TR T 2m<b>62+k2+n<b>ki+wl>

& () T(0)
Ba(b) = - / E (A(b)b? TR a0 R +n0) ki) (4.76)

o dk T(b) T(0)
Bs(b) = / 2n)? <£2(b) R 00K K+ () ki) '

To evaluate these we have to specify a cutoff procedure for the remaining momentum integrals.
This seems to contradict the claim of S. Sachdev [33, 2] that we should obtain a universal
temperature dependence for the correlation length. However, as we will see, the cutoff A
only enters in combination with the anisotropy parameter, nA2, to give a scaling parameter
of dimension 2 which tunes the dimensional crossover. We will apply the same cutoff scheme
as outlined in Section 4.1.1. After converting the Masubara sum into an integral (using

T(b)/(A(b)b?) = T/A(b) and T (b)/n(b) = T /n) we get for Ry (b)

— A d3k OCd— CO b) - -
Ri(b) = / 0/7r( th 1> (AD)D? + k2 + n(b) k2)° + 22

1 3 log T/(nA%k}) ,
*d 2“* 4y (cothwv — 1
- /dk / d’I’/ dv___eZdv(cothv Z1) o
o T (AMD)T 'e? +1)° + (2ve?r)
0 1 log T(b)/ A2

The lower limit of the z-integral can be extended to minus infinity in the universal limit
A — oc. Furthermore,

Ry(b) = ;\?T(b) <1 / ?/(XbQ) arctan ZI(XZ) + % log <1 + ?1(\()2)>> (4.78)

and similarly for R3(b). Now it is apparent that for z = 2 the three functions R,, have the
same scaling dimension, 2. The trivial scaling factors therefore drop out in the expression
(4.75) and only the scale dependence of the running quartic coupling constant u(b) and the
mass gap A(b) remains. The reason is that the zero-temperature theory is at the upper
critical dimension where logarithmic corrections occur. These are reflected in the remaining
scale dependence of the zero-temperature parameters. If the anisotropy parameter 7 is the
smallest scale in the problem, the scale b of u(b) and A(b) is set by the correlation length &.
However, for {2 < nA? the zero-temperature parameters can be taken at b = 1/\/m.
We finally obtain for the correlation length the quasi-scaling form

(4.79)

&2 A(b) N+2T L
nAZ A2 +7TN+877A2 log " | bez(HR

T A ¢
nA2’ A2’ A2
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where we have introduced the scaling function,

1 1 1 1+0b
W (a,b,¢) = +Vbarctan i carctan 7 + 3 log (11 ) + Y(a,b) (4.80)
L ek .
d 2“® 4y (cothwv — 1
Y(a,b) = /dk / d’I’/l ¢ ("OQ v—1) 5. (4.81)
/ S ba—'e?r + 1) + (2ue?r)
— 00

This result should be compared to (4.21) and (4.31) derived within the framework of the
Millis RG.

In the following we will analyze the scaling function ¥ and determine its behavior in
different regimes. It will be convenient to perform an integration by parts with respect to k,
in the definition of T,

Y (a,b) = (4.82)

1loga

o oC
d 27 49 (cothv — 1) d 4v (cothv — 1
/d'r/v e 4v (coth v 2+\/_/d'r/v e’ 4v (cothv — 1)
0

(ba—le2® + 1) + (2ve??) T (ba—le2 + 1) (21)62“)2

1 loga

no|

The first integral is due to the boundary contribution and it will dominate for large @ whereas
the second integral dominates for small a. The derivation of the leading behavior closely
follows the treatment of the correlation length of Section 4.1.4 and gives

o= S R S e
f%log% if a>ba>1,b>1
%loga if a>b,a>1,bkK1
T(a,b) = < L\/;(%)\/E if a>b, ax1 (4.84)
o if a<b a>1
L%\/LE if a<b, akl.

This results in the same crossover lines and the same leading behaviors for the correlation
length as obtained within the Millis RG treatment in Section 4.1.4. However, it is interesting
to note that the logarithmic Mermin Wagner divergence (3.1) enters in the form of the one
loop correction (4.73) to the effective theory. It is encoded in the logarithmic dependence of
the scaling function on the combination ¢ 2/(nA?). Upon approaching the phase boundary
the divergence is cutoff by the anisotropy parameter nA?, which in turn leads to the two
sub-regions in the quantum critical 2D-regime already found in Section 4.1.4.

4.2.4 Phase boundary

The perturbative analysis of the effective theory for the zero Matsubara mode (4.70) suffers
from the same drawbacks as the Millis RG analysis as far as the estimate of the phase boundary
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is concerned. The perturbative one-loop treatment will break down at the Ginzburg criterion
before the critical temperature is reached. As before, we will nevertheless use the above
results to obtain an estimate for the Néel temperature 7.(r).

The estimate of the phase boundary 7.(r) depends crucially on the order of limits taken
in the anisotropic Hertz model. Whereas we find a finite temperature solution for the phase
boundary for a finite anisotropy parameter 7, this solution vanishes for n = 0 due to the
presence of a Mermin Wagner divergence (3.1). In the 2D limit, n = 0, we find that the
correlation length is implicitly given in the limit £ 2 — 0 by

. 2 TN+2 |, s T
n=0: ¢ 7A(b)+2N+810g [be T log = (4.85)

which possesses no solution with a diverging correlation length. This contrasts with the
situation with a finite value for n: consider the limit £ =2 — 0 in (4.79) for finite > 0,

T. AQl/ym)
T (nAQ’nT’()) . (4.86)

AWV N+2 T [1 s
Vi

= - 0
A2 "Nrspaz B
The expression can be simplified for high and low critical temperatures 7.

2D regime: 7. > nA?

In the 2D regime the phase boundary is located in the region of the phase diagram where
A(1//m) > nA% and T > nA?%. Using the appropriate limiting behavior of the scaling
function ¥ we get

T
A o - log<"A2> (4.87)
nA2 "N +8nA? N '
(108 352
3D regime: 7, < nA?
ro w23 N +2 1 T. \*/? (4.58)
nA? V2 N+38 A2\ ~ae \7A? '
(108 )

This is in agreement with the estimate obtained in Section 4.1.5.

4.3 Large N analysis

The third method with which we shall tackle the anisotropic Hertz model is large IV analysis
(see e.g. Ref. [36]). It is a systematic expansion in 1/N where N is the number of components
of the field ®. The Millis RG treatment as well as the analysis of Sachdev’s effective theory
have the drawback that they break down when the Ginzburg criterion is fulfilled. As a
consequence the classical region, which always covers the phase boundary (cf. Fig. 3.1), cannot
be addressed within these two approaches. The large N analysis on the other hand yields
reliable information about the classical regime, since it only relies on 1/N as a small parameter.
In particular, it will confirm the functional dependence of the critical temperature on the
control parameter r obtained with the former methods.
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4.3. Large N analysis

We will briefly sketch the derivation of the equations which will become exact in the limit
N — oo. We introduce a Hubbard—Stratonovich field A decoupling the quartic term in the
Hertz action (2.23),

7 = / DADD ¢ 51®A] (4.89)
where S is now given by
11 ) 5 . . A,
S[P, N\ =—-— (6o + A+ k. + 0kl + |wn|) ®(iwy,, k)®(—iw,, —k) — AT (4.90)
2p ok 167w

We have again used the two-dimensional quartic coupling u, giving rise to the additional
factor of A/m (compare the discussion preceding (4.7)). Integrating out the ® fields yields an
action solely dependent on A:

A, N ) )
 167u AT 5“ log (do + A + ki +n k] + |wnl) - (4.91)

SIA] =

Again we assume that the theory has been appropriately rescaled to absorb the parameters
&y and Ty. Applying a saddle point approximation to the remaining functional integral over
A leads to the condition

N 4N7rut 1
= r .
A S0+ A+ k2 +nk? + |w,|

(4.92)

The saddle point approximation can be justified in the limit of a large number of components
N while treating the quartic coupling u as of order 1/N.
By calculating the susceptibility we can identify 5y + A with £ =2, where ¢ is the correlation
length,
x Nk, iwy) = 00 + N+ EE kT 4wl (4.93)

4.3.1 Zero-temperature mass gap

At zero temperature the saddle point condition becomes

ANy d3k dw 1
A= —_ — — . 4.94
Y _/(27r)3 ,/27TA+k,?+nki+|w (4.94)

We can identify the position of the quantum critical point with the condition that the mass
gap A vanishes at the quantum phase transition,

ANTu d®k dw 1
0o = — — ) — . 4.95
¢ A / (2m)3 / 21 k2 +nk? + |w) (4.95)
Introducing the control parameter
50 - 5(’
= - 4.
" Nu/m? (4.96)

that measures the distance to the quantum critical point we obtain for the mass gap

A Nu n AN mu / A3k / dw 1 1 (4.97)
_ v g — ) )
72 A (2m)3 27 A—i—k%—}—nki—Hw\ k§+nki+\w|
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With the help of the scaling function

AN 2m / d*k /dw 1 1 | 1
—_ J— O _—
oAZ ) = AA Tk Tl AR AnE W) 8 A

(f f )3 (1o )

where we applied the cutoff scheme of Section 4.1.1, this can be rewritten as

Nu AN 1 /A
?r:A{l—l— 53 <10g nAQ—l—u(W))}. (4.99)

The function = has the limiting behavior

(1]

1 1 4 1 1
—10g—+—+(9(—10g—> for z>1
T T

2(z) = i z 3 o (4.100)
5—1—%@—1—0(3:) for z<1.

In the 3D regime, A < nAZ2, the relation (4.99) simplifies to

72

eeNu

— for A < nA?, (4.101)
U

r = Alog

which means that the mass gap is simply proportional to the control parameter r. In the 2D
regime, A > nA2, we obtain

8/3(’Nu

for A > nA%. (4.102)

r = Alog

As expected, at the upper critical dimension, d + z = 4, the correlation length exponent v
deviates from its Landau value v = 1/2 by logarithmic corrections, A ~ r/ log %

4.3.2 Correlation length

The correlation length as a function of control parameter r and temperature T is given by

Nu  4Nmu [ d°k 1 dw 1

—2

_Nu T Nt
¢ o A / (2m)3 { ; E2+kE+nk? +w,| ) 2n k§+nki+|w}

(4.103)
Rearranging terms and applying the cutoff scheme of Section 4.1.1 this can be rewritten as

4Ny 1 €2 Nu  4Nu T €2
1 1 = = — —TT|—, = 4.104
& { T o 2m? <0g nA? + (nA2>)} 72 T 2 T (7]1\2’77A2 ’ (4.104)

where the scaling function Y is defined in (4.81).
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4.3.3 Phase boundary

Setting ¢ 2 = 0 in expression (4.104) yields for the critical temperature T,

r=—=2nT.Y (777[;02,()) . (4.105)

In the following we will use the limiting behavior (4.84) of the scaling function Y to distinguish
again between the 2D and the 3D regime.

2D regime: 7. > nA?

In the 2D regime we can approximate Y (z,0) = log+/z and obtain

Te
3D regime: 7. < nA?
In the 3D regime, YT (z,0) =T (%) ¢ (%) V)2, we get
3/2 9 3/2
po TCB2) T (4.107)

NN

This again confirms the result (4.39) obtained in the framework of the Millis RG.

4.4 Discussion

We have investigated the anisotropic Hertz model (4.4) with a special emphasis on the di-
mensional crossover. We applied three different methods — the Millis RG, the method of
dimensional reduction and the large N method  in order to determine the crossover lines.

In comparison with the solution of the isotropic Hertz theory presented in Chapter 3
we found three new crossover lines associated with the dimensional crossover, see Fig. 4.3.
These are determined by comparing the squared inverse correlation length ¢ 2, the tempera-
ture 7 and the control parameter r with the squared inverse stretched lattice constant nA2,
see Fig. 4.2. The parameter nA? determines the extent of the 3D pocket around the quan-
tum critical point where the three-dimensional spin fluctuations dominate. Furthermore, the
crossover line £ 72 ~ nA? signifies that close to the classical finite temperature transition the
three-dimensional character of the theory dominates. It is associated with the cutoff of the
logarithmic Mermin Wagner divergence (3.1) present in two space dimension. As a conse-
quence, the Néel temperature (4.39) is logarithmically suppressed by a factor log T../(nA2) and
vanishes in the limit nA%? — 0, in agreement with the Mermin Wagner theorem (for N > 2).
The logarithmic suppression of the Néel temperature can be estimated by comparing with the
quantum critical Fermi liquid crossover line, and the difference between their slopes yields a
qualitative estimate of the anisotropy present in the system.

Moreover, we have shown that the anisotropy parameter 7 is a relevant quantity in the
RG sense in the regime where the two-dimensional spin fluctuations dominate, i.e. when
the RG flow is still towards the primary, 2D fixed point. Sufficiently close to the quantum
critical point, i.e. within the 3D pocket (see Fig. 4.3), the RG flow is eventually dominated
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Figure 4.7: Thermal expansion (left panel) and specific heat coefficient (right panel) in the
quantum critical regime r = 0 for different anisotropies nA. The inset in each graph shows a
logarithmic plot of the same curves. The dimensional crossover at a temperature T ~ nA? is
clearly seen as a knee in the temperature dependence of the thermal expansion whereas there
are only small signatures in the specfic heat. In both graphs dimensionless units have been
chosen.

by the secondary, 3D fixed point. Within the 3D pocket all physical quantities exhibit scaling
behavior with the scaling variables: anisotropy nA?, temperature 7 and zero-temperature
gap A. The relevance of the anisotropy parameter 5 with respect to the primary fixed point
is particularly important when considering the thermal expansion, which in the 2D regime
is composed of two equally important contributions: aqgcp (4.42) arising from the pressure
sensitivity of the control parameter r, and «,, (4.43) stemming from the pressure sensitivity
of the anisotropy parameter 1. However, within the 3D pocket the additional contribution
oy is only sub-leading in comparison to aqcp.

We expect that the experimental identification of the dimensional crossover in the com-
pound CeCug_;Au, is more easily achieved by measuring the thermal expansion than the
specific heat. The underlying reason has already been discussed in detail in Chapter 1: the
thermal expansion is more singular than the specific heat which makes it also easier to detect
crossover behavior. In Fig. 4.7 theoretical curves of the thermal expansion and the specfic
heat are shown at the critical value » = 0 for different anisotropies. Whereas there are only
weak signatures at the dimensional crossover in the specific heat, a pronounced knee is visible
in the thermal expansion initiating the crossover from a logarithmic divergence to a square
root suppression as a function of temperature, see Section 4.1.6. It should be noted that the
specific heat coefficient smoothly crosses over from a logarithmic temperature dependence to
a square root dependence at r = (0. In particular, the slope decreases monotonically at the
dimensional crossover and no Schottky-like anomaly is expected.

In outlook we mention that it seems promising to consider a further quantity likely to
be even more sensitive to the dimensional crossover than the thermal expansion: the elastic
constant [39, 40] which can be obtained by measuring sound velocities. Taking only the
pressure sensitivity of the control parameter into account the elastic constant ¢ is proportional
to the second derivative of the free energy with respect to the control parameter, ¢ oc d*F/dr?,
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and it is therefore the quantum critical counterpart of the specific heat at the classical finite
temperature transition. The elastic constant is expected to be very sensitive to changes in the
scaling behavior, and it is therefore a possible candidate for the detection of the dimensional
crossover in CeCug_,Au,.
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Appendix A

A.1 Grineisen parameter for gapped systems — QCP of non-
interacting bosons

In this section we modify the expansion (1.24) of the scaling function ¥rp in the low-
temperature regime in order to account for the physics of gapped systems, i.e. systems whose
entropy vanishes exponentially with temperature, S ~ e 2/T where A is an energy gap.

For illustration let us consider the simple case of non-interacting bosons in three dimen-
sions. The free energy reads [41]

1

T LI R ) S Al
= /W0g< —€ )—* E%/Q(z)- (A.1)
where V' is the volume. We introduced the thermal wavelength Ay = /27/(mT), the fugacity
z = /T and the function g,,

o o

AEED YL (A.2)

n=1
which has the convenient property zg., (z) = ga—1(2). Moreover, we used a quadratic dispersion
for the bosons €, = k?/(2m). In writing (A.1) we confined ourselves to the disordered side,
z < 1, where the bosons are not condensed yet. Bose-Einstein condensation takes place
when the (negative) chemical potential reaches zero. The chemical potential can therefore
be identified with the control parameter of the quantum critical point. Taking the derivative

with respect to temperature we obtain the entropy,

V (5
S= 5| 5952(2) —g32(2)log 2 ) . (A.3)

3\ 2
Comparing this expression with the scaling form of the entropy in the quantum critical regime
introduced in (1.23) we can conclude that the critical exponents are given by (applying hy-

perscaling ¢ = d + z and using d = 3),
z=2 and v=1/2. (A.4)

Furthermore, for the sake of comparison with section 1.3.3 we introduce the non-universal
temperature scale Ty = 27/(mV?/3) and the control parameter r = /Ty < 0. We can identify
the scaling functions to be

Vqer(z) = 295/2 (e") =z g3z (") (A.5)
Up(z) = 222 Uqer(—1/x) (A.6)
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A.1. Griineisen parameter for gapped systems — QCP of non-interacting bosons

Since we restricted ourselves from the beginning to the uncondensed phase, u < 0, the scaling
function ‘I!ITT for positive values of the control parameter is beyond this simple approach. We
can explicitly evaluate the limits for small arguments z — 0,

Foen(s) = 3¢(3)+5¢(5) o+ 06 (A7)

Ui(r) = m1/2e*1/“+o(m3/2e*1/m). (A.8)

The scaling function in the quantum critical regime WqcRr is analytic as assumed in (1.24).
The Griineisen parameter in the quantum critical regime can be read off from (1.28) to be

Co2¢@3/2) (TN
Fqcr,er = T5¢(5/2) (f}) . (A.9)

On the other hand, the scaling function W, . is non-analytic! In particular, the entropy does
not decay algebraically as assumed in (1.25) but falls off exponentially. The exponential
decay of the entropy represents an Arrhenius factor e~ /“//T" describing the thermal excitations
across the gap of the excitation spectrum of size u! In general, all gapped systems have an
entropy decaying exponentially at low temperatures, and they are therefore not captured by
the expansion Ansatz (1.24).

For gapped system the scaling function Wy is rather expected to behave as

Upr(z) = Crate C/* 4 for z—0 (A.10)

where C; and C, are some positive constants and a is a positive or negative exponent. In
particular, for the non-interacting Bose gas we have C; = Co = 1 and a = 1/2. Repeating
the analysis of section 1.3.3 for the modified expansion (A.10) we obtain for the leading
contribution of the specific heat and the thermal expansion in the low-temperature regime

a8 T ot
T ~ CiCo lrV(@=2) [ Z_|p|7v2 —Colr|"*To/T A11
a7 1Co || <T0|r ) e ( )
a—1
95 ~ —CiCy VZ|’)"‘V(¢7Z)1 <Z|r”z> e~ Gl To/T (A.12)
or r \ T}

This yields the universal Gruneisen parameter for gapped systems in the low-temperature
regime

To=—  for |r|(T/To) » >1. (A.13)
T

Interestingly, one would have obtained this result from expression (1.28) by just taking naively
the limit of the specific heat exponent yy — oc.
In particular, for the non-interacting Bose gas we have
2¢(3/2) 1
S o 0< —p< T
_0S/ow) | 56T
T(0S/0T) 1
H

Lper = (A.14)

for —u>T.

87



Appendix A

A.2 Lindhard function

In this section we evaluate the Lindhard function (2.14) and determine its form in the limit
of small momentum and frequency. Let us consider the Lindhard function as a function of
the complex frequency variable z,

= ! 1 F(€qin)
BVQZ (i + €q) (i — 2+ Eqri) Z £q+k+z . (A.15)

my

xo(z, k) = —

where f is the Fermi function and the Matsubara sum has been evaluated by standard meth-
ods. The physical (retarded) response function, the dynamical suszeptibility, is given in the
limit as we approach the real frequency axis from above

xo(w +i07, k) = x{(w, k) +ixy(w, k) . (A.16)

The imaginary part x| describes the dissipation due to the excitations of virtual electron hole
pairs out of the Fermi sea usually known as Landau damping,

(1) = 7 [ 55 (1)~ F(€and) ¥ (€ — Eanc ). (A17)

The Lindhard function can be evaluated explicitely in the free electron model, i.e. by assuming
a simple quadratic dispersion relation & = k2/(2m*) — u [see section 5.1 of [26]]. A discussion
of the low momentum, low frequency properties in the general case can be found in [42]. At
small frequencies we can expand the second Fermi function and the expression simplifies at
zero temperature to an integral over a surface region in momentum space

da (0
Xi(w k) ~ 7rw/(27?)3 ( ";(§Q)>5(£q£q+k+w) (A.18)
. q
= WNFw/df 0 (€q — €qik + w)

ferromagnetic instability

If the spin—density wave instability is of a ferromagnetic nature, i.e. if the instability occurs
at k = 0, the above expression can be simplified further. Expanding the energy eq;k inside
the delta function for small k and assuming an isotropic Fermi surface the angular integral
can be evaluated and yields for the

ferromagnetic instability: Xo(w, k) ~ T2 O(vik? — w?). (A.19)

27" vrk
The frequencies w > vpk are lying outside the particle hole continuum and the Landau
damping vanishes in this frequency range. The momentum vpk therefore provides a natural
cutoff for Landau damping. The dispersive part, x{, is an even function of frequency and
momentum. Its value at zero frequency and zero momentum is easily evaluated to give the
density of states at the Fermi energy Np. The corrections to it will start quadratically in
frequency and momentum.
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antiferromagnetic instability

In the case of an antiferromagnetic instability the Lindhard function has a maximum at a
finite wavevector k = Qq. The critical behaviour is then dominated by the small fluctuations
0k = k — Qg around this value. It turns out that in contrast to the ferromagnetic case
the leading contribution to the dissipative part does not depend on the momentum. Setting
k = Qp in (A.18) the remaining integral over the momentum surface is expected to give
a finite value which will however depend on the specific energy—momentum relation. That
means the leading contribution to the dissipative part reads for an

antiferromagnetic instability: Xo(w, Qo) ~ w. (A.20)

The dispersive part, xj, will also depend on the specific band structure. The important ob-
servation is that the leading corrections in the momentum fluctuations dk starts quadratically
since xo(k,0) has a maximum at k = Q.

A.3 Linked cluster expansion

Here we cite explicitly the contributions of all diagrams of the linked cluster expansion up
to second order in the quartic coupling v in the Hertz’ theory (2.23). The corrections to the
Gaussian part of the free energy are given by the linked cluster diagrams,

R L wa

where the average has to be taken with respect to the quadratic part S of (2.23). The
following diagrams contribute,

= —fBgN°T’ — Bg2NI?

g2 g
= 76?8N3J12 = —5?32N2JIQ

92
= —5?32NJIQ (A.22)

(]2
= —5-781\721(.
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We introduced the quantities

1 1
[ =— ] n,k s J=— i nak —1 naik )
ﬁVu;(XU(W, ) BV%{XO(W )xo(—iw )
1 4 4
Wnjk;j 1=1 1=1
j=1,2,3.4

X X0 (iwin, k1) xo(iwan, ko) xo (iwsn, k3) X0 (iwan, ki) .

where yq is the Hertz propagator (2.27). This results in the free energy,

2
F =Fg+gN(N+2)I* + 92—' [SN(N +2)°I*J +8N(N +2)K] . (A.24)
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Chapter 5

Introduction

5.1 Motivation: disorder effects in heavy fermions

The unusual properties of heavy fermion materials [43], for example the unconventional,
i.e., non-Fermi liquid magnetic susceptibility and (weakly divergent) specific heat are still
lacking a complete theoretical understanding. In some of these materials disorder seems to
be an essential ingredient of the physics observed and at the origin of the non-Fermi liquid
behavior. The role of disorder in these systems can be multifarious.

Many experimental results can be described within the rather simple Kondo disorder
model (KDM) [44, 45]. It assumes that each magnetic moment of the rare-earth ions couples
independently to the spins of the conduction electrons via an exchange interaction .J. However,
the exchange couplings between the local moments, e.g. the RKKY interaction mediated
indirectly by the conduction electrons, are neglected. In the simplest version of the KDM
the influence of disorder is only taken into account in the form of a spatial variation of the
coupling J(R). This exchange interaction enters physical quantities only in the form of the
Kondo temperature Tk that depends exponentially on J(R.), namely Tk ~ e /(2 (R)Y)
v is the density of states of the conduction electrons. Due to this exponential dependence a
modest variation of the exchange coupling, J(R), can lead to a broad distribution of Kondo
temperatures and, consequently, to a dramatic effect on the low temperature properties.

where

However, many heavy fermion systems are located near a magnetic instability where the
physics is more complicated. The conduction electrons are collectively bound to the rare-
earth ions, screening their local moments. The binding energy is the Kondo temperature Tk.
Near the magnetic stability this Kondo effect competes with the RKKY interaction between
the local moments that is struggling to align them and thus to establish long range order [46].
Which mechanism prevails depends on how the associated energy scales, Tx and Trkky,
compare with each other [46]. (Magnetic instabilities in clean metals and the associated
quantum phase transitions formed the subject of the first part of this work.) The presence of
disorder will possibly alter the physical picture completely. A general scaling argument in the
case of “bond-disorder”, i.e. statistical variation of the coupling between the local moments,
states that disorder cannot be neglected if the correlation length exponent of the clean system,

v, and the spatial dimension d fulfill the so-called Harris criterion [2]:
2
< -. 5.1
V<o (5.1)

Disorder is then a relevant perturbation to the clean theory, ultimately leading eventually
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to new fixed points. In particular, the Harris criterion is fulfilled and randomness has to
be taken into account in two and three dimensions for the Hertz—Millis theory presented in
Chapter 2 where we have v = 1/2. Beyond the knowledge of its relevance, however, the role
of disorder in quantum critical systems is only poorly understood [2].

An effect which may result from the presence of disorder is the generation of magnetic
“droplets”, locally confined condensation of the magnetization order parameter surrounded
by an otherwise on average unordered medium. Due to disorder fluctuations of the interac-
tions there are small regions in space where the RKKY interaction locally dominates over the
Kondo effect leading to the formation of small magnetic domains. These magnetic droplets
will dominate, for example, the susceptibility, resulting in so-called “Griffith McCoy” singu-
larities [2].

In a series of papers A. H. Castro Neto and B. A. Jones [47, 48, 49] considered the
dynamics of such a single magnetic droplet and gave qualitative arguments proposing that
it should behave as an effective spin coupled to an electron liquid undergoing a “cluster
Kondo effect”. Properties like the cluster Kondo temperature depend on the number of
local moments of which the cluster is formed. The statistics of cluster sizes is reflected in
a distribution of cluster Kondo temperatures leading to anomalous thermodynamic behavior
in the spirit of the KDM. This viewpoint was challenged by A. J. Millis, D. K. Morr and
J. Schmalian [50, 51] suggesting that the dissipative bath of electrons suppresses the tunneling
between the cluster configurations for larger droplets destroying the cluster Kondo effect. In
another letter N. Shah and A. J. Millis [52] studied an extended magnetic nanostructure and
found that the quantum fluctuations within the cluster, which had been previously ignored,
have a dramatic effect on the low temperature behavior. Griffith McCoy phases near quantum
critical points remain to be a contentious issue and further work is required to fully understand
their complicated nature.

5.2 Model of a magnetic mini-domain

In the following chapters we would like to contribute to the understanding of the physics of
magnetic clusters by considering the dynamics of the smallest possible magnetic droplet: an
antiferromagnetically ordered domain which consists of just two strongly coupled localized
spin—%,

Hyp = K7 SY(R/2) S7(-R/2), (5.2)

located at positions R/2 and —R/2. In heavy fermion materials the spin-orbit interactions
are quite strong due to the heavy masses of the rare-earth ions and spin rotation invariance is
destroyed. We assume that this leads to a preferred easy axis in the material along which the
moments tend to order. We will take this into account with a strongly anisotropic Ising-like
exchange coupling,

(KU) :diag{KLaKlaKz} where ‘KL| < Kz (53)

The disorder fluctuations favor the coupling between the two selected local moments giving
rise to a tiny magnetic droplet. We assume that the coupling between the moments is much
stronger than their coupling to the remaining f-electron system, so that the latter can be
neglected. Furthermore, the gas of magnetic droplets is so dilute that the interaction between
droplets is also negligible. The local physics is therefore governed by the Hamiltonian (5.2)
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in combination with the interaction of the local moments to the conduction electron system,

to be described below.

In the limit of a large Ising coupling, K, > K|,
the local moments tend to form what we call in the
following an antiferromagnetic mini-domain, Fig. 5.2.
The four energy levels of the Hamiltonian (5.2) are
well separated into two pairs, see Fig. 5.1. This should
be contrasted with the case of an SU(2)-symmetric
coupling where the eigenstates are given by a singlet
and a degenerate triplet. For an antiferromagnetic
coupling K, > 0 the degenerate ferromagnetic con-
figurations have a much higher energy. If K, is the
largest energy scale involved the Hilbert space can
be confined to the two lowest-lying levels in the low-
Their eigenstates correspond to
the even and odd combinations of the two antiferro-

temperature limit.

magnetic configurations shown in Fig. 5.2,

1
+) = E(WHIH)) :

1 (5.4)
=) =—= (111 =41 .

V2

This effective two level system
may be represented by a pseudospin 7, where 7°, § =
1,2, 3, are the usual Pauli-matrices. The small energy
difference of £K | /2 between the two states |[+) and
|—) then corresponds to a “pseudo-magnetic” Zeeman
splitting and the low-temperature Hamiltonian Hyp
can be expressed as

the mini-domain

K
HMDZTLT3.

A
P e
! | L)
P A
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Figure 5.1: Energy levels of

the mini-domain Hamiltonian Hymn
(5.2). Due to the
anisotropic coupling the antiferro-

of equation

magnetic configurations are much
lower in energy than the ferromag-

netic ones.

(5.5)

When the mini-domain is coupled to the conduction electrons quantum fluctuations be-
tween the two configurations of the mini-domain are induced, which will eventually lead to
non-trivial dynamics. We model the interaction between the mini-domain and the conduction

I

Figure 5.2:

II

The wiggly lines

indicate the strong Ising-coupling K, between the localized spins.
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5.3. Overview: two-impurity Kondo model

electrons by a Kondo coupling of each spin to the Fermi sea,

Hx = 2JY (s'(R/2) S/(R/2) + s'(—R/2) S’(-R/2)) (5.6)
= JU Z (ei(k7Q)R/2 CLanxﬂCqﬁ ST(R/2) + e i(k-a)R/2 ciaagﬁcqﬁ Sj(fR/2)> .
kq

The coupling J¥ is assumed to be the same for both impurity spins, thus preserving parity
symmetry of the Hamiltonian Hg. However, it will in general be anisotropic, i.e.,

(JU) = diag{J,,J,,J.}. (5.7)

The electrons, ¢, , are assumed to belong to a featureless band with the kinetic part Hy =
Y ko (ko — ,u)cfmck(,. The model Hamiltonian whose analysis will occupy the following chap-

ters reads
H=Hy+ Hyp+ Hk . (5.8)

We will be mainly interested in the dynamics of the model in the parameter regime where
the energy scale K, responsible for the formation of the mini-domain is predominant. In
Chapter 6 we derive the corrections to the low-energy Hamiltonian (5.5) by treating the
Kondo coupling J as a perturbation. Through second-order processes, the Kondo coupling
J will induce transitions between the states (5.4) of the low-temperature Hilbert space via
virtual excitations of the ferromagnetic states, |11) and |]|). This will result in an effective
pseudospin—Kondo Hamiltonian.

In Chapter 7 we will restrict the model in the sense that we assume that (a) the perpen-
dicular coupling between the spins vanishes identically, K| = 0, and (b) the electronic bath
at the respective impurity sites are not correlated with each other. Although these simpli-
fications might appear artificial in the context of Kondo impurities in heavy fermions it is
not only helps understand the various mechanisms competing with each other but also has a
natural realization in double-quantum dot systems. As we will explain the two assumptions
(a) and (b) allow for a quantum phase transition: As a function of the couplings K,, J, and
J1 the mini-domain either freezes in one of its two configurations or is screened in a “clus-
ter Kondo effect”. The theory describing the phase transition is indeed an effective Kondo
model. In experimental realizations of the reduced mini-domain model in terms of quan-
tum dots this transition leads to a universal jump in the conductance or to a characteristic
zero-bias anomaly depending on the experimental set-up.

5.3 Overview: two-impurity Kondo model

The Hamiltonian (5.8) is a variant of the two-impurity Kondo model, which has been studied
already for over twenty years. In its original formulation — in contrast to (5.8) — it assumes
an SU(2)-symmetric exchange coupling, K, = K| = K. In the following we will give a short
overview of its main characteristics.

The two-impurity Kondo model was introduced by C. Jayaprakash, H. R. Krishna-murthy
and J. W. Wilkins in Ref. [53], where they identified the different ground states existing in
its parameter space. There are two different energy scales to be compared: the coupling
K and the single-impurity Kondo temperature Tx. If the coupling is small, K| < Tk,
each impurity is separately screened by the conduction electrons and the coupling K plays a
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Chapter 5. Introduction

minor role. For large antiferromagnetic coupling, K > Tk, the two impurities form a singlet
and are decoupled from the low-energy dynamics of the conduction electrons. Finally, for
large ferromagnetic coupling, —K > Tk, the model maps onto a two-channel spin-1 Kondo
Hamiltonian. A generic channel anisotropy leads to the so-called two-stage Kondo effect:
upon lowering the temperature the stronger coupled channel screens half a unit of the spin-1
impurity. At even lower temperatures the remaining spin—% is quenched by the other channel
leaving a local Fermi liquid. This early picture was subsequently confirmed by numerical
renormalization group calculations (NRG) [54, 55] and Monte Carlo studies [56].

Generically, there is a smooth crossover between the different regimes, e.g. the suscepti-
bility shows a smooth transition from the Kondo regime, |K| < Tk, to the strong coupling
regime, |K| > Tk. That means that there is no quantum phase transition separating the
regimes in the generic case. However, the situation changes drastically in the presence of a cer-
tain type of particle-hole symmetry. This can be rationalized by a phase-shift argument given
in Ref. [57]. When the coupling K is varied the phase shift is expected to change continuously
from the unitary-limit value 7/2 in the Kondo phase to zero in the strong coupling phase.
However, in the presence of particle hole symmetry this cannot happen since a well-defined
zero-energy phase-shift can only be 0 or 7/2. As a consequence, there must be a point in the
phase diagram which does not belong to either phase, but corresponds to some kind of phase
transition. In the case of a first order transition the phase shift would jump from one value to
the other. However, NRG calculations [58, 59] indicated that the transition is continuous. A
conformal-field theory approach by I. Affleck et al. [59] and a Abelian bosonization analysis
by J. Gan [60, 61, 62] identified the critical theory to be indeed of non-Fermi liquid type and
therefore not characterizable in terms of a well-defined phase shift. The critical theory was
shown to be a two-channel Kondo model [63]: only a single Majorana fermion couples to the
impurity spins, which is ensured by a hidden SO(7) symmetry [59, 60, 61, 62].
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Magnetic Mini-Domain in a Metal

In this chapter we analyze the mini-domain model (5.8) in the limit of strong coupling where
the energy scale K, that holds the mini-domain together is much larger than any other scale
involved in the problem. To zeroth order in the Kondo couplings, J, and J |, the effective
Hamiltonian is just given by Hymp, defined in equation (5.5). It was obtained by truncating
the Hilbert space taking into account only the low-lying antiferromagnetic states, | 1) and
| 1), which can be described by an effective pseudospin, see Fig. 5.1. In this chapter we
consider the modifications of the effective low-energy Hamiltonian due to the couplings of the
local moments to the electrons. We will find that the conduction electrons induce transition
between the two antiferromagnetic configurations. Taking these pseudospin flips into account
the effective Hamiltonian has the form of an effective Kondo Hamiltonian in a pseudo-magnetic
field. Moreover, we will show that it is of a two-channel type.

In Fig. 6.1 the specific heat of
CeCug_zAu, is shown. This heavy
fermion compound orders antiferromag-
netically for doping levels larger than
the critical value of z = 0.1. The log-
arithmic divergence of the specific heat
coefficient directly at the critical dop-
ing can be understood in the framework
of the the Hertz—Millis theory presented
in Chapter 2 under the assumption that
the spin fluctuations are dominantly two
dimensional [7]. However, even for a
doping level of fifteen and twenty per-
cent of gold, i.e. far away from the zero
temperature magnetic instability =z =
0.1, the specific heat coefficient does not
saturate at lowest temperatures as it is
expected of a Fermi liquid. Instead, the
peculiar increase persists which suggests
that the system still possesses a substan-
tial amount of residual entropy.

T(K)

Figure 6.1: Specific heat of CeCug_nAu, from
Ref. [37], see main text.

The residual entropy may be explained by the presence of almost degenerate two-level
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Chapter 6. Magnetic Mini-Domain in a Metal

systems like the mini-domain that is the subject of this chapter. Moreover, the character-
istic feature of the effective two-channel Kondo model, which governs the dynamics of the
strongly coupled mini-domain, are non-Fermi liquid signatures, for example, a logarithmically
diverging specific heat coefficient [64, 12, 63]. One might speculate that the similar signa-
tures observed in CeCug_,Au, are due to the formation of a dilute gas of small magnetic
mini-domains, each generically undergoing two-channel Kondo type physics. However, as we
will explain in detail in the following sections, the effective Hamiltonian always includes a
pseudo-magnetic field. Pronounced non-Fermi liquid behavior is only expected if this field
is sufficiently small compared to the effective Kondo temperature. Thus whether or not the
two-channel Kondo effect develops depends on the microscopic details.

We will start in Section 6.1 by analyzing the symmetries of the model (5.8). In Section 6.2
we introduce the pseudospin notation for the conduction electrons. By applying a Schrieffer—
Wolff transformation we will derive the effective Hamiltonian in the strong coupling limit,
K, — oo. Finally, in Section 6.5 this effective Hamiltonian is treated within a poor man’s
renormalization group treatment to investigate its low-energy behavior.

6.1 Symmetries

6.1.1 Conservation of the z-component of total spin

It will turn out to be crucial that the z-component of spin of the mini-domain is conserved.
The restricted low-energy Hilbert space consists of the two antiferromagnetic states | 1) and
| }1), which are eigenstates of the operator S*(R/2) + S*(—R/2) with eigenvalue zero. The
corresponding pseudospin of the mini-domain thus carries a zero z-component of spin. In
particular, if the pseudospin is flipped, e.g. from | 1]) to | {1), the spin of the mini-domain
does not change. Moreover, since the Kondo coupling of the electrons to the mini-domain,
(5.6), conserves spin, it follows that an electron cannot transfer spin to the mini-domain in
pseudospin-flip processes. We at once conclude that for symmetry reasons the up- and down-
spin electrons have to couple separately to the mini-domain at low temperatures leading to
two different channels. The conservation of the z-component of total spin,

1
fon = ST(R/2) + S°(“R/2) + 5 D luTiastics (6.1)
k

in the model Hamiltonian (5.8) is the underlying reason for the degeneracy of these two
channels.

At this point we should remark on the physical justification of this symmetry. The model
was motivated by the physics of heavy fermions which are characterized by strong spin-orbit
coupling arising from their heavy rare-earth ions. In fact, the strong spin-orbit coupling is
the driving force which eventually leads to the pronounced anisotropy of the direct coupling
K between the two impurity spins (5.2). All the spins of our model should therefore rather be
regarded as effective spins arising, e.g., from the lowest-lying two-level systems of a multiplet
of the total angular momentum that is split by crystal fields. In order to have a preserved
spin z-component, a residual axial symmetry has to be present. The pictures I and II of
the mini-domain Fig. 5.2 do not take this into account and are therefore misleading. One
should rather think of the mini-domain as consisting of the configurations shown in Fig. 6.2.
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6.1. Symmetries

However, we will continue to ignore the subtleties aris- A
ing from the modifications of the band structure due
to spin-orbit scattering and maintain the momentum
label on the kinetic energy of the conduction electrons, < 4
€ko -
6.1.2 Parity Y
Generally, a parity transformation reverses position r I 1 A
and momentum p and leaves the spin s unchanged,
r — —r, g q
P — P, (6.2)
s — S. v
In particular, the spin field given by the two localized
impurity spins transforms as Figure 6.2: Two configuration of the
. ‘ mini-domain with a azial symmetry.
S'(£R/2) — S'(¥R/2). (6.3) The wiggly lines indicate the strong

coupling K, between the spins.
Under parity the configuration I shown in Fig. 5.2 or in

Fig. 6.2 transforms to configuration II and vice versa,

i.e. the eigenstates of the low-energy Hilbert space (5.4), |[+) and |—), have even and odd
parity, respectively. Since they are eigenstates of the pseudospin operator 73 introduced in
(5.5), this pseudospin component can be identified as the parity operator P in pseudospin-
space. In particular, the pseudospin 7 itself transforms as

We will demand invariance of the model under parity transformation, which implies that the
dispersion relation satisfies €, = €_i, .

6.1.3 Time-reversal symmetry

A time-reversal operation 7T leaves the position r unchanged and reverses momentum p and

the spin s,
r — r,
P — P, (6.5)
s — —S.
The spin field transforms accordingly as
S'(+R/2) — —S'(+R/2). (6.6)

As in the case of parity the states |[+) and |—) therefore also have a definite signature under
time-reversal. The time-reversal operator in pseudospin-space is given by 73C where C is the
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Chapter 6. Magnetic Mini-Domain in a Metal

complex-conjugation operator,
7 eT (7‘36)7] = 72 under 7. (6.7)
T

We will assume that the model (5.8) is also invariant under time-reversal, leading to the
requirement €y, = €_k 4.

6.2 Pseudospin notation

The Kondo coupling (5.6) interchanges pseudospin, i.e., parity between the minidomain and
the electrons. It is therefore convenient to introduce an explicit pseudospin index for the
electrons. This is easily done with the new operators [54]

. ~1/2
q singR dQ qR
‘1/(10—4_ = ; <1 + qR > E COSs <7 Cqo
. —1/2
q singR dQ? . /qR
\IJQO'f = ; <1 — qR > ' E Sin <T qu— y (68)

which fulfill the commutation relations
{\Ile‘TX’ \I/qlglxl} = 6((1 _ q’)éggl (SXX/ . (69)

Only these modes U ,4 are important in the two-impurity Kondo problem (5.6); all other
modes decouple from the impurities. The new operators transform under parity as

. ~1/2 ar
q singR dQ COS( 2 )
Vo Pl=2(1+ — e =tV 1
PP T < qR ) /47T sin (‘qQR) o " (610

The third index therefore represents parity and can be identified as the pseudospin index of
the electrons. It will couple to the pseudospin of the mini-domain in interchanging processes.
The Kondo Hamiltonian (5.6) can now be reformulated in terms of the operators (6.8):

1 L o
Hg=—7J9 Y ©.5]. (6.11)
V2o

We have introduced the even/odd combination of the impurity spins

<§+> N U(ST%Z)) ’ (6.12)

where the transformation is given by

U=U'=ypy'" = (6.13)

Sl
[\

7N
— =
-
—_

N——

Furthermore, © is defined as

0 = Z Z H Gk, (ux) 9 ap \I/L,a,(ux) %ap Vasu (6.14)
kq p=+,—
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6.3. Effective mini-domain Hamiltonian

where xy = £ and the sum over momenta is to be understood as the integral qu = fooodk dq.

The couplings g,
Ar? sinkR
= kaj1
9k+ (2,”)3 + kR )
e sinkR
_ =1 ky/1— 6.15

originate essentially from the normalization of the operators (6.8).

6.3 Effective mini-domain Hamiltonian

The form (6.11) for the Kondo Hamiltonians is well suited to deriving the effective low-energy
Hamiltonian. We will apply a Schrieffer—Wolff transformation treating the Kondo couplings
J, and J,| as perturbations. We expand the wave function |¥) of the mini-domain in the

basis {|11),|1T4),|41), | 44)} where S(R/2) and S(—R/2) act on the first and second entry,

respectively,

(W) = ot |11 4+ Py [ 1) + [ 41) + ¥ [ W) - (6.16)
The stationary Schrodinger equation can be expressed as'
Y1t Pt
P11 ¥y
H =F . (6.17)
Pit Pit
P11 Pil

In this representation the direct impurity-spin coupling Hyp of the model Hamiltonian H

takes the form
K,
1 ~-K, 2K,
Hyp =7 2K, -K,

K,

(6.18)

As already indicated in Fig. 5.1 this matrix has the eigenvalues —K,/4 + K| /2 which live
in the low-energy sub-space spanned by the states |1]) and |]1), and the doubly degenerate

'In the chosen basis the impurity spins have the matrix representations

1 1
- 1 - 1
1 1
—1 —1
Y _ 1 —i Y _ 1 {
1 1
1 1
2z _ 1 1 2z _ 1 -1
S5*(R/2) =1 . , S*(-R/2) =3 1
-1 -1
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Chapter 6. Magnetic Mini-Domain in a Metal

high energy value K,/4.2 The Kondo Hamiltonian Hy (6.11) is given in this basis by

27,07 J (65 -07) J. (0;+060) 0
1| J (et -ef) 2.J,0% 0 Ji (05 +6°)
Ae=31 1 (61 + o) 0 -2J,0*  J, (0;-02) |’ (6.19)
0 J(®ft+ef) J (ef-ef) 2702
where the standard notation 6% = O} +i0y has been used. The effective low-energy

Hamiltonian is obtained by restricting the Hamiltonian to the sub-space given by the states

{11, 1},

7] = ( Hyy + Hoy Gy Hig + Hoy Gaa Hyp Hoz + Hoy Gy Hiz + Hoy Gag Hyz ) (6.20)
H3o + H31 Ghi Hig + H3y Gag Hys Hsz + H3y Guy Hiz + H3s Gaa Hyz )7 .

with the Green function
Gij = (E— Hy) ' (6.21)

In the restricted Hilbert space the Schrodinger equation reduces to

ﬁ(¢T¢>:E<¢“> . (6.22)
Yt Yt

Equation (6.22) is so far still exact, but at this stage H depends implicitly through the
Green function on the energy K. This implicit energy dependence will now successively be

eliminated by expanding A in the small parameters K|, J, and J,. The zeroth and first
oder contributions are

_ Ho - K, /4

70 _ < 0~ K./ — ) , (6.23)
~(1) _ Jz(-);i KJ_/Q

H (KL/2 e ) (6.24)

respectively. For the second order contribution one needs the Green functions to zeroth order

Gu = G+0O(J)=Gu (6.25)
G = (E—Hy—-K,/4)". (6.26)

The second order term of the effective Hamiltonian then reads

4@ _ Lp (0760, +0,G0, 0,GO,+6,G0;
2"\ ©LGO; +0,GOL 0,GO,+0; GO} )

@9 N U(?) (6.28)

with the transformation U defined in (6.13). The four entries of H® can be interpreted as
virtual excitations of the mini-domain to the ferromagnetic part of the Hilbert space. The
off-diagonal entries thereby induce transitions between the states | 1) and ||1). The implicit

(6.27)

where we introduced

2In the case of isotropic coupling K, = K, which is not considered here, the matrix Hy p has the usual
three degenerate levels that form the spin 1 triplet and a single level, the singlet.
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6.3. Effective mini-domain Hamiltonian

energy dependence of H() still has to be removed. Before doing so, however, we would like
to transform the Hamiltonian H to the proper pseudospin basis given by {|+),|—)},

() - o)
H = UHU=W,", (6.30)

where we introduced the operators W), by expanding the Hamiltonian in Pauli matrices. The
sum goes from n = 0 to 3 and 70 is defined as the identity matrix.? By construction the
components 7', 72 and 73 comprise the pseudospin of the antiferromagnetic mini-domain.

The non-vanishing components of W of zeroth, first and second order are?
Wéo) — Hy- K./4, (6.31)
W](]) — 107 (6.32)
W?S]) = K,/2, (6.33)
9 1 1 _ _
Wi = g () = gL (01 e ey e, qe), (6.34
w® — Lo ~“lrs(erce, 1o, cot 6.35
1 _5( B )_Z Z x GO 0Oy ) (6.35)
X
2 yevie : - -
Wi - 7@5;%3)=f—Jiz<x@;Ge+xfx@XG@fx>, @30
1
W = (A A = LAY epaer xeyGe)) @)

X

The term VV3(1) is the previously mentioned pseudo-magnetic field stemming from the Hamil-
tonian (5.2) that leads to a pseudo-magnetic Zeeman splitting. We now eliminate the depen-

dence of W,EQ) on the energy E by expanding it perturbatively in J. To this end consider the
operator which appears in W,EQ)

0,G oy = Z Z I G k() 9K x') Gand a i T T (6.38)
kk'qq" pp'
T T
*Wka(u) Voo & Vas ey Vo

When we commute the Green function G either to the right or to the left of all the W operators,
the energy dependence of G can be removed by using the Schrodinger equation in zeroth
order. In order to keep the formulae simple we will make an additional simplification: we will
assume that the electron energies eq, only depend on the absolute value of the momentum,
€lq = € The spin dependence has already dropped out since we have assumed that our

3The matrices 7" are

o_(10 a_ (01 o (0 =i a_ (10
o1 ) T 1 0) T o0 )T 0 <1 )

“The components of W can be easily obtained by using the properties of the Pauli matrices, W" =
1 n
str{H7"}.
2
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Figure 6.3: Second order process in the Kondo coupling, J, which leads to a flip in the
configuration of the mini-domain (see main text).

model is invariant under time-reversal and parity symmetry. Beyond that, we now suppose
the Fermi surface to be isotropic. This is not an essential assumption, but it keeps the
formulae manageable. For an isotropic Fermi surface the electron operators ¥y, have a
simple commutation relation with the kinetic part of the Hamiltonian,

[\I!qaua HU] = (Eq - U)\I/qa,u - (639)

Using the Schrodinger equation in zeroth order one obtains to within order of O(J)

f i
\I!ka(ux)\lllh@u G \I]k’oz’(u’x’)\pq'ﬂ’u’

=~ (_Kz/2 + € — Gq) \Ilka(ux)\llqﬁu \I]k’(x'(u’x’)\l]q,ﬂlul (640)

~ T f o

~ Viatun) Yabu Yira iy Yasw (—Kz/2 —err +€)

Only the symmetrized form of the approximated Green function yields a hermitian expression.
So we finally obtain

o G@J{ _ Z Z W‘ Gk(pux) Ik (wx") Jandq' v (6.41)
Ko k—eq—ekf—}—eq)—Kz/Q
i T T
XUZIB O'a,ﬁ, \I]k(x(ux)‘l!qﬁu \I!k’(x’(u’x’)qjq,ﬂlﬂ/

The second order processes involve four electron operators. After normal ordering we will
retain from this expression only the parts that are most relevant in the RG sense and discard
the irrelevant fluctuations. Using

A | T T _ i ] T T
U?yﬂ Ua’ﬂ’ \I!ka(ux)‘l!qﬁ“ \I/k,a,(u,x,)\llqlﬁlu/ = U?yﬂ Ua’ﬂ’ \I!ka(ux)q!qlﬁlﬂl \I!qﬁuq!k’a’(u’x’) s (642)

this leads to the approximation

T 1 N . T
Yhatu) Yo sw Yapu¥ oy a0 Yaaw  (Wasn Vg () (6.43)
T . T . 1 T
(‘I'ka(ux)‘l’q’ﬂ’u’> Vs \I’k,a,(u,x,) Pt <‘I’ka(ux)‘1’q’ﬂ’u’><‘1’qﬂu ‘I’k,a,(u,x,)>
— Tl Tl .
= (1= Jo) bq 08,0 0ppry Yy, (1) Vgpw : =y dq k0p 00wy \I]k’o/(u’x’)q!liﬁﬂ :

+ (1 = fq)0q.k 08,0 Oy for Ot kO a0yt o »
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Figure 6.4: Contributions of the process shown in Fig. 6.3 which are taken into account in
the approximation made in (6.44).

where the colons indicate normal ordering.® Effectively, only the exchange processes remain.
Due to the spin structure the direct processes do not contribute. Inserting this expression
into (6.41) finally results in

egel, — Y% (1 X9iry (1~ fi) (o07) (6.44)
vo o \ 3 (6 +eg = 2e1) — K. /2 of
2 /
- %(2%,”]::“%2{]6 K./2 (ajai)aﬁ> 9k(px) 9alux') * ‘I’le(uX) WVas(ux)
+ 8y ZZ Xg%f(ux) Goutr{o’ o7} (1= fo) fi ’
P €r —€g — K, /2
where the indices ¢ and j are either + or —. In order to interpret the three terms obtained

above we would like to visualize them diagrammatically. We switch back from the proper
pseudospin basis {|+),|—)|} to the basis given by {|1}),|1)}, whose states correspond to
the settings of the two impurity spins located at different positions in space. As an example
we consider the contribution from the operator ©; G @E, which already appeared as an off-
diagonal entry in (6.27). Here the index L refers to the position —R/2 and the index R to the
position R/2. This operator contains the following combination of the usual Fermi operators:
CI(fR/Q)cT(fR/Q) C$(R/2)CJ{(R/2) = (‘,LL(‘,TJ/ CLRCJAR. The spin of the electron on the right-
hand side is flipped from down to up and the spin of the electron on the left-hand side is flipped
from up to down. Since the Kondo coupling conserves spin the impurities at the respective
locations have to reverse their spins in the opposite way. This is depicted in Fig. 6.3, which
should be read from top to bottom. The domain starts in the [{1) configuration. An incoming
electron flips the mini-domain into the high-energy ferromagnetic state []). A further electron
scattering off the domain brings it back to the low-energy state [1]). Effectively, this process
of second order in the Kondo coupling J changes the state of the mini-domain from ||1) to
the [t])-configuration.

5Normal ordering of fermionic operators is defined as : ¥}, ¥, : = v v, — (¥} ¥, = (¥, ¥}) - 0,0
where the indices n and m represent the appropriate set of quantum numbers.
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Chapter 6. Magnetic Mini-Domain in a Metal

The approximation we made above in neglecting the fluctuation amounts to connecting
outgoing electron lines with incoming ones, see Fig. 6.4. If this is done with lines corresponding
to operators at the same position, i.e. either R/2 or —R/2, it will lead to a direct process
which vanishes after summing over all possible orientations of spin. There are three remaining
terms which correspond to exchange processes and are shown in Fig. 6.4. They are analogous
to the terms obtained in (6.44). From the diagrams it is apparent that the electrons mediate
an effective coupling between the two states |[1]) and ||1).

Now we would like to proceed in evaluating the operators W,SQ) further. It will be helpful
to define
L= fi Jr

G = + . (6.45)
ka.k %(ek—}—eq)—ek/—Kz/Q ek/—%(ek—l—eq)—Kz/Q

Putting the above result for the operator @i G @'Z(, into the expressions for W,g2) we get

2 _
W(]( )= Jt Z ZMQ%«M Gkahr | X Ghx Gax ‘I’Lax dap Wypy : (6.46)
kax \ k'p
2 2
1X Grp 9ox Fr(1— 1)
2 r9ax
+2JLZZ ex — € — K, /2
kq X i a z
2
W1( ) = Jt Z Zugi/u g,quk, X9kx9a,~x - \I/Lozx Ugﬂ Yop,—x t (6.47)
kax \ k'p
2 . - :
WQ( b= Ji Z ZQ%’N gkq,k/ 9kx9a—x * \I!};aX ‘7?16 Vs, —x * (6.48)
kax \ k'u
2 _
Wg( ) = Ji Z Z g?c’u gkq,k’ Jkx9ax * \IILQ)( 6045 ‘I’qﬂx : (649)
kax \ k'p
2 2
() fk(l *fq)
2 u9ax
20y )
€r — € 2/2
kg w©X

As anticipated in the introduction the above operators conserve the spin of the electrons since
the above expressions are diagonal with respect to the electron spin. That means that the
spin-up and -down electrons couple separately to the pseudospin of the mini-domain leading
to two channels. Introducing generalized Pauli-matrices k™, m = 0,..., 3, for the parity index
of the electron operators, cf. footnote on page 103, the effective Hamiltonian up to second
order can be written as

7.3

— . . Tn
H=Hy+> Tinlk.q) ‘I’Lax o i Va5 + (KL+hi) (6.50)
kq

where we have discarded the constant —K,/4 and the constant contribution from WO(Q).

As already mentioned the sum over momenta is to be understood as the integral qu =

fooodk dg. The first term is the usual diagonal part of the electrons, the second term contains
a pseudospin Kondo coupling and the third term is a pseudospin Zeeman splitting. The
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6.3. Effective mini-domain Hamiltonian

non-vanishing entries of the coupling matrix J are

ook, q) gz (k. q) ) _ g2 — 9 < px 1 )
< Tk q)  Tgs(k,q) B Jl%gkq,k’gk’u Gkx 9ax nox )’
L7131 (K, q) L7132(kaQ) ) _ ( x 0 )
(Fn 7wn ) - = ansax (i g (051

+ . —
2 2 ux gk k! 7 gk k!
+J1 ng'ugkxgq,fx < ¢ -~ :

. + —
ingG -x6
o kK’ kaq.k’

In the notation of generalized Pauli matrices, the component J3(k,q) corresponds to a
potential scattering term. The component Joog(k,q) describes the fluctuations around the
pseudo-magnetic field generated by the electrons and acts on the pseudospin. The compo-
nent jgoo(k, q), on the other hand, is the pseudo-magnetic field generated by the mini-domain
and acting on the electrons. All the other components comprise the actual pseudospin Kondo
coupling matrix.

The components in the 1-2 pseudospin space given by the second matrix of (6.51) couple
to the o3-part of the conduction electron spin, so the spin-up and the spin-down channel
have a relative minus sign in these components. However, this relative minus sign can be
eliminated by a rotation by 7 of the spin-down components of the electrons around the z-axis
of the pseudospin. This rotation is given by the unitary operator

e
D =exp{i 52@%( K2, Uhiu)- (6.52)
k

As is shown in Appendix B.1, this rotation applied to the effective Hamiltonian (6.50), H =
D H Dt yields

T3

_ .ot T
H=Ho+> Y Tmnlk.q) : U 57 Ve : o T KL+ h) (6.53)

kg a=t,

The coupling matrix is given by Jpun(k,q) = T2, (k,q) + T2, (k,q). The restrictions imposed
by symmetry on the coupling matrix Jp,,(k,q) are analyzed in Appendix B.2.

The pseudo-magnetic field h; generated in second order is the RKKY interaction [65]
between the two impurity spins mediated by the electrons

hy

2 9 _
4JJ2_Znguqufk(l fq) (654)

e — €, — K, /2
kg nx kTt 2/

d*k d*q  frl - £)
4Ji ./(27r)3 (2m)3 e — €4 — [?z/Q cos (kR) cos (qR) .

In the second line we introduced again the three-dimensional integrals. In contrast to the
usual discussion of the RKKY interaction an additional energy difference of K, /2 appears in
the denominator. This is due to the fact that the second order process underlying h | involves
virtual excitations to the ferromagnetic states which have an energy K,/2 higher than the
antiferromagnetic ones of the restricted Hilbert space. Usually, one considers the RKKY
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Chapter 6. Magnetic Mini-Domain in a Metal

interaction in the complete Hilbert space of the two impurity spins and it has the form of the
Hamiltonian (5.2) but with K replaced by the RKKY coupling. The pseudo-magnetic field
h ) and the transverse coupling K | appear therefore in the effective Hamiltonian on an equal
footing. In the restricted Hilbert space, however, only the x- and y-, i.e., the perpendicular
components of the direct K-coupling and of the generated RKKY interaction affect the low-
energy states of the mini-domain. The z-component of the generated RKKY-interaction just

yields the constant energy shift WéQ) that we discarded.

6.4 Parameters of the effective Hamiltonian

In the following the effective parameters are evaluated in the limits when the microscopic
parameter kp R is either much smaller or larger than one. In these limits the Kondo coupling
J and the pseudo-magnetic field h; can be obtained without knowing the exact dispersion
relation, €4, of the conduction electrons. In the following we set temperature 7' = 0.

6.4.1 Pseudo-magnetic field

We give here the results for the limits small and large kr R at temperature T' = (. The details
of the calculations are found in Appendix B.3.

[ ] ]ﬁ‘FR <1
DQ
hi ~ —4(Jyp)? min {D, —} (6.55)
K,
where D is a band cut-off and p the density of states per spin at the Fermi energy.
[ ] ]ﬁ‘FR >1
2cos? (kv R
A (J1p) ovpkp w +0(a™?) for a>1
L R Lrp 3 )
(kr R) g cos (2kpR) + 2 alog v cos? (kpR) + O(a) for a <1
(6.56)

where « = RK,/(2vr), vi =de(kr)/dk is the Fermi velocity and p = k2 /(272vF).

The result for large kr R depends on an additional parameter a, which is given by the ratio
of two energy scales. The energy K,/2 is the separation between the antiferromagnetic and
the ferromagnetic states, cf. Fig. 5.1, and thus originates from the direct interaction (5.2)
between the two impurity spins forming the mini-domain. The other energy scale vp/R
corresponds to the inverse time the electrons need to travel ballistically from one impurity to
another. So there exist two forms of communications between the impurities, one is given by
the direct interaction and the other is mediated by the conduction electrons. These two forms
of communications compete with each other. The electronic way of communication is more
efficient if the time R /vy is shorter than the time given by 2/K,, i.e. if a is smaller than one.
In this case h | exhibits the known cos(2kr R) oscillations of the RKKY-interaction. However,
if « is larger than one the direct interaction dominates over the electrons and the cos(2kpR)
oscillations change into cos?(kp R) oscillations.
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6.4. Parameters of the effective Hamiltonian

Besides the pseudo-magnetic field that splits the pseudospin levels of the mini-domain,
there exist the pseudo-magnetic field J5¢(k,q) that acts on the pseudospin of the electrons.
The latter will renormalize the former and we obtain a correction that can be estimated as

hi — hy+Jphyx =he+0O(Jp)*, (6.57)

where x is the susceptibility of the electrons. The renormalization is of higher order in the
coupling J| and will be neglected in the following. The axial symmetry present in our model
forbids that different components of the pseudo-magnetic field in the z- and y-direction will
be generated.

6.4.2 Pseudospin Kondo coupling

In this section we simplify the expressions for the coupling matrix J (6.51). In the RG sense
the momentum dependence of J(k,q) is irrelevant and we will henceforth set the momenta
equal to the Fermi momentum. We cite here only the leading order contributions in the limits
kr R small and large. The details can be found in the Appendix B.3.

[ ] ]ﬁ‘FR <1
2
( T T ) i A A+ 0O (ke R)
T30 Js3 A (1 +0 (kFR)Q) A+ O (kpR)?
Jn T2\ _ krR 0 0
( Jo1 T2 ) =vr(Jp) V3 ( 1+ 0 (krR)* 0 ) (6.58)
0 A+ O (kpR)?
krR
+2vp(Jp)? —=

where vp is the Fermi velocity and p = k2/(272vp) is the density of states per spin
at the Fermi energy. The coefficients A and S depend on the band cut-off D and are
defined in (B.37) and (B.36), respectively. The coefficient A is particle hole asymmetric
and S is particle-hole symmetric.

[ ] ]ﬁ‘FR >1
sin(krR) cos(kr R)
A ()
Joo  Jo3 2 (krR)?
~ —2 .
< Jz0  Js3 ) v (J1p) 4 sin(kpR) cos(krR) F) (6.59)
kr R kRO
cos(kpR)
0 ——Fla
() (] §)+ 2 R )
Jo1 T2 1 0 S 0

where @ = RK,/(2vp) and the function F is defined in (B.31).
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Chapter 6. Magnetic Mini-Domain in a Metal

In the case of a particle-hole symmetric model the potential scattering terms [Jyo and J3g
vanish identically irrespective of the value kpR. This is analogous to the usual Anderson
model in the local moment regime; in addition to the Kondo couplings the Schrieffer Wolff
transformation generally yields a potential scattering term which, however, vanishes in the
case of particle hole symmetry [66].

6.5 Poor man’s scaling analysis

We have seen in the last section that the effective low-energy Hamiltonian is given by the
two-channel pseudospin Kondo model with a pseudo-magnetic Zeeman splitting. The two-
channel Kondo model in zero (pseudo-)magnetic field exhibits non-Fermi liquid physics below
the characteristic temperature scale T, which is the Kondo temperature [12, 64]. However,
the non-Fermi liquid features can be destroyed by either a (pseudo-)magnetic field, that acts
on the effective impurity, or a channel anisotropy. These two types of operators are relevant
with respect to the two-channel non-Fermi liquid fixed point and drive the systems towards
a stable Fermi liquid at low temperatures [67]. The channel isotropy in our case is secured
due to the conservation of total spin (6.1). The total pseudo-magnetic field K| + h; on
the other hand will destroy the non-Fermi signatures. It has been shown [68, 12] that the
temperature scale associated with the run-away flow from the non-Fermi liquid fixed point
is given by Ty, = (K1 + h7)?/Tk. In order for a pronounced non-Fermi liquid regime to
exist this temperature scale must be much smaller than the Kondo temperature Tx, see
Fig. 6.5. Since we have introduced the coupling constant K| as a bare parameter of our
model we adopt the point of view that it can be used to tune the effective pseudo-magnetic
field to zero, K| + h; = 0. The coupling K| thus plays the role of a control parameter that
determines the temperature width of the log+/2 plateau of the entropy in Fig. 6.5, which
is the characteristic signature of the two-channel Kondo fixed point. Besides, the question
remains whether the microscopic parameters allow for a sizeable Kondo temperature or not.

The Kondo temperature can be obtained via the poor man’s scaling treatment [69, 66].
As usual, its scaling equations describe the flow of the effective coupling constants while the
band cut-off D is reduced. The scaling equations are

0T mn
810gD = —( €kim Epjn Jkp x7lj ) (660)

where all indices now run from 1 to 3. We have introduced { = 1/vp and €, is the totally
antisymmetric tensor with the normalization €193 = 1. All the other parameters, e.g. the
potential scattering term Jpo or the pseudo-magnetic field, are scale invariant in lowest order.
Taking into account only the non-vanishing entries these equations reduce to

NV

DlogD 2¢ Jo1 T3 (6.61)
0T

dlogD 2¢ J12 T3 (6.62)
0J33

DlogD 2¢ Ji2 Ja1 - (6.63)

All components grow in absolute value towards strong coupling upon lowering the cutoff D if
the condition sign{J12J21J33} = —1 is fulfilled. Dividing equation (6.61) by equation (6.62)
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non—-Fermi liquid

A fixed point
log 4 entropy
log2
log \/_ -

T T T >

temperatur
Trr Tk K high temperature Fermi liquic
fixed point fixed point

Figure 6.5: The left panel shows the evolution of the entropy of the mini-domain coupled by
a strong Ising-like coupling K,. For high temperatures the mini-domain entropy is given by
log 4. At a temperature scale of the order of the Ising coupling the mini-domain forms and
the high-energy ferromagnetic states are frozen out, see Fig. 5.1. At the Kondo temperature
Ty the entropy is further lowered by half to the typical two-channel Kondo value of log /2.
Finally, at the crossover scale Ty, = (K| + h1)?/Ty the Zeeman splitting destroys the non-
Fermi liquid signatures, and the system is driven towards a stable Fermi liquid phase. The
corresponding RG flow is sketched in the right panel.

and (6.61) by (6.63) lead to the so-called scaling trajectories

(‘_712)27(‘_721)2 = COHSt, (664)
(‘_733)27(‘_712)2 = COHStI., (665)

A set of trajectories is shown in Fig. 6.6. Using the trajectories the scaling equation can be
solved analytically. In the case where the couplings grow with decreasing band-width we can
extract the energy scale Tk at which the couplings have scaled to a value of order O(1). In
the following we would like to solve the scaling equations in the limits kg R large and small.
Using the estimates derived in the previous section we will obtain an expression for the Kondo
temperature T .

6.5.1 Limit krR < 1

Consider first the limit kp R < 1. From the estimate (6.58) in this regime we have
|Jaa| > |2l if krR<K1. (6.66)

The relationship between the other pairs of couplings can in principle be arbitrary, so we will
limit ourselves to certain special cases. In the limit kp R < 1 the relationship sign(733712) =
—1 holds and the condition for a flow towards strong coupling becomes J21 > 0, i.e. J,p > 0.

1. Large particle-hole asymmetry
The first case we consider is representative for a large particle-hole asymmetry. We
assume the particle-hole asymmetry parameter A to be of order O(1), while the remain-
ing small parameters are of the same order O(kpR) ~ O(J,p) ~ O(Jp). According to
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Figure 6.6: Flow of the effective coupling constants Jio and Js3 in the case of positive Jo1.
The solid lines correspond to the scaling trajectories and the arrows indicate the direction of
the flow. The flow is towards strong coupling if sign{ J33J12} = —1.

(6.58) the two components J33 and J21 are of second order in these small parameters
whereas the component Jio is of third order. So in this case we have the following
hierarchy among the Kondo couplings

|Tas| ~ |Ja1| > | T12] - (6.67)

After integrating the scaling equations and expanding in the small coupling J72 we find
for the Kondo temperature

__m __ V3w
Tw ~De 10T = De TLokiR | (6.68)

2. Small particle-hole asymmetry
Now we would like to assume that the particle-hole asymmetry is of the same order as
the other small parameters O(A) ~ O(kpR, J,p, J p). We obtain according to (6.58)
the following hierarchy for the couplings

|Jo1] > [Tas| > [T - (6.69)

Integrating the scaling equations and expanding according to this hierarchy results in
the Kondo temperature

1 V3B
2¢ T2 _ \/i]zp krR 2J.pkrR

VB ()2 A (010

We can summarize that in the limit kp R < 1 the Kondo temperature is suppressed by kp R
in the denominator of the exponent.
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6.5.2 Limit kR > 1
In the opposite limit kp R > 1 the estimates (6.59) yield the hierarchy

‘jﬂ‘ > |‘_7T;‘ = |‘_712‘ for krR>1. (6.71)

Again we have the relationship sign{ 733712} = —1 leading to the condition J3; > 0, i.e. J,p >
0, for a flow to strong coupling. Integrating the scaling equation and expanding in the small
couplings gives the Kondo temperature

Ty ~ D J12
2T

where a = RK,/(2vp) and the function F is defined in (B.31).

1 1
20 T 2 cos(k 2.7,
(Jor _ (J1p)? cos(kpR) r - (6.72)

T.p kiR

6.6 Discussion

In this chapter we have considered a simple model of a magnetic droplet consisting of two
local moments (5.8). We have shown that for strong Ising-like coupling of the two local
moments the effective theory is given by a two-channel Kondo Hamiltonian with a Zeeman
splitting (6.53). The degeneracy of the two channels is ensured by the assumption that an
axial symmetry of the droplet is present, see Fig. 6.2. We estimated the couplings of the
effective Kondo model in terms of the parameters of the high energy theory, neglecting the
effect of spin orbit coupling on the band structure of the conduction electrons; we expect
that its inclusion will not qualitatively alter the results. We found that the development of
non-Fermi liquid physics in the effective model requires fine-tuning in order to eliminate the
Zeeman splitting, which would otherwise drive the system to a stable Fermi liquid phase. We
determined the Kondo temperature of the effective model in different parameter regimes with
the help of a poor man’s scaling analysis. We found that for small separation of the local
moments, kp R < 1, the Kondo temperature is suppressed whereas in the other limit it is
sizable.

We can conclude that the scenario of a dilute gas of magnetic droplets, each indepen-
dently exhibiting a two-channel Kondo effect is not expected to be generic in heavy fermion
compounds because it requires fine-tuning. It therefore remains speculative that the observed
non-Fermi liquid behavior of these materials can be attributed to the dynamics of magnetic
droplets.
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Chapter 7

Mini-Domains in Quantum Dots

In this chapter we consider a special case of the mini-domain model (5.8). We assume (a) that
the transverse direct coupling K| vanishes identically and (b) that the conduction electrons
at the respective impurity sites are uncorrelated, i.e. the conduction electrons at each impurity
site belong to two independent baths. To be definite the Hamiltonian that is considered in
this chapter reads
H=K,\SiSp+ Y HJ, (7.1)
j=I,R

where the index L and R labels the left and right impurities and electron baths. HjK describes

the coupling of the 5" bath to the j'" impurity via an anisotropic Kondo Hamiltonian,

HJ = Hylewoj] + Y JaSpcl omscs; - (7.2)

naf

The electron operators of each bath are ¢, ; = >k Ceo j and the kinetic part of the Hamiltonian

is Ho[ckoj] = D opo (e — u)clo_jcko_j. The Kondo coupling is assumed to be the same for each
impurity and has the anisotropic form (J,,) = (J,J,,J,). A schematic representation of the
model is shown in Fig. 7.1.

Whereas we confined ourselves in Chapter 6 to the strong coupling limit only, K, > |.J,/,
the two assumptions (a) and (b) simplify the model dramatically so that we will be able
to analyze its properties in the whole parameter space. We will show that the physics in
the strong coupling limit, K, > |J,|, is qualitatively different. Due to the absence of a
transverse direct coupling, K |, the two antiferromagnetic configurations of the mini-domain
are degenerate (compare Fig. 5.1). This results in a strong-coupling phase characterized by

bath L @@ bath R

LN N
J

Figure 7.1: Schematic representation of the mini-domain model Hamiltonian (7.1).
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a non-zero residual entropy of log 2. This is in contrast to the strong-coupling phase of
the general model (5.8) described by an effective two-channel Kondo model with a “pseudo-
magnetic” field (6.53) derived in Chapter 6. Here, due to the generic channel anisotropy
the strong coupling phase is characterized by a local Fermi-liquid fixed point with vanishing
residual entropy. The degeneracy of the ground state of the mini-domain leading to the
residual entropy log 2 is also the underlying reason why the model (7.1) shows a quantum
phase transition usually absent in the generic two-impurity Kondo model (without particle
hole symmetry; compare Section 5.3). That a phase transition has to exist in parameter
space can be understood by comparing with the weak coupling limit, K, = 0: The two
impurities are decoupled and will be separately screened by their respective electron baths.
Each impurity spin then forms a composite singlet with the electronic spins, resulting in a
local Fermi liquid with a residual entropy of log 1. The ground states in the weak and strong
coupling limits thus differ in their residual entropy and therefore have to be separated by a
phase transition.

The existence of the phase transition in the mini-domain model (7.1) was first realized
by N. Andrei, G. T. Zimanyi and G. Schén [9]. They considered the same Hamiltonian as a
model of two coupled quantum dots. It was conjectured that the quantum phase transition is
continuous in nature and qualitative arguments were given for how the conductance through
the double dot system should behave at low temperatures. We were able to solve this issue.
It will be shown in the following sections that the quantum phase transition belongs to the
Kosterlitz Thouless universality class [70]. The conductance at the phase transition has a
peculiar zero-bias anomaly and we will determine its characteristic exponent.

This chapter is organized as follows. We will start in Section 7.1 with an analysis of the
model in the limit of strong Ising coupling, K,. We will determine the scaling dimension
of the least irrelevant operator and derive a criterion for where the strong coupling phase
should become unstable. In Section 7.2 this criterion is borne out by a suitable mapping of
the mini-domain model (7.1) to a certain generalized Anderson model which we then analyze.
With the help of a Schrieffer—Wolff transformation we show that the effective theory near
the phase transition is a Kondo model with the two antiferromagnetic configurations of the
mini-domain, see Fig. 5.2, playing the role of the pseudospin. As a consequence, the phase
transition between the strong coupling phase and the Kondo-screened phase belongs to the
Kosterlitz—Thouless universality class as explained in detail in Section 7.3. In Section 7.4 the
results are compared with numerical renormalization group (NRG) calculations by M. Vojta
and T. Pruschke and physically interpreted. The robustness of our results is discussed in
Section 7.5. Finally, in Section 7.6 we present predictions for two experiments described by
the mini-domain model where the quantum phase transition shows itself either in a universal
jump in the conductance or in a characteristic zero-bias anomaly.

The work of this chapter is published in Ref. [11].

7.1 Strong coupling analysis

In the strong coupling limit, K, > |J,|, the two impurity spins form an antiferromagnetic
mini-domain with the configurations |1]) and |]1), see Fig. 5.2. In zeroth order in the Kondo
coupling, J,, these two configurations form a degenerate doublet, see Fig. 5.1, since according
to assumption (a) the transverse coupling is identically zero, K; = 0. This degenerate
doublet will eventually lead to a residual entropy of log 2 in the strong coupling phase. As in
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Chapter 6 we would like to derive an effective Hamiltonian by performing a Schrieffer—Wolff
transformation that takes into account the fluctuation induced by the Kondo coupling .J,,.
Due to the fact that the impurities couple to different electron baths the effective Hamiltonian
is easily derived and has the form

H =Ho + Haip where Ho = Z Hylckej] + Z JZS;chafwcﬂj . (7.3)
j=L,R af

The z-component of the Kondo coupling leaves the low-energy Hilbert space of the mini-
domain invariant. It represents a scattering potential for the conduction electrons of size J,,
the sign of which depends however on the configuration of the mini-domain. The leading term
of the induced mini-domain flips in a perturbative expansion in J is of order O(J? /K,),
4, 2

Haip = Kij (S}I:S}ECILCTLC%RCiR + h.c.) . (7.4)
A process described by Hgip, has already been depicted in Fig. 6.3. However, in contrast
to the discussion following Fig. 6.3 in Chapter 6 the electron operators in (7.4) cannot be
contracted since they belong to different Fermi seas. This is a consequence of assumption
(b), that the electrons coupled to the respective impurities belong to different baths and
are therefore uncorrelated. In particular, no RKKY interaction is generated. That means
that the doublet forming the mini-domain remains degenerate and will not be split by a
generated “pseudo-magnetic” field as in Chapter 6. In this sense the doublet represents a
perfect pseudospin.

What is the ground state of the strong coupling Hamiltonian (7.3)7? The part Haip is the
only term in (7.3) which couples the different configurations of the pseudospin, | 1) and |]1).
In its absence the mini-domain is “frozen” in either of these configurations and the ground
state therefore has a residual entropy of log 2. The flip term Hg;, comprises four electron
operators and at first sight it seems to be irrelevant in the RG sense'. Since each electron
operator carries a scaling dimension of 1/2, its bare scaling dimension is dim[Hgip]pare =
2 and the log 2 fixed point seems to be stable. However, this conclusion is only valid for
small coupling J, as we will explain in the following. Due to the presence of the spin-flip
operators in (7.4) the term Hgj, acquires an anomalous dimension. When the pseudospin of
the mini-domain is flipped once by Hgip, the conduction electrons experience an instantaneous
sign change in the scattering potential .J,. This whirls up both Fermi seas, leaving a foam
of an infinite number of excited particle hole pairs. It takes an unusually long time until
the seas have calmed down again. This phenomenon is known as Anderson’s orthogonality
catastrophe [71, 72]. In the presence of a sharp Fermi edge the unusual long-time response
results in a so-called x-ray edge singularity which manifests itself in an anomalous scaling
dimension of the flip operator Hgjy,.

In the following we will determine this scaling dimension using Hopfield’s rule of thumb [73].
To adjust the Fermi sea to a new ground state after the mini-domain has flipped once, a cer-
tain amount of spin An has to flow to infinity away from the impurity sites. Hopfield noticed

'We will use the convention that the scaling dimension of an operator O derives from its correlation function
in the following way:
(O(t)O(0)) ~ ¢~ 2dmIOT
For example the scaling dimension of the kinetic Hamiltonian Hy [ckaj] is 1. Contributions to the Hamiltonian
with a scaling dimension 1 are dubbed marginal, whereas contributions with scaling dimensions smaller or
larger than 1 are called relevant or irrelevant, respectively.
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that the collective response of a Fermi sea depends only on An in the long-time limit: the

(An)” ' In our problem, we will have to consider

corresponding correlation function decays as ¢~
four different Fermi seas (j = L, R, 0 =1,]) each contributing independently. A single mini-
domain flip occurs when the flip operator Hg;, acts once on the Fermi seas. In the absence of
any further flips the long-time limit of the correlation function is given according to Hopfield’s

rule by
- X (Ang;)?

j=L,R;

(i (1) i (0)) 4y ~ ¢ =1 . (7.5)
The index on the correlator indicates that it is to be calculated with respect to the Hamiltonian
Hg. The transfered spins are easily obtained by the use of the Friedel sum rule [66]. Consider
the mini-domain flip process shown in Fig. 6.3, which involves the operator Sz Sp CILCTL%RCJ(R.
Let us start with the Fermi sea of the spin up electrons in the right-hand bath. The creation
operator c%R adds one spin up. Moreover, due to the spin flip operator S;, the scattering
potential seen by these electrons changes suddenly from +.J, to —J, accompanied by a change
in the associated phase shift from §;, to —d;.. According to Friedel’s sum rule the change
in the phase shifts leads to a transfer of spin —20; /7. Altogether, the Fermi sea of the up
electrons in the right bath have to rearrange a spin of magnitude Any p =1—2§; /7. Similar
arguments yield for the other Fermi seas Anjp = —An;, = Any;, = —Anqyg. The scaling
dimension of the flip operator Hg;, with respect to the “frozen mini-domain” phase of residual
entropy log 2 represented by Hg can thus be read off to be

: 1 267\’
dim [Hﬂip] = 5 Z (Ana,j)Q =2 (1 — %) . (7.6)
=

This result is verified in Appendix B.4 with the bosonization technique following K. D. Schotte
and U. Schotte [74]. Indeed, in the absence of the scatterer, ;. = 0, the scaling dimension is
2 as naively guessed in the beginning. For small phase shifts, i.e. small J,, the “frozen mini-
domain” fixed point is stable with respect to the flip term Hg;,, since it is irrelevant. However,
mini-domain flips are relevant if the phase shift is larger than a critical value d;, > dr,

o = g (1 - %) . (7.7)

Beyond this critical value fluctuations of the mini-domain grow towards low energies giving
rise to a new phase. The “frozen” mini-domain fixed point and the associated log 2 entropy
phase becomes unstable.

It turns out that the special value of the phase shift, d7, is well known as the Toulouse
point of the single-impurity anisotropic Kondo model [66]. In the next section we will exploit
the special properties of the Toulouse point which enables us to identify the quantum phase
transition taking place at 7.

7.2 Bosonization: generalized Anderson model

At the Toulouse point the single-impurity anisotropic Kondo model is exactly solvable in
closed form. This becomes especially apparent in the framework of bosonization [75]. In
this section we will bosonize the mini-domain Hamiltonian (7.1). After performing a unitary
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transformation and subsequent refermionization we will show that the model takes the form of
a generalized Anderson model. We will repeat the strong coupling analysis which is especially
revealing in this new formulation since at the Toulouse point the generalized Anderson model
simplifies to the usual single-impurity Anderson model [66] as was noticed before by S. Kehrein
and M. Vojta [10].

In bosonizing the mini-domain Hamiltonian we closely follow Ref. [68]. We stick mostly
to the conventions outlined in the introductory tutorial on bosonization by J. von Delft
and H. Schéller [76]; the sole exception will be a different normalization of the electron Green
function from that in Ref. [76] which can be accounted for by replacing all fermionic operators
bY Cyon peit, sensiier — V27 ¢, such that {cjl(ac), ¢,y (2')} = Oppid(z — 2').

The Kondo interaction (7.2) is local in space. It therefore involves only the s-wave elec-
trons; the other electrons are decoupled from the impurity spins. The s-wave electrons form
an effective one-dimensional system that is amenable to the bosonization technique. For this
purpose they are described by one-dimensional so-called chiral fields,

Coj (LE) = Z 67“”:0]&7]‘, T e (—OO, OO) , (78)
k

where k = p — pr is the radial momentum relative to the Fermi momentum. The z > 0 and
x < 0 portions of the chiral field are associated with the incoming and outgoing scattering
states, respectively. We will also need the density of states per spin of incoming or outgoing
electrons, i.e. of an electron living on a half-line, p = 1/(27vp). The central ingredient in the
following treatment is the bosonization identity

1

Coj() = ——=F,j e 9ei(®) (7.9)
21a
where a is a short distance cutoff, F,; is an anticommuting Klein factor, {F;[j,Fg,j,} =
205405, and ¢4 is the corresponding bosonic field which obeys the commutation relation
[$0j (@), Out bg 1 (2")] = 2mi6(x — =) 8551 0500 - (7.10)

Transforming to bosonic charge and spin fields ¢, ; = % (¢1j £ ¢1;) , the bosonized version
of the Hamiltonian H]K (7.2) is given by [75, 68]

J J .
K _ ) ) Z_ qz , L —iv2¢5;(0) g+ pt
Hj = H0[¢C_7] + H0[¢5_7] + —\/§7T Sj 8m¢s](0) + 9ra (e J Sj FUFTj + h.C.) . (7.11)

Assuming a linear dispersion ¢, = vpk the kinetic parts are
dz 1
Hold) = ve [ 5255 (0u(a))? s (712)
21 2

The bosonization treatment shows explicitly that the charge degrees of freedom represented
by the field ¢.; decouple from the spin dynamics in the Kondo model. The charge field ¢.;
will be omitted in the following. Applying a general Emery Kivelson transformation [63] with
the “boundary condition changing operator” [74, 77]

Uy=exp iy Y S:¢si(0)] (7.13)
j=R,L
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7.2. Bosonization: generalized Anderson model

parametrized by 7y, the Hamiltonian HJK transforms into ﬁJK = UA/HJKUA;r with

HJK = Ho[d)sj] + <% — fyq)F) S;-@m(ﬁsj([)) + ZJTl(J (efl(ﬁf'y)d’sj(o)S;FFLFﬁ + h.C.) . (7.14)
The important thing to note is that the Ising coupling of the mini-domain, K,S7S%, is
invariant under this transformation.

For the special value v = v/2 — 1 the exponentials appearing in expression (7.14) have the
same form as in the bosonization identity (7.9). For this special value the Kondo Hamiltonian
can be refermionized upon introducing a new pseudo-fermion field ¥; representing solitonic
spin excitations of the original conduction electrons. (There exists another interesting value
v = v/2 where the model collapses to two coupled spin-boson models, see Appendix B.5.) We
will further represent the spin operators S}l in terms of fermion operators d;, e.g. S]Z- = d;dj —%.
For details, in particular how to ensure proper anticommutation relations among the fermions,
see, e.g., Appendix D of Ref. [68]. The refermionized mini-domain Hamiltonian (7.1) takes
the form of a generalized Anderson model,

Hoa= K, (dde _ %) (dTLdL _ %) 4

F%L [Ho[‘I’j] v (d_}\lfj(o) + h.c.) +W (d}dj - %) vl (0)w,(0) ]

(7.15)

where the colons indicate normal ordering. The new coupling constants V' and W are defined
in terms of the Kondo couplings,

JL

2ma

V= and  Wp=+V2J,p— (V2-1). (7.16)

As promised above, the special properties of the Toulouse point emerge here naturally. At
the Toulouse point the coupling W vanishes, which implies J,p = 1 — 1/\/§ as explained in
detail in the following section.

7.2.1 Phase shift relationship

Before making the connection with the strong coupling analysis of Section 7.1 we have to
spend some time on the subtleties of how the results depend on the applied cutoff scheme.
Generally, the cutoff scheme strongly influences the meaning of the coupling constants of
the Hamiltonian. In the original formulation of the mini-domain model (7.1) the Kondo
interaction was point-like and the conduction electrons belonged to a band with a finite
width, i.e. cutoff, D. On the other hand, the bosonization procedure relies on extending the
band to infinity: the sum over radial momenta k in (7.8) extends from minus to plus infinity.
The cutoff was reintroduced with the short distance cutoff ¢ in the bosonization identity (7.9).
This effectively corresponds to a Kondo interaction with a finite range in space. A thorough
discussion of this issue can be found in Appendix A of Ref. [68].

The application of different cutoff procedures in the two formulations implies that one has
to be very careful in identifying the couplings of the generalized Anderson model, W and V/,
with the Kondo couplings, J, and J,, in the original formulation (7.1). The identification
(7.16) is only valid within the bosonization cutoff scheme. A way out of this dilemma is
provided by the calculation of certain physical observables which are independent of the
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Chapter 7. Mini-Domains in Quantum Dots

cutoff scheme applied, i.e. which describe measurable low-energy properties of the model.
One such quantity is the phase shift. After the phase shift is calculated within the different
cutoff schemes the identification of the coupling constants can be made by comparing the
results. The phase shift of the original mini-domain model (7.1) as well as of the generalized
Anderson model (7.15) can be easily calculated for J;, =0 and V = 0. For a

0y = arctan (7JZ/2) fm gC(O) = arctan mJzpi
. : 1—(—J,/2)Reg.(0) 2
finite band cutoff scheme W/ 0 -
oy = arctan (= W/2)Im g4(0) — arctan | = PsE

1 — (—W/2)Re gw(0)

(7.17)
the phase shifts associated with the interactions J, and W are given in terms of the Green
function of the conduction electrons, ¢, and the solitonic fermions, ¥, respectively. The last
equality is only valid in the case of particle-hole symmetry when the local Green function,
g(w) = > (w — e +i0T)"", in each case reduce to g.(0) = —impp and gy(0) = —impsy,
respectively, where prp and pgp are the density of states of the respective fermions. On the
other hand, the phase shifts read within the

wdp
dj, = 5
bosonization cutoff scheme (7.18)
TWp
ow = 5

Loosely speaking, the Born approximation of the phase shifts in the finite band cutoff scheme,
i.e. the expansion of expression (7.17) to first order in the coupling constants, yields the
exact result in the bosonization cutoff scheme provided the respective densities of states are
identified with each other.

Now we are in a position to establish a universal relationship between the mini-domain
Hamiltonian (7.1) to the generalized Anderson model (7.15) in the limit V,J; — 0. Replacing
the coupling constants in (7.16) by the phase shifts (7.18) derived within the bosonization
cutoff scheme we obtain

Q‘S_W:\/g<25fz<1i>>:\/§<25fz@> for V=J =0. (7.19)
T T V2 T T

In the strong coupling analysis of Section 7.1 we found that the mini-domain starts to fluctuate
when the phase shift §;, exceeds a critical value o7 (7.7) identified as the Toulouse point. We
can easily verify that the associated critical value for the phase shift dyy is zero. We summarize
that exactly at the Toulouse point, where the quantum phase transition is supposed to happen,
the coupling W in the generalized Anderson model (7.15) vanishes.

7.2.2 On the Toulouse line

As S. Kehrein and M. Vojta [10] have pointed out, for W = 0 the generalized Anderson model
simplifies to the conventional (particle hole symmetric) single-impurity Anderson model. The
Ising interaction K, plays the role of the local Coulomb repulsion and V' is the hybridization
between the solitonic fermions, ¥, and the pseudo-fermions, d, on the effective Anderson
impurity. The bath index, j, can be identified with a pseudospin, R =1 and L =},

Hy=K, (d}gdﬂ - %) (dﬁdu - %) + _%:U [Hg[\I!U] +V (d‘;\IfU(O) + h.c.)} . (7.20)
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Figure 7.2: Correspondence between the configurations of the impurity spins forming the
mini-domain and the effective single impurity described by the Anderson model. The anti-
ferromagnetic configurations of the mini-domain, (ii) and (iii), can be attributed to a singly
occupied Anderson impurity with a well-defined pseudospin of either { or .

(i)

(iii)

N AV AV

The pseudospin is indeed exactly the one already introduced in Chapter 6. In Fig. 7.2
the correspondence between the configurations of the original two impurity spins and the
effective single Anderson impurity is illustrated. The antiferromagnetic mini-domain, (ii) and
(iii) of Fig. 7.2, forms in the strong coupling limit K, > pspV?2, where pgr is the density of
states of the solitonic fermions. In the language of the Anderson model this is the so-called
local moment regime where the Anderson impurity is singly occupied and has a definite
pseudospin of either {} or |J. The pseudospin is thus in one-to-one correspondence with the
two antiferromagnetic configurations of the mini-domain already depicted in Fig. 5.2.

When the coupling K, is reduced the pseudocharge fluctuations of the Anderson model,
i.e. the excitations of the doubly occupied state(i) and the empty state (iv), grow in impor-
tance. The Anderson impurity cannot be associated with a well-defined pseudospin any more;
it is said to enter a mixed valence regime. The transition from the local moment to the mixed
valence regime is known to be a crossover: the Anderson model does not exhibit a quantum
phase transition! The phase transition in the generalized Anderson model is thus to be found
not along the Toulouse line, W = 0, but rather perpendicular to it, i.e. by considering its
behavior in the presence of a finite coupling W.

Let us consider the Anderson model (7.20) in its local moment regime, K, > psrV?2, and
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investigate how a small coupling W affects its behavior. After applying a Schrieffer—Wolff
transformation, which treats the hybridization V perturbatively, the Anderson model reduces
in the local moment regime to an effective isotropic Kondo model [66],

41/2
Ha= > Hol¥,] > ST (0)5asT 4(0) (7.21)
o= a,B=m{

—

where the pseudospin of the Anderson impurity is represented by the spin—% operator & =
. Y b=t dL&aﬁdﬂ and the coupling constant is 4V?/K,. Note that no potential scatterer is
generated since the Anderson model (7.20) is particle hole symmetric. Equation (7.21) is in
itself an important result. It states explicitly that the two antiferromagnetic configurations,
i.e. the pseudospin of the mini-domain are governed by a Kondo Hamiltonian in the strong
coupling regime, K, > pspV?, at least on the Toulouse line W = (0. Let us perturb this
effective Kondo model by switching on a small coupling W. The corresponding interaction in
(7.15) can be separated into two parts,

Wy (d*d - —> 0l (0)w,(0) : (7.22)
o=,

= WD & U} (0)0,7,(0) +
aaﬂ

% (d dy +did, - 1) (: whO)w,(0) : +: ] (0)w, (0) ;) _

The first part describes the pseudospin fluctuations and acts only on the low-energy Hilbert
space of the Anderson impurity, i.e. states (ii) and (iii) in Fig. 7.2. The second part represents
the pseudocharge fluctuations and affects the high-energy states, (i) and (iv). In the local
moment regime the charge fluctuations are frozen out and a small coupling W modifies the
strong coupling Kondo Hamiltonian (7.21) only with the contribution involving the pseudospin
degree of freedom,

H =W & Ui(0)0:59,(0). (7.23)

a7ﬁ
A small interaction W thus shifts the z-component of the Kondo coupling in the strong
coupling Hamiltonian (7.21) leading to an effective anisotropic Kondo model, H 4 + 0H, with
coupling constants (compare with (7.2)),
4v2 4v2

d = .
Kz an J 1 Kz

T, =W + (7.24)
Before analyzing this effective Kondo model we would, however, like to extend the strong
coupling analysis away from the Toulouse line.

7.2.3 Strong coupling analysis

In the last section we considered the strong coupling limit, K, > pspV?, of the generalized
Anderson model (7.15) on the Toulouse line W = 0 which after a Schrieffer—Wolff trans-
formation lead to an effective Kondo model. Afterwards we perturbed this effective Kondo
model with the small interaction W. In doing so we neglected the effect of the interaction W
on the Schrieffer—Wolff transformation itself. In the present section we would like to remedy
this shortcoming by performing a Schrieffer Wolff transformation of the generalized Anderson
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model (7.15) in the presence of a finite interaction W. We will show that the resulting effec-
tive theory is still described by a Kondo Hamiltonian but with power-law renormalizations
of the effective Kondo couplings. These renormalizations arise from a x-ray edge singularity
associated with the virtual excited high-energy states. As long as the Anderson impurity
is fixed in a certain configuration the interaction W just acts as a potential scatterer. If,
however, a pseudo-fermion hops onto or off the impurity this potential scatterer changes its
sign instantly, leading to a long-time response of the associated (solitonic) Fermi seas in a
similar manner to that discussed in Section 7.1.

In order to derive the effective Hamiltonian of the generalized Anderson model in the
strong coupling limit the usual Schrieffer-Wolff transformation has to be modified. Instead
of working in frequency space we will prefer the time domain in which the physics is eas-
ier to understand. The following calculation was strongly inspired by a re-derivation of the
Anderson—Yuval-Hamann scaling equations [78] of the anisotropic Kondo model in the frame-
work of bosonization, which is presented in Appendix B.6.

Consider the generalized Anderson model (7.15) in its bosonized version. The interaction
W can be formally eliminated by applying the Emery Kivelson transformation (7.13) with
v =Wp,

1 1
U,.HoaUl. = K. <d;dR - 5) (dTLdL - 5) + Y Holo] + Hins - (7.25)
o=M4

Now W enters only the hybridization term

. __V o i(1-Wp)o (0)
Hipe — 3 Q%e / F;+h£). (7.26)

V2ra

@ o=ty

In the strong coupling regime, K, > pspV?2, the Anderson impurity is only singly occupied.
The low-energy Hilbert space consists of the two states |{}) and ||}) which have an associated
local moment, i.e. pseudospin, and are separated from the doubly occupied and empty state by
an energy K, /2. The hybridization V' will induce virtual excitations to the high energy states
whose dynamics will lead to the effective low-energy Hamiltonian. In order to derive it we
consider the S-matrix projected onto the low-energy Hilbert space perturbatively expanded
in the hybridization V,

—i ofodTH;“t(t) x T
PTe - P = Z / dtop, ... dt; PiHim(th) .. iHint(tl)P . (727)

=0 top >-->t1

where 7 is the time-ordering operator. The projection operator is given by P = > _, /|o)(0].
Since the interaction Hamiltonian Hj,s communicates between the high- and low-energy sec-
tors only even powers of Hj, survive after projection. The products of 2n Hi,; operators
can be divided into n virtual excitations each consisting of a consecutive application of two
interaction Hamiltonians Hj,;. Each of these will leave the low-energy subspace invariant. If
the hybridization V is small the virtual excitations are rare and well separated in time, see
Fig. 7.3. They will eventually comprise the effective low-energy Hamiltonian. Consider one
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Figure 7.3: Visualization of a particular time evolution of the Anderson impurity in the
strong coupling regime, K, > pspV?2, as described by the scattering matriz (7.27). At times
T} the high-energy Hilbert space is visited via virtual excitations. These are well separated due
to the smallness of the hybridization V', and their extension in time, t;, is confined since the
Ising coupling K, is large.

pair of interaction Hamiltonians forming a virtual excitation

tom41 tom

Trm+1
dtQm / dtmeliHint(t2m)7:Hint(tmel) ~ 7/ Hint(Tm)a (728)
—oc —00 o
oo
with Mg (L) = i / dt Hin (Ton + £/2) Hint (Trn — £/2)
0

where we have introduced the center-of-time and relative coordinates. We have extended
the upper limit of the integral over the relative time ¢ to infinity and replaced the upper
limit of the integral over the center-of-time T}, by the one of the following pair, T;,+1. We
have thereby neglected the interaction between adjacent virtual excitations. In the following
we would like to integrate over £. Introducing the spin notation &% = %Za:ﬂ,u (fdj,—d,, and

CREES d}TdU to represent the two states of the low-energy Hilbert space we get
V2 [e§] . . .
Wit (T) = —i dt e—1K=1/2 Z [efZQGZU(lpr)¢a(Tm+t/2)ez2620(lpr)¢a(Tm7t/2)
2ma Jy T
o=1,

+ <6+FT Ffe*i”(lpr)%(Tm+t/2)eiﬂ(1*Wﬂ)¢fa(Tm*t/2) + h.c.)} _

The oscillating factor e “%:%/2 guarantees that the virtual excitations are only short-lived so
that we can expand the term in the bracket in the small relative time £. To this end we apply

the operator product expansion (compare Ref. [76])

Ao (o= Abo () — (1 44t —#)/a) ™ + Aa(1 +i(t —t')/a) N Opde () +...  (7.29)
to the first term and integrate over the relative time ¢ using the integral
*® 2T (1 — «
/ e 21 it fa) = 7:7([{ D (aK./2)" (7.30)
0 z
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After introducing the pseudospin field ¢ = % Za:n,u 0¢,, we obtain in leading order for

large K,
4v2 aK (1-Wp)*—1
Hin —— (1 -Wp)T' [2 = (1 = Wp)? 2 &% 9,4(0
= w2 - we] (%) 0
+ W (6+e*iﬂ<1*Wﬂ>¢<0)FTF +h.c.) . (7.31)
K, 2na Al

Before identifying the coupling constants of the effective low-energy Hamiltonian we have to
address a subtle point. In integrating out the virtual excitations on the time-scale of order
1/K, we effectively reduced the short distance cutoff from a to ax, where the new cutoff is
of order ax ~ 1/K,. This has to be accounted for in the implicit cutoff dependence of the
vertex operators appearing in the pseudospin-flip term in (7.31). This is similar to the origin
of renormalization of the perpendicular Kondo coupling in the Anderson Yuval Hamann RG
as outlined in Appendix B.6. The implicit cutoff dependence of the vertex operator becomes
apparent after normal ordering,

2

9 A2 A2 9 A2 A2
ixg _ (2TAN 2 ing, _ (@) (2Tak\ 2 ixg. _ (07 ixg 739
e < 7 ) i e (aK T e - e'?, (7.32)

where ¢ denotes the field defined with respect to the new cutoff ax. This effectively leads to
the substitution

(7.33)

4v2 4v2 a (1*Wp)2*1
% _
K., 2na K, 2mak (0K>

in the second term of (7.31). In a final step we undo the Emery-Kivelson transformation
leading to an effective Kondo model in its bosonized form.

7.3 Effective Kondo model: fluctuating mini-domain

The low-energy degrees of freedom of the generalized Anderson model (7.15) in the limit of
strong coupling, K, > pspV?, are described by an effective Kondo model (compare (7.11)),

~7L —iv2¢(0) x+ ot
0u9(0) + 5o (e S FUFﬂ+h.c.) , (7.34)

Haoa = H
0[ ] \/_71-
where the pseudocharge field, ¢, = % Zo_:ﬂu ¢, has been omitted since it decouples from

the pseudospin. The Kondo couplings are given in terms of the hybridization V', Ising coupling
K,, interaction W and the short distance cutoff a:

4v2 (LKZ (1-Wp)>—1
J. =W+ KZC(W)< 5 ) .
4v2 (le (1-Wp)2— ( . )
7 = e (“57)

where C,(W) = (1 — Wp)['[2 — (1 — Wp)?] and we have further introduced the function
CL(W) = (2/(axK,))'"" WP =1 The arguments given in Section 7.2.3 suggest that C, is a
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Figure 7.4: Kosterlitz Thouless flow diagram representing the RG equations (7.37). For
J. < —|JL| the couplings flow towards a line of fized point associated with the “frozen mini-
domain” phase. For parameters J, > —|J\| the coupling are determined by a single fized
point describing the “fluctuating mini-domain” phase.

function of W only and is of order one. The derivation presented does not yield a functional
relationship between C; and W, and it remains in general an unknown prefactor. However,
both functions have the important property

lim C,(W)=C,(0)=1 and lim C, (W)=C,(0)=1. (7.36)
W—=0 W—=0
The effective Kondo couplings (7.24) derived on the Toulouse line W — 0 are modified by
power-law renormalizations dependent on K, due to x-ray edge singularities induced by a
finite interaction W. They are indeed recovered from (7.35) in the limit W — 0.

Now we are finally in a position to address the question of the quantum phase transition
in the mini-domain model posed in Section 7.1. It is the same phase transition that the
anisotropic Kondo model exhibits when the coupling J, is increased from negative values
towards zero. According to the poor man’s scaling equations [69], (B.74),

d(J.

d({ p) =2 (jlp)Q )

o (7.37)
d(Jip) .

and the associated RG flow depicted in Fig. 7.4, the separatrix, which separates the RG flows
to weak and strong coupling, is given by the condition J, = —|J,|. For J, < —|J.| the
ferromagnetic phase of the Kondo model is stable with a residual entropy of log 2. This is
apparently the “frozen mini-domain” phase: the domain flips between configurations (ii) and
(iii) in Fig. 7.2 are frozen out. Its degeneracy leads to the finite residual entropy. For couplings
J. > —|J1| the Kondo coupling flows to the strong-coupling Fermi liquid fixed point with an
entropy of log 1. The pseudospin of the Anderson impurity is bound into a singlet with the
pseudospin of the solitonic fermions. The antiferromagnetic mini-domain is still well-defined,
but due to the coupling to the conduction electron it fluctuates so strongly that it eventually
gets quenched. Correspondingly, we will dub it the “fluctuating mini-domain” phase. The
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quantum phase transition that happens at J, = —|J| is governed by the scaling equations
(7.37) which are characteristic of the so-called Kosterlitz—Thouless universality class [70, 79].

7.3.1 Phase boundary

The criterion J, = —|J .| yields for the critical coupling K¢ separating the frozen and
fluctuating mini-domain phases

V2q(1-Wp)?*-1

(1 2
W= _42'-(01-Wp) (CZ(W)+C¢(W))W’

(7.38)

or equivalently
K (W) o - (7.39)

4217(17Wp)2 (Cz(W) n CJ_(W))} (2*(17Wp)2)71 (VQG(Ipr)Zfl) (27(]7Wp)2)71.

In the vicinity of the Toulouse point we can expand in the small coupling W and we obtain

W= g (V a ) . (7.40)

It is apparent that the critical coupling K" > 0 depends crucially on how the phase transition
is approached in the parameter space spanned by W and V,

—8sW-1v? —oc for W —=0"

KZCT -~ ) (27(17W )2)71 741
_gW ! (VQU‘(]*Wp)Zfl) g —3 0 for V—=0. ( )

In the limit W — 0~ for a finite hybridization V the critical coupling diverges. This order
of limits corresponds to the regime accessible by the simple strong coupling analysis on the
Toulouse line of Section 7.2.2. The reverse order of limits, however, is exclusively the realm
of the considerations of Section 7.2.3, since here the critical Ising coupling vanishes (while
maintaining K, > pV?) and the interaction W < 0 has to be considered as a large scale in
the strong coupling limit. In this region of parameter space the x-ray edge like power-law
renormalizations induced by the interaction W are an important result of the physics taking
place.

The power-law renormalizations of the effective Kondo couplings (7.35) are accompanied
by an explicit dependence on the short distance cutoff a. Indeed this explicit cutoff dependence
is necessary in order to recover universality as we will explain in the following. The effective
Kondo model (7.34) was derived in such a way that in the end it had its own short distance
cutoff ag. In particular, this was achieved by accounting for the implicit cutoff dependence of
the vertex operator (7.32). As a consequence, the effective couplings J, and J, are supposed
to be invariant upon a rescaling of the old cutoff a of the underlying generalized Anderson
model. Whereas the Ising interaction K, has a zero scaling dimension (and the scaling
dimension of W can be neglected to lowest order in J, ), the hybridization V' is not invariant
upon rescaling a. However, the combination V2a(1=Wr)*~1 igl This can be shown within the
Anderson-Yuval-Hamann RG approach to the Kondo model [78] (see Appendix B.6). The
scaling dimension of the hybridization V results from the scaling dimension of the original
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perpendicular interaction J; of the Kondo Hamiltonian (7.2) that coupled the single spins
of the mini-domain to their baths. The RG equation for the perpendicular coupling (derived
within the bosonization cutoff scheme) reads (B.72)

dlog J
CO8IL (1) (7.42)
dloga

Using the relationships (7.16) between the Kondo couplings and the interactions W and V/

this translates into

dlog V?
CO8Y _1-(1-wp)?, (7.43)
dloga

_ 2_ . . . . .
(1=Wp) =1 ig scale invariant. Its scale invariance

which confirms that the combination V?2a
ensures that it can be expressed in terms of universal quantities. Indeed it is directly related
to the Kondo temperature Tx of a single Kondo Hamiltonian (7.2). If the UV cutoff 1/a
is rescaled to this characteristic temperature scale the non-perturbative character of Kondo
physics becomes apparent: the perpendicular Kondo coupling, J; = Vv/2ma, has rescaled to

a value of order one,
2-(1-wp)*)~! C(1-Wp)?/2)-
(VQ(J,(I’W”)LI) P N a71J(l1 (=Wp)*/2)"" (7.44)

The combination V2a(1=W»)*~1 in the effective couplings (7.35) can therefore be replaced
by the Kondo temperature and, consequently, the dependence on the cutoff a of the high-
energy theory be removed. The scale invariance thus eventually ensures the universality of
the effective Kondo theory describing the fluctuating mini-domain.

The combination on the left-hand side of (7.44) is just the one appearing in the expression
for the critical coupling (7.40). The important point to note is that it is proportional to
the Kondo temperature Tk, irrespective of the relative values of the small interactions W
and V. In the following we would like to fix the prefactor in expression (7.44). To this end
the definition of the Kondo temperature has to be specified. We will identify the Kondo
temperature using the value the impurity specific heat coefficient attains in the limit of low
temperature, v = limgy_,g Cimp /T,

Tk = w—r (7.45)

where w = 0.41071... is the Wilson number [66]. The specific heat coefficient can easily be
calculated on the Toulouse line, i.e. for W = 0, v = 1/(3pspV?2), where pgr is the density of
states of the solitonic fermions. This yields the universal asymptotic behavior of the phase
boundary near the Toulouse point,

8 Tx Tk

— — =~ —1.974 .
wr? K¢ K¢r

psEWer = (746)

In general, universality is expected in the so-called scaling limit when all characteristic energy
scales are much smaller than the energy cutoff scale. For example, in our problem the scaling
limit can be reached by sending the short distance cutoff a to zero while holding both the
Kondo temperature Tk and the Ising coupling K, fixed. From equation (7.44) it follows that
in the scaling limit the perpendicular Kondo coupling vanishes, J; — 0. This then means
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7.3. Effective Kondo model: fluctuating mini-domain

that the critical ratio Tx/KS" just depends on .J,. Using the relationship (7.17) and (7.19)
we obtain in the

scaling limit: oo = 2 2ﬁ> or (J5" —J,) = 0.575p0r (J" —J,) .
z

2 2 T
Ty w4/ 2 sin (—

(7.47)
The critical coupling JE" is given by ppJS" = 2/ tan dp =~ 0.315.

7.3.2 Characteristic energy scales near the transition

Close to the quantum phase transition on both sides of the phase boundary there exists a
characteristic energy scale. Far away from the Toulouse point, the distance to the phase
transition is measured by the RG invariant

C=(Jip)* — (T:p)". (7.48)

The RG invariant C vanishes on the separatrix, i.e. at the phase transition. Consider the
rescaled coupling J,(T') after scaling the cutoff of the effective Kondo model K, to the tem-
perature T,

. . T=(T)p 4(Tp)
(T2p
log — = —= el 7.49
%K, 2 / C+ (Tlp)’ (749
jzp

In the fluctuating mini-domain phase the coupling between the pseudospin of solitonic spin
excitations and the pseudospin of the mini-domain grows under renormalization and a energy
scale T* is dynamically generated, the collective Kondo temperature of the effective low-energy
theory (7.34). It can be estimated by sending the rescaled coupling to infinity 7,(7T") — oo,

T* ~ K, Tl e VE ~ e 3VE (7.50)

We have used the fact that close to the phase transition the bare coupling 7, is necessarily
negative. In the frozen mini-domain phase on the other hand, where C < 0, the couplings
flow to zero. Nevertheless, we can distinguish an energy scale associated here with the change
of the scaling behavior of, for example, the perpendicular coupling J, (T'),

1 T (T)
ji(T) 1 ; C
log = — / p d(J1p) NG BT or |Jipl < +/[C]
K.~ ) 23l /(Terve | 1 .
jlp T AT |TL(T)pl > VICI,

(7.51)
i.e. it scales either algebraically or exponentially with temperature. The crossover temperature
Teross where | T (T)p| ~ 1/|C| can be determined to be

1 710g(1+\/§)
Toross ~ K, €770 ¢ 2Vl (7.52)

When the phase transition is approached, for example by varying the Ising coupling K,, C «
K, — KJ"| — 0, the crossover temperature T¢,qss as well as the collective Kondo temperature
T* vanish exponentially.
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Chapter 7. Mini-Domains in Quantum Dots

7.4 Phase diagram: comparison with NRG

The treatment of the preceding section allowed us to determine the phase boundary (7.47)
in the vicinity of the Toulouse point. We established that here the quantum phase transition
belongs to the Kosterlitz—Thouless universality class. The Toulouse point corresponds to the
extreme anisotropic limit of single-impurity Kondo couplings, J, < J,, and the question
remains how the phase transition changes away from the Toulouse point. Continuity suggests
that it evolves continuously towards the isotropic point of Kondo couplings J| = J,. But one
can g priori not exclude that another fixed point might intervene in between. The questions
can be answered with the help of the numerical renormalization group (NRG) [66]. An NRG
study of the generalized Anderson model (7.15) was performed by M. Vojta and T. Pruschke,
and it is explained in detail in Ref. [11]. In the present section we will outline the main
results. This will complement the picture of the phase diagram.

For an NRG treatment the generalized Anderson model (7.15) has certain advantages
over the original two-impurity model (7.1). The two bands of spinful fermions of the two-
impurity model are computationally demanding. The generalized Anderson model on the
other hand already takes into account the fact that the respective charge sectors of the two
fermionic bands decouple from the impurities, and therefore features only a single band of
(pseudo-)spinful fermions allowing for high-accuracy numerical simulations down to lowest
energy scales and temperatures. According to the relationship (7.19) between the phase shifts
of the two formulations of the mini-domain model and the expression (7.17) the following
range of values for J, can be covered by varying the interaction W (for small J; and V,
respectively)

2 1
PsEW —  prd, = ;tan [E arctan (gPSPW> + 671} ,
2

(—00,00)  —» [%tan (g(l - \/5)) ~tan g) = [~0.485, 00) .

(7.53)

Importantly, this includes the isotropic point J, =~ J; < 1. In particular, a vanishing Kondo
coupling, J, = 0, maps onto Wpsp = (2/7) tan[r(1 — v/2)/2] ~ —0.485. The Toulouse point,
W =0, corresponds to the Kondo coupling prpJ, = 2/m tan 7 =~ 0.315.

7.4.1 NRG flow and entropy

In the left panel of Fig. 7.5 NRG flow diagrams are shown displaying the energies of a few
low-lying many-body eigenstates as function of the number of NRG steps N. The data in
the upper graph a) clearly shows that for small values of K, the same fixed point is reached
for various V and W this fixed point can be identified with the Fermi-liquid phase with a
residual entropy Sy = 0. In particular, it is also reached for K, = 0, the limit where the two
impurity spins are separately Kondo screened by their respective fermionic baths. This proves
that the Fermi-liquid of two separately Kondo-screened impurities is adiabatically connected
to the “fluctuating mini-domain” regime which can be characterized by pseudospin screening
below the collective Kondo temperature T* (7.50). In the lower graph b) flow diagrams for
larger values of K, are shown. The fixed points reached at low energies are very similar for
different parameter sets, but not identical. This is consistent with the notion of a line of fixed
points expected from the Kosterlitz—Thouless RG flow of Fig. 7.4. Further evidence that the
quantum phase transition belongs to the Kosterlitz Thouless universality class is provided
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Figure 7.5: Left panel: NRG flow diagram for the generalized single-impurity Anderson model
(7.15), for parameter values belonging to a) the Fermi-liquid phase with So = 0, b) the frozen mini-
domain phase with Sy = In2. Solid: Wpr = —0.44, V = 0.075 (K" = 7.9 x 107'°), Dash-dot:
Wpr = —0.10, V. = 1.5 x 107 (K" = 3.6 x 107%), Dashed: Wpr = —0.034, V = 1.5 x 107°
(K" = 5.6 x107°). In a) and b), K. has been chosen slightly below and above the critical value,
respectively. For all parameters, the system is in an S = ln4 regime at high temperatures (small N ),
in a) it flows to the S = 0 state by passing through a regime with S =1n2. In a), the additional dotted
curves show the flow for Wpr = —0.44, V = 0.075, and K, = 0. The Wpr values span a large range
of anisotropies; nevertheless, the S = 0 fized point is unique, and the finite-temperature crossover is
universal for the curves close to KS". Panel b) nicely shows that S = In2 actually corresponds to a
line of fized points.

Right panel: Temperature evolution of the impurity entropy calculated by NRG for different
anisotropies of the Kondo coupling. In the “frozen mini-domain” phase the residual entropy is In2
while it vanishes for K, < K{". For Tx > K, (solid curves), the high-temperature In4 entropy is
quenched in a single step, whereas two-stage screening occurs for Tg < K, < K. a) Wpp = —0.44,
V =0.15 (K" = 1.5x 1079), close to isotropic Kondo coupling. K. is: solid 0, long-dash 107°, long-
dash-dot 1.3 x 1072, short-dash 1.5 x 107°, short-dash-dot 10~*. b) Wppr = —0.034, V = 1.5 x 107
(K™ =5.6x1077), i.e., close to the Toulouse point of the individual Kondo impurities. The K, values
are: solid 0, long-dash 10~°, long-dash-dot 1.5 x 10, short-dash 3 x 10~Y, short-dash-dot 10~7. ¢)
Wpr =0.44, V = 1.5 x 1077, no phase transition occurs as function of K.. K. is: solid 0, long-dash
108, long-dash-dot 10~7, short-dash 10~9, short-dash-dot 1075,
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Chapter 7. Mini-Domains in Quantum Dots

by the fact that no additional fixed point is observed for K, ~ K", which could possibly
correspond to an (unstable) critical fixed point.

In the right panel of Fig. 7.5 the impurity entropy S(7') is plotted as a function of temper-
ature. At high temperatures the two single impurities occupy a total of four states, resulting
in an entropy of log 4. Upon lowering the temperature this high temperature value gets
quenched. However, this quenching process depends crucially on the values of the Ising cou-
pling K, and the Kondo temperature Tk of a single impurity. In the parameter regime
K, < Tk the individual Kondo screening of the two impurity spins by their respective elec-
tron bath is so overwhelming that the log 4 entropy is reduced in a single step to zero,
resulting in two local Fermi liquids. In the other regime K, > Tk the energy scale given
by the Ising interaction is detected, leading to a quenching of only half the high energy en-
tropy to log 2 at a temperature T' ~ K,. This corresponds to a reduction of the Hilbert
space to the low-energy states depicted in Fig. 5.2, giving rise to an effective pseudospin: the
mini-domain is born. Below a temperature 7' < K, the physics is hence dominated by the
fluctuating mini-domain. Its fate depends on the Kondo coupling .J,, or equivalently on the
interaction W, giving rise to a critical value for the Ising interaction K¢". Above the critical
value K, > K{" the fluctuations of the mini-domain are frozen out leaving a non-zero residual
entropy of log 2: this is the frozen mini-domain phase. For couplings Tx < K, < K{" on
the other hand the remaining log 2 entropy gets quenched at a temperature of the order of a
collective energy scale T™* (7.50) attributed to the effective low-energy theory describing the
mini-domain physics. For sufficiently large couplings J, and W the fluctuating mini-domain
is always screened, giving a vanishing residual entropy as shown in graph c¢) in the right panel
of Fig. 7.5.

7.4.2 Phase diagram

In Section 7.3 we were able to determine the
nature of the quantum phase transition and — §
the dependence of the phase boundary (7.47)
in the vicinity of the Toulouse point. The
NRG study showed that this phase transition
also extends to the isotropic limit of Kondo
couplings, J, = J, and that it is governed
throughout by the Kosterlitz—Thouless uni- O(1)]
versality class. In particular, there is no fixed
point of a different nature interfering. With
this result from the NRG the following pic-
ture of a phase diagram emerges (Fig. 7.6).

Kondo
screened spins

fluctuating
minidomain

In the regime K, <« Tk each impu-
rity is separately Kondo-screened by its re-
spective electronic bath and mini-domain

frozen
minidomain
physics does not play any role. This is the 0 ‘ -
regime where the high-energy entropy log 4 is 0 Jer J,
quenched in a single step to zero, cf. Fig. 7.5.

Only below the dashed line in Fig. 7.6 do we Figure 7.6: Schematic phase diagram of the
find the regime where the low-energy physics mini-domain model (7.1), see text.

is dominated by a well-defined mini-domain.
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Figure 7.7: Phase diagram of the generalized single-impurity Anderson model (7.15) deduced
from NRG calculations for NRG discretization parameter A = 2. The wvertical dashed line
shows the Toulouse point of the individual Kondo impurities. Small values of V' have been used
to reach the universal regime T <K D. The upper horizontal axis shows the corresponding
values of J, in the bosonization cutoff scheme. The error bar shows the typical uncertainty
in the numerical determination of Tx /KS". The inset shows the same data for Tk /|KE", now
plotted as function of the RG invariant ¢ of the single-impurity model (7.54) — this plot
covers the range of positive as well as negative J, (here ¢ > 0). The lines are a guide to the

eye only.

The Ising interaction K, is strong enough to bind the two impurity spins into an antiferro-
magnetic configuration. The two ferromagnetic impurity states decouple from the low-energy
physics giving rise to a log 2 plateau in the temperature dependence of the entropy, see right
panel of Fig. 7.5. The fate of the mini-domain depends on its coupling to the conduction
electrons. If the coupling strength is sufficiently strong a non-perturbative energy scale T*
is dynamically generated below which the conduction electrons are collectively bound to the
mini-domain, quenching the remaining degree of freedom. This is the phase of the fluctuating
mini-domain. At a critical coupling strength however the fluctuations of the mini-domain
are frozen out. The mini-domain is frozen in one of the two antiferromagnetic configurations
leading to a residual entropy of log 2. This is accompanied by a quantum phase transition of
the Kosterlitz Thouless universality class indicated by the solid line in Fig. 7.6.

The phase boundary determined by NRG [11] is shown in Fig. 7.7. As already mentioned
in Section 7.3 in the scaling limit near the Toulouse point the critical value of the ratio Tk /K,
can just be labeled by the z-component of the Kondo coupling J,. This is done in the main
panel of Fig. 7.7 where the horizontal axis is labeled by J, and W. However, a proper label for
the horizontal axis would actually be an RG invariant C of the single-impurity Kondo model,
as in the inset of Fig. 7.7. This is especially important near the isotropic limit J, =~ J, as we
will explain in the following. According to the Anderson—Yuval-Hamann RG [78] approach
(see Appendix B.6), which is applicable for arbitrary J, in the limit of small perpendicular
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Figure 7.8: Dependence of the slope of the phase boundary near the Toulouse point on the
NRG discretization parameter A defining the logarithmic discretization of the conduction band.
The dashed line is a linear fit. Each data point involves an extrapolation of the numerical
results at finite negative W to W — 0.

coupling J |, such an RG invariant is given by

2
] (1 25Jz>

Identical low-energy behavior is expected even for different values of interaction parameters
as long as they can be attributed to the same RG invariant ¢. Near the Toulouse point the
contribution of J; to the RG invariant can be neglected and ¢ is unambiguously given by
J,, recovering the label of the main panel. For small values of both J, and J, however, the
expression for ¢ can be expanded and reduces to the poor man’s version already encountered
in (7.48),

c = 2(Jip)°+ -

+2In (1 - 25JZ) . (7.54)

cx~2C=2(J1p)* —2(J.p)%. (7.55)

The limit of isotropic Kondo couplings, J, = J,, corresponds therefore to a vanishing RG
invariant, ¢ = (0, and the contribution of J; cannot be neglected any more. In particular, this
means that near the limit of isotropic Kondo coupling the RG invariant is the proper label
for the horizontal axis of the phase diagram.

It turned out that some NRG results show a relatively strong dependence on the NRG
discretization parameter A [11]. Fig. 7.7 shows the phase diagram for A = 2; results for
other A values are similar, but the critical ratio Tk /K{" was found to differ by 50% or more.
Therefore, an extrapolation to A — 1 was performed for a few important quantities. A sample
extrapolation is shown in Fig. 7.8 for the slope of the phase boundary near the Toulouse point,
which was determined analytically in Section 7.3. The extrapolated value of K, W/ Vﬁ =~ 8,
with 2 = (1 — 28y /m)?, is consistent with the exact result (7.40).

The maximum value of the ratio Tk /K{" of the phase boundary shown in Fig. 7.7 occur-
ring near J, = 0 was also analyzed for different discretization parameters and was found to
extrapolate to (Txk /K. )max = 0.1 £0.03.

Alternatively, one can draw a quantum phase diagram in the plane where the tem-
perature T is plotted versus Ising coupling K, for a fixed Kondo temperature Tk, see

134



7.5. Symmetries and perturbations

Fig. 7.9. For T' = 0 there is a quantum phase transition at the critical coupling K, = K"
from a Fermi liquid with residual entropy Sy = 0 to the “frozen mini-domain” phase with
So = log2. At T > 0 only smooth crossovers occur, indicated by the dashed and dot-
ted lines. At the dashed lines, the entropy S changes by log 2. For small K, there is
a single crossover at the single-impurity Kondo temperature T where the log 4 entropy
is quenched in a single step to zero. This crossover splits into two when K, approaches
values of order Tk then the two-stage quenching of the entropy described above is ob-
served. In this regime the upper crossover temperature, Ty, is associated with the for-
mation of the magnetic mini-domain where relative fluctuations of the two impurity spins
are frozen out. The lower crossover temperature is the collective energy scale T below
which the pseudospin of the mini-domain is screened. Generally, for a Kosterlitz Thouless
transition this energy scale van-

ishes exponentially upon approach- T A

ing the phase transition, -

T* ~ Ty e AVIKE K| (7.56) S ~In4 s

where A is a function of Tk. For IS ;
K, > K¢ another crossover hap- Tk =3777777777 Teross
pens at a temperature scale T ogs N
(7.52), which however has much '
weaker signatures. Here the char- \
acter of the leading corrections to \ :
the entropy and other quantities Y S S=In2+
changes. For a more detailed dis- \ T N

cussion of these corrections we re- S~0 Y +O(T*)

fer the reader to Section 7.6. This b
0 —= T — '

crossover scale Ti.oss also vanishes
exponentially near the critical cou- K¢ K,
pling K¢". For large K, the entropy

change from log 4 to log 2 occurs Figure 7.9: CQuantum phase diagram in the K,-T
around T' ~ K, and therefore Tj plane.

approaches K, in this limit.

7.5 Symmetries and perturbations

To what extent do the results presented in the previous sections depend on the details of
the models under consideration? To answer this question we will investigate whether and
how (small) perturbations of (7.1) qualitatively change the physics. Fermi-liquid phases with
vanishing residual entropy are stable against small perturbations, but this is not necessarily
the case for our “frozen mini-domain” characterized by a residual entropy of log 2. The
existence of this log 2 phase is a fundamental feature of the mini-domain model (7.1), giving
rise to a quantum phase transition. Indeed the general mini-domain model (5.8) was suitably
reduced in this chapter with the two assumptions mentioned in the introduction — (a) K| =0
and (b) uncorrelated electronic baths — in order to achieve exactly this stability. In the
following we will discuss the necessary conditions for these assumptions to hold.
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Let us start by considering the effect of a magnetic field in the z-direction acting on the
impurity spins. A staggered magnetic field, hs(S7 — S7,), will directly destroy the degeneracy
of the two antiferromagnetic configurations, | 1)) and |]1). A homogeneous magnetic field
h(S7 + S%), on the other hand, will not destroy the log 2 phase. It is interesting how these
terms modify the generalized Anderson model (7.15). The magnetic field h results in a term
h Zo:ﬂ,l} d];d,, which breaks particle hole symmetry in the generalized Anderson model and
therefore modifies only the position of the phase boundary. However, the staggered magnetic
field h, leads to a term hy Zﬁ:ﬂ,u odld, which corresponds to a (pseudo-)magnetic field
acting on the pseudospin of the Anderson model. Only the staggered magnetic field is a
relevant perturbation destroying the log 2 phase.

Apart from these magnetic fields in the z-direction there are other relevant terms which
lift the two-fold degeneracy and which have the forms:

7.57
7.58
7.59

7.60

Sj j=L,R,
S1 Sk
S;:SI;\I]IU\I!]U Z’] = L,R,

(
(
(
S} SRVl 00sV,5  ij=L,R (

)
)
)
)

and their hermitian conjugates. It turns out that all these operators are forbidden if we
impose the following two symmetry conditions: the model should be invariant under the two
separate spin rotations of each impurity and its electronic bath about an angle of 7, i.e., under
the transformation

U; =e'™l (7.61)

with j = L, R. I7 is the z-component of total spin of sub-system j, I7 = Sf—l-zk Cltaj%o—(zxﬂckﬂj‘
In the presence of these m-rotation symmetries, U;, the terms (7.57) — (7.60) are absent and
the frozen mini-domain phase survives. The quantum phase transition from the frozen mini-
domain with residual entropy log 2 to the phase of Kondo screened impurities therefore just
relies on the symmetries Uy, and Ug (in the absence of a staggered magnetic field).

The model (7.1) considered here possesses by construction symmetries beyond U;. They
are not necessary for the stability of the log 2 phase. For example, the two baths are assumed
to have the same Kondo coupling .J,,. This parity symmetry can be relaxed without destroy-
ing the frozen mini-domain phase. Furthermore, the z-component of spin of each system,
I7, is conserved in our model since we chose J; = J, = J,. This symmetry can also be
perturbed without lifting the two-fold degeneracy. Moreover, the frozen mini-domain phase
is stable against breaking of the particle-hole symmetry which we implicitly assumed in the
bosonization treatment when we linearized the dispersion relation of the conduction electrons.
In all these situations, we therefore expect that all of the qualitative results, i.e., the structure
of the phase diagram and the nature of the quantum phase transition, are unaffected.

However, any perturbation which breaks either U7, or Ug (or both) will generically generate
one of the relevant couplings (7.57 7.60) which all destroy the log 2 phase. In the following
we briefly discuss two such cases which are likely to occur in experimental realizations.

Let us relax assumption (a), i.e. consider a situation where a small spin-flip coupling (7.58)
is added on top of the large Ising interaction of the spins,

0Hip = K| (STSh+ S7S%) - (7.62)
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In realizations of our model based on spins and strongly anisotropic spin-orbit interactions —
as we originally had in mind, see Section 5.1 — such a term will always be present. A small
K| will immediately lead to a tunneling between the two pseudospin configurations of the
mini-domain: their degeneracy is lifted, the two spins form a singlet and the log 2 residual
entropy is quenched completely.

Two-impurity Kondo models with K| = K, have been widely studied see the short
review in Section 5.3. As argued in Refs. [57, 59] the resulting phase diagram depends on the
presence or absence of particle-hole symmetry (which, however, does not modify the phase
diagram for K| = 0 as pointed out above). In the absence of particle hole symmetry the phase
transition at K| = 0 is replaced by a smooth crossover. However, in the presence of particle—
hole symmetry, the scattering phase shifts of the electrons can only take the values 0 or 7/2.
As the Kondo-screened phase and the inter-impurity singlet phase have different phase shifts,
there has to be a phase transition in between. This transition is not of Kosterlitz Thouless
type, but is characterized [59, 60, 61, 62] by a critical fixed point associated with a residual
entropy of logyv/2. Nevertheless, this transition will merge with ours in the limit K| — 0, as
an infinitesimal K| does not affect the Kondo-screened phase but leads immediately to the
formation of an inter-impurity singlet in the frozen mini-domain phase.

Now let us dispense with assumption (b), which means allowing for a coupling between
the two Fermi seas, e.g., by tunneling between the two leads

5Hzlgneling _ Z (tkk’ : c};aLck,aR P+ h.c.) . (7.63)
kK«

While this term is not relevant by power counting, it will induce an RKKY interaction between
the spins and therefore generate the relevant coupling (7.59) and (7.58) or (7.62). As such a
term also breaks particle-hole symmetry, the quantum phase transition will be replaced by a
smooth crossover.

7.6 Experimental implications: transport

In this section we discuss how the phase diagram and, more importantly, the correspond-
ing quantum phase transition can be revealed in transport experiments. What is the most
characteristic signature of the Kosterlitz—Thouless quantum phase transition which we found
happens in the mini-domain model (7.1)?

The most famous example of a Kosterlitz—Thouless transition is probably the vortex
binding unbinding transition in superfluid *He films [79]. This transition is governed by
the same RG flow, see Fig. 7.10. When a path is taken in parameter space similar to the
one shown by the dashed line in Fig. 7.10 a vortex binding unbinding transition takes place.
Starting on the left hand side the RG flow is towards a [line of fixed points corresponding
to a superfluid with a certain value of the superfluid density ps/T" depending on the initial
conditions. Directly at the phase transition indicated by the black dot the parameter flow
is towards a critical, universal value [13] of the superfluid density p$" /T, before it vanishes
becoming a normal fluid. The vortex binding unbinding transition is therefore characterized
by a universal jump of the superfluid density at the phase transition from p{" /T, to zero. This
is impressively confirmed by experiments as shown in the left panel of Fig. 7.10.

Interestingly, the analogue of the superfluid density in the mini-domain model is the scat-
tering phase shift § of the conduction electrons, and the arguments for a universal jump in
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Figure 7.10: Left panel: Jump discontinuities in the superfluid density versus critical tem-
perature for over 70 different experiments on *He films for different substrates and film thick-
ness [80]. Right panel: Kosterlitz Thouless flow governing the vortex binding unbinding tran-
sition in *He films. E, is the core energy of a vortex. The dashed line represents a possible
path in parameter space; the quantum phase transition occurs at the black dot. At the transi-
tion the superfluid density jumps from the critical value p< /T, = 3.491 x 107° g em 2 K !
to zero giving rise to the universal slope in the graph of the left panel.

the superfluid density carry over to a universal jump in d. Let us recall the analysis of the
effective low-energy theory in Section 7.3, especially its RG flow diagram Fig. 7.4. In the
“frozen mini-domain” phase the system flows towards a line of fixed points and the fixed
point value of the Kondo coupling J, and the associated phase shift § increase continuously
upon approaching the phase boundary. Directly at the phase transition the fixed point value
of the phase shift acquires the Toulouse value 67 = 7/2(1 — 1/4/2). After crossing the phase
boundary, however, the physics is controlled by a single strong coupling fixed point which
corresponds to the unitary limit § = /2. At the Kosterlitz Thouless quantum phase tran-
sition the phase shift therefore undergoes the universal jump from o7 to 7/2! The analysis
presented in Section 7.3 was confined to the vicinity of the Toulouse point. However, univer-
sality demands that the phase shift, which is a measurable low-energy property of the model,
jumps by the same value along the whole phase boundary of the phase diagram, Fig. 7.6,
given that no further fixed point is intervening. That the latter does not happen was shown
by the NRG calculations.

We shall show in the following that depending on the type of experiment the universal jump
of the phase shift results in either a universal fractional critical conductance or a characteristic
zero-bias anomaly.

7.6.1 Universal conductance of Ising-coupled quantum dots

Consider first the experimental set-up sketched in the left panel of Fig. 7.11 where the con-
ductance through the left dot is measured. The linear conductance can be obtained from the
Kubo formula [81],

G:

EIH

im & [ s o, (7.64)
0
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Figure 7.11: Left panel: Ezxperimental set-up to measure the conductance through a single
dot. Right panel: At T=0 (solid line), the conductance takes the universal value G. =
™

Gy cos2m, (7.66), at the quantum phase transition. Dashed line: schematic plot of the

conductance at finite T. Corrections to the T = 0 result are logarithmic at the transition.
The exponent d = 2dim[7—l£lllfp] -2= 8(2—71‘_S - %TT)Q - 8(27r—‘S - %TT) is given by the dimension of

the domain flip term (7.4).

where the current operator is given by j(t) = %% (Nm — NLQ). The operator NLj counts the
total number of electrons in the upper (L1) and lower (L2) left lead. The linear conductance
through the left dot is given exclusively in terms of the electron degrees of freedom which are
coupled to the local moment on the dot, i.e. which participate in the Kondo effect [81]. If
Kondo screening prevails, (in the case of a symmetric coupling of the leads to the dot) the
conductance for T — 0 will be given by the conductance quantum Gy = 2¢?/(2rh) [81]. In
the frozen mini-domain phase on the other side of the phase diagram, spin flips are completely
suppressed for T' — 0 and therefore we can assume a static spin configuration to calculate

G(T = 0). For such a potential scattering problem, the conductance is given by [81]
G(T = 0) = Gysin?4. (7.65)

Directly at the quantum phase transition, the conductance therefore takes the universal value

.2 2| T |
Ger (T =0) = Gy sin” 7 = G cos [2\/5] ~ 0.197 Gy , (7.66)
and it jumps to the Kondo value GGy upon entering the Kondo-screened phase. This universal
fractional conductance at the quantum phase transition is one of the remarkable features of
the mini-domain model (7.1).

It is interesting to compare this to the well-known result for the usual Kondo effect, where
the conductance jumps from 0 to Gy when the exchange coupling J is tuned from ferromag-
netic to antiferromagnetic. In Section 7.2.3 we found that the effective theory describing the
quantum phase transition is just such a Kondo model, but the fermionic degrees of freedom in
this effective Kondo model (7.34) are complicated solitonic excitations in terms of the original
fermions. While the phase shift of these solitons vanishes at the quantum phase transition,
the phase shift of the physical electrons takes the fractional value ér leading to a fractional
conductance.
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Chapter 7. Mini-Domains in Quantum Dots

In the right panel of Fig. 7.11 the zero-temperature conductance close to the phase tran-
sition is shown. At any finite temperatures, the jump in the conductance is strongly smeared
as sketched schematically in the figure. There are different crossover scales which we have
already discussed in the context of the temperature dependence of the entropy, see Fig. 7.9.
The T-dependence at lowest temperature is determined by the dimension of the leading ir-
relevant operators. In the Kondo-screened phase, 0 > dr, the leading corrections for T — 0
to the Kondo conductance Gq are Fermi-liquid like and of order (T/T*)? for T < T*. Here
T* is the solitonic Kondo temperature (7.50) and is exponentially small close to the quantum
phase transition. However, at a temperature of order T,

B T T B?
T~T" ~Aexp | —————— = KK ¥ ’
7I“<K _ 17(}( K, K log® A/T

(7.67)

logarithmic temperature corrections take over. (The quantities A and B depend on the Ising
coupling K, and on the single impurity Kondo temperature Tx.) According to the poor
man’s scaling equations (7.37) the strong coupling limit, Jp ~ 1, is only reached when the
energy cutoff has rescaled to a value of the order of T%. If, however, the RG flow is stopped
at a temperature T' > T™. Then the effective couplings are rather of order

T(T)p~ —

W . (7-68)

This leads to a correction of the phase shift § and, as consequence, a temperature correction
to the conductance of order W. The same holds true in the frozen mini-domain phase

near the transition where the correction is of order with the crossover temperature

Teross defined in (7.52). On the other hand, deep in the frozen mini-domain phase the current
operator j can be calculated perturbatively in the single-impurity Kondo couplings. The
leading contribution stems from the collective mini-domain flip and is of order 7 ~ O(J?) and
therefore carries the same scaling dimension as the domain flip operator 7-[ Y (7.4). Putting
this into the Kubo formula we obtain the scaling dimension of the ass0c1ated conductance
dim[G] = 2dim[j] -2 =2 dlm[Hﬂ;Fp] 2. Hence, the temperature correction deep in the frozen
mini-domain phase is given by

257

-8 -1 (7.69)

G(T) o T2HmIMGF]-2 _ ps(2-2T)”
In the set-up considered here, Fig. 7.11, the mini-domain consists of real spins and a
perpendicular direct coupling, K, will always be present in contrast to the assumptions
on which the mini-domain model (7.1) is based. All the above considerations are therefore
only valid for temperatures large enough that the splitting of the antiferromagnetic doublet,
Fig. 5.1, is not yet resolved. This might appear too academic. Nevertheless, the Kosterlitz
Thouless phase transition gives rise to a remarkable universal fractional conductance in this
experiment and this may serve as an illustration that a quantum phase transition might be a
possible mechanism for the generation of non-integer conductance features in nanostructures,
such as the infamous 0.7 conductance anomaly [82] observed in quantum point contacts.

7.6.2 Zero-bias anomaly of capacitively coupled quantum dots

The model is probably most easily experimentally realized in a system of two capacitively
coupled quantum dots. The electron electron interaction has a dramatic effect on small
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Jy

G (arb. units)

Figure 7.12: Left panel: Experimental set-up to measure the tunneling conductance between
two charge coupled quantum dots. To observe the conductance anomaly the contacts have to
be sufficiently close. Right panel: Schematic plot of the zero bias anomaly of the conductance
at T = 0. In the “frozen mini-domain” phase, § < d., the conductance diverges algebraically
according to (7.73). At the quantum phase transition, § = 0., the exponent takes the universal
value —2(v/2 — 1) according to (7.74). In the Kondo screened phase, § > 6., the conductance
is finite for V.— 0.

quantum dots. It manifests itself in a charging energy Eg = (Q — CVg)?/(2C), where C
is the capacitance and @) the charge of a dot and Vg is the gate voltage. The number of
electrons in the ground state of a quantum dot can be controlled by the gate voltage V. For
CVg = n + 1/2 the two ground states with n and n + 1 electrons on the dot are degenerate,
and at such a degeneracy point the ground state of each dot can be described by an effective
pseudospin S. It was realized by Matveev [83, 84] that an additional coupling of a dot to a lead
at the degeneracy point leads to an effective anisotropic Kondo model in the case of spinless
fermions. The electrons carry pseudospin up if they belong to the lead, and pseudospin down
if they are located on the dot. Electrons can be considered as spinless if for example the dot
is placed in a sufficiently strong magnetic field so that one spin component decouples from
the low-energy physics of the problem, or, alternatively, strong spin-orbit scattering mixes
the spin channels separating energetically one effective channel by the spin-orbit energy scale.
We would now like to consider two such dot lead systems both tuned to their respective
degeneracy points. If the two dots are capacitively coupled this interaction takes the form
of pure Ising interaction in the language of pseudospins, Sy and Sk. The capacitatively
coupled charge boxes are just described by the mini-domain model (7.1). This experimental
realization has already been suggested by N. Andrei et al. [9].

In this realization using charge states the conductance is not easily measured. We propose
instead another experiment, sketched in Fig. 7.12. We assume that in addition to the strong
capacitive coupling K, the two dots are coupled by weak tunneling A. In the Matveev
language this tunneling term takes the form

Hyyn = A S} Spcl e +hee. (7.70)

It will be crucial in the following that the tunneling is into the electronic degrees of freedom,
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Chapter 7. Mini-Domains in Quantum Dots

¢yi, which also participate in the single-impurity Kondo effect (7.2). For this to be the case
the distance between the contacts has to be sufficiently small, as indicated in Fig. 7.12.

We calculate the conductance in perturbation theory in the inter-dot tunneling A. We
first consider the “frozen mini-domain” phase. Following the arguments given in Section 7.1,
the dimension of the tunneling term (or equivalently of the current operator) with respect to
the “frozen mini-domain” fixed point is given by

i ()4 (12" -

s

This is smaller than 1, i.e. it is a relevant perturbation to the mini-domain Hamiltonian.
At this stage it is essential that the electrons involved in tunneling also participate in the
single-impurity Kondo effect. If this were not the case the scaling dimension would rather be
dim[Hyy] = 2(27r—6)Q+1 missing the composite character between impurity spin and conduction
electrons rendering the tunneling perturbation irrelevant.

Similar arguments to those in the previous section yield for the conductance

_28)

G(T) ~ A? m2dim[Heun] -2 _ A2 422 (1-2 (7.72)
This divergence of the conductance arises because the tunneling is a relevant perturbation
which will finally destroy the “frozen mini-domain” phase and quench its residual entropy
log 2 below some small energy scale. Eq. (7.72) is therefore only valid for sufficiently small A,
when this energy scale is smaller than the temperature T'. Furthermore, a finite domain-flip
rate induced by (7.4) is required to obtain a finite current. Above we implicitly assumed that
A is so small that it determines the bottleneck for charge transport.

At finite voltage V' > T, T in (7.72) can be replaced by V and we expect a zero-bias
anomaly characterized by a pronounced peak in the conductance:

GV) ~ V|42 0-7) (7.73)

As the quantum phase transition is approached, the divergence increases and at the Kosterlitz
Thouless transition it takes the universal form

Gor(T) ~ T 2V271) 5083 (7.74)
Ger(V) ~ [V]72V2D |y |088 (7.75)

up to logarithmic corrections.

In the Kondo-screened Fermi liquid phase, the scaling dimension of the tunneling Hamil-
tonian (7.70) will be marginal, leading to a constant contribution to the conductance below
the characteristic temperature scale T

G(V) = G(T) = const. (7.76)

In Fig. 7.12 we show schematically the nonlinear conductance as a function of voltage, V', in
the vicinity of the quantum phase transition.

In contrast to (7.72) and (7.76), N. Andrei et al. [9] obtained an exponentially small
conductance in the “frozen mini-domain” phase and G ~ T in the Fermi liquid phase, which
we believe are incorrect.
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7.7 Discussion

We have considered the model (7.1) of two local moments coupled by an Ising interaction K,
where each local moment is in addition coupled to its own fermionic bath via a Kondo inter-
action with the associated energy scale Tx. This model exhibits a quantum phase transition.

We have derived the effective theory near the phase transition, which turned out to be
an effective Kondo model. As a consequence, we were able to conclude that the quantum
phase transition belongs to the Kosterlitz Thouless universality class. In deriving the effective
model we made use of a special point in parameter space known as the Toulouse point which
turned out to be part of the phase boundary. We applied a Schrieffer Wolff transformation
in the time domain to capture power-law renormalizations of the effective Kondo couplings
arising from an orthogonality catastrophe in the high-energy sector. This was necessary in
order to obtain a universal effective Kondo theory independent of the cutoff structure of the
original high-energy theory (7.1). The Kondo pseudospin degree of freedom was shown to
correspond to the degenerate configurations of a magnetic mini-domain. Interestingly, the
fermionic degrees of freedom of the effective Kondo model are solitonic spin excitations of the
conduction electrons.

The following physical picture of the quantum phase transition emerged. For energies
larger than the Ising interaction K, the two local moments fluctuate independently. At an
energy scale of order of K, a well-defined mini-domain forms. Consequently, for lower energies
the two local moments fluctuate in a correlated fashion. This dynamics is described by the
above mentioned effective Kondo model. The quantum phase transition is now associated
with the fate of this fluctuating mini-domain. The control parameter is the ratio of the
Ising interaction K, and the Kondo temperature Tk of a single impurity. For T < K,
the fluctuations freeze out at lowest energies and the mini-domain is locked in one of the
two degenerate configurations, giving rise to a residual entropy of log 2. For Tx > K,,
however, the mini-domain undergoes a cluster Kondo effect, being screened by collective spin
excitations of the two conduction Fermi seas.

Due to the solitonic nature of the fermionic degrees of freedom involved in the collective
Kondo effect the phase shift of the conduction electrons jumps at the phase transition from
7/2(1 —1/4/2) to 7/2. This universal jump in the phase shift is the analogue of the universal
jump in the superfluid densities at the vortex binding unbinding transition in superfluid *He
films. The universal jump in the phase shift would give rise to characteristic signatures in
transport experiments, such as a universal jump in the conductance or a characteristic zero-
bias anomaly.
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Appendix B

B.1 Unitary transformation: absorption of a minus sign

In this appendix it will be shown explicitly that the Hamiltonian (6.50) can be transformed
to (6.53) by the unitary transformation

— A . T 1
D:e :eXp{’Liz\IJT,(X,X/ 5(1 _Uzlﬁl)lﬁ}i/u/ \I/klﬂlul}. (Bl)
k'

The diagonal part Hy and the pseudospin-Zeeman splitting in (6.50) remain invariant under
the rotation D. Only the term containing the pseudospin-Kondo coupling will be affected by
D. Due to the structure of the coupling matrix J!, (k,q), cf. (6.51), the pseudospin-Kondo
coupling consists only of the following operators

‘l!};ax K Vgap where m=0or3, (B.2)
\I/Lax afw Ky Yapu where m=1or2, (B.3)

where a summation over the spin and pseudospin indices is implied, however not over the
momenta. To evaluate the transformation of these operators we will use the Baker-Haussdorff

formula which reads -

1

A —A

DBD' = ¢ Be " = Zﬂ —[A.B], (B.4)
n—

where [A, B], ., = [A,[A, B],] and [A, B], = B. The operator B is one of the two operators,

(B.2) or (B.3). First we calculate the required commutators.

— gt )
L. B= \I]kozx K;(’_]N \Ijqau

In this case the commutator of A and B vanishes for m = 0 or 3,

[A,B] = [A, 9] KD Wea] =0 if m=0or3, (B.5)

so that B remains invariant under D.

_ gl 3
2. B= \I]kozx aozﬂ H?ﬂ \Illi/@ll

The index m is understood to be either 1 or 2. In this case the commutators read

1
[A,B], = -« \I/L(XX 5(1 — aiﬁ)emgln;u Vo8, (B.6)
1
[A,B], = =* \lemX 5(1 — 005k Uas, (B.7)
[A’ B]n+2 = 77‘—2 [A’ B]n
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Inserted into the Baker-Hausdorff formula this gives

o

B+Y S ABL+Y 48], (B.9)
n=1

DBD'
(2n)! (2n 4 1)!

n=0
- prY @(ﬂ)”l 4B+ mwﬁ)" [A, B, (B.10)

= B+2r ? [A,Bl,=9[, &7 Vg, (B.11)

With the transformation DD we can therefore eliminate the coupling to the o* component.
Consequently, the relative minus sign between the spin-up and spin-down components is
removed and we end up with the effective Hamiltonian (6.53).

B.2 Symmetries of the effective mini-domain Hamiltonian

We would like to consider which kind of constraints on the parameters of the effective Hamil-
tonian (6.53) are posed by symmetries. However, in order to avoid a discussion of the sym-
metry properties of the rotation operator D, (6.52), which was applied to obtain the effective
Hamiltonian, we will rather consider the preliminary effective Hamiltonian (6.50)

Ho=Ho+ > Tik,q) : UL, ohg kil Uys, : 5 T KL+ h) o (B.12)
kq

As explained in the text the symmetry properties of the coupling matrix of the effective
Hamiltonian J,n,(k, q) follow straightforwardly from the those of 7., (k, q).

1. Hermiticity
From the condition that the Hamiltonian must be hermitian it follows that

(Tn) (K, @) = T (a. k). (B.13)

In particular, if one neglects the momentum dependence the coupling matrix will be
real.

2. Conservation of the z-component of the total spin
The basis of our model was the assumption that the z-component of the total spin,
S*(R/2) + S*(-R/2) + 3 >4, CL(X 0?4 ckg, is conserved. The pseudospin of the mini-

af
domain 7 commutes with S*(R/2) + S*(—R/2) by construction, so the conservation of

the z-component of spin reduces to the condition
(7, ek, 025 sl =0, (B.14)
ko

from which one derives the condition on the coupling

Tinlk,q) =0  for i=1,2. (B.15)
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3. Parity
According to (6.4) the pseudospin 7, n = 0,1, 2, 3, transforms under parity as

™ — (1 = 26")(1 — 26"2) 7", (B.16)

where in this case no summation over the index n is implied. The electron operators
transform under parity as (6.10)

Voau — Vg - (B.17)
Invariance under parity yield the following condition on the coupling

Tnn (k) = (1= 26"1)(1 = 26")(1 — 26™ ) (1 = 20™) Ty (k. ) - (B.18)

4. Time-reversal symmetry
Using the transformation properties of the pseudospin (6.7) and of the electron operators
under time-reversal,

Wgap — in02s Vs, (B.19)

we obtain the condition on the coupling
(Trn) " (k) = (1= 20"1)(1 = 26™1)(26™ — 1)J7,,, (K. ) - (B.20)

The coupling matrix at the Fermi momentum, J! = J! (kr,kr), plays a special role in
the analysis of the effective Hamiltonian since the deviations from it are irrelevant in the
RG sense. From the requirement of hermiticity it follows that the coupling J?, will be
real. Moreover, spin conservation, parity and time-reversal symmetry demand that only the
coefficients T, T%, T, Tay, Ty and J, J5 are non-vanishing. As outlined in Section 6.4
all these couplings except J; are generated in the Schrieffer-Wolff transformation.

B.3 Effective parameters of the mini-domain Hamiltonian

B.3.1 Pseudomagnetic field
For T' = 0 the pseudomagnetic field (6.54) reads

kr 0o

1 J? ;
= /dk dq————— p—— K 7 sin (kR) sin (¢R) . (B.21)
0 kg

We will start by considering the case kp R < 1. To obtain the leading order in this limit we
neglect the oscillatory part altogether. Furthermore, we introduce the density of states per
spin

4rk? dk
- = e E—— B.22
ple =) = G e e (B.22)
and assume the density of states to be constant
plw) = pO(D? — w?), (B.23)
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A —— C2
C1
y
A A
o L
k]: Re k 0 k}? Re k

Figure B.1: Stationary-phase integration contours. C1 is used for the integral I and C2
for the integral I5.

where D is the cut-off of the band. We obtain the following estimate for the pseudomagnetic
field

0
LUQ)
hy, =~ 4J d d
+ L/W]/WQLO]—WQ K,/2
—€R 0
0 D
~ 4(J )2/dw /dw !
~ Lp 1 2w1 T K, )2
-D 0
2 K,+4D
= 4 2 K,1 Z/ K, +4D)log | =2———
) Dlog?2 1f D>>Kz
e if DK,
D2
~ —8(.]Lp)2min{D,?} if kpR<K 1. (B.24)
V4

The derivation in the limit kp R > 1 is more elaborate. We will use the method of steepest
descent [85], for which we first have to deform the integration contours of the integrals in
(B.21) to stationary phase contours. As a first step consider the integral

[ee] oo
q 1 q R —igR
L= [dg————— R dg——21 (¢ >~ B.25
] / qu_eq_Kz/qu(q) 22}/ . K/2( —e ') (B.25)
F F

The stationary-phase integration contour we use for this integral is shown in Fig. B.1. The
contour C1 is needed for the first term of I; with the positive imaginary part in the exponent.
For the second term with the negative imaginary part in the exponent we use the contour
C1 reflected in the real axis. These contours together with the real axis do not enclose any
singularity. Furthermore, the part over the quarter circle vanishes at infinity in each case and
the integral I, becomes

L = kP dt e ke Rt ( k(1 + i) ethr By Ll Cll) elkFR> . (B.26)
2 ) €k — €k (14it) — Kz/2 €k — Epp(1—it) — Kz /2
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We proceed analogously with the second integral. Consider

kF kF
k 1 k ; ;
Iy = |dk——————F—sin(kR) = — [ dk———— (,Zka kaR) . B.27
2 0/ ekfequz/2qm( ) QiU/ €r —€q — K, /2 ¢ ‘ ( )

We deform the integration along the contour C2 shown in Fig. B.1, and again for the negative
imaginary exponent we use the contour reflected in the real axis. These contours do not
surround any singularity, and the integral over the horizontal part vanishes at infinity. We
are left with

00
I, = L /du e krRu ([ thpu - Fp(1 +u) eikFR] (B.28)
2 , EkFiu7€q7Kz/2 EkF(]+iu)7€q7Kz/2

B [ ikpu n kr(1 —iu) (,ikFR]>
€—kpiu — €q — K2 /2 €hp(1—iu) — €q — K./[2

The electron energy, €, is an even function of £ which is ensured by the symmetries of our
model, time-reversal invariance and parity symmetry, so the first and third term cancel each
other.

Combining the results of both integrals we can rewrite the expression for the pseudomag-
netic field (B.21). We obtain

72 r
1 .
hi=-33 E?F Re /du dt e~ kr Rlutt) (B.29)
0
y [ (1 + du)(1 + 4t) L ivken | (1 + iu)(1 — it) } }
€hp(1+iu) ~ hp(1+it) — K2/2 € (14+iu) ~ Ehp(1—it) — Kz/2

So far we have not made use of any approximations. However, we have put the expression
for h | into a form suitable for the application of the method of steepest descent in the limit
krR > 1. This will be done in the following. The exponential factor with the large kg R in the
exponent ensures that the term in the square brackets contributes only for small (u+1¢). Since
both integration variables, u and ¢, are positive it follows that the contribution is appreciable
only if both u and ¢ are small. So in order to obtain the leading contribution in (kpR) ! we
expand the term in the square bracket in u and ¢ simultaneously. It reads

1 J?kf

h) ~——
L 2t R2

[ee]
Re /du dt e*kFR(u_Hg)
0

% 1 P*iQkFR 1
Vpkpi(u—t)—Kz/Q ’ Vpkp’i(u—i-t)—Kz/Q

2 1.2 - y
2_14 Jl}’iig Re /du dt e (ut?) /d¢ e*gTKFz‘ﬁ (ei(QkFR+(uft)¢) + ei(U+t)¢)
™ vp R
F , ,
2vpk 0
2 FhE
— ——— [ cos (2kpR) — a— . B.
(le) (kFR)‘% <(‘Oq( FR) aa&) f((l’) Y RK. ’ ( 30)
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where we have introduced the Fermi velocity vp = de(kr)/dk and the density of states per
spin at the Fermi energy p = kZ/(2n?vy). Furthermore, the function F is defined as

Fla) = /d¢ e*‘wl +1¢2. (B.31)
0

Due to the energy K,/2 in the denominator, which is the energy difference between the
antiferromagnetic and the ferromagnetic states, the result is dependent on the parameter
a = RK,/(2vp). For small and large o the function F is approximately

2 1
-t O(g)

Fla) =
+(y-1Da+aloga+ 0(042)

(B.32)

1
«
s
2

where y = 0.5772. .. is the Euler constant. So we obtain finally for A | the leading contribution
in (kpR) ! for small and large o = RK,/(2vp),

2 cos? (krpR) _
2vipkp f + O((J/ 3)

(krR)?

hy =~ (Jip)® (B.33)

(g — @) cos (2krR) + 2 a(y + log @) cos? (kpR) + O(a?)

It is interesting to note that the limit o < 1 recovers the usual expression for the RKKY
interaction. For large o the cos(2kp R) oscillation change into cos? (kp R) oscillations.

B.3.2 Pseudospin Kondo coupling

Setting the momenta of the coupling matrix J(k,q) (6.51) equal to the Fermi momentum
yields for the finite components

sin (kpR) sin (kR)

1
Joo  Jos 9 krR kR
=——J"k k B.34
(Jgo J33> (2m)4 "+ sz: Gt b sin (kp R) sin (kR) (B:34)
krR kR
Ju Ji2 1 9 sin (kpR)\” / 0 0
=-—J. k 1— ——F— B.35
(Jm J22> om2" krR 10 (B.35)
sin (kR)
4 sin (kpR) 0 ———G,
_J2 k2 1 — k‘2 kR kpk]:‘,k
- (B e 0
kpkp .k

It will be convenient to introduce the quantities S and A, which are essentially the integrals
over g,jpkp i and g,;FkF i respectively. Therefore, S is particle hole symmetric and A particle
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hole antisymmetric. At zero temperature we obtain the estimates

I U 17 1= | fWw)
S - %W/dkk gljpkp’k_ig ./dwp(w) (_W_Kz/2+w_Kz/2>
0 —€R
N 7dwp(—w>+p(w> /(@)
2p K,/2—w
[ fw) D
-D
and
ol dr [ [opw) () 1-f@)
4= “ 2 (2n)3 ,/dkk Gkeke = ,/d“ 2% (w—Kz/Q_—w—Kz/2>
0 —€R
. fdwmmp(w) f(w)
2p K,/2 —w

0
/ /
0 w )'D K./2 K./2
~ dw ——= = 1 log [ ——2l2
/wwKz/2 P <+ D ®\K,2+D

P
{MU+%MM%DifD>&
2

~ - (B.37)
% % if DKK,.
In the line indicated by ~ we have assumed the density of states per spin to be
pw) = (p+p'w)O(D? — w?), (B.38)

where p = k2/(2m%vr) is the density at the Fermi energy. Irrespective of the value of kpR
the components Jyy and [J3¢ are always proportional to A and therefore vanish exactly in the
case of particle-hole symmetry.

To obtain an estimate in the limit of small kr R we again neglect the oscillatory terms in
the integrals. For kp R < 1 the leading order contribution reads

2
( T Tos ) Ui A A+ 0O (krR)
T30 J33 A<1+O(kpR)2) A+ O (kpR)?
Ju Jie ke R 0 0
= z —_— B-
<721 JQQ) ve s )\/§ <1+O(kF‘R)2 0> (B39
2
+2vp(J1p)? —=
el Tm | g (1+00wR)?) 0

In the other limit of large kr R we again use the method of steepest descent analogous to
the evaluation of h ;. Consider for example the component J33. Using the stationary-phase
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integration contours of Fig. B.1 this integral can be rewritten as

oo
I S 9 4 sin (kR)
Ta3 = Wh kg /dkk T (B.40)
0
4 ij%R 7d CkeRu ikpR( 1+ iu N 1+ iu )
- € ue e )
(2m)* krR : €F — €pp (14iu) — K2/2 g (14iu) — €7 — K /2

0

The leading contribution in (kpR)~! is obtained when the term in the brackets is expanded
for small u:

oo
2 1.5
J33 = 4 kFRe /duekFR” eikFR< ! ! )

(2m)* krR —vpkpiu — K, /2 + vpkpiu — K, /2
0
08(kp R
= o (g p)2 SRR , (B.41)
kpR _ RK.
2vp

where we again used the function F defined in (B.31) and p = k&/(27?vy) is the density of
states at the Fermi energy. The other coupling components can be derived similarly and we

get
A sin(kg R) cos(kp R) <RKZ>
krR)? 2
< Joo  Jos ) ~ — 2ve (JLp)’ ‘ (ki R) e (B.42)
T30 T3 Asm(kFR) cos(kFR)}_ RK,

cos(ke R) . <RK>

0
< Jin T2 ) ~ove (.p) < 0 0 ) +2ve (J1p)? ke R e
Jor T2 10 5 .

The components of the effective Kondo coupling are ordered in the following hierarchy

|T21| > |T33| = | T2 if kpR > 1. (B.43)

B.4 Scaling dimension of the leading irrelevant operator

In the strong coupling analysis of the mini-domain model (7.1) in Section 7.1 the scaling
dimension of the flip operator Hg;, (7.4) was determined using Hopfield’s rule of thumb. In
this appendix the result obtained is verified with the help of the bosonization technique along
the lines of the treatment of the x-ray edge singularity by K. D. Schotte and U. Schotte [74].

We would like to obtain the scaling dimension with respect to the unperturbed Hamilto-
nian H of (7.3). Let |05,0g,0L,0r) be the ground state of Hy where op,0r =7, ] indicates
the spin of the left and right impurity and |0;), with j = L, R, represents the ground state
of the conduction electrons in the left and right lead, respectively. Since we assume that the
two impurities are frozen into the antiferromagnetic configurations we have oy = —op. The
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correlator (7.5) whose time dependence determines the sought-after scaling dimension then
reads

(Hﬂip(t)Hﬂip(0)>7'ln = Z <0L7 Or, o, _U|Hﬂip (t)Hﬂip(O)mLa Or, o, _U>
o="1,)

45 \?
= (K:_) |:<0L70R3~L7T | |:S+SLCJ,R TR }1] ¢Tj| [S SRCJ(T 1, }"R iRi| ‘0T70R3~L T)
(B.44)

+(07,,0r, 1,1 | [SfSécchTL%RcJ’RL [SES;CIRCTR%LCJ,L} -0 |0LaOR7Ta*L>i| .

Since the left and right sub-systems are not coupled by the Hamiltonian Hy the matrix
elements factorize into products of matrix elements involving only degrees of freedom of a
single sub-system. Moreover, we assume the left and right sub-systems to be symmetric so
that we can drop the index R/L altogether yielding

2 (‘iﬁf 0,1 | [S*C}QL [sﬂ%} L 10.00.1 [s%chL [S*C}CJ o). (Bs)

z

Realizing that the remaining product consists of matrix elements that are time-reversed to
each other we are finally left with

2
(i (1) Mo Oy =2 (G- ) MO (1) (B.46)
where the matrix element is given by
M(t) = (0,118 (t)ck(t)e, (1) ST (0)c] (0)e; (0)]0, 1) - (B.47)

The time-dependence of the operators stems from using the interaction representation,

i2/(1) i72/(1)
O(t) = e t0e M 1, (B.48)

and the Hamiltonian H[(]l) describes a single sub-system only, 7-[(()1) = Hy¢] + \/Jfﬂ S%0,$(0).

The correlator (B.47) is easily evaluated within bosonization, compare section 7.2. Applying
the bosonization identity (7.9) it becomes

1
(2ma)?

M(t) = (0,1 15~ Fle O F ¢ 00t gt plion0) o0 1y (B.49)

The Klein factors cancel each other, F,IF,, = 1, and can be omitted. (Their time dependence
can be neglected in the limit of large system size.) The essential step will be the application
of a general Emery Kivelson transformation (7.13) with v = v/2.J,p, where p = 1/(27vy),
which transforms the bosonized Hamiltonian into a diagonal form,

Dut =5 Hlo] (B.50)

o=t

where Hy[¢,] is given by (7.12). Introducing the transformed vacuum U, |0) = |0) and the
spin field ¢, = % (¢4 — ¢1) the correlator reduces to

M(H) = 1 <0|6“f1 T20)s(t) ,—iV2(1- T p)$s (0 10) . (B.51)
(2ma)?
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B.5. Spin—Boson model representation

The actual attractiveness of the bosonization approach is that the remaining correlator of
bosonic fields can be evaluated [76],

M(t) = ﬁ (1 +it/a) 207707 (B.52)
Correspondingly, the correlator behaves in the long-time limit as
2\ 2
(M 1) Oty ~ 2 (G- ) s ) 4007 (B.53)
implying a scaling dimension of the flip operator in agreement with the result of Section 7.1
, ) 257.\°
dim [Heip] = 2(1 — J,p)° =2 (1 - T) : (B.54)

In the last step we made use of the relationship between the coupling constant J, and the
phase shift in the bosonization cutoff scheme, compare (7.18).

B.5 Spin—Boson model representation

In the mapping of the mini-domain model (7.1) onto the generalized Anderson model (7.15)
in Section 7.2 we made use of the Emery—Kivelson transformation (7.13) with the value
v = /2 — 1. In this appendix we are going to show that for another value the mini-domain
model can be put into the form of two coupled spin—boson models [86]. For the particular
value v = v/2 the bosonic fields decouple from the spin flip operator in expression (7.14).
Introducing the Fourier components for the derivative of the bosonic spin fields,

2
Db (x Z\/ mh k] e k4 bl o T) —ak/2 (B.55)

the kinetic Hamiltonian (7.12) can be rewritten as

dz 1

HU[¢sj] = 2 2

H(Onei()” = wy b by = Holb, ], (B.56)
k>0

with wy = vpk. Each single-impurity Kondo model reduces to a so-called spin—boson model
and the mini-domain model then takes the form

Hesp =K.S;S5+ S (Hg i) + A S+ 3\ 8 (bk] + bk])) , (B.57)
J=L,R k>0

where the parameters are given in terms of the Kondo couplings by

2 :
A=l and Ap = — mk < \FVF> e /2 (B.58)
Ta Vor

The properties of the spin—-boson model are completely parametrized by the spectral function

w) = Z )\z w— wg) = 20w e~ w/we (B.59)
k>0

The last equality defines the Ohmic form of the spectral function characterized by the strength
@, and w, is a cutoff. From the mapping it follows that o = (J,p — 1)? with p = 1/(27vF)
and w, = vp/a.
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B.6 Anderson—Yuval-Hamann RG

In this section we rederive in the bosonoziation approach the scaling equations of the Kondo
model found by P.W. Anderson, G. Yuval and D.R. Hamann (AYH) [78]. We find that in
the language of bosonization the AYH RG can be reinterpreted as a sequence of infinitesimal
unitary transformations. We will perform the RG on a Hamiltonian level by considering the
imaginary time S-matrix instead of its average, the partition function, as was done by AYH.
We start from the bosonized version of the Kondo Hamiltonian (compare Section 7.2):

— J L (g —iv20(0)
Hic = Holg]+ 7=-5.0,(0) + 5 - (s Fe +h.c.). (B.60)

The J, term can be absorbed into the scaling dimension of the vertex operator appearing in
the spin-flip term by applying the “boundary condition changing operator” [74, 77]

U, = 7590 (B.61)

with v = v/2.J,p and the density of states p = 1/(2nvp). The transformed Hamiltonian
becomes UA,HKUT = Hy + Hj,; with the interaction Hamiltonian

J .
Hi = 22 (8TFe ™0 £ he)  where A=v2(1-Lp). (B.62)
2ma

The imaginary time S-matrix is

8 00 B Tn 2
S =Texp [—/ dTHint(T)] = Z (—1)”/d7’n/d7n1 .../dT]Him(Tn) o Hing (1) -
0 n=0 0 0 0
(B.63)
In an RG-step we are going to integrate out short time scales and absorb the generated terms
into a renormalization of the coupling constants. Formally this is achieved by separating from
each time integral an on-shell part

Tm+1 Tm+1—dT Tm+1
/ dr, = / dr,, + / Ay, (B.64)
'U 'U Tm+'1 —dT

where dr > 0 is infinitesimally small. First let us consider the effect of the on-shell part of
the m'™ integral only. We get

Tm+3 Tm+2 Tm+1 Tm
/d7m+2 /dTm-l—l / dTm/dTm1Him(Tm+2)Him(Tm+1)Hint(Tm)Hint(Tm1)---
h 0 Tm+'1*d7' 0
Tm+3 Tm+1
=... / ATm+2 / ATm—1 Hint (Tm+2)
0 0
Tm+2 Tm+1
X / dTm—l—l / dTmHint(Tm+1)Hint(Tm) Hint(Tmfl)""i‘O(dTQ)-
7m—1 Tm+1de
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B.6. Anderson—Yuval-Hamann RG

On the right-hand side of the equation we replaced the upper limit 7,, of the (m — 1)™ time
integral by 7,41 inducing an error of order d72. However, this enables us to absorb the m!™
and (m 4+ 1)™ spin flips into a renormalized interaction between adjacent flips. These are the
“close pairs” of AYH which effectively “will change the mean magnetization slightly”. Doing
this for all time integrals the S-matrix can be put into the form

~ B—dr Tn—dT To—dr
S=> (=" / dr, / ATy 1 ... / driV (8, 70) Hint (T0)V (T, T 1) (B.65)
n=0 0 0 0
Hint (Tn—1)V (Tn—1,Tn—2) - . . Hint(12)V (12, 71) Hint (71) V (71, 0) ,
where ,
Tm+1 T
V(Tma1,Tm) = 1+ / dr’ / d7" Hing (7") Hine (") + O(d7?) . (B.66)
Tm —dr

In the following we are going to simplify the expression for V further. Since the time arguments
7' and 7" are separated at most by the small time d7 we can apply an operator product
expansion [76] to the integrand. Always neglecting contributions of order dr? we get (in the
limit of zero temperature)

Tm+1 T/

J 2 - ! - "
V(Tmi1, Tm) = 1+ <ﬁ> / dr' / dr" <S+Fe”)‘¢(7 ) +h.c.) <S+Fe”)‘¢(7 >+h.c.)
l Tm 7' —dt
g Tmtl 7!
14 (J_i) / 4 / g e 125:2(r") i25: (") (B.67)
2ma . .
Tm —dT
Tm+1

2ma

2
~1+dr <£> / dr' (11428, Xa0- (")) .

Tm
This is the right moment to pause for a bit and to spend some words on the cutoff procedure
we have chosen. We have applied a sharp cutoff scheme and separated a fixed time slice dr
as the on-shell part of the time integral. We could equally well have chosen a multiplicative
renormalization of the upper limits of all time integrals in the S-matrix, 7,, — T,e®, with an
infinitesimal dl. This however would have led us to a time slice dr = 7/ — 7'e~ % ~ 7'dl depen-
dent on 7’ in the integrand of the expression for V. The renormalization of the interaction
between spin flips V' and all resulting scaling equations therefore depend on the precise form
of the cutoff scheme (cf. also the appendix of AYH). In particular, the remaining integral in
expression (B.67) can be most easily performed with the additive on-shell separation chosen
here,

2
V(mstorm) 14 (525 ) 7 (it~ T~ 12800 (0(m1) — 9(7))
2
R exp [(;—l> At (Tma1 — Tm — 128, 0a (P(Tina1) — (7))
ma
I\’ ;
R exp (%> At (Tms1 = Tm) | Uy (Tmg1)U gy (Ti) (B.68)
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where U is the “boundary condition changing operator” (B.61) in the interaction representa-
tion with d\ = —d7(.J /(27wa))? 2\a. Putting this result into the expression for the S-matrix
we get

S = exp [(%)2@7] (B.69)

Tn—dT To—dT

B—dt
(e.0)
xUp Y (-1)" / dr, / drp1... / driHl(10) ... Hl () Ul
n=0 0 0 0

where we have used U;/\(O) = U{IA(,B) = U;/\ since for bosons ¢(8) = $(0). This expression for
the S-matrix should be compared to equation (15) of AYH [78]. The renormalized interac-
tion Hamiltonian is given by an infinitesimal unitary transformation of the bare interaction

Hamiltonian,
e]J_ YU
Hiy = Ul Uy = 2= ($tFe ™0 4 hc)  where N =A+dr.  (B.70)

The displacement of the upper limits of all time integrals by the slice d7 leads effectively to a
renormalization of the short distance cutoff a — a’ = a + vpdr. Hence, before identifying the
renormalized coupling constants, we have to take into account the implicit cutoff dependence
of the bosonic field in the vertex operator of the interaction Hamiltonian. This is easily done
if we normal order it since in this form the cutoff dependence becomes explicit,

—iN (0) 2ra\ M/ —iX$(0)
e =\ e t. (B.71)

Now we have arrived at the final stage of this derivation. Comparing the parameters of the
renormalized interaction Hamiltonian Hi'm, with the original version Hij,; we can read off the
renormalizations of the coupling constants,
a — d =a+vpdr
Hint — i’nt
JﬂfH’\Q/Q N Jiarfl+/\'2/2 _ Jﬂf1+x2/2
A — N=X+d).

In its differential form the AYH scaling equations for the Kondo model therefore reads

dlog A
- 82— 9(J.p) (B.72)
[log a
dlogJp A2
—_—=1-— B.73
dloga 2 ( )

with A\ = v/2(1 — J,p). In the limit of small .J, the AYH scaling equations reduce to the
famous poor man’s scaling equations of the Kondo model

d(J,
dloga (B.74)
d(JLp) .
= 2(J, .
Tl =2 (i)
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