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ZusammenfassungViele no
h unerkl�arte Ph�anomene im Berei
h der korrelierten Elektronensysteme werden mitden au�ergew�ohnli
hen Eigens
haften von Quantenphasen�uberg�ange [1, 2℄ in Verbindung ge-bra
ht, dass hei�t mit Phasen�uberg�angen, die am absoluten Temperaturnullpunkt unter Vari-ation eines �au�eren Kontrollparameters wie z.B. des Dru
kes statt�nden. Das theoretis
heVerst�andnis von sol
hen Phasen�uberg�angen und deren Auswirkung auf physikalis
he Eigen-s
haften bei endli
hen Temperaturen sowie deren eingehenden experimentellen Untersu
hungsteht erst am Anfang und ist eines der aufregendsten Fors
hungsberei
he der heutigen Physik.Diese Arbeit besteht aus zwei Teilen, die si
h jeweils mit sol
hen quantenkritis
hen Ph�ano-menen bes
h�aftigen. Im ersten Teil wird vorwiegend der Quantenphasen�ubergang betra
htet,der mit einer magnetis
hen Instabilit�at in itineranten Elektronensystemen verbunden ist. Imzweiten Teil steht die Physik von gekoppelten St�orstellen im Mittelpunkt. Im folgenden sollein kurzer �Uberbli
k �uber die einzelnen Kapitel dieser Arbeit gegeben werden.Im Verglei
h zu den klassis
hen Phasen�uberg�angen, die bei einer endli
hen Temperaturstatt�nden, sind Quantenphasen�uberg�ange streng genommen experimentell ni
ht zug�angli
h,da sie nur am absoluten Temperaturnullpunkt vorkommen. Der Experimentator ist deswegendarauf bes
hr�ankt, deren Ein
uss auf die physikalis
hen Eigens
haften bei endli
hen Temper-aturen zu analysieren. Physikalis
he Gr�o�en wie z.B. die spezi�s
he W�arme, deren Divergenzan einem klassis
hen Phasen�ubergang �ubli
herweise wi
htige Folgerungen auf dessen Univer-salit�atsklasse erm�ogli
hen, sind jedo
h an einem Quantenphasen�ubergang ni
ht verglei
hbarsingul�ar. In Kapitel 1 wird erl�autert, dass der Gr�uneisen Parameter, das Verh�altnis zwis
henthermis
her Ausdehnung und spezi�s
her W�arme, an einem dur
h Dru
k kontrollierten Quan-tenphasen�ubergang notwendigerweise divergiert und deshalb eine wi
htiges experimentellesWerkzeug f�ur die Analyse von quantenkritis
hen Ph�anomenen darstellt verglei
hbar mit derRolle der spezi�s
hen W�arme an einem klassis
hen �Ubergang. Dur
h eine Skalenanalysewird gezeigt, dass die Divergenz des Gr�uneisen Parameters dur
h den kritis
hen Exponenten� der Korrelationsl�ange 
harakterisiert wird. Erstaunli
herweise wird der Vorfaktor dieserDivergenz auss
hlie�li
h dur
h eine Kombination von kritis
hen Exponenten bestimmt undist in diesem Sinne universell. Diese Universalit�at hat ihren Ursprung tats�a
hli
h in dervers
hwindenden Restentropie bei Temperatur Null, d.h. im dritten Hauptsatz der Thermo-dynamik. Weiterhin wird darauf hingewie�en, dass der magnetokaloris
he E�ekt die analogeGr�o�e zum Gr�uneisen Parameter ist im Falle eines dur
h das Magnetfeld kontrollierten Quan-tenphasen�ubergangs. Die Ergebnisse von Kapitel 1 sind in Ref. [3℄ publiziert.Um die Vorhersagen der Skalenanalyse in einem bestimmten Modell zu �uberpr�ufen, wirdin Kapitel 2 zun�a
hst eine Theorie von J. A. Hertz [4℄ vorgestellt, die in einfa
hster Weise diemagnetis
he Instabilit�at in itineranten Elektronensystemen bei Temperatur Null bes
hreibt.Weiterhin wird in die Renormierungsgruppe (RG) eingef�uhrt, die A. J. Millis [5℄ auf dasHertz Modell angewendet hat, um dessen Temperaturverhalten zu untersu
hen. In KapitelI



Zusammenfassung3 werden wir s
hlie�li
h diese RG dazu verwenden, um zus�atzli
h zur spezi�s
hen W�arme,die s
hon in den Refs. [5, 6℄ bere
hnet wurden, au
h die thermis
he Ausdehnung und denGr�uneisen Parameter des Hertz Modells zu bestimmen. Wir �nden, dass die Korrekturenzur Skalenanalyse aus Kapitel 1 h�o
hstens logarithmis
h sind, und wir identi�zieren derenUrsa
he.In Kapitel 4 wird eine anisotrope Version des Hertz Modells betra
htet, um den theo-retis
h erwarteten dimensionalen �Ubergang in dem S
hwerfermion{System CeCu6�xAux zubes
hreiben. Um dessen au�ergew�ohnli
hes thermodynamis
hes Verhalten zu erkl�aren, wurdevon A. Ros
h [7℄ vorges
hlagen, dass zweidimensionale Spin
uktuationen das kritis
he Ver-halten von CeCu6�xAux dominieren. Diese wurden dann in Neutronenstreuexperimenten [8℄au
h tats�a
hli
h identi�ziert. Die magnetis
he Ordnung, die unterhalb der N�eel Temperaturbeoba
htet wird, hat jedo
h dreidimensionalenCharakter, so dass die zweidimensionalen Spin-
uktuationen nur ein Vorl�aufer zur tats�a
hli
hen magnetis
hen Ordnung darstellen. Nahe desPhasen�ubergangs wird deswegen ein Crossover von zwei- zu dreidimensionalem kritis
hen Ver-halten erwartet, den wir dur
h die anisotrope Hertz Theorie modellieren und verstehen wollen.Experimentell wurde der dimensionale Crossover im kritis
hen Verhalten jedo
h no
h ni
htentde
kt weder in den Neutronenstreudaten no
h in thermodynamis
hen Gr�o�en. Unseretheoretis
he Analyse sagt voraus, dass die Signaturen dieses Crossovers besonders ausgepr�agtsind in der Temperaturabh�angigkeit der thermodynamis
hen Ausdehnung. Diese Gr�o�e istdemna
h gut geeignet, um den Crossover experimentell zu detektieren. Weiterhin bestimmenwir s�amtli
he �Ubergangslinien im Phasendiagramm. Dazu werden drei vers
hiedene Metho-den verwendet. Die erste Methode ist eine Modi�kation der Renormierungsgruppenmethodevon A. J. Millis. Um den dimensionalen Crossover zu bes
hreiben, wird dabei der RG Flussin zwei Phasen unterteilt. In der ersten Phase wird dieser Fluss von dem zweidimensionalenFixpunkt und in der zweiten Phase von dem dreidimensionalen Fixpunkt dominiert. Der Pa-rameter, der die Abwei
hung von dem isotropen Modell kontrolliert, ist w�ahrend der erstenRG Phase eine relevante Gr�o�e im RG Sinne, was zu einem zus�atzli
hen singul�aren Beitragin der thermis
hen Ausdehnung f�uhrt. Die zweite Methode, mit der das anisotrope HertzModell undersu
ht wird, ist bekannt unter dimensionaler Reduktion und besteht aus der Her-leitung einer e�ektiven Theorie f�ur die Matsubara Nullmode. Die dritte Methode s
hlie�li
hist eine Analyse, die im Limes N ! 1 exakt wird, wobei N die Anzahl der Komponentendes Ordnungsparameters ist.Im zweiten Teil der Arbeit bes
h�aftigen wir uns mit der Physik von gekoppelten St�orstellen.Es wird eine Variante des zwei-St�orstellen Kondo Problems betra
htet, das in einfa
hsterWeise den Wettbewerb zwis
hen Abs
hirmung der lokalen Momente dur
h den Kondo E�ektund magnetis
her Ordnung bes
hreibt. Man geht davon aus, dass der Wettstreit zwis
hendiesen zwei Me
hanismen den magnetis
hen Phasen�ubergang in den S
hwerfermion-Systemendominiert. Die meisten Studien haben si
h auf das zwei-St�orstellen Kondo Modell mit einerSU(2) symmetris
hen Austaus
hwe
hselwirkung zwis
hen den St�orstellen konzentriert. Indieser Arbeit soll jedo
h eine anisotrope Kopplung zwis
hen den magnetis
hen Momenten imMittelpunkt stehen. Dies ist unter anderem motiviert dur
h die anhaltende Kontroverse �uberdie Rolle von Unordnung in der N�ahe eines magnetis
hen �Ubergangs, worauf in Kapitel 5eingegangen wird. Wir s
hlagen vor, dass dieses Modell die Dynamik von kleinsten magnetis-
hen Clustern bes
hreibt, die generis
h in der N�ahe eines Quantenphasen�ubergangs in einemstark anisotropen itineranten Magnet mit Unordnung entstehen.In Kapitel 6 wird gezeigt, dass das e�ektive Niederenergiemodell des stark anisotropenzwei-St�orstellen Kondo Problems gegeben ist dur
h ein Zweikanal{Kondo Modell. Dies istII



Zusammenfassungdeshalb so von Interesse, weil das Zweikanal{Kondo Modell zu einer der Universalit�atsklassengeh�ort, die si
h dur
h eine lokale Ni
ht-Fermi
�ussigkeit auszei
hnen. Sie bieten si
h daherals alternativen Erkl�arungsversu
h f�ur das ungew�ohnli
he Verhalten in den S
hwerfermionSystemen wie etwa CeCu6�xAux an. Wie au
h in vielen anderen Modellen, die dur
h eine�ektives Zweikanal{Kondo Modell bes
hrieben werden, ist au
h hier ebenfalls ein e�ektivesMagnetfeld vorhanden, das die interessante Ni
ht-Fermi
�ussigkeitsphysik unterdr�u
kt. Einausgepr�agtes Ni
ht-Fermi
�ussigkeitsverhalten wird deshalb nur in einem sehr engen Parame-terberei
h erwartet.Im darauf folgenden Kapitel 7 s
hr�anken wir das betra
htete anisotrope zwei-St�orstellenKondo Problem weiter ein, indem wir annehmen, dass die lokalen Momenten jeweils an sepa-rate fermionis
he B�ader koppeln. Wie s
hon von N. Andrei et al. [9℄ erkannt wurde, werdengewisse Systeme von gekoppelten Quantenpunkten dur
h ein sol
hes Modell bes
hrieben. Ins-besondere wurde von diesen Autoren betont, dass dieses Modell einen Quantenphasen�uber-gang von einer Singulett{ zu einer Dublett{Phase zeigt. Die Universalit�atsklasse als au
h dieSignaturen des Phasen�ubergangs in Transportgr�o�en blieb jedo
h unbeantwortet. S. Kehreinund M. Vojta [10℄ erkannten, dass f�ur bestimmte Werte der Parameter dieses Modell dur
hdie Physik des Anderson Modells wiedergegeben wird. In Kapitel 7 wird gezeigt, dass die kri-tis
he Theorie des Quantenphasen�ubergangs tats�a
hli
h dur
h die Niederenergietheorie einesverallgemeinerten Anderson Modells bes
hrieben wird. Diese kritis
he Theorie kann als eine�ektives Cluster{Kondo Modell interpretiert werden. Wir erhalten das verallgemeinerte An-derson Modell dur
h Bosonisierung des anisotropen zwei-St�orstellen Kondo Problems undAnwenden einer unit�aren Transformation mit ans
hlie�ender Refermionisierung. Die uni-verselle kritis
he Theorie wird dur
h eine S
hrie�er{Wol� Transformation hergeleitet, wobeikollektive Anregungen im Ho
henergiesektor ber�u
ksi
htigt werden. Na
hdem wir die kri-tis
he Theorie als Cluster{Kondo Modell identi�ziert haben, k�onnen wir folgern, dass derQuantenphasen�ubergang zwis
hen der Singulett{ und der Dublett{Phase der Kosterlitz{Thouless Universalit�atsklasse angeh�ort. Dies wird best�atigt dur
h eine Analyse mit der nu-meris
hen Renormierungsgruppe, die von M. Vojta und T. Prus
hke dur
hgef�uhrt wurdeund deren Ergebnisse zusammen mit den hier vorgestellten in Ref. [11℄ publiziert wurden.Der Phasen�ubergang hinterl�asst erstaunli
he Signaturen in Transportgr�o�en. Je na
h ex-perimenteller Realisierung erwarten wir am �Ubergang einen universellen Sprung in der Leit-f�ahigkeit von einem Wert G = 2e=h 
os2 �=(2p2) na
h 2e=h oder einer Anomalie in derSpannungsabh�angigkeit G � jV j�2(p2�1).Am Ende sei no
h erw�ahnt, dass im Anhang B.6 die Anderson{Yuval{Hamann Renormie-rungsgruppenglei
hungen f�ur das Kondo Modell im Rahmen der Bosonisierung hergeleitetwerden. Dies erm�ogli
ht eine Interpretation der RG Transformationen als Sequenz von in-�nitesimalen unit�aren Transformationen.

III
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Introdu
tionNowadays it is widely 
laimed that a route for understanding many open problems in thephysi
s of 
orrelated ele
trons is o�ered by the pe
uliarities of quantum 
riti
al phenomena [1,2℄, i.e. phase transitions at zero temperature. The theoreti
al study of their in
uen
e on �nitetemperature properties and the 
orresponding experimental investigations are still in theirinfan
y and 
onstitute one of the most fas
inating �elds of physi
s today.This thesis is divided into two parts ea
h with several self-
ontained 
ontributions tothe physi
s of quantum 
riti
al phenomena. The �rst part mainly 
on
erns quantum phasetransitions in itinerant magnets su
h as the heavy fermion 
ompounds, while the se
ond partfo
uses on the physi
s of 
oupled impurities. Below we give a short overview of the di�erent
hapters.In 
ontrast to their 
lassi
al �nite temperature 
ounterparts, quantum phase transitions(QPT) are in a stri
t sense not experimentally a

essible sin
e they o

ur at zero temperature,and the experimentalist is rather limited to analysing their tra
es at non-zero temperature.As a 
onsequen
e, quantities su
h as the spe
i�
 heat are not expe
ted to be as singularnear a QPT as they are 
lose to 
lassi
al �nite temperature transitions. In Chapter 1 weshow by a s
aling analysis that the Gr�uneisen parameter (the ratio of the thermal expansionand spe
i�
 heat) diverges 
lose to a pressure tuned QPT, and similarly the magneto
alori
e�e
t 
lose to a magneti
 �eld tuned QPT. This divergen
e is 
hara
terized by the 
orrelationlength exponent � of the QPT, and due to the third law of thermodynami
s the prefa
tor ofthis divergen
e is universal and solely given in terms of 
riti
al exponents. The Gr�uneisenparameter therefore plays an essential role in the pursuit of quantum 
riti
al phenomena, asimportant as, for example, the spe
i�
 heat in 
lassi
al phase transitions. The 
ontent ofChapter 1 is published in Ref. [3℄.In order to 
on�rm the above results for a spe
i�
 model, we then in Chapter 2 review thestandard theory for zero-temperature magneti
 instabilities in itinerant magneti
 systems dueto J. A. Hertz [4℄ and rederive the renormalization group (RG) equations of A. J. Millis [5℄. InChapter 3 we 
al
ulate the thermal expansion and the Gr�uneisen parameter in addition to thespe
i�
 heat, whi
h has been previously obtained [5, 6℄, and we 
ompare them to the resultsof the s
aling analysis of Chapter 1. It is found that for this spe
i�
 
ase the 
orre
tions tos
aling are at most logarithmi
, and their origin is identi�ed.In Chapter 4 an anisotropi
 Hertz theory is proposed in order to make predi
tions aboutthe dimensional 
rossover expe
ted to o

ur in the heavy fermion 
ompound CeCu6�xAux.In neutron s
attering experiments [8℄ two-dimensional spin 
u
tuations have been observed,
on�rming a s
enario proposed by A. Ros
h [7℄ to a

ount for the pe
uliar properties observedin the spe
i�
 heat and the resistivity. However, the 
rystal stru
ture of CeCu6�xAux is ofa three-dimensional 
hara
ter, and it is believed that the dominan
e of two-dimensional spin
u
tuations is only transient, eventually giving way to three-dimensional ones suÆ
iently1



Introdu
tion
lose to the phase transition. Experimentally this dimensional 
rossover has not yet beenfound either in neutron s
attering or in thermodynami
 quantities. We analyse it theoret-i
ally within the anisotropi
 Hertz theory of Chapter 4, and �nd that thermal expansionmeasurements are a likely 
andidate to dete
t the dimensional 
rossover in CeCu6�xAux ex-perimentally. The 
rossover lines in the phase diagram are also identi�ed and their signaturesin thermodynami
 quantities are determined. To this end three di�erent methods are applied.The �rst method is a generalization of the Millis renormalization group of Chapter 3 adaptedto the anisotropi
 Hertz theory. In order to a

ount for the dimensional 
rossover a two-stageRG is used: in the �rst stage the theory 
ows to the primary, two-dimensional �xed point,and during the se
ond stage the 
ow is governed by the se
ondary �xed point des
ribingthe three dimensional theory. The parameter 
ontrolling the anisotropy of the theory is arelevant quantity in the RG sense with respe
t to the three-dimensional �xed point, whi
hresults in an additional singular 
ontribution to the thermal expansion. The se
ond methodapplied to the anisotropi
 Hertz theory is known as dimensional redu
tion, whi
h involves thederivation of an e�e
tive �nite-temperature theory for the zero-Matsubara mode. Finally, thethird method is a large N analysis.The se
ond part of this thesis is 
on
erned with the physi
s of 
oupled lo
al moments and
onsiders a variant of the two-impurity Kondo model. This model has aroused interest sin
eit provides a relatively a

essible example of the 
ompetition between Kondo s
reening andmagneti
 alignment of lo
al moments, whi
h is believed to be at the origin of the magneti
phase transition in heavy fermion 
ompounds. Most studies of this model have fo
used on anSU(2) invariant ex
hange 
oupling between the lo
al moments. Here, however, we 
onsiderthe strongly anisotropi
 version, i.e. an Ising-like 
oupling between the impurities, whi
h ismotivated by the 
ontroversy of the role of disorder e�e
ts near magneti
 instabilities, asdis
ussed in Chapter 5. This model is suggested to mimi
 the dynami
s of small magneti
droplets, whi
h are likely to be generated 
lose to a quantum phase transition in stronglyanisotropi
 itinerant magnets in the presen
e of disorder.It is shown in Chapter 6 that the e�e
tive low-energy theory of strongly Ising-
oupled lo
almoments is given by a two-
hannel Kondo model. This is parti
ularly interesting sin
e thetwo-
hannel Kondo model belongs to one of the universality 
lasses of impurity problems thatare 
hara
terized by lo
al non-Fermi liquid behavior. They thus o�er an alternative routeto explain the unusual physi
s observed in heavy fermion materials su
h as CeCu6�xAux.It is argued that the magneti
 droplets might provide a generi
 realization of two-
hannelKondo physi
s. Unfortunately, as in other proposals of e�e
tive two-
hannel Kondo models,su
h as the quadrupolar Kondo e�e
t [12℄, the e�e
tive model is invariably a

ompaniedby an e�e
tive magneti
 �eld that suppresses the interesting non-Fermi liquid physi
s, and�ne-tuning is therefore required for it to develop.In Chapter 7 the Ising-
oupled two-impurity Kondo model is 
onsidered with ea
h lo
almoment 
oupled to its own fermioni
 bath, whi
h is a 
ru
ial restri
tion on the model notpresent in the version of the pre
eding Chapter 6. Certain double quantum dot systems arenaturally represented by this model, as was realized by N. Andrei et al. [9℄. They pointedout the existen
e of a quantum phase transition within this model from an impurity doubletto a singlet phase. However, both the nature of the transition and its asso
iated signaturesin transport remained unresolved. A �rst step in this dire
tion was provided by S. Kehreinand M. Vojta [10℄, who realized that for a 
ertain parameter set this model exhibits thephysi
s of the Anderson model. In Chapter 7 it is shown that the 
riti
al theory of thequantum phase transition of this impurity model is indeed given by the low-energy theory of2



Introdu
tiona generalized Anderson model and 
an be interpreted as an e�e
tive 
luster Kondo model.The generalized Anderson model is obtained by bosonizing the original two-impurity model,applying a unitary transformation and refermionizing. The 
riti
al theory is derived via aS
hrie�er{Wol� transformation that takes into a

ount non-trivial ex
itation e�e
ts in thehigh-energy se
tor. After having identi�ed the 
riti
al theory as a 
luster Kondo model we
an 
on
lude that the quantum phase transition of the original model between the doubletand the singlet phase is in the Kosterlitz{Thouless universality 
lass. These 
on
lusions havebeen 
on�rmed by a numeri
al renormalization group analysis 
arried out by M. Vojta andT. Prus
hke [11℄. We show that these results have interesting 
onsequen
es for transportproperties. Be
ause the 
riti
al degrees of freedom of the ele
trons are 
ompli
ated solitoni
ex
itations of the Fermi seas, their phase shift undergoes a universal jump whi
h is theanalogue of the universal jump of the super
uid density in 4He �lms at the vortex binding{unbinding transition [13℄. Depending on the experimental set-up, this jump is re
e
ted ineither a universal jump in the dimensionless 
ondu
tan
e from a value g = 
os2 �=(2p2) to1 at the transition or a 
hara
teristi
 zero-bias anomaly g � jV j�2(p2�1). The results ofChapter 7 have been published in Ref. [11℄.Finally, we mention that Appendix B.6 is self-
ontained, and 
onsiders a re-derivationof the Anderson{Yuval{Hamann RG equations of the Kondo model within the bosonizationapproa
h. It is shown that within this formulation the RG transformations 
an be understoodas a sequen
e of in�nitesimal unitary transformations.
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Chapter 1Universally Diverging Gr�uneisenParameterIn se
tion 1.1 we brie
y review the 
on
ept of a quantum 
riti
al point. In Se
tion 1.2 weintrodu
e the Gr�uneisen parameter and the magneto
alori
 e�e
t, whi
h are expe
ted toreveal many 
hara
teristi
 features of a quantum phase transition. We investigate this indetail in the framework of a s
aling analysis in Se
tion 1.3. It is shown that the Gr�uneisenparameter and the magneto
alori
 e�e
t ne
essarily diverge near quantum 
riti
al points.We also explain that due to the third law of thermodynami
s the form of this divergen
eis universal. For these reasons the Gr�uneisen parameter and the magneto
alori
 e�e
t areargued to be very important tools in the analysis of quantum 
riti
ality. In Se
tion 1.4 we
omment on experiments whi
h have utilized the Gr�uneisen parameter to 
hara
terize thequantum 
riti
al point in 
ertain heavy fermion 
ompounds. The essen
e of this 
hapter ispublished in Ref. [3℄.1.1 Introdu
tionA quantum me
hani
al system may possess di�erent ground states depending on the valuesof its 
oupling 
onstants. A transition between these ground states, i.e. phases, 
an beindu
ed by varying a 
ertain 
oupling 
onstant. Sin
e the ground state is a zero-temperatureproperty of the system this phase transition is triggered by quantum 
u
tuations, in 
ontrastto the thermal 
u
tuations whi
h drive the familiar phase transitions at �nite temperatures.Phenomenologi
ally, the distan
e to su
h a quantum phase transition is des
ribed by the
ontrol parameter r, whi
h is some 
ompli
ated fun
tion of all the 
oupling 
onstants and theapplied �elds. The quantum phase transition o

urs when the 
ontrol parameter r vanishesand the position r = 0 in parameter spa
e is 
alled the quantum 
riti
al point. Physi
ally,the 
ontrol parameter might be tuned by varying pressure p, doping x, magneti
 �eld Hor some other quantity. In the immediate vi
inity of the quantum 
riti
al point the 
ontrolparameter 
an be linearized in these physi
ally a

essible �elds, e.g. in the 
ase of pressuretuning r � (p� p
)=p0, where p
 is the 
riti
al pressure and p0 a 
ertain pressure s
ale, or inthe 
ase of magneti
 �eld tuning r � (H � H
)=H0 with the 
riti
al �eld H
 and a 
ertain�eld s
ale H0. 6



1.1. Introdu
tion
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 phase diagramwith order present at �nite temperatures.

Often the quantum 
riti
al point is the zero-temperature endpoint of a line of se
ond or-der phase transitions in the 
ontrol parameter{temperature plane (r; T ). A generi
 phase dia-gram is shown in Fig. 1.1. It is important to un-derstand that the quantum 
riti
al point whi
hseparates the two di�erent phases at zero temper-ature T = 0 is qualitatively di�erent from the restof the phase boundary at �nite T . Near the phasetransition the physi
s will be dominated by the
orrelation length �, whi
h diverges at the phasetransition. The pe
uliarity at zero temperaturesis that there is not only a divergent 
orrelationvolume in spa
e, �d, but also in (imaginary) time,�
r / �z, where d is the spa
e dimension and z theso-
alled dynami
al exponent. The phase transi-tion at zero temperature | the quantum phasetransition | is therefore 
hara
terized by a divergent 
orrelation volume with an e�e
tivedimensionality d+ z. The 
riti
al 
u
tuations at zero temperature are ex
lusively of a quan-tum me
hani
al nature. Their typi
al energy s
ale is given by ~=�
r / ��z and vanishes asthe phase transition is approa
hed, � !1, a phenomenon known as \
riti
al slowing down".In terms of the zero-temperature 
ontrol parameter the 
orrelation length is given by� / jrj�� (1.1)where � is the 
orrelation length exponent of the quantum phase transition.How is the situation 
hanged when the temperature T is �nite? Then the quantum
u
tuation are 
omplemented by the thermal 
u
tuations with their 
hara
teristi
 energys
ale of kBT . They will have to 
ompete with ea
h other and the winner happens to be theone with the larger energy s
ale,quantum 
u
tuations: ~=�
r / ��zthermal 
u
tuations: kBT :For low temperatures away from the quantum 
riti
al point the quantum 
u
tuations aroundthe quantum ground state still prevail. Their dominan
e is however 
hallenged when thetemperature is 
omparable to their typi
al energy s
ale ~=�
r,kBT � ~=�
r / ��z / jrj��z : (1.2)This identi�es the 
rossover to the quantum 
riti
al regime, see Fig. 1.1. In the quantum
riti
al regime the 
ompetition between quantum and thermal 
u
tuations are espe
ially�er
e and it is pre
isely the existen
e of this regime that makes the study of quantum phasetransitions interesting. The �er
e battle between 
u
tuations of thermal and quantum originis re
e
ted in unusual, ex
iting �nite temperature properties, e.g. non-Fermi liquid behaviorin metalli
 systems. Moreover, the quantum 
riti
al regime 
an extend to relatively hightemperatures depending on the mi
ros
opi
 energy s
ales. Although the quantum phasetransition only o

urs at zero temperature it thus in
uen
es drasti
ally the physi
s at �nitetemperatures. 7



Chapter 1. Universally Diverging Gr�uneisen ParameterWithin both regimes there might exist additional sub-regimes whi
h arise, for example,due to the presen
e of dangerously irrelevant operators. Su
h a 
ase is dis
ussed in Chapter 3.Finally, the quantum 
u
tuations have to give in suÆently 
lose to the �nite tempera-ture transition initiating a 
rossover to the 
lassi
al regime. The phase transition at �nitetemperature is only triggered by thermal 
u
tuations and quantum me
hani
s is not of im-portan
e for the 
riti
al degrees of freedom: the system behaves 
lassi
ally in the 
lassi
alregime. In parti
ular, at the 
lassi
al transition only the 
u
tuations in spa
e are 
riti
al andthe divergent 
orrelation volume is thus 
on�ned to only d dimension, �d. In this sense thequantum{
lassi
al 
rossover is analogous to a dimensional 
rossover of a system from d + zto d dimensions. The 
lassi
al �nite temperature transition is therefore, as mentioned before,qualitatively di�erent from the quantum phase transition. Te
hni
ally speaking, they belongto di�erent universality 
lasses. Nevertheless, the portion of the phase diagram around the�nite temperature phase boundary that 
an be des
ribed ex
lusively in terms of 
lassi
al de-grees of freedom is quite small near the quantum 
riti
al point. The 
lassi
al regime shrinksqui
kly to zero as the temperature is lowered. In fa
t, the 
riti
al behavior asso
iated withthe 
lassi
al phase transition is pra
ti
ally unobservable at low enough temperatures.
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We know that the importan
e of 
u
tuationsin
rease with de
reasing dimensionality of thesystem. When the spatial dimensionality d of thephysi
al system is suÆ
iently low, i.e. below thelower 
riti
al dimension, the thermal 
u
tuationswill totally suppress the phase transition at �nitetemperatures, although the existen
e of the quan-tum phase transition might still be se
ured due toits enhan
ed dimensionality d + z. A phase dia-gram of su
h a system is depi
ted in Fig. 1.2. Anexample is the Heisenberg ferromagnet in two di-mensions, whose magnetization has the internalsymmetry O(3). It possesses a quantum phasetransition but the ordered state is destroyed at�nite temperatures by the would-be Goldstonemodes [14℄.For a more 
omprehensive inrodu
tion intoquantum 
riti
al phenomena we refer the readerto Refs [2, 1℄.1.2 Great expe
tations: Gr�uneisen parameterIn the last se
tion we stressed the fa
t that the phase boundary in the phase diagram Fig. 1.1
onsists of a line of 
lassi
al �nite-temperature transitions ending in a quantum 
riti
al point.In the (r; T ) plane there exists only a single preferred dire
tion to approa
h the 
lassi
altransition, namely the dire
tion perpendi
ular to the phase boundary; however, there are twoindependent dire
tions to approa
h the quantum 
riti
al point. We expe
t that the variationsof, for example, the entropy along these two dire
tions yield 
omplementary information aboutthe nature of the quantum phase transition. This has not been appre
iated before. It is shownin the following that this basi
 observation leads to interesting and very useful results.8



1.2. Great expe
tations: Gr�uneisen parameterConsider the total di�erential of the entropy in the (r; T ) planedS = �S�T ����r dT + �S�r ����T dr : (1.3)It is 
hara
terized by two derivatives spe
ifying the sensitivity of entropy to 
hanges in eithertemperature T or 
ontrol parameter r, the two axes of the phase diagram in Fig. 1.1. The�rst derivative is the variation of entropy S with respe
t to variations in temperature. It ismeasured by the (molar) spe
i�
 heat 
oeÆ
ient whi
h is indeed often investigated in thepursuit of quantum 
riti
ality, 
 = NAN �S�T ����r : (1.4)where NA is Avogadro's number and N is the number of parti
les in the system. The se
ondderivative in (1.3) is the variation of the entropy with respe
t to variations in the 
ontrolparameter and is the quantity 
omplementary to the spe
i�
 heat. Depending on the experi-mental realization this derivative 
an also be identi�ed with well-known and experimentallya

essible thermodynami
 quantities. In the 
ase of pressure tuning, r � (p � p
)=p0, it isproportional to the thermal expansion �,� = 1V �V�T ����p = 1V �2F�T�p = � 1V �S�p ����T = � 1V p0 �S�r ����T (1.5)where F is the Gibbs free energy, F = F (p; T ), whi
h depends on pressure p and temperatureT . If the quantum phase transition is 
ontrolled by the magneti
 �eld H, r � (H �H
)=H0,this is the derivative of the magnetization M with respe
t to temperature,�M�T ����H = � �2F�T�H = �S�H ����T = 1H0 �S�r ����T (1.6)where the free energy is now given by F = F (H;T ).We will pay spe
ial attention to the 
onstant entropy 
urves T (r)jS in the (r; T ) plane.The derivative along these 
urves is related to the ratio between the two partial derivativesdis
ussed above. We will dis
uss this 
onstant-entropy derivative in the form of the parameter,� = 1T dTdr ����S = � 1T (�S=�r)T(�S=�T )r : (1.7)In the 
ase of pressure tuning this 
ombination is proportional to the Gr�uneisen parameter�p [15, 16℄, the ratio of thermal expansion and (molar) spe
i�
 heat 
p = 
 T ,�p = �
p = �p0Vm : (1.8)where Vm is the molar volume. For this reason we will often sloppily refer to the generalrelation (1.7) as the Gr�uneisen ratio irrespe
tive of the a
tual physi
al 
ontrolling �eld. Ifthe magneti
 �eld is used to 
ontrol the quantum phase transition the generalized Gr�uneisenratio (1.7) 
an be identi�ed as a magneto
alori
 e�e
t �H ,�H = �H0 = 1T �T�H ����S = � 1T (�S=�H)T(�S=�T )H = �(�M=�T )H
H : (1.9)9



Chapter 1. Universally Diverging Gr�uneisen ParameterWhereas in the 
ase of pressure tuning the thermal expansion and spe
i�
 heat have to bemeasured separately in order to determine the Gr�uneisen parameter, in the 
ase of magneti
�eld tuning the magneto
alori
 e�e
t 
an be dire
tly obtained experimentally.What do we know about the Gr�uneisen parameter? We now examine some 
lassi
alarguments whi
h suggest that unusual behavior o

urs at the quantum 
riti
al point; thiswill be veri�ed by a s
aling analysis in Se
tion 1.3.If the system is dominated by a single energy s
ale E0, su
h as the Fermi energy in the
ase of fermions or the Debye frequen
y in the 
ase of phonons, the entropy 
an be 
ast intoa simple s
aling form [16℄ S =  � TE0� (1.10)where  is some s
aling fun
tion. Putting this s
aling form into the formula for the Gr�uneisenparameter (1.8) we obtain,�p = �
p = � 1TVm (�S=�p)T(�S=�T )r = 1VmE0 �E0�p ; (1.11)i.e. �p is just given as the logarithmi
 derivative of the energy s
ale E0 with respe
t topressure1. In parti
ular, the Gr�uneisen parameter is independent of temperature. This resultis known as the Gr�uneisen law (see e.g. Ref. [16℄ x67). However, the physi
al situation we areinterested in is quite unusual in the sense that the typi
al energy s
ale near a quantum phasetransition, E0 � ��z, is about to vanish! Taking formula (1.11) literally, though naively, overto the s
enario of quantum 
riti
ality would suggest a diverging Gr�uneisen parameter at thequantum 
riti
al point.Another indi
ation that interesting behavior is to be expe
ted of the Gr�uneisen parameterin quantum 
riti
al systems 
omes from the theory of 
lassi
al se
ond order phase transitions.It is known that the spe
i�
 heat, 
p, diverges at a 
lassi
al se
ond order phase transition withthe same 
riti
al exponent as the thermal expansion, � (see Ref. [16℄ x148). In parti
ular,in the ratio of thermal expansion and spe
i�
 heat this divergen
e 
an
els. This 
an beunderstood by writing the molar entropy in the form [16℄S = S(T; p� p
(T )) (1.12)where the fun
tion p
(T ) identi�es the phase boundary in the phase diagram of Fig. 1.1. Thederivative of the entropy with respe
t to its se
ond argument be
omes in�nite for a se
ondorder phase transition as p! p
. Retaining only the divergent terms we obtain for the spe
i�
heat near the transition
p = T
 �S�T ����p = �T
�S(T; p� p
(T ))�p dp
dT = Vm�T
dp
dT : (1.13)In the immediate vi
inity of the �nite-temperature phase boundary T
(p), i.e. in the 
lassi
alregime of Fig. 1.1, we therefore expe
t the Gr�uneisen parameter to behave as�p = 1VmT
 dT
dp : (1.14)1In the literature one often reads that the Gr�uneisen parameter equals the logarithmi
 derivative of theenergy s
ale E0 with respe
t to volume V instead of pressure p. This would result from 
onsidering the spe
i�
heat in the ratio (1.8) at 
onstant volume and not at 
onstant pressure. While the latter is more suitable forour purposes, the physi
al 
ontent of the Gr�uneisen law however remains un
hanged.10



1.3. S
aling theoryThe Gr�uneisen parameter is thus just given by the logarithmi
 derivative of the phase bound-ary T
(p). As the line of se
ond order phase transitions approa
hes zero temperature, T
 ! 0,it follows from the above formula that the Gr�uneisen law is in a 
ertain sense maximallyviolated at the quantum 
riti
al point: the Gr�uneisen parameter diverges! In the followingse
tion this predi
tion is borne out by a s
aling analysis whi
h will also spe
ify the nature ofthis divergen
e.1.3 S
aling theoryIn this se
tion we analyze the quantities introdu
ed in the last se
tion in the framework ofs
aling theory [17℄. To this end we introdu
e the s
aling dimensions of the parameters in-volved. Traditionally, the s
aling dimension of the 
ontrol parameter is given by 1=� and thetemperature s
ales with the dynami
al 
riti
al exponent z. Furthermore, we introdu
e thes
aling dimension � for the 
riti
al part of the free energy per mole, f
r. When hypers
al-ing [17, 18℄ applies this s
aling dimension is equal to the e�e
tive dimensionality, � = d+ z.Upon res
aling the unit length by a fa
tor l an interval in spa
e �x is 
hanged to �x0 = �x l�1and therefore has s
aling dimension �1,�x �! �x0 = �x l�1r �! r0 = r l1=�T �! T 0 = T lzf
r �! f 0
r = f
r l� : (1.15)Here we have introdu
ed the dimensionless temperature T = T=T0, where T0 is some tem-perature s
ale.1.3.1 S
aling AnsatzThe s
aling Ansatz we use is based on the assumption of s
ale invarian
e near the quantum
riti
al point. This implies that as far as singular dependen
es are 
on
erned the 
orrelationlength � is the only relevant length in the system: the quantum 
riti
al physi
s is independentof the mi
ros
opi
 details. Mathemati
ally, the s
ale invarian
e at 
riti
ality is expressed byl� f
r(r;T ) != f
r(r l1=� ;T lz) ; (1.16)i.e. the s
ale transformation of the 
ontrol parameter and the temperature in the argumentsof the free energy per mole 
an be absorbed into the s
ale fa
tor of the free energy itself.From equation (1.16) some remarkable properties of the Gr�uneisen parameter 
an be derived.First of all let us determine its s
aling dimension. Putting the s
aling Ansatz (1.16) into thede�nition of �, (1.7), we obtain�
r(r;T ) = � 1T �2f
r(r;T )�r�T ��2f
r(r;T )�T 2 ��1!= � 1T �2(l�� f
r(r l1=� ;T lz))�r�T  �2(l�� f
r(r l1=� ;T lz))�T 2 !�1 (1.17)= �l1=� 1T lz �2f
r(r l1=� ;T lz)�(r l1=�)�(T lz)  �2f
r(r l1=� ;T lz)�(T lz)2 !�1 = l1=� �
r(r l1=� ;T lz) :11
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PSfrag repla
ements 00Figure 1.3: Two regimes in the (r; T ) plane. The 
rossover lines are de�ned by the 
onditionjrj � T 1=(�z).That means that the Gr�uneisen parameter has the s
aling dimension �1=�, i.e. minus thes
aling dimension of the 
ontrol parameter r,dim [�
r℄ = �dim [r℄ = �1=� : (1.18)This has some interesting 
onsequen
es for the properties of � in quantum 
riti
al systems.1.3.2 Divergent Gr�uneisen parameterFrom (1.18) it follows that the Gr�uneisen parameter diverges upon approa
hing the quantum
riti
al point. However, we have to distinguish how exa
tly the quantum 
riti
al point is ap-proa
hed. Depending on the relative values of 
ontrol parameter and temperature there existtwo di�erent regimes, sket
hed in Fig. 1.3. The two regimes are separated by the 
rossoverline at whi
h the s
ale-invariant 
ombination jrj T �1=(�z) is of order one. In the quantum
riti
al regime this 
ombination is small, jrj T �1=(�z) � 1. To determine the behaviour of �in this regime we 
hoose a de�nite value for the arbitrary s
ale l in equation (1.17), namelysu
h that T lz = 1. The leading behaviour of the Gr�uneisen parameter is then given by�
r(r;T ) = T � 1�z �
r(r T � 1�z ; 1) � T � 1�z �
r(0; 1) for jrj T � 1�z � 1 ; (1.19)i.e. the Gr�uneisen parameter diverges with de
reasing temperature with an exponent �1=(�z).In the other, low-temperature regime jrj T �1=(�z) � 1, we 
hoose instead the s
ale su
h thatjrj l1=� = 1 and get�
r(r;T ) = 1jrj �
r(sign(r);T jrj��z) � 1jrj �
r(sign(r); 0) for jrj T � 1�z � 1 : (1.20)Hen
e, in the low-temperature regime the Gr�uneisen parameter also diverges with the inverseof the 
ontrol parameter r, whi
h is a dire
t 
onsequen
e of (1.18).The s
aling analysis thus indeed 
on�rms the 
onje
ture of Se
tion 1.2. The Gr�uneisenparameter (1.8) or the magneto
alori
 e�e
t (1.9) ne
essarily diverge algebrai
ally near aquantum 
riti
al point driven by pressure or magneti
 �eld, respe
tively. The quantity �therefore provides a tool to identify unambiguously the very existen
e of a quantum 
riti
al12
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point, be
ause it 
arries the negative s
alingdimension of the relevant operator, i.e. the
ontrol parameter r. If there is no su
h rele-vant operator r to whi
h pressure or mag-neti
 �eld 
ouples, i.e. no quantum 
riti-
al point, the Gr�uneisen parameter will notdiverge algebrai
ally. In parti
ular, if thequantum 
riti
al point is washed out to aquantum 
riti
al line (see Fig. 1.4) by, say,disorder, the s
aling dimension of the 
on-trol parameter is at most marginal alongthis line, i.e. dim[r℄ = 0. A

ordingly, theGr�uneisen parameter diverges at most loga-rithmi
ally with temperature in the quantum 
riti
al regime�
r � log T : (1.21)The quantity � thus o�ers a 
riterion for determining the existen
e of a quantum 
riti
alpoint.Furthermore, a divergent �
r implies that the spe
i�
 heat 
oeÆ
ient 
 = (�S=�T )r is lesssingular than the quantity (�S=�r)T =T , whi
h is either proportional to �=T or (�M=�T )H=Tfor pressure or magneti
 �eld tuning, respe
tively. As a 
onsequen
e, the thermal expansion� and the temperature dependen
e of magnetization 
an be advo
ated to be the preferredquantities for the investigation of quantum 
riti
al phenomena.1.3.3 UniversalityWe 
an learn more about the prefa
tors �(0; 1) and �(1; 0) appearing in Eqs. (1.19) and(1.20), respe
tively, by going ba
k to the original s
aling Ansatz (1.16) for the free energy permole f
r. Di�erentiating on
e with respe
t to temperature we obtain the s
aling form for themolar entropy, s
r(r;T ) = l��+z s
r(r l1=� ;T lz) : (1.22)Repeating the pro
edure of the last se
tion it is 
onvenient to rewrite the entropy by 
hoos-ing 
ertain s
ales in two di�erent ways suitable for either the quantum 
riti
al or the low-temperature regime,s
r(r;T ) = 8>>>><>>>>: T ��zz s
r(r T �1=(�z); 1) = � TT0���zz 	QCR r � TT0��1=(�z)!jrj�(��z) s
r(sign(r);T r��z) = jrj�(��z)	sign(r)LT � TT0 jrj��z� ; (1.23)with the 
orresponding a priori unknown universal s
aling fun
tions 	QCR and 	�LT. Notethat in the low-temperature regime we have had to introdu
e two s
aling fun
tions, 	+LT and	�LT, for positive and negative values of the 
ontrol parameter r respe
tively. Moreover, wetraded the dimensionless temperature T for the dimensionful 
onstant T0 in order to makeexpli
it that the s
aling fun
tions and their arguments have the engineering dimension zero.To obtain the leading behavior of the molar entropy in the two regimes we must expand the13



Chapter 1. Universally Diverging Gr�uneisen Parameters
aling fun
tions for small arguments. The fun
tion 	QCR is expe
ted to be regular for smallarguments sin
e there is no phase transition at r = 0 for �nite T ,	QCR(x) = 	QCR(0) + 	0QCR(0)x+ : : : for x! 0 : (1.24)An important attribute of quantum phase transitions 
omes into play in the 
onsideration ofthe other s
aling fun
tion 	�LT. This s
aling fun
tion des
ribes the low-temperature behaviorof the phases to the left and right of the quantum 
riti
al point (see Fig. 1.1). Upon approa
h-ing zero temperature the entropy has to vanish a

ording to the third law of thermodynami
s.This requirement restri
ts the small argument behavior of 	�LT in an essential way. We willassume that the entropy vanishes algebrai
ally so that the low-temperature expansion of 	�LThas the form 	�LT(x) = C� xy�0 + : : : for x! 0 ; (1.25)where C� are 
onstants and the positive exponents y�0 > 0 
hara
terize the power-law behaviorof the spe
i�
 heat in the low-temperature regime, 
 � T y0 . For example, if the low-energyex
itations are bosons in d spatial dimension with a dispersion ! � kp the exponent is givenby y0 = d=p, e.g. d and d=2 for an insulating antiferromagnet and ferromagnet, respe
tively.Gapped systems in whi
h the entropy vanishes exponentially in the low-temperature regimeare dis
ussed in Appendix A.1. The limiting behavior of the two derivatives of the molarentropy with respe
t to either temperature or 
ontrol parameter are easily obtained,

r = �s
r�T = 8>>>><>>>>: 1T0 �� zz 	QCR(0) � TT0���2zz for jrj (T=T0)� 1�z � 11T0 y�0 C� jrj�(��z�zy0) � TT0�y�0 �1 for jrj (T=T0)� 1�z � 1 (1.26)and�s
r�r = 8>>>><>>>>: 	0QCR(0) � TT0���zz � 1�z for jrj (T=T0)� 1�z � 1�(�� z � zy�0 ) C� jrj�(��z�zy�0 ) 1r � TT0�y�0 for jrj (T=T0)� 1�z � 1 :(1.27)The behavior of the general Gr�uneisen parameter (1.7) follows readily:�
r = 8>>>><>>>>: � z	0QCR(0)(�� z)	QCR(0) � TT0�� 1�z for jrj (T=T0)� 1�z � 1��(�� z(1 + y�0 ))y�0 r�1 for jrj (T=T0)� 1�z � 1 : (1.28)Whereas in the quantum 
riti
al regime jrj (T=T0)� 1�z � 1 the unknown s
aling fun
tionenters the prefa
tor of the divergen
e, it disappears 
ompletely in the low-temperature regimejrj (T=T0)� 1�z � 1. The prefa
tor is just given by a 
ombination of 
riti
al exponents. Tomake this result manifest we give here the low-temperature behavior both of the Gr�uneisen14



1.3. S
aling theoryparameter, �
r;p, for a pressure-tuned QCP and of the magneto
alori
 e�e
t, �
r;H , for amagneti
-dield-tuned QCP, obtained using hypers
aling � = d+ z:�
r;p = ��(d� zy�0 )y�0 1Vm(p� p
) for jp� p
jT� 1�z � p0T� 1�z0�
r;H = ��(d� zy�0 )y�0 1H �H
 for jH �H
jT� 1�z � H0T� 1�z0 : (1.29)The exponent y�0 is understood to be either y+0 or y�0 for positive or positive 
ontrol parame-ters, p�p
 and H�H
, respe
tively. All the exponents �, z, d and y�0 (and the molar volumeVm) 
an be determined by available means. When they are known the Gr�uneisen parameteris unambiguously determined. The s
aling analysis is thus not only able to determine thedivergen
e but also its prefa
tor. In this sense the behavior of the Gr�uneisen parameter isuniversal in the low-temperature regime. This is the main result of this 
hapter. The under-lying reason why the s
aling analysis is so powerful here is the third law of thermodynami
s,i.e. the absen
e of a residual entropy, whi
h requires the expansion (1.25).A possible appli
ation of the universal result (1.29) is for example the determinationof the lo
ation of a putative quantum 
riti
al point. In prin
iple, a measurement of theGr�uneisen parameter at di�erent pressures p allows extrapolation to the 
riti
al pressure p
.Alternatively, systems su
h as heavy fermion materials 
an often be tuned to their quantum
riti
al point either by pressure p or doping x. Assuming that they are related, p�p
 / x�x
,measurements at ambient pressure on samples with di�erent doping levels 
ould lead to thedetermination of the 
riti
al doping x
.In the quantum 
riti
al regime �
r 
an also be put to important experimental use, althoughthe prefa
tor is not universal: (using hypers
aling � = d+ z)�
r;p = �z	0QCR(0)d	QCR(0) 1Vmp0T� 1�z0 T� 1�z for jp� p
jT� 1�z � p0T� 1�z0 ;�
r;H = �z	0QCR(0)d	QCR(0) 1H0T� 1�z0 T� 1�z for jH �H
jT� 1�z � H0T� 1�z0 : (1.30)The striking feature is obviously the divergen
e with falling temperature with the exponent1=(�z). The most important appli
ation is therefore the determination of the 
ombination of
riti
al exponents �z by measuring �
r. In addition, the prefa
tor of this divergen
e allowsan estimate of the 
rossover line in the (p; T ) or (H;T ) plane between the quantum 
riti
aland low-temperature regimes be
ause it is inversely proportional to p0T� 1�z0 and H0T� 1�z0 ,respe
tively. The numeri
al prefa
tor z	0QCR(0)d	QCR(0) is expe
ted to be of order one.1.3.4 Restri
tionsThere are several restri
tions whi
h should be mentioned. They are listed below.1. In an experiment usually �p = �=
p is measured, rather than the ratio of the 
riti
al
ontributions �
r;p = �
r=

r;p. There may be leading non-
riti
al 
ontribution whi
hhave to be 
arefully subtra
ted in order to extra
t the s
aling behavior of the Gr�uneisenparameter. A spe
i�
 example, the Gr�uneisen parameter of CeNi2Ge2, is presentedbelow. 15



Chapter 1. Universally Diverging Gr�uneisen Parameter

Figure 1.5: Experimental data [22℄ showing thermal expansion and spe
i�
 heat of CeNi2Ge2.They agree with the predi
tion of the s
aling analysis for the quantum 
riti
al regime leadingto a diverging Gr�uneisen parameter.2. There may be 
orre
tions to s
aling. Generally, the s
aling Ansatz (1.16) is expe
ted tohold only below the upper 
riti
al dimension (d+z < 4 in �4 theories). Above the upper
riti
al dimension 
orre
tions due to dangerously irrelevant operators may arise whi
h
an destroy s
aling. In Chapter 2 it is shown for a parti
ular 
ase, the spin-density wavetransition des
ribed by the Hertz model, that the 
orre
tions on the paramagneti
 sideare at most logarithmi
. It is also worth mentioning that truly Gaussian theories alsoobey the s
aling Ansatz (1.16).3. The third 
aveat of our s
aling treatment is of a more fundamental nature, and it 
on-
erns the underlying assumption of the s
aling Ansatz (1.16). We assumed that at thequantum 
riti
al point only a single diverging time s
ale 
hara
terized by the dynami
alexponent z plays a role. However, there might be s
enarios where this assumption doesnot apply. For example, in a nearly magneti
 metal there are two types of low-energydegrees of freedom, magneti
 
u
tuations and fermioni
 quasiparti
les, both of whi
hexhibit 
riti
al slowing down [19℄. Furthermore, a lo
al quantum 
riti
al point [20, 21℄,at whi
h lo
al degrees of freedom are driven 
riti
al by (
riti
al) long-wavelength mag-neti
 
u
tuations in two dimensions, would also require a modi�
ation of the s
alingAnsatz (1.16).Nevertheless, for a wide 
lass of quantum 
riti
al materials the 
onsiderations of the lastse
tion are appli
able. Be
ause of the many experimental possibilities it o�ers we expe
tthat the Gr�uneisen parameter be
omes a widely-used tool in the investigation of quantum
riti
ality. Indeed, it has already been applied to two heavy fermion systems as outlined inthe following. 16



1.4. Experiments

Figure 1.6: Experimental data [22℄ showing thermal expansion and spe
i�
 heat ofYbRh2(Si0:95Ge0:05)2. The Gr�uneisen parameter diverges, �
r / T�x, but the exponent xseems to be in
ompatible with the 
onventional spin-density wave s
enario.1.4 ExperimentsThe theoreti
al predi
tion of a diverging Gr�uneisen parameter has already been tested ex-perimentally by R. K�u
hler et al. [22℄ in two metalli
 heavy-fermion 
ompounds exhibitingan antiferromagneti
 quantum phase transition, CeNi2Ge2 and YbRh2Ge2. They are espe-
ially suited for studying quantum 
riti
ality sin
e at ambient pressure they are lo
ated verynear to the magneti
 instability making them amenable to thermal expansion measurements.(Thermal expansion is rather diÆ
ult to measure under pressure.) Furthermore, they arestoi
hiometri
 and therefore 
lean with a low residual resistivity ensuring that the role ofdisorder is minimized.In Fig. 1.5 the thermal expansion and the spe
i�
 heat of a CeNi2Ge2 single 
rystal areshown. In zero magneti
 �eld the thermal expansion divided by temperature is des
ribed by anon-Fermi liquid divergen
e �=T � 1=pT over more than two de
ades in temperature rangingfrom 6 K down to 50 mK. Only after applying a magneti
 �eld does the divergen
e give way tothe saturation expe
ted for a Fermi liquid. This well-pronoun
ed non-Fermi liquid behaviorsuggests that CeNi2Ge2 is quantum 
riti
al at ambient pressure, i.e. the 
riti
al pressure isp
 � 0. Below 3 K the spe
i�
 heat 
oeÆ
ient 
an be well �tted with 
=T = 
0� 
pT , wherethe square root dependen
e on temperature is attributed to the quantum 
riti
al 
ontribution.One has to be 
areful to subtra
t the non-
riti
al 
ontribution 
0 in order to obtain the 
orre
t
riti
al behavior of the G�uneisen parameter �
r. The inset of the graph showing the thermalexpansion in Fig. 1.5 establishes that the exponent measured in the quantum 
riti
al regimefor the Gr�uneisen parameter (1.30) is 1=(�z) = 1. These experimental �ndings agree witha 
onventional three-dimensional antiferromagneti
 spin-density wave s
enario des
ribed bythe Hertz model (see Chapter 2): � = 1=2, z = 2 and � = d + z = 5. Taking into a

ount17



Chapter 1. Universally Diverging Gr�uneisen Parameterfor the molar volume Vm the dimensionful prefa
tor of the 
riti
al G�uneisen parameter (1.30)has been determined [23℄ to be T0=p0 � 1:5 K/GPa. This identi�es the 
rossover line in thepressure{temperature phase diagram between the quantum 
riti
al and the low-temperature,Fermi-liquid regime. It remains to be seen if this 
an be 
on�rmed by dire
tly measuring thepressure indu
ed 
rossover to Fermi-liquid behavior in CeNi2Ge2.Previous measurements [24℄ on the stoi
hiometri
 
ompound YbRh2Ge2 have revealeda very small N�eel temperature TN of about 65 mK, whi
h 
an be further suppressed bydoping it slightly with Ge. Fig. 1.6 shows the thermal expansion and spe
i�
 heat ofYbRh2(Si0:95Ge0:05)2 of R. K�u
hler et al. [22℄. It 
an be 
learly seen that at an energy s
aleof about 300 mK the thermodynami
 behavior 
hanges. Up to now it is not yet 
lear whi
hphysi
al me
hanism is asso
iated with this energy s
ale. Nevertheless, the 
riti
al behavioris assumed to set in only below 300 mK. The Gr�uneisen parameter is again found to diverge.The extra
ted exponent 1=(�z) = 0:7 however has to be taken with a pin
h of salt sin
e the�t in
luded data points well above the existing temperature s
ale of 300 mK. Nevertheless,it seems that the divergen
e 
annot be explained in the framework of an antiferromagneti
spin-density wave instability whi
h would require an exponent 1=(�z) = 1.

18



Chapter 2Hertz Theory and Millis RGIn a seminal paper J. A. Hertz [4℄ pointed out the importan
e of quantum phase transitionsfor the physi
s at �nite temperatures. After 30 years the model he 
onsidered has be
ome thestandard theory for magneti
 instabilities in itinerant ele
troni
 systems at zero temperature.Its �nite-temperature properties have been derived within a renormalization group treatment(RG) developed by A. J. Millis [5℄. Its most prominent feature is the non-Fermi liquid behaviorabove the zero-temperature instability , and it is used to des
ribe several experiments on heavyfermion 
ompounds.In Se
tion 2.1 we shortly review the Hertz model. The RG treatment proposed byA. J. Millis will be presented in Se
tion 2.2. Some subtle points in its derivation will bedis
ussed and minor errors appearing in the original paper [5℄ 
orre
ted. The solution of theRG equations is given in the following 
hapter, where we 
ompare the results for the thermalexpansion and Gr�uneisen parameter with the s
aling treatment of Chapter 1.2.1 Hertz' e�e
tive a
tionThe treatment of Hertz starts by 
onsidering the Hubbard intera
tion Hamiltonian. Its lo
aldensity{density intera
tion 
an be separated into a 
harge- and spin-density partHHubbard = UXi ni"ni# = U2 Xi (ni" + ni#)� U2 Xi (ni" � ni#)2 ; (2.1)where i labels the number of sites. Near a spin-density wave transition the 
harge density
u
tuations will be very fast in 
omparison to the 
riti
al slow modes and 
an be negle
ted.Furthermore, the spin-density part 
an be re
ast into a form where the spin rotation symmetryis manifest. This 
an be a
hieved by using the Fierz identity for Pauli matri
es [25℄����
Æ = Æ��Æ
Æ � 2 ��
��Æ (2.2)where � is the three-
omponent ve
tor of Pauli matri
es and � is the antisymmetri
 tensor.With this identity the spin-density part of the Hubbard intera
tion 
an be rewritten asHSDW = �U2 Xi (ni" � ni#)2 = �JXi 0�X�� 	yi� 12���	i�1A2 (2.3)19



Chapter 2. Hertz Theory and Millis RGwhere 	 is the ele
tron operator and the ex
hange 
oupling J = 2U=3. In the 
ontinuumlimit the 
orresponding partition fun
tion is given by Z = R D	�D	 e�S with the a
tionS = �Z0 d�d� 0 Z drdr0X� 	��(�; r)g�10 (� � � 0; r� r0)	�(� 0; r0) (2.4)�J �Z0 d� Z dr0�X�� 	��(�; r)12���	�(�; r)1A2 :The Fourier transform of the free ele
tron Green fun
tion is g0(i!n;k) = [�i!n + �k℄�1,where �k is the ele
tron energy with respe
t to the 
hemi
al potential. The spin-density
oupling of fourth order in the fermions 
an be de
oupled by applying a Hubbard{Stratonovi
htransformation1 on the real spin-density �eld pJ=2P�� 	�����	�,Z = Z	*exp24� �Z0 d� Z drX�� 	��(�; r)"�rJ2����(�; r)#	�(�; r)35+	;� : (2.5)The average has to be taken with respe
t to the real bosoni
 Hubbard{Stratonovi
h �eld �,whi
h is a three-
omponent ve
tor, and the fermioni
 �eld 	,hÔi� � 1Z� Z D� Ô exp24�12 �Z0 d� Z dr�2(�; r)35 (2.6)hÔi	 � 1Z	 Z D	�D	 Ô exp24� �Z0 d�d� 0 Z drdr0X� 	��(�; r)g�10 (� � � 0; r� r0)	�(� 0; r0)35(2.7)with Z� = h1i� and Z	 = h1i	. The bosoni
 and the fermioni
 �elds are 
oupled and it is apriori not 
lear to whi
h 
ategory the 
riti
al degrees of freedom belong. In the Hertz theoryit is assumed that the 
riti
al modes are well des
ribed by the bosoni
 �eld alone in the sensethat an expansion of the e�e
tive a
tion in � is well-behaved. In Se
tion 2.1.1 we will shortly
omment on the validity of this assumption. The fermions are integrated out and one endsup with a Ginzburg{Landau free energy fun
tional 
 for the Hubbard{Stratonovi
h �eld �:ZZ	 = 1Z� Z D� e�
[�℄ with 
[�℄ = �Z0 d� Z dr12�2(�; r)� tr logf1�VG0g : (2.8)1The Hubbard{Stratonovi
h transformation for a real �eld ~x uses the identityZ dx1dx2 : : : dxn(2�)n=2 exp ��12~xTA~x+ ~xT ~y� = (detA)�1=2 exp�12~yTA�1~y�where A is a matrix. 20



2.1. Hertz' e�e
tive a
tionThe matri
es V and G0 are given byV = Æ�;� 0Ær;r0rJ2��;�0�(�; r) (2.9)G0 = Æ�;� 0Ær;r0Æ�;�0g0(� � � 0; r� r0) : (2.10)The tra
e is therefore meant to extend over time, spa
e and spin variables. The Hertz theoryassumes that the �eld � 
u
tuates around a vanishing expe
tation value, i.e. it des
ribesonly the disordered phase. Generally, there are two 
lasses of magneti
 instabilities to bedistinguished. In the 
ase of a ferromagneti
 instability the magneti
 order is homogenousand the Fourier 
omponents of the order parameter �eld only 
arry small momenta. Theferromagneti
 order parameter in spa
e is represented by a real �eld with three 
omponents,�(�;R). On the other hand, in an antiferromagnet the 
riti
al degrees of freedom 
arry a�nite wave ve
tor �Q, �(�;R) = eiQR�Q(�;R) + e�iQR��Q(�;R) : (2.11)The 
u
tuations around the modulated magneti
 stru
ture are in general des
ribed by a
omplex �eld, �Q(�;R). An ex
eption is the 
ommensurate antiferromagnet where a mul-tiple of the modulation ve
tor Q 
oin
ides with a latti
e ve
tor, in parti
ular ei2QR = 1.One 
an easily 
onvin
e oneself that in this 
ase ��Q(�;R) = �Q(�;R) and a real �eld suf-�
es to des
ribe the 
riti
al modes. More generally, the system might be instable againsta non-homogenous magneti
 stru
ture 
hara
terized by several di�erent modulation ve
tors.Su
h a 
riti
al theory 
omprises several in general 
omplex �elds, ea
h asso
iated with the
orresponding ordering wave ve
tor.In the magneti
ally disordered phase the logarithm in expression (2.8) arising from thefun
tional determinant of the ele
trons 
an be expanded in the 
u
tuations � = (�1; �2; �3)around the disordered ground state. The interesting lowest order terms are listed below2.� First order = �tr f(VG0)g = 0 (2.12)The 
ontribution of this diagram vanishes trivially in the absen
e of a magneti
 �eldsin
e the tra
e over spin indi
es gives zero, trf�ig = 0.� Se
ond order = �12tr�(VG0)2	 = J2 1�V Xp �L(p)�T (p)�(�p) (2.13)2The following spin tra
es are needed12 tr f�n�mg = Ænm ; 12trn�n�m�lo = i�nml ; 12trn�n�m�l�ko = ÆnmÆlk � ÆnlÆmk + ÆnkÆml :21



Chapter 2. Hertz Theory and Millis RGWe use the four-dimensional notation p = (i!n;k) for the fermioni
 Matsubara fre-quen
y and the momentum. The so-
alled Lindhard fun
tion �L is given by�L(p) = �L(i!n;k) = � 1�V X
m;q g0(i
m;q)g0(i
m + i!n;q+ k) : (2.14)where 
m = 2�mT is here and in the following always a bosoni
 Matsubara frequen
y.The Lindhard fun
tion is the basi
 fermioni
 va
uum loop and is also known as thepolarization diagram [26℄.� Third order = �13tr�(VG0)3	 (2.15)= 23 �J2�3=2 1�3V 3 Xpjj=1;2;3 �V Æ0� 3Xj=1 pj1A�(3)(p1; p2; p3) i �nml�n(p1)�m(p2)�l(p3)The three �eld 
omponents appear in an antisymmetri
 
ombination. As a 
onsequen
e,the three-point 
orrelation fun
tion �(3)(p1; p2; p3) has to be antisymmetri
 with respe
tto ea
h pair of its three arguments. This drasti
ally restri
ts its behavior at large spatialand temporal distan
es, i.e. for small momenta and frequen
ies.For a ferromagneti
 instability a possible lowest-order term in a gradient expansionsatisfying the antisymmetry 
onditions is�(3)(p1; p2; p3) � � ((k1 � k2) (k3 � k1) (i!n2 � i!n3) + 
y
l:perm:) ; (2.16)It leads to the following term in the Ginzburg{Landau fun
tional for the �eld �(t;R):� 23 �J2�3=2 24�Z dR dt r2�(t;R)� ��t�(t;R)� �(t;R)� : (2.17)However, a

ording to power 
ounting [27℄ this term is irrelevant in the renormalizationgroup sense for the spa
e dimensions of interest and 
an be negle
ted.In the 
ase of a non-homogenous magneti
 instability the important 
riti
al degrees offreedom are the Fourier 
omponents of the �eld � with a momentum that 
u
tuatesaround �nite ordering wave ve
tors. Depending on the symmetry of the non-homogenousmagneti
 stru
ture there are two 
ases one has to distinguish. First let us assume thatno three of the ordering wave ve
tors happen to add to zero. As a 
onsequen
e, the�elds � are required to 
arry 
olle
tively a rather large momentum 
u
tuation in orderto ful�ll the momentum 
onservation demanded by the delta fun
tion in (2.15). Su
hFourier 
omponents of the �elds do not however in
uen
e the 
riti
al behavior and thethird-order term (2.15) 
an be dis
arded in the analysis of 
riti
ality. In parti
ular,22



2.1. Hertz' e�e
tive a
tionthis applies to the 
ase of the antiferromagnet with a single ordering waveve
tor Q.The se
ond possibility is the spe
ial 
ase of a magneti
 modulation that allows for a
ombination of ordering wave ve
tors Q1+Q2+Q3 = 0. In su
h a 
ase the third-orderterm (2.15) may be important.� Fourth order = �14tr �(VG0)4	 = 12 �J2�2 1�4V 4 Xpjj=1;2;3;4 �V Æ0� 4Xj=1 pj1A (2.18)��ÆnmÆkl � ÆnkÆml + ÆnlÆmk��(4)(p1; p2; p3; p4)�n(p1)�m(p2)�k(p3)�l(p4)= 12 �J2�2 1�4V 4 Xpjj=1;2;3;4 �V Æ0� 4Xj=1 pj1A�(4)S (p1; p2; p3; p4)�n(p1)�n(p2)�m(p3)�m(p4) :In the last line we introdu
ed the symmetrized four-point 
orrelation fun
tion, �(4)S , byin
orporating the di�erent 
ontra
tions of the internal degrees of freedom of the �elds.The unsymmetrized four-point 
orrelation fun
tion is given by�(4)(p1; p2; p3; p4) = � 1�V Xq=(i
n;q) g0(q)g0(q + p1)g0(q + p1 + p2)g0(q + p1 + p2 + p3) :(2.19)Its frequen
y and momentum dependen
e is irrelevant in the RG sense and 
an benegle
ted, redu
ing it to a lo
al 
onta
t intera
tion. However, the resulting 
ontribu-tion to the Ginzburg{Landau fun
tional depends on whether the magneti
 stru
ture ishomogenous or not.Up to irrelevant terms, for the ferromagnet we simply have� 12 �J2�2 �(4)(0; 0; 0; 0)Z �0 d� Z dR ��T (�;R)�(�;R)�2 : (2.20)Note that in 
ontrast to the 
ontribution of third order in the �eld � there are no symme-try restri
tions whi
h require the lo
al 
onta
t intera
tion to vanish. (Loop and vertex
orre
tions, however, lead to important 
orre
tions, see dis
ussion of Se
tion 2.1.1.)The situation is more elaborate in the 
ase of an antiferromagnet. In order to satisfythe momentum 
onservation demanded by the delta fun
tion a �eld �Q of (2.11) isalways a

ompanied by its 
omplex 
onjugate ��Q. Taking into a

ount all possible
ombination we �nally arrive at the expression for the antiferromagnet� 12 �J2�2 1�4V 4 Xpjj=1;2;3;4 �V Æ0� 4Xj=1 pj1A (2.21)� �A��nQ (p1)��nQ (p2)�mQ(p3)�mQ(p4) +B ��nQ (p1)�nQ(p2)��mQ (p3)�mQ(p4)� :23



Chapter 2. Hertz Theory and Millis RGwhere we again negle
ted irrelevant terms. The 
onstants, A and B, are given in termsof the four-point 
orrelation fun
tion,A =�(4)S (Q;Q;�Q;�Q) + �(4)S (�Q;�Q;Q;Q)B =�(4)S (Q;�Q;Q;�Q) + �(4)S (Q;�Q;�Q;Q) + �(4)S (�Q;Q;�Q;Q) (2.22)+ �(4)S (�Q;Q;Q;�Q) :Only for the 
ommensurate antiferromagnet does this fourth order intera
tion redu
eto the simple form (2.20).The theory originally proposed by Hertz 
onsiders only a real �eld �. It is therefore appro-priate for the ferromagnet (with 
ertain restri
tions explained below) and the 
ommensurateantiferromagnet. We extend the �eld to N 
omponents giving rise to an O(N) internal sym-metry and making the Hertz theory amenable to large N methods. Combining all importantterms the Hertz theory reads3ZHertz = ZZ	 = 1Z� Z D� e�SHertz[�℄ (2.23)SHertz[�℄ = S(2)[�℄ + S(4)[�℄ (2.24)S(2)[�℄ = 1�V X!n;k 12�T (i!n;k)��10 (i!n;k)�(�i!n;�k) (2.25)S(4)[�℄ = g Z �0 d� Z dR ��T (�;R)�(�;R)�2 : (2.26)The normalization Z� =pdet (�V ) in front of the path integral 
an alternatively be absorbedinto a renormalization of the �elds �(i!n;k)! p�V �(i!n;k). In parti
ular, this should bedone in order to obtain the form of the Hertz theory as in Refs. [4℄ and [5℄. We prefer notto do this �nal step and keep instead the familiar fa
tors 1=(�V ) in front of the Matsubaraand momentum sums. The propagator in any 
ase is given by �0 whi
h derives from thelow-frequen
y, low-momentum behavior of the Lindhard fun
tion (see Appendix A.2),1� J�L(i!n;k) � ��10 (i!n;k) � Æ0 + �20 k2 + j!njT0kz�2 (2.27)where we introdu
e the dynami
al s
aling exponent z. For an antiferromagneti
 instability thedynami
al exponent is z = 2 and for a ferromagneti
 instability z = 3. (Again, higher order
orre
tions to the propagator are important, 
f. Se
tion 2.1.1.) The parameters Æ0, �0, T0 andthe quarti
 
oupling g depend on mi
ros
opi
 details. For the antiferromagneti
 instability theexa
t 
orresponden
e between the bare parameters and the mi
ros
opi
 parameters depends3For 
ompleteness we 
ite here the 
onvention we use for the Fourier transform:�(�;R) = 1�V X!n;k ei(kR�!n�)�(i!n;k)�(i!n;k) = Z dR Z d� e�i(kR�!n�) �(�;R)24



2.2. Millis' renormalization group treatmenton the spe
i�
 band stru
ture of the material under 
onsideration. For a ferromagneti
instability, on the other hand they 
an be evaluated and are given byÆ0 = 1� JNF (2.28)�20 = 112NFkF (2.29)T0 = 2� vFNF (2.30)g = J28 �(4)(0; 0; 0; 0) = �J248 Z dq(2�)3 �3��3q f(�q) � J248N 00F : (2.31)The expli
it value for �20 has been obtained with the assumption of a quadrati
 energy dis-persion �k = k2=(2m�). In the bare theory, i.e. on the level of perturbation theory, theferromagneti
 instability o

urs if the mass vanishes, Æ0 = 1 � JNF = 0. This 
ondition isjust the well-known Stoner 
riterion.2.1.1 Validity of the Hertz theoryIn deriving the e�e
tive theory (2.23) we integrated out the ele
troni
 degrees of freedom andexpanded in the magneti
 order parameter �. We have already mentioned that in doing sowe might have missed some important subtle physi
al features.It was realized by D. Belitz, T. R. Kirkpatri
k and and T. Vojta [28℄ that in the 
ase ofthe ferromagnet in zero magneti
 �eld this pro
edure is indeed doomed to fail. They pointedout that the Fermi liquid possesses soft parti
le{hole ex
itations that are distin
t from themagneti
 order parameter 
u
tuations but nevertheless might 
ouple suÆ
iently strongly tothe latter to in
uen
e their 
riti
al behavior. In the 
ase of the ferromagnet these soft modes,whi
h have been integrated out, show up as non-analyti
ities in higher order 
orre
tions to thepolarization diagram [28, 29, 30℄ that have been negle
ted in the derivation of the last se
tion.These non-analyti
ities render the resulting e�e
tive theory for the magneti
 order parameter� non-lo
al and hard to analyze. The Hertz theory in its simple form (2.23) therefore does notapply to the itinerant ferromagnet. However, in the presen
e of a magneti
 �eld the SU(2)-spin rotational invarian
e is broken and, as a 
onsequen
e, the non-analyti
ities are 
ut o�.It is therefore believed that the Hertz theory with a dynami
al s
aling exponent z = 3 is theproper des
ription for the quantum 
riti
al endpoint of magneti
 �rst order transitions [31℄.The antiferromagnet on the other hand has a non-homogenous order parameter and 
ar-ries a non-zero ordering waveve
tor. The fermioni
 soft modes are only soft for a vanishingwaveve
tor and their 
oupling to the antiferromagneti
 
u
tuations are not expe
ted to spoilthe Hertz theory. The e�e
tive theory (2.23) with a dynami
al s
aling exponent z = 2 there-fore expe
ted to des
ribe 
orre
tly the quantum phase transition in itinerant (
ommensurate)antiferromagnets [32℄.However, this issue remains 
ontentious and is the subje
t of 
urrent resear
h.2.2 Millis' renormalization group treatmentIn this se
tion we review the renormalization group (RG) treatment of the Hertz a
tion(2.23) introdu
ed by A. J. Millis [5℄. The main 
ompli
ation in the RG analysis of (2.23)is the in
lusion of the Matsubara frequen
y dependen
e. Sin
e the Matsubara frequen
y25



Chapter 2. Hertz Theory and Millis RGat �nite temperature is not a 
ontinuous variable like the momentum, the extension of forexample Wilson's momentum shell RG to the dynami
al, i.e., frequen
y-dependent part ofthe Hertz a
tion is not straightforward. The solution of Millis was to perform the RG noton the Lagrangian level but rather dire
tly on the free energy after 
onverting all Matsubarasums into integrals.2.2.1 Derivation of the RG equationsFirst 
onsider the free energy due to the Gaussian part of (2.23) only. It is given bye��FG = 1Z� Z D� e�S(2)[�℄ = �det��10 ��1=2=) FG = N2� X!n;k log��10 (i!n;k) = N2� X!n;k log�Æ0 + �20 k2 + j!njT0kz�2� (2.32)The sum over Matsubara frequen
ies 
an be 
onverted into an integral and (in the limitV !1) is given byFG = �T0 N2 V�d0 Z � ddk(2�)d Z �kz�20 d�� 
oth T0�2T ar
tan k2�z �Æ0 + k2 (2.33)where � and � are (dimensionless) 
uto�s. The in
lusion of the momentum in the upper limitof the energy integral in the 
ase of a ferromagnet z = 3 is not 
ontained in the Hertz a
tionas it stands (2.23). It is rather justi�ed with hindsight, sin
e we know that the natural 
uto�for parti
le{hole ex
itations in the 
ase of a ferromagneti
 instability s
ales with momentum k(see Appendix A.2). Furthermore, the momentum and frequen
y integrals have been res
aledso that the parameters T0 and �0 
an be absorbed in the measure of the free energy andthe temperature. The mi
ros
opi
 length s
ale �0 is presumably of the order k�1F . Note thatthe prefa
tor V=�d0 in front of (2.33) is then basi
ally the number of parti
le in the system,V kdF � NA. This implies that the free energy we are dealing with is not expli
itly dependenton the volume. Its extensitivity is rather 
onne
ted to the number of parti
les. Moreover,we 
an adopt the viewpoint that the mass is 
ontrolled by the pressure and we 
an identifythe thermodynami
 potential as the Gibbs free energy whi
h is a fun
tion of temperature,pressure and parti
le number, F = F (T; p;N ). This will be important later when we analyzethe thermal expansion. In the following it will be 
onvenient to 
onsider the dimensionlessfree energy density F = F�d0=(T0V ) and the dimensionless temperature T = T=T0.The 
orre
tion to the Gaussian part of the free energy 
an be obtained with a linked
luster expansion in the quarti
 
oupling g. Up to se
ond order in u the result is (for detailssee Appendix A.3)F = FG + gN(N + 2)I2 + g22! �8N(N + 2)2I2J + 8N(N + 2)K�+O(g3) ; (2.34)26



2.2. Millis' renormalization group treatmentwhere we have introdu
ed the three fun
tionsI = 1�V X!n;k�0(i!n;k) ; J = � 1�V X!n;k�0(i!n;k)�0(�i!n;�k) ;K =� 1(�V )4 X!nj ;kjj=1;2;3;4V Æ 4Xi=1 ki!�Æ 4Xi=1 !in! (2.35)� �0(i!1n;k1)�0(i!2n;k2)�0(i!3n;k3)�0(i!4n;k4)expressed in terms of the propagator (2.27). The important point for the RG pro
ess is thatthe fun
tions I and J are just derivatives of the Gaussian free energy (2.33) with respe
tto the bare mass Æ0, I = (2=NV )�FG=�Æ0 and J = �I=�Æ0. At �rst sight the fun
tion Kdoes not have this property. To understand its 
ontribution in the Millis RG let us digress amoment to the usual momentum{shell RG. In the momentum-shell RG it is known [27, 18℄that the se
ond order diagram 
ontributing to the renormalization of u, (2.36)results in a momentum dependent quarti
 
oupling. This means that the 
orrespondingintera
tion in real spa
e is non-lo
al. However, this momentum dependen
e is known to beirrelevant [27℄ and only the momentum independent term is to be kept in the RG pro
ess. The
ontribution K now stems exa
tly from the diagram in the linked 
luster expansion whi
h isobtain by pairing the two open legs at one vertex of the above diagram with the legs of theother vertex, = + : (2.37)(It is a
tually a sum of two diagrams with di�erent 
ontra
tions of the internal indi
es ofthe �elds involved; the dashed line represents the quarti
 intera
tion g. The �rst diagram onthe right hand side of the equation is of order O(N2) and the se
ond diagram of order O(N)where N is the number of �eld 
omponents.) The momentum dependen
e whi
h this diagramindu
es in the momentum-shell RG manifests itself in the stru
ture of the fun
tion K: allfour momenta and frequen
ies appear in the delta fun
tions. The analogous step of negle
tingthe indu
ed momentum dependen
e in the momentum-shell RG is to demand frequen
y- andmomentum 
onservation, represented by the delta fun
tions of K, only with respe
t to twofrequen
ies and two momenta. However, there are �42� = 6 possibilities to 
hoose two out offour, V Æ 4Xi=1 ki!�Æ 4Xi=1 !in! �! �42� V Æ (k1 + k2) �Æ (!1n + !2n) : (2.38)If we manipulate the delta fun
tions in this way the fun
tion K 
ollapses to 6I2J . E�e
tively,the fun
tion K thus leads to a 
ontribution in the Millis RG pro
ess 
orresponding to 6I2J .The 
orre
tions are irrelevant in the RG sense. In Millis' original paper he swept these27



Chapter 2. Hertz Theory and Millis RGsubtleties under the 
arpet and as a starting point for the derivation of the RG equationsused the expansion of the free energy with K substituted by 6I2J ,F = FG + gN(N + 2)I2 + g22! 8N(N + 2)(N + 8)I2J +O(g3) + irrelevant terms : (2.39)We do not want to dwell on the justi�
ation of the above statement but rather 
ontinuewith the derivation of the RG equations. They are derived from (2.39) in the spirit of themomentum-shell RG but on the level of the free energy: a momentum shell [�;�=b℄ is sepa-rated from the momentum integrals of the fun
tions FG, I and J . This shell will renormalizethe bare mass Æ0 and the quarti
 
oupling g. Afterwards the integrand is res
aled whi
h,via the momentum dependen
e of the upper limit of the frequen
y integral, indu
es a se
ondrenormalization from the frequen
y shell. This �nally yields the following RG equations4� F(b)� log b = (d+ z)F(b) � 12 N f0(Æ(b);T (b)) (2.40)� T (b)� log b = z T (b) (2.41)� Æ(b)� log b = 2 Æ(b) + 4 (N + 2)u(b) f2(Æ(b);T (b)) (2.42)� u(b)� log b = (4� d� z)u(b) � 4 (N + 8)u2(b) f4(Æ(b);T (b)) (2.43)where F = F�d0=(T0V ) is the dimensionless free energy (per parti
le), u = g�d0=(T0V ) thedimensionless quarti
 
oupling and T = T=T0 the dimensionless temperature. We have intro-du
ed the three fun
tionsf0(Æ;T ) = Kd�d ��z�2Z0 d�� 
oth �2T ar
tan �2�z �Æ +�2 + �Z ddk(2�)d 2�� 
oth �2T ar
tan k2�z �Æ + k2f2(Æ;T ) = � ��Æ f0(Æ;T ) (2.44)f4(Æ;T ) = � ��Æ f2(Æ;T )and Kd = Z d
(2�)d = �2d�1�d=2�(d=2)��1 (2.45)is the surfa
e of the d-dimensional sphere in momentum spa
e. The �rst term of the fun
tionf0 arises from the renormalization due to the separated momentum shell | momentum is seton shell k = � | whereas the se
ond term is the renormalization due to the frequen
y shell| frequen
y is set on shell � = �. It turns out that the main e�e
t of the 
ontribution of the4 The above RG equation di�er from the equations in Millis' paper [5℄ in the following points. The fa
tor�N=2 is missing in front of the fun
tion f0. The minus sign stems from the transformation of the Matsubarasum to an integral in the expression for the Gaussian part of the free energy. The fa
tor N 
omes from thesummation over the internal degrees of freedom and the fa
tor 1=2 is due to the fa
t that the �elds � are realand not 
omplex. The inverse of the same fa
tor 1=2 is involved in the fa
tor 4 in front of the fun
tion f2 whereMillis has only a fa
tor of 2. Moreover, there is an additional fa
tor of 2 in the fun
tion f4 in 
omparison toMillis. Similar di�eren
es o

ur in the fun
tions I and J de�ned above.28



2.2. Millis' renormalization group treatmentfrequen
y shell is to renormalize zero temperature properties only. The additional 
orre
tionsat �nite temperatures due to the frequen
y shell are exponentially suppressed,f0(Æ;T )� f0(Æ; 0) = Kd�d 1Z0 d�� �
oth �2T � 1� ar
tan �2�z �Æ +�2 +O(e��=T ) : (2.46)The leading 
ontribution to the thermodynami
 quantities like spe
i�
 heat and thermalexpansion therefore 
omes from the temperature dependen
e due to the separated momentum-shell.2.2.2 Classi
al limitTe
hni
ally speaking, the di�eren
e between the Hertz theory and the 
onventional \
las-si
al" �4-theory is the additional dependen
e on the Matsubara frequen
y of the Gaussianpropagator (2.27). If we just negle
t the non-zero Matsubara modes the remaining �eld 
or-responding to a Matsubara frequen
y !0 = 0 is indeed governed by su
h a 
lassi
al �4-theory.After res
aling this �eld by ~'(k) = ��1=2 �(0;k) (
f. dis
ussion after (2.23)), the a
tion ofthe zero Matsubara mode readsS
lass['℄ = 12V Xk ~'T (k) �Æ0 + �20k2� ~'(�k) (2.47)+ u�V 4 Xk1;k2;k3;k4 V Æ 4Xi=1 ki! (~'T (k1)~'(k2)) (~'T (k3)~'(k4))with a \
lassi
al" quarti
 
oupling whi
h depends on temperature, v � u=�. Formally, theHertz theory thus redu
es to the 
lassi
al theory (2.47) when the in
uen
e of the non-zeroMatsubara modes 
an be negle
ted. This is the 
ase for temperatures larger than the energy
uto� , T � ��z�2. The Hertz theory and in parti
ular the form of the propagator (2.27)is, of 
ourse, not justi�ed in this limit and therefore should not be interpreted physi
ally. (Inits derivation we used the limiting behavior of the Lindhard fun
tion (2.14) for frequen
iesless than momentum, ! � k � 1.) Nevertheless, in this limit the Millis RG equations shouldformally redu
e to the well-known RG equations of the 
lassi
al �4-theory. The 
onsiderationof this limit therefore provides a 
ross
he
k for the validity of the Millis RG equations (2.40{2.43).To redu
e Millis' RG equations to the 
lassi
al ones we substitute u(b) by v(b) = u(b)T (b).Moreover, we have to take the high temperature limit of the fn fun
tions, whi
h amounts torepla
ing the 
oth fun
tions in the integrand by the inverse of their argument. After takingthe limit �!1 one ends up with the 
lassi
al RG equations of �4 theory [18℄� Æ(b)� log b = 2 Æ(b) + 4 (N + 2) v(b) Kd�dÆ(b) + �2 ; (2.48)� v(b)� log b = (4� d) v(b) � 4 (N + 8) v2(b) Kd�d(Æ(b) + �2)2 : (2.49)As pointed out by S. Sa
hdev [2℄ for small but �nite temperatures 0 < T � ��z�2 thee�e
tive theory is indeed given by (2.47), but with the bare parameters strongly renormalizedby the non-zero Matsubara modes. This leads to a 
on
eptually di�erent point of view to the29



Chapter 2. Hertz Theory and Millis RGMillis approa
h and we will refer the reader to Refs. [2, 33℄. Nevertheless, if in the followingthe leading 
ontribution of some quantity is due to the high-temperature limit of the fnfun
tions we will refer to it as resulting from \s
aling into the 
lassi
al regime".2.2.3 Running mass and 
orrelation lengthThe RG equation for the mass Æ 
an formally be integrated. After separating the trivials
aling dimension of the mass 1=� = 2 by substituting Æ(b) = R(b) b2 we getR(b) = Æ0 + 4 (N + 2) Z log b0 dx e�2x u(ex) f2(R(ex) e2x;T ezx) ; (2.50)where Æ0 is the bare mass appearing in the propagator �0 in (2.23). It is 
onvenient tointrodu
e the running mass at zero temperature,�(b) = Æ0 + 4 (N + 2) Z log b0 dx e�2x u(ex) f2(�(ex) e2x; 0) : (2.51)Sin
e we are interested only in the behavior of the theory in the vi
inity of the quantum
riti
al point we 
an expand in �,�(b) � Æ0 + 4 (N + 2) f2(0; 0)Z log b0 dx e�2x u(ex)� 4 (N + 2) f4(0; 0) Z log b0 dx u(ex)�(ex)� (Æ0 � Æ
) exp ��4 (N + 2) f4(0; 0) Z log b0 dxu(ex)� : (2.52)In the se
ond line we already extra
ted the behavior of � for large s
ales b by solving theimpli
it equation of the �rst line, whi
h 
an be identi�ed with a �rst-order linear di�erentialequation. In doing so, we introdu
ed the 
riti
al bare mass Æ
, whi
h identi�es the positionof the quantum 
riti
al point,Æ
 = �4 (N + 2) f2(0; 0)Z 10 dx e�2x u(ex) : (2.53)With the help of (2.51) we obtain the temperature 
orre
tion to the running mass, whi
h isof �rst order in the running quarti
 
oupling u,R(b)��(b) = 4 (N + 2) Z log b0 dx e�2x u(ex) �f2(R(ex) e2x;T ezx)� f2(�(ex) e2x; 0)�= RT (b) + ÆR(b) = RT (b) +O(u2) ; (2.54)where we have introdu
ed the quantitiesÆR(b) = 4 (N + 2) Z log b0 dx e�2x u(ex) �f2(R(ex) e2x; 0)� f2(�(ex) e2x; 0)� ; (2.55)RT (b) = 4 (N + 2) Z log b0 dx e�2x u(ex) �f2(R(ex) e2x;T ezx)� f2(R(ex) e2x; 0)� : (2.56)The 
ontribution of the term ÆR is of higher order in u and has to be negle
ted. The runningmass 
onverges eventually for large s
ales to the 
orrelation length,R(b) = �(b) +RT (b) ' ��2 : (2.57)30



2.2. Millis' renormalization group treatment2.2.4 Quantum{
lassi
al 
rossover: Estimate of the 
riti
al temperatureIt is tempting to determine the �nite temperature phase transition in the (r; T ) plane by the
ondition of a vanishing e�e
tive mass, R(b) ' ��2,��2(r; T ) = 0 at T = T
(r) : (2.58)However, we will explain in the following why the parameter region where ��2(r; T ) = 0 isbeyond the rea
h of the perturbative RG equations (2.40{2.43).As we have already mentioned the phase transition at �nite temperatures is governed byan e�e
tive 
lassi
al �4 or Ginzburg{Landau theory. In su
h a theory the phase transitionis identi�ed with a sign 
hange of the mass, R / T � T
. Near the 
riti
al temperatureT
 the thermodynami
al quantities are very sensitive to variations in the mass. Hen
e, we
an identify the quantum{
lassi
al 
rossover in the (r; T ) plane by 
omparing di�erent 
on-tributions to, for example, the spe
i�
 heat: the quantum 
ontribution whi
h arises fromthe expli
it temperature dependen
e of the Hertz propagator, and the 
lassi
al 
ontributionwhi
h arises from the sensitivity of the renormalized mass, R, to temperature variations.The RG traje
tory of the running mass R(b) itself depends on the temperature and it isthis impli
it temperature dependen
e whi
h starts to dominate the thermodynami
s at thequantum{
lassi
al 
rossover [34℄.Below four spa
e dimension, however, the �nite temperature phase transition is not
aptured by the Gaussian �xed point, but is rather des
ribed by the Wilson{Fisher �xedpoint [35℄. Therefore, there will be a further 
rossover in the (r;T ) plane from a Gaussianto the non{Gaussian behavior of the Wilson{Fisher �xed point. Sin
e the physi
s embodiedby the Wilson{Fisher �xed point is beyond the s
ope of the Millis RG analysis this 
rossoveris asso
iated with the breakdown of the perturbative Millis RG treatment. This Gaussian tonon-Gaussian 
rossover is determined by the Ginzburg temperature (see below). So, stri
tlyspeaking, we are not able to lo
ate the phase boundary sin
e the region where ��2(r; T ) = 0is beyond the appli
ability of the RG equations (2.40-2.43). Nevertheless, having pointed thisout we still use the vanishing mass 
riterion in the following to get a �rst estimate of thelo
ation of the phase boundary.2.2.5 Gaussian{non-Gaussian 
rossover: Ginzburg temperatureThe Ginzburg temperature TG(r) de�nes the Gaussian{non-Gaussian 
rossover in the (r; T )plane just alluded to. It is based on the Ginzburg 
riterion whi
h 
an be formulated inseveral ways [18, 17℄. It arises naturally when the e�e
tive 
lassi
al Ginzburg{Landau theoryin less than four spa
e dimensions, whi
h des
ribes the �nite temperature phase transition,is 
onsidered as a 
rossover phenomena. Upon approa
hing the phase boundary at a �nitetemperature the singular part of the free energy density will asymptoti
ally satisfy the usuals
aling form [16℄ b�dfsing(R(b)b1=� ; v byv) � [R(b)℄�d fsing(1; v [R(b)℄��yv) (2.59)with the 
lassi
al quarti
 
oupling v = uT introdu
ed in se
tion 2.2.2. In the Gaussian regionthe exponents are given (up to logarithmi
 
orre
tions) by the Landau values, � = 1=2 andyv = 4 � d. The singular free energy exhibits a 
rossover depending on the size of the so-
alled Ginzburg parameter v [R(b)℄��yv . In the Gaussian region this parameter is small and
an be treated perturbatively. In the non-Gaussian region, however, it be
omes large and the31



Chapter 2. Hertz Theory and Millis RGphysi
s 
rosses over to the realm of the Wilson{Fisher �xed point. The 
rossover o

urs atthe Ginzburg temperature where the Ginzburg parameter attains a value of order one,v R��yv = uT R d�42 � 1 at T = TG(r) : (2.60)The Ginzburg temperature TG(r) de�nes a 
rossover line in the (r; T ) plane of the phase dia-gram beyond whi
h the Millis RG treatment breaks down. Consequently, in the non-Gaussianregion beyond TG(r) we 
annot extra
t any reliable information from the perturbative RGtreatment presented in this 
hapter.2.2.6 Physi
al quantitiesFree energyIntegrating the RG equation for the dimensionless free energy we 
an rewrite it as an integralalong the RG traje
tory, after a

ounting for the trivial s
aling dimension d+ zF(b) b�(d+z) b!1�! F = �N2 Z 10 dx e�(d+z)x f0(R(ex) e2x;T ezx) : (2.61)Again we re
all that F is the free energy measured in units of T0V=�d0 . The important pointto note is that the free energy F has an expli
it temperature dependen
e via the se
ondargument of the fun
tion f0 and an impli
it T dependen
e due to the running mass. The RGtraje
tory of R(b) itself depends on T [
f. (2.50)℄ whi
h has to be taken into a

ount when
omputing the entropy.EntropyCorrespondingly, there are two terms when the derivative with respe
t to temperature istaken (measuring the entropy in units of V=�d0),S = �dFdT = SQCP + SCL : (2.62)The �rst term is due to the partial derivative with respe
t to temperature,SQCP = ��F�T = N2 Z 10 dx e�(d+z)x ��T f0(R(ex) e2x;T ezx) ; (2.63)and the subs
ript indi
ates that it is this term whi
h leads to the pe
uliar temperaturedependen
es typi
al for quantum 
riti
al phenomena. The se
ond term stems from the impli
ittemperature dependen
e of the RG traje
tory of the running mass,SCL = �N2 Z 10 dx e(2�d�z)x f2(R(ex) e2x;T ezx)dRT (ex)dT : (2.64)It is this term whi
h is most singular near the phase boundary at �nite T initiating thequantum{
lassi
al 
rossover. 32



2.2. Millis' renormalization group treatmentSpe
i�
 heatWe will 
onsider here the spe
i�
 heat 
oeÆ
ient 
 = C=T , whi
h is just the derivative ofentropy with respe
t to temperature. We will measure the spe
i�
 heat 
oeÆ
ient in units ofV=(�d0T0) in the following. There are two important 
ontributions to the spe
i�
 heat. Thequantum 
riti
al 
ontribution is given by
QCP = �SQCP�T = N2 Z 10 dx e�(d+z)x �2�T 2 f0(R(ex) e2x;T ezx) : (2.65)Near the phase boundary the temperature sensitivity of the RG traje
tory of the runningmass takes over,
CL = N2 Z 10 dx e(4�d�z)x f4(R(ex) e2x;T ezx)�dRT (ex)dT �2 : (2.66)It should be noted that there is also another term, the partial derivative of SCL with respe
tto temperature. However, the leading 
ontribution in the quantum and 
lassi
al regimes are
QCP and 
CL, respe
tively. The quantum-
lassi
al 
rossover 
an be estimated by 
omparingthese two 
ontributions with ea
h other.Thermal expansionThe thermal expansion is de�ned as the 
hange in volume as the system temperature is
hanged with pressure p and parti
le number N held 
onstant:� = 1V �V�T ����p;N = 1V �2F�p �T = � 1V �S�p ����T;N : (2.67)Using the Gibbs free energy, F = F (T; p;N ), we have rewritten the thermal expansion as aderivative of entropy with respe
t to pressure. Near a pressure tuned quantum 
riti
al pointthe 
ontrol parameter is proportional to the distan
e to the 
riti
al pressure, r = (p� p
)=p0,where p0 is an a priori unknown pressure s
ale. Up to a proportionality 
onstant we re
ognizethat the thermal expansion is a
tually the 
hange of entropy upon variation of the 
ontrolparameter r, � = � 1V p0 �S�r : (2.68)From now on we will measure the thermal expansion in units of 1=(�d0p0). Again we 
andistinguish between a 
ontribution due to the quantum 
riti
al point,�QCP = ��SQPC�r = N2 Z 10 dx e(2�d�z)x �R(ex)�r ��T f2(R(ex) e2x;T ezx) ; (2.69)and a 
lassi
al 
ontribution dominating near the phase boundary,�CL = ��SCL�r = �N2 Z 10 dx e(4�d�z)x f4(R(ex) e2x;T ezx)dRT (ex)dT dR(ex)dr : (2.70)33



Chapter 2. Hertz Theory and Millis RGGr�uneisen parameterThe thermodynami
 Gr�uneisen parameter, �, is the ratio of the thermal expansion to thespe
i�
 heat � = �T
 : (2.71)In the following we will measure � in units 1=(V p0).
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Chapter 3Solution of Millis RG EquationsIn this 
hapter the solution of the RG equations is obtained. The results obtained earlierby U. Z�uli
ke and A. J. Millis [6℄ for the spe
i�
 heat in three spatial dimensions are 
om-plemented by its 
al
ulation in 2D. The thermal expansion and the Gr�uneisen parameterpresented here have not been 
al
ulated within Hertz' theory so far. We will 
ompare theresults with the predi
tion of the s
aling treatment of Se
tion 1.3.The Hertz model 
an be su

essfully treated within a perturbative Millis RG treatmentbe
ause for the physi
al systems of interest its e�e
tive dimension d + z is above or at theupper 
riti
al dimension, d + z � 4, where the quarti
 
oupling u is either an irrelevant or amarginal perturbation, respe
tively. In the Millis RG however not only the quarti
 
ouplingu is treated as a small parameter. We will also expand in the distan
e to the quantum 
riti
alpoint, whi
h is measured by both the 
ontrol parameter r and the temperature T . In doingso we obtain universal �nite temperature properties of the Hertz model asso
iated with the�xed point of the quantum phase transition.It turns out that spa
e dimension d = 2 plays a spe
ial role. It is known from a theoremdue to N. D. Mermin and H. Wagner [14℄ that generally in two spa
e dimensions systems witha 
ontinuous symmetry and �nite{range intera
tions do not show a spontaneous ma
ros
opi
magnetization at �nite temperatures. The underlying reason is the existen
e of logarithmi
allydivergent 
u
tuations of would-be Goldstone modes. Te
hni
ally the divergen
e stems fromthe IR part of the momentum integralZ dk kd�1 1m2 + k2 � � logm for m! 0 in d = 2 : (3.1)We will refer in the following to divergen
es of this kind as Mermin{Wagner divergen
es. Ingeneral, they appear in two spa
e dimensions irrespe
tive of the internal symmetry of the orderparameter O(N). The Mermin{Wagner divergen
e is re
e
ted in logarithmi
 
orre
tions toseveral thermodynami
 quantities in d = 2.For N > 2 there is indeed no magneti
ally ordered phase at �nite temperatures in twospa
e dimension, as one expe
ts from the Mermin{Wagner theorem. However, the XY modelhas N = 2 and although in d = 2 there is no spontaneous ma
ros
opi
 magnetization it doesexhibit the pe
uliar Kosterlitz{Thouless transition, whi
h is of topologi
al nature. Finally,the infamous Ising model, N = 1, has only a Z2 symmetry and the Mermin{Wagner theoremdoes not apply. The 
ontinuous phase transition in two spa
e dimension of the Ising model aswell as the Kosterlitz{Thouless transition of the XY-model are, however, beyond the MillisRG approa
h and we will not per
eive any signatures of the onset of order in these systems.35



Chapter 3. Solution of Millis RG EquationsIn order to familiarize the reader with the 
onfusing number of 
rossovers in the (r; T )plane of the phase diagram we have sket
hed them in Fig. 3.1. The regime of appli
a-bility of the perturbative Millis RG is given by the region on the right-hand side of theGaussian{non-Gaussian 
rossover line asso
iated with the Ginzburg temperature TG. It willturn out that the quantum{
lassi
al 
rossover, where the leading behavior to the spe
i�
 heat
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Figure 3.1: Phase diagram of the Hertz model.I: Fermi liquid regime, II+III: quantum 
riti
alregime, IV: 
lassi
al and non-Gaussian regime.

and the thermal expansion starts tostem from the sensitivity the e�e
tivemass [34℄, is lo
ated within the non-Gaussian region. Whereas for exam-ple in regions I, II and III the 
on-tribution �QCP (2.69) to the thermalexpansion dominates, the 
ontribution�CL (2.70) takes over only within re-gion IV. The non-Gaussian region IVmight be separated by the phase bound-ary from a magneti
ally ordered phase.We 
an only get an estimate for thephase boundary sin
e it is lo
ated ina regime that is beyond the appli
abil-ity of the perturbative RG. In parti
u-lar, for spa
e dimension d = 2 Mermin{Wagner divergen
es suppress this esti-mate to zero, suggesting that no orderedstate exists at �nite temperature. Re-gions II and III 
omprise the so{
alledquantum 
riti
al regime where the tem-perature dominates the thermodynam-i
s, T � jrj�z. It is this regime whi
h is asso
iated with the pe
uliarity of the quantum
riti
al point. The spe
i�
 heat as well as the thermal expansion show here a pronoun
ednon-Fermi liquid behavior. Region II and III are separated by a 
rossover in the behavior ofthe 
orrelation length. Finally, the 
rossover to region I, T � jrj�z, is a

ompanied with arestoration of the usual Fermi liquid like dependen
es of the thermodynami
s.The following se
tions are organized as follows. Initially, the quarti
 
oupling, the 
orre-lation length and the Ginzburg temperature are 
al
ulated. First this is done for the systemabove its upper 
riti
al dimension, d + z > 4, and afterwards for d + z = 4, in whi
h 
aseadditional logarithmi
 
orre
tions to s
aling are expe
ted. After that thermodynami
 quan-tities | spe
i�
 heat, thermal expansion and the Gr�uneisen parameter | are determined interms of the 
orrelation length. In the �nal se
tion the results are summarized and dis
ussed.3.1 Above the upper 
riti
al dimension: d+ z > 43.1.1 Quarti
 
ouplingAbove the upper 
riti
al dimension, d+ z > 4, the s
aling dimension of the quarti
 
ouplingu is negative and the 
ontribution of order O(u2) in the RG equation (2.43) 
an be ignored.36



3.1. Above the upper 
riti
al dimension: d+ z > 4The s
ale dependen
e of the quarti
 
oupling is then given byu(b) = u b4�d�z for d+ z > 4 ; (3.2)where u is the bare quarti
 
oupling of the theory.3.1.2 Correlation length �The expression for the running mass at zero temperature (2.52) 
an simply be integrated andyields, limb!1�(b) = (Æ0 � Æ
) exp �4 (N + 2) f4(0; 0)u4� d� z � � r : (3.3)We introdu
ed the 
ontrol parameter r / Æ0� Æ
 and absorbed the exponential fa
tor into itsunits of measurements. The 
orrelation length is given by equation (2.57),��2 = limb!1 f�(b) +RT (b)g = r + 4 (N + 2)Kd �d+z�4 T 2z (3.4)1Zlog T 1=z=� dx 1Z0 dv� 4 v (
oth v � 1) e(�2+2z)x u(ex�T � 1z )�R(ex�T � 1z )T �2=ze2x + 1�2 + (2 ezxv)2 :We have made use of expression (2.46) for the fn fun
tions in deriving the leading 
ontributionof the temperature dependent part RT (2.56). The leading behavior of the remaining integral
an be extra
ted in the two limits 
orresponding to the quantum 
riti
al regime, r T �2=z � 1,and the Fermi{liquid regime, r T �2=z � 1.Quantum 
riti
al regime: r T �2=z � 1We have to distinguish between the spa
e dimensions d = 2 and d > 2.z > d � 2 > 0 : In the quantum 
riti
al regime for d > 2 we 
an negle
t the dependen
e ofthe integrand in expression (3.4) on R(:)T �2=z. Moreover, we 
an extend the lower limit ofthe x-integral to minus in�nity thereby negle
ting 
ontributions of order O �� T �1=z�(d�2)�z ,��2 = r + 4 (N + 2) Kdz 
os �d�22 z �� ��1 + d� 2z � � �1 + d� 2z �uT d+z�2z : (3.5)where � is the Gamma fun
tion and � is the Zeta fun
tion1. We 
an subdivide the quantum
riti
al regime further in two regimes where either the �rst or the se
ond term dominatesgiving rise to the two sub-regimes II and III indi
ated in Fig. 3.1.1The following integrals have been used:Z 10 dy (2y)nsinh2 y = 2n�(n) �(n) and Z 10 dy ya1 + y2 = �2 
os (a�=2) :37



Chapter 3. Solution of Millis RG Equationsd = 2 : As explained at length in the introdu
tion, in two spa
e dimension we have tostruggle with Mermin{Wagner divergen
es (3.1). These divergen
es are asso
iated with thee�e
tive 
lassi
al theory and 
orrespondingly we expe
t them to originate from the s
alinginto the 
lassi
al regime, i.e. from the IR-part of the v-integral of (3.4) (
f. dis
ussion inSe
tion 2.2.2).Consider only the double integral in (3.4) with the running 
oupling 
onstant (3.2). Ind = 2 the 
ombination R T �2=z a
ts as an IR-
uto� for the v-integral. Without this termthe integral would diverge logarithmi
ally. We 
an extra
t this logarithmi
 divergen
e byintegrating by parts with respe
t to x,� 1Zlog T 1=z=� dxx ddx 1Z0 dv� 4 v (
oth v � 1) ezx�R(ex�T � 1z )T �2=ze2x + 1�2 + (2 ezxv)2where we set expli
itly d = 2. The surfa
e term is of order O(T =�z log T =�z) and has beennegle
ted. We expand the hyperboli
 fun
tion for small v, evaluate the v-integral and obtainin leading order � 1Zlog T 1=z=� dxx ddx 11 +R(ex�T � 1z )T �2=ze2x :To evaluate the remaining integral we will use a tri
k whi
h proves to be useful throughoutthe rest of this 
hapter, and so we now explain it in some detail. After taking the derivativeand multiplying both numerator and denominator with �1 + ��2T �2=ze2x�2 we get,1Zlog T 1=z=� dx x e2x�1 + ��2T �2=ze2x�2 (3.6)�8><>: �1 + ��2T �2=ze2x�2�1 +R(ex�T � 1z )T �2=ze2x�2 �2R(ex�T � 1z )T �2=z +R0(ex�T � 1z )ex�T � 3z�9>=>; :The term in front of the 
urly bra
kets is a strongly peaked fun
tion with a maximum lo
atedat xmax � log �T 1=z . Around this maximum the remaining term in the bra
ket is only slowlyvarying and the argument of the running mass at the maximum, exmax�T � 1z = �� ! 1,tends to in�nity in the universal limit � ! 1. That means that around the maximum therunning mass has almost 
onverged to its limiting value ��2. The leading 
ontribution 
antherefore be obtained by a saddle point approximation whi
h in the universal limit � ! 1amounts to taking the slowly varying term in the bra
ket at the maximum value xmax, giving1Z�1 dx 2 x ��2T �2=ze2x�1 + ��2T �2=ze2x�2 = log � T 1=z :Putting this result in the formula for the 
orrelation length we obtain for d = 2��2 � r + 4 (N + 2) Kd2 uT log 1��2 T �2=z (3.7)38



3.1. Above the upper 
riti
al dimension: d+ z > 4Above the quantum 
riti
al point, r = 0, we 
an solve the impli
it equation for the 
orrelationlength iteratively and obtain in leading order��2(r = 0) = 4 (N + 2) Kd2 uT log 1uT 1�2=z +O�uT log log 1uT 1�2=z� : (3.8)Fermi liquid regime: r T �2=z � 1In the Fermi{liquid regime up to sub-leading temperature 
orre
tions the running mass inthe integrand 
an be repla
ed for low temperatures by the 
ontrol parameter r. The leading
ontribution of the remaining integral 
an then be evaluated,��2 � r + 4 (N + 2)Kd uT d+z�2z 1Zlog T 1=z=� dx 1Z0 dv� 4 v (
oth v � 1) e(2�d+z)x�r T �2=ze2x + 1�2 + (2 ezxv)2= r + 4 (N + 2)Kd uT 2 r d�z�22 1Zlog r1=2=� dx 1Z0 dv� 4 v (
oth v � 1) e(2�d+z)x(e2x + 1)2 + �2 T r�z=2ezxv�2 (3.9)To lowest order the term T r�z=2 
an be negle
ted in the denominator of the integrand.Moreover, for 2�d+ z > 0 the lower limit of the x-integral 
an be extended to minus in�nityindu
ing an error of order O �r1=2=��2�d+z. For 2 � z + d > 0 the remaining x-integral is
onvergent and we obtain��2 � r + 4 (N + 2)Kd uT 2 r d�z�22 1Z�1 dx 1Z0 dv� 4 v (
oth v � 1) e(2�d+z)x(e2x + 1)2= r + 4 (N + 2) �212 d� zsin �d�z2 �� Kd uT 2 r d�z�22 (3.10)where the temperature dependent 
ontribution is sub-leading.3.1.3 Estimate of the 
riti
al temperatureWe 
an obtain an estimate for the 
riti
al temperature T
(r) from the 
riterion (2.58) thatthe 
orrelation length is in�nite at T
. We �nd that this 
an only be ful�lled for negativevalues of the 
ontrol parameter, r < 0. As explained in detail in Se
tion 2.2.4, the value of T
determined in this way is only an estimate sin
e it falls into regime beyond the appli
abilityof the Millis RG approa
h. We will distinguish between the 
ases d > 2 and d = 2.Criti
al temperature for d > 2Using the expression for the 
orrelation length (3.5) we obtain the 
riti
al temperaturer = �4 (N + 2)Kdz 
os �d�22 z �� ��1 + d� 2z � � �1 + d� 2z �uT d+z�2z
 : (3.11)39



Chapter 3. Solution of Millis RG EquationsCriti
al temperature for d = 2The Mermin{Wagner divergen
ies (3.1) in two spa
e dimensions prohibit a solution of ��2 =0 at �nite temperatures. It appears that no ordered phase exists at �nite temperatures.A

ording to (3.7) the e�e
tive mass ��2 de
reases exponentially for r < 0 upon lowering thetemperature but never vanishes at �nite temperatures,��2 / T 2=ze� �jrj(N+2)uT : (3.12)3.1.4 Ginzburg temperatureThe Ginzburg temperature (2.60) determines the 
rossover line between Gaussian to non-Gaussian behavior, see Fig. 3.1. With the results for the 
orrelation length (3.5) and (3.7) we
an determine TG(r). Again we distinguish between the 
ases d = 2 and d > 2.d > 2 : Putting the expression (3.5) for the 
orrelation length into the de�nition (2.60) weget an equation whi
h impli
itly de�nes TG(r),uTG =  r + 4 (N + 2)Kdz 
os �d�22 z �� ��1 + d� 2z � � �1 + d� 2z �uT d+z�2zG ! 4�d2 : (3.13)The Ginzburg temperature di�ers from the 
riti
al temperature (3.11) byTG � T
T
 � z2d+z�2 
os �d�22 z ��4 (N + 2)Kd � �1 + d�2z � � �1 + d�2z � (uT
) d�24�d T 2�dz
 : (3.14)d = 2 : Putting the de�nition of the Ginzburg temperature for d = 2, ��2 = uTG(r), intothe expression for the 
orrelation length (3.7) we obtainr = uTG0�1� 4 (N + 2)Kd 12 log 1uT z�2zG 1A : (3.15)3.2 At the upper 
riti
al dimension: d+ z = 4This se
tion 
onsiders two-dimensional spin 
u
tuations in a antiferromagneti
 metal, d =z = 2. The 
orresponding Hertz theory is at its upper 
riti
al dimension, and it is plaguedby logarithmi
 
orre
tions of di�erent origin.3.2.1 Quarti
 
ouplingAt the upper 
riti
al dimension the quarti
 
oupling is marginal and we have to take intoa

ount the u2-term in its di�erential equation (2.43). The solution readsu(b) = u1 + 4(N + 8)u g(b) for d+ z = 4 (3.16)g(b) = Z log b0 dx f4(R(ex)e2x; T ezx) : (3.17)40



3.2. At the upper 
riti
al dimension: d+ z = 4In the vi
inity of the quantum 
riti
al point, i.e. for small temperatures and small runningmass, the quarti
 
oupling is given approximately byu(b) � u1 + 4(N + 8)u f4 log b = 14(N + 8) f4 �log b e 14(N+8) f4 u��1 ; (3.18)where f4 � f4(0; 0) = K2� : (3.19)Note that f4 is independent of the 
uto�s � and �, i.e. it is universal. It is the produ
t of thesurfa
e of the two-dimensional sphere in momentum spa
e, K2 (2.45), and the surfa
e of thesphere in frequen
y spa
e, 1=�.3.2.2 Correlation length �In 
ontrast to the 
ase d + z > 4, the exponential fa
tor in the expression for the runningmass at zero temperature (2.52) now does not 
onverge leading to a s
ale dependent massgap, �(b) = r�log �b2 e 24(N+8) f4 u��N+2N+8 with r � Æ0 � Æ
(2(N + 8)f4u)N+2N+8 : (3.20)The logarithmi
 dependen
e of the zero-temperature mass � on the s
ale b is 
hara
teristi
for a �4 theory at the upper 
riti
al dimension, d+z = 4. For � = 4�d+z > 0 the 
orrelationlength exponent � will deviate from its Landau value 1=2 and the leading 
orre
tion is knownto be linear in �, see e.g. Ref. [36℄. At the upper 
riti
al dimension, � = 0, logarithmi

orre
tions to s
aling o

ur and are materialized in the s
ale dependen
e of �. In parti
ular,that means that we 
annot simply take the limit b ! 1 neither in the expression for theres
aled quarti
 
oupling (3.18) nor in the expression for the mass gap �. Choosing the s
ale�(b)b2 = �2 we obtain the following 
orre
tion to the 
orrelation length exponent ��(b) = r�log ��2�(b)�N+2N+8 =) 2� � � log�� log r = 241� N+2N+8log ��2�(b) 35�1 (3.21)where we have introdu
ed a \renormalized" 
uto� ��, whi
h depends on the bare quarti

oupling 
onstant u, �� � � e �4(N+8)K2 u : (3.22)The expression for � agrees with the result of the epsilon expansion of the �4 theory [36℄ if weidentify � = 1= log ��p�(b) . At �nite temperature we will instead 
hoose the s
ale R(b)b2 = �2and identify the 
orrelation length with��2b2 ' R(b)b2 = �2 =) R(��) ' ��2 : (3.23)In the following the limiting behavior of the temperature 
orre
tion (2.56) will be evalu-ated, (RT = limb!1RT (b)),RT = 4 (N + 2)K2 T 1Zlog T 1=2=� dx 1Z0 dv� 4 v (
oth v � 1) e2x u(ex�T � 12 )�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2xv)2 : (3.24)41



Chapter 3. Solution of Millis RG EquationsQuantum 
riti
al regime: r �log ��2r ��N+2N+8 � TThe same arguments as in the analysis above the upper 
riti
al dimension in d = 2 lead tothe leading behavior,RT � �4 (N + 2)K2 T 1Zlog T 1=2=� dxx ddx u(ex�T � 12 )1 +R(ex�T � 12 )T �1e2x� 4 (N + 2)K2 T 1Zlog T 1=2=� dx 2x u(ex�T � 12 )R(ex�T � 12 )T �1e2x�1 +R(ex�T � 12 )T �1e2x�2 : (3.25)In 
ontrast to what happens above the upper 
riti
al dimension, the running quarti
 
oupling
onstant now is only logarithmi
ally varying. The integrand 
an thus be separated into aprodu
t of a strongly peaked fun
tion at the position xmax = log �T 1=z and a slowly varyingpart whi
h in
ludes the quarti
 
oupling u. Applying a saddle point approximation we obtainRT � 4 (N + 2)K2 T u(exmax�T � 12 )xmax : (3.26)Using the expression (3.18) for the running quarti
 
oupling we obtain the impli
it equationfor the 
orrelation length��2 ' �(��) + � N + 2N + 8 T log ��2T �log ��2��2� = r�log ��2��2��N+2N+8 + � N + 2N + 8 T log ��2T �log ��2��2� : (3.27)There exist a sub-regime II (see Fig. 3.1) where the 
ontrol parameter still governs the 
orre-lation length,��2 � 8>>>>><>>>>>: r�log ��2r �N+2N+8 if II: T log log ��2Tlog ��2T � r �log ��2r ��N+2N+8� N + 2N + 8T log log ��2Tlog ��2T if III: r �log ��2r ��N+2N+8 � T log log ��2Tlog ��2T : (3.28)Note that the asymptoti
 expansion in the regime III is not very revealing sin
e the 
on-vergen
e is very slow. It is only meaningful in the negligible small sub-region of III wherelog log ��2T � 1.Fermi liquid regime: r �log ��2r ��N+2N+8 � TIn the Fermi liquid regime the 
orrelation length will be dominated by the zero temperature
ontribution ��2 � � � r �log ��2� ��N+2N+8 . After a 
onvenient substitution we 
an extra
t thetemperature 
orre
tion from expression (3.24)RT � 4 (N + 2)K2 T 2 �2 1Z� log(��) dx 1Z0 dv� 4 v (
oth v � 1) e2x u(ex��)(R(ex��)�2e2x + 1)2 + (2T �2 e2xv)2 : (3.29)42



3.3. Thermodynami
sIn the Fermi liquid regime we 
an negle
t the term T �2 in the denominator of the integrand.This leads toRT � 4 (N + 2) �K23 T 2 �2 1Z� log �� dx e2x(R(ex��)�2e2x + 1)2 u(ex��) : (3.30)The remaining integral 
an again be evaluated with a saddle point approximation. Taking therunning quarti
 
oupling at the saddle point, xmax = 0, we obtain for the 
orrelation length��2 ' �+ �26 N + 2N + 8 T 2� log ��2� � r�log ��2r �N+2N+8 + �26 N + 2N + 8 T 2r �log ��2r �N+2N+8�1 : (3.31)The temperature dependent 
orre
tion is 
hara
teristi
 of a Fermi liquid.3.2.3 Ginzburg temperatureAt the upper 
riti
al dimension the quarti
 
oupling, u, as well as the 
orrelation length ares
ale dependent. Choosing the s
ale b = �=� we obtain the Ginzburg temperature uTG(r) ���2 as a set of two equations parameterized by �,8><>: TG = N + 8�2 ��2 log ��2��2�r = ��2 �log �2 ��2�N+2N+8 �1� N + 2� log�N + 8�2 log ��2 ��2��� : (3.32)The asymptoti
 behavior of the Ginzburg temperature 
an be obtained by solving theseequations iteratively,r � � �N + 8 TG �log ��2TG�N+2N+8log ��2TG �(N + 2) log log ��2TG � �� : (3.33)3.3 Thermodynami
s3.3.1 Spe
i�
 heatIn the following the expressions (2.65) and (2.66) are evaluated. Using the leading-temperature
ontribution of the fn fun
tions (2.46) we get for expression (2.65) (after two 
onvenient sub-stitutions)
QCP = N2 Kd T d�zz 1Zlog T 1=z=� dxZ 10 dv� � 2 vsinhv�2 �R(ex�T � 1z )T �2=ze2x + 1� e(z�d)x�R(ex�T � 1z )T �2=ze2x + 1�2 + (2 ezx v)2 :(3.34)43



Chapter 3. Solution of Millis RG EquationsQuantum 
riti
al regime: r T �1=(�z) � 1z > d : We 
an negle
t the RT�2=z terms and extend the lower limit of the x-integral tozero, negle
ting 
ontributions of order O �T 1=z=��z�d. The leading behavior reads
QCP = N2 Kdz 
os � d2z�� ��2 + dz� � �1 + dz� T d�zz : (3.35)z = d : In the 
ase z = d the leading 
ontribution of the spe
i�
 heat will depend on the
uto� �. We approximate the x-integral by log �=T 1=z and we get
QCP = N2 2�Kd3 log �T 1=z : (3.36)z < d < 3z : In this 
ase the leading 
ontribution is given by the 
uto�.
QCP = N2 2�Kd3 (d � z) �d�z � N2 Kd T d�zz 1Z0 dxxz�d�1 Z 10 dv� � 2 vsinhv�2 (2xz v)21 + (2xz v)2= N2 2�Kd3 (d � z) �d�z + N2 Kdz 
os � d2z�� ��2 + dz� � �1 + dz� T d�zz (3.37)We have negle
ted 
ontributions of order O �T 1=z=��3z�d. Note that the temperature depen-dent part is negative due to the fa
t that 
os � d2z�� = � ��
os � d2z����.Fermi liquid regime: r T �1=(�z) � 1Substituting the running mass R(:) by the 
orrelation length, ��2, in the integrand we obtainfor the leading 
ontribution
QCP = N2 Kd (��2) d�z2 1Z� log �� dxZ 10 dv� � 2 vsinhv�2 �e2x + 1� e(z�d)x(e2x + 1)2 + (2T �z ezx v)2� N2 2�Kd3 (��2) d�z2 1Z� log �� dx e(z�d)x1 + e2x : (3.38)In the se
ond line the term T �z in the integrand has been negle
ted and the v-integralperformed.z > d : Negle
ting 
ontributions of order O (��)d�z we get
QCP = N2 �2Kd3 sin � z�d2 �� (��2) d�z2 : (3.39)z = d : As in the quantum 
riti
al regime the integral over x leads to a logarithmi
 depen-den
e on the 
uto�, log ��: 
QCP = N2 2�Kd3 log �� : (3.40)44



3.3. Thermodynami
sd� 2 < z < d : The leading 
ontribution stems from the 
uto�
QCP � N2 2�Kd3 (d� z) �d�z � N2 2�Kd3 (��2) d�z2 Z 1�1 dx e(z�d)x e2x1 + e2x= N2 2�Kd3 (d� z) �d�z + N2 �2Kd3 sin � z�d2 �� (��2) d�z2 : (3.41)We negle
ted 
ontributions of order O (��)d�z�2. Note that the temperature dependent part
orresponds to a negative 
orre
tion, sin
e sin � z�d2 �� < 0.These results for the spe
i�
 heat di�er from the results obtained by U. Z�uli
ke et al. [6℄by a fa
tor of 2. This fa
tor 
an be tra
ed ba
k to the fa
tor 1=2 in the RG equation forthe free energy (2.40) whi
h originates from the fa
t that the �elds � in the Hertz model(2.23) are real. This fa
tor was missing in Millis' original paper [5℄ (
ompare also footnote onpage 28).Classi
al regimeNear a 
lassi
al phase transition the spe
i�
 heat diverges with diminishing distan
e to thephase boundary a

ording to C � R��, where R is the e�e
tive mass of the 
lassi
al theory.The exponent � is given by hypers
aling [17℄, � = 2 � d�. In the vi
inity of the �nitetemperature transition the spe
i�
 heat 
oeÆ
ient is therefore dominated by (2.66) whi
hgives the most diverging 
ontribution for a vanishing running mass R(:). Using the leadingbehavior of the fn fun
tions (2.46) the expression (2.66) be
omes
CL = N2 Kd�d 1Z0 dx ��R(ex)�T �2 1Z0 d�� 
oth� �2T ezx� 2�2�z � e(4�d�z)x �R(ex) e2x +�2��(R(ex) e2x +�2)2 + (�2�z �)2�2 :It is 
onvenient to perform two substitutions, �rst �=(2T ezx)! v and then ex ! ��ex,
CL = N2 KdT 2�4�d+z 1Z� log(��)dx ��R(��ex)�T �2 1Z0 dv� 8 v 
oth v e(4�d+z)x �R(��ex) e2x�2 + 1��(R(��ex) �2e2x + 1)2 + (2�z T ezxv)2�2 :The leading 
ontribution will 
ome from the s
aling into the 
lassi
al regime, so we expand thehyperboli
 fun
tion for small arguments keeping only the leading 
ontribution. Afterwardswe 
an perform the v-integral,
CL = N2 KdT �4�d 1Z� log(��) dx (��R(��ex)�T �2 �e2x + 1�2(R(��ex) �2e2x + 1)2) e(4�d)x(e2x + 1)2 :This integral 
an be evaluated with a saddle point approximation. The integrand 
onsistsof a produ
t of a slowly varying term in the 
urly bra
kets and a strongly peaked fun
tionwith the peak lo
ated at xmax = 12 log 4�dd . The argument of the running mass at the peakmaximum is already very large, ��exmax , and the running mass therefore varies only slowlyat the peak position. Taking the value of the 
urly bra
ket at the peak maximum we 
an45



Chapter 3. Solution of Millis RG Equationsevaluate the remaining integral. In the universal limit �!1 the 
orre
tions to this saddlepoint approximation vanish (
ompare also Appendix D of Ref. [6℄),
CL = N2 KdT �4�d����2�T �2 1Z�1 dx e(4�d)x(e2x + 1)2 = N2 (2� d)�Kd4 sin d�2 T ���2��2+d=2����2�T �2 :(3.42)The spe
i�
 heat diverges when the 
orrelation length grows to in�nity. The divergen
e is
onsistent with the above mentioned hypers
aling relationship with the Landau value � = 1=2,� = 2� d=2. The 
rossover to the a
tual 
lassi
al, Wilson{Fisher �x-point value �WF 6= 1=2o

urs at the Ginzburg temperature TG. Let us estimate the quantum{
lassi
al 
rossoverat whi
h the 
lassi
al 
ontribution to the spe
i�
 heat, 
CL, starts to dominate over thequantum 
ontribution 
QCP. Using the expression for the 
orrelation length (3.5) we �ndthat the 
lassi
al part is of order 
CL � O(�4�du2T (z+2d�4)=z) whereas the quantum part
QCP � O(T (d�z)=z). The 
lassi
al 
ontribution takes over if the 
orrelation length is oforder, ��2 � u 44�d T 2 (d+2z�4)z (4�d) : (3.43)Sin
e the temperature is very small we 
an 
on
lude that the 
lassi
al 
ontribution 
CL is onlyimportant in the immediate vi
inity of the �nite-temperature phase transition. In parti
ular,the 
ondition (3.43) should be 
ompared with the de�nition of the Ginzburg 
riterion, ��2 =(uTG)2=(4�d); the latter will always be ful�lled �rst as the phase transition is approa
hed.This means that the quantum{
lassi
al 
rossover of the spe
i�
 heat is lo
ated within thenon-Gaussian region, see Fig. 3.1.3.3.2 Thermal expansionIn this se
tion we will evaluate the expressions (2.69) and (2.70) for the thermal expansion.Again we start with the 
ontribution due to the quantum 
riti
al point. Using the leading-temperature 
ontribution of the fn fun
tions (2.46) we get (after two 
onvenient substitutions)�QCP = N2 Kd T d�2z (3.44)� 1Zlog T 1=z=� dx �R(ex�T � 1z )�r Z 10 dv� � 2 vsinhv�2 e(2+z�d) x�R(ex�T � 1z )T � 2z e2x + 1�2 + (2 ezx v)2 :Quantum 
riti
al regime: r T �1=(�z) � 1z > d � 2 > 0 : For spa
e dimension d > 2 the running mass in the denominator of theintegrand 
an be negle
ted in the quantum 
riti
al regime,�QCP = N2 Kd T d�2z 1Zlog T 1=z=� dx �R(ex�T � 1z )�r Z 10 dv� � 2 vsinhv�2 e(2+z�d) x1 + (2 ezx v)2 :Pro
eeding as before we take the argument of the running mass at the saddle point value ofthe double integral and obtain for �!1�QCP = N2 Kdz 
os �d�22 z �� ��2 + d� 2z � � �1 + d� 2z � ���2�r T d�2z : (3.45)46



3.3. Thermodynami
sd = 2 : As was the 
ase for the 
orrelation length in two spa
e dimension we have to expe
tlogarithmi
 
orre
tions from s
aling into the 
lassi
al regime. Before expanding the hyperboli
fun
tion we perform the tri
k of integrating by parts (setting d = 2)�QCP = �N2 Kd 1Zlog T 1=z=� dxx (3.46)� ddx �R(ex�T � 1z )�r Z 10 dv� � 2 vsinh v�2 ez x�R(ex�T � 1z )T � 2z e2x + 1�2 + (2 ezx v)2 ;where the surfa
e term is sub-leading. Expanding the hyperboli
 fun
tion to leading orderand performing the v-integral we obtain�QCP ' �N2 Kd 1Zlog T 1=z=� dxx ddx �R(ex�T � 1z )�r 1R(ex�T � 1z )T � 2z e2x + 1 : (3.47)The saddle point approximation leads to (�!1)�QCP ' �N2 Kd ���2�r 1Z�1 dxx ddx 1��2 T � 2z e2x + 1 ' N2 Kd2 ���2�r log 1��2 T � 2z : (3.48)Fermi liquid regime: r T �1=(�z) � 1Pro
eeding in the same way as for the 
orrelation length we obtain for the leading behaviorin the Fermi liquid regime�QCP = N2 �26 (d� z)Kdsin �d�z2 �� T (��2) d�z�22 ���2�r : (3.49)Classi
al regimePro
eeding similarly as for the spe
i�
 heat in the 
lassi
al regime we obtain�CL = �N2 (2� d)�Kd4 sin d�2 T �4�d���2�T ���2�r : (3.50)The thermal expansion shows the same divergen
e in the 
lassi
al as the spe
i�
 heat. Thisholds generally for a phase transition of the se
ond kind (see Ref. [16℄ x148). In the followingwe 
onsider the quantum{
lassi
al 
rossover for the thermal expansion. Using the expressionfor the 
orrelation length (3.5) we �nd that the 
lassi
al 
ontribution is of order �CL �O(�4�duT (d+z�2)=z) and the quantum one of order �QCP � O(T (d�2)=z). Comparing thesetwo we �nd the 
ondition for the quantum{
lassi
al 
rossover to be��2 � (uT ) 24�d ; (3.51)whi
h 
oin
ides with the Ginzburg 
riterion. As for the spe
i�
 heat, the 
lassi
al regime islo
ated within the non{Gaussian region, see Fig. 3.1.47



Chapter 3. Solution of Millis RG Equations3.3.3 Gr�uneisen parameterIn this se
tion we list the ratios between the 
riti
al 
ontributions to the thermal expansionand spe
i�
 heat.Quantum 
riti
al regime: r T �1=(�z) � 1z = d = 2 : �
r = 34� log 1��2T �2=zT log �T 1=z ���2�r (3.52)z 6= d = 2 : �
r = z 
os � d2z��2� �2 + dz � � �1 + dz � T � dz log 1��2T �2=z ���2�r (3.53)d = z 6= 2 : �
r = 3� �2 + d�2z � � �1 + d�2z �2� z 
os �d�22 z �� T d�2�zz �log �T 1=z��1 ���2�r (3.54)otherwise : �
r = 
os � d2z��
os �d�22 z �� � �2 + d�2z � � �1 + d�2z �� �2 + dz � � �1 + dz � T � 2z ���2�r (3.55)Fermi liquid regime: r T �1=(�z) � 1d = z : �
r = 12 (��2)�1 (log ��)�1 ���2�r (3.56)d 6= z : �
r = z � d2 (��2)�1���2�r : (3.57)Classi
al regimeIn the Gr�uneisen parameter the divergen
es of spe
i�
 heat and thermal expansion 
an
el,and it measures essentially the pressure dependen
e of the 
riti
al temperature,�CL = �CLT
CL = � ���2�rT ���2�T : (3.58)With the restri
tions mentioned in Se
tion 2.2.3 we 
an de�ne a 
riti
al temperature by setting��2(T
(r); r) = 0. With the help of this de�nition we 
an rewrite the Gr�uneisen parameter inthe vi
inity of the phase boundary as�CL = d log T
(r)dr : (3.59)The Gr�uneisen parameter in the 
lassi
al region near the phase boundary essentially measuresthe pressure dependen
e of the 
riti
al temperature T
 [16℄.3.4 Summary of results and dis
ussionThe results of the rather lengthy derivations of the last se
tions are summarized in the fol-lowing. We list expli
itly the results for d; z = 2; 3 and show the resulting phase diagrams forz = 2 and d = 2; 3. 48



3.4. Summary of results and dis
ussionThe regime of appli
ability of the perturbative Millis RG is 
on�ned to the right-hand sideof the Ginzburg line TG(r) in the (r;T ) plane of the phase diagram, see following Figs. 3.2 and3.3. Depending on the spatial dimension and the internal symmetry of the order parameterO(N) there might exist a �nite temperature phase boundary originating in the quantum
riti
al point and extending to higher temperatures. However, it will be lo
ated in the non-Gaussian region not a

essible with the approa
h of this 
hapter. Nevertheless, a 
riti
altemperature T
(r) 
an be estimated in spa
e dimensions d > 2.The s
ale invariant 
ombination rT �1=�z of the 
ontrol parameter and the temperature de-�nes an important 
rossover line that separates the phase diagram into a Fermi liquid regime,rT �1=�z � 1, and a quantum 
riti
al regime, rT �1=�z � 1. As the name suggests, in theFermi liquid regime the thermodynami
s is that of a 
onventional Fermi liquid. The quantum
riti
al regime on the other hand is 
hara
terized by pe
uliar temperature dependen
ies ofthe 
orrelation length, spe
i�
 heat and the thermal expansion | the thermodynami
s at�nite temperatures is strongly in
uen
ed by the presen
e of a quantum phase transition.The thermal expansion divided by temperature, �=T , whi
h approa
hes a 
onstant ina Fermi liquid at low temperatures, exhibits a distin
t divergen
e in the quantum 
riti
alregime in agreement with the s
aling treatment of Chapter 1. For example, it diverges as�=T � T�1=2 in the three dimensional (
ommensurate) antiferromagnet (d = 3; z = 2).This should be 
ontrasted with the temperature dependen
e of the spe
i�
 heat divided bytemperature, C=T = 
, whi
h also saturates towards a 
onstant in a Fermi liquid at lowtemperatures. Its behavior in the quantum 
riti
al regime however is less spe
ta
ular thanthat of the thermal expansion. It either approa
hes a 
onstant with pe
uliar temperature
orre
tions for d = 3; z = 2 or it diverges rather slowly, e.g. logarithmi
ally for d = 2; z = 2.As a 
onsequen
e, the ratio of these two quantities, the Gr�uneisen parameter, divergesas a fun
tion of temperature in the quantum 
riti
al regime. This bears out the predi
tionmade in Chapter 1. In parti
ular, we 
an now 
ompare the properties of the Gr�uneisenparameter of a spe
i�
 model, the Hertz theory, with the general s
aling predi
tions (1.30)and (1.29). The (zero-temperature) Hertz model is above or at its upper 
riti
al dimensionfor d; z = 2; 3 and s
aling is not ne
essarily expe
ted to apply due to the quarti
 
oupling u,whi
h is a dangerously irrelevant operator. Nevertheless, we observe that the results agreeto within logarithmi
 
orre
tions. These logarithmi
 
orre
tions abound and it is interestingto examine their origin. Firstly, for d + z = 4 the zero-temperature theory is at its upper
riti
al dimension whi
h leads to a logarithmi
 temperature dependen
e of the denominatorof �
r in the quantum 
riti
al regime. Se
ondly, for d = 2 the e�e
tive �nite temperaturetheory is at its lower 
riti
al dimension resulting in a logarithmi
 temperature dependen
e ofthe numerator of �
r in the quantum 
riti
al regime that 
an be tra
ed to a Mermin{Wagnerdivergen
e (3.1). Thirdly, for d = z the universal prefa
tor in the Fermi liquid regime (1.29)expe
ted from the s
aling treatment is supposed to vanish. This is re
e
ted in a furtherlogarithmi
 dependen
e of �
r for d = z.
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Figure 3.2: Phase diagram of the Hertz' model for d = 3 and z = 2. In regime I Fermi liquidbehavior is observed in all thermodynami
 quantities. The quantum 
riti
al regime 
onsists of regimeII and III whi
h are separated by a 
rossover in the behavior of the 
orrelation length. The Ginzburgline TG(r) identi�es the breakdown of the perturbative RG and gives the 
rossover line to the non-Gaussian regime. The 
riti
al temperature T
(r) is an estimate for the N�eel temperature. Units: ��2is measured in units of ��20 , T in T0, 
 in V=(�d0T0), � in 1=(�d0p0) and � in 1=(V p0). The 
ontrolparameter is given by r = (p� p
)=p0.
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3.4. Summary of results and dis
ussion
d = 3; z = 2 formulaquantum 
riti
al regime II+III: r T �1 � 1��2 = 8<: r for II: r � uT 32(N+2) �( 32 )p2�3=2 uT 32 for III: r � uT 32 (3.5)

r = �p2� 15 � �52�N64�2 T 12 = �0:0798N T 12 (3.37)�
r = p2� 3 � �32�N32�2 T 12 = 0:0622N T 12 (3.45)�
r = �2 � �32�5 � �52� T �1 = �0:7789 T �1 (3.55)Fermi liquid regime I: r T �1 � 1��2 = r (3.10)

r = �N12 r 12 (3.41)�
r = N24 T r� 12 (3.49)�
r = �12r�1 (3.57)Ginzburg temperaturer = u2T 2G � (N + 2)�(3=2)p2�3=2 uT 3=2G (3.13)Estimate of the 
riti
al temperaturer = �(N + 2)�(3=2)p2�3=2 uT 3=2
 (3.11)
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riti
al regime. They are distinguished by di�erentlogarithmi
 
orre
tions to thermodynami
 quantities. Beyond the Ginzburg temperature TG(r) startsthe non-Gaussian regime where the perturbative RG breaks down. In two spa
e dimension an estimatefor the 
riti
al boundary 
ould not be obtained due to the Mermin{Wagner divergen
e (3.1). Units:��2 is measured in units of ��20 , T in T0, 
 in V=(�d0T0), � in 1=(�d0p0) and � in 1=(V p0). The 
ontrolparameter is given by r = (p� p
)=p0.
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3.4. Summary of results and dis
ussiond = 2; z = 2 formulaquantum 
riti
al regime III: r �log ��2r ��N+2N+8 � T log log ��2Tlog ��2T��2 � � N+2N+8T log log ��2Tlog ��2T (3.27)

r = N12 log �2T (3.36)�
r � N8� log log ��2T�log ��2T �N+2N+8 (3.48)�
r � 32� log log ��2TT log �2T �log ��2T �N+2N+8 (3.52)quantum 
riti
al regime II: T log log ��2Tlog ��2T � r �log ��2r ��N+2N+8 � T��2 � r�log ��2r �N+2N+8 (3.27)

r = N12 log �2T (3.36)�
r � N8� log Tr�log ��2r �N+2N+8 (3.48)�
r � 32� log TrT log �2T �log ��2r �N+2N+8 (3.52)Fermi liquid regime I: r �log ��2r ��N+2N+8 � T��2 � r�log ��2r �N+2N+8 (3.31)

r � N12 log �2r (3.40)�
r � N12 Tr (3.49)�
r = 12 1r log �pr (3.56)Ginzburg temperaturer � � �N+8 TG�log ��2TG �N+2N+8log ��2TG �(N + 2) log log ��2TG � �� (3.32)53



Chapter3.SolutionofMillisRGEquations

d = 2; z = 3 formulaquantum 
riti
al regime: r T �2=z � 1��2 � r + N + 2� uT log 1uT 1=3 (3.8)
 = N6� ��83� � �53� T � 13 (3.35)� � N8� log 1uT 1=3 (3.48)�
r � 34� �83� � �54� T � 23 log 1uT 1=3 (3.53)Fermi liquid regime: r T �2=z � 1��2 = r +O �uT 2 r� 32� (3.10)
 = N �12 r� 12 (3.39)� = N �24 T r� 32 (3.49)�
r = 12 r�1 (3.57)
d = 3; z = 3 formulaquantum 
riti
al regime r T �2=z � 1��2 = r + 4 (N + 2)3p3�2 ��43� � �43�uT 43 (3.5)
 = N6� log �T 1=3 (3.36)� = N6p3�2 ��73� � �43� T 13 (3.45)�
r = � �73� � �43�p3� T � 23log �T 1=3 (3.54)Fermi liquid regime r T �2=z � 1��2 = r +O �uT 2 r�1� (3.10)
 = N6� log �r1=2 (3.40)� = N12� T r�1 (3.49)�
r = 12 r�1 �log �r1=2��1 (3.56)
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Chapter 4Anisotropi
 Hertz TheoryThe work of this 
hapter was motivated by the observation of quasi two-dimensional an-tiferromagneti
 spin 
u
tuations in neutron s
attering experiments on the heavy fermion
ompound CeCu6�xAux [7, 8℄. The 
rystal stru
ture of this system is essentially of a three-dimensional 
hara
ter and the two-dimensional spin 
u
tuations are only a pre
ursor tothe three-dimensional magneti
 ordering observed below the N�eel temperature. Why two-dimensional 
u
tuations dominate an intrinsi
ally 3D alloy is, however, only poorly under-stood. At suÆ
iently low temperatures one expe
ts that the apparently very small 
ouplingof the spin 
u
tuations in the third dimension be
omes important leading to a dimensional
rossover in the thermodynami
 quantities, although the experimental 
on�rmation of su
ha 
rossover has so far proved to be elusive.The presumed s
enario of a 2D{3D 
rossover in the vi
inity of the quantum 
riti
al pointin CeCu6�xAux is sket
hed in Fig. 4.1. The quantum 
riti
al point is housed in a po
ketwhere 3D spin 
u
tuations dominate the quantum 
riti
al dynami
s. From the measuredphase diagram of CeCu6�xAux (right panel of Fig. 4.1) the quantum 
riti
al point has beenasso
iated with a doping level of x = 0:1 after extrapolating linearly the N�eel temperature
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Figure 4.1: The right panel shows the phase diagram of CeCu6�xAux [37℄ as a fun
tion ofdoping x. The zoom in the left panel is a sket
h of the presumed 2D{3D dimensional 
rossovers
enario. 55



Chapter 4. Anisotropi
 Hertz Theoryfor various doping levels x > 0:1. Thermodynami
 measurements [7℄ as well as neutrons
attering experiments [8℄ on CeCu5:9Au0:1 have not observed any signatures of 3D spin
u
tuations at the lowest temperatures. One 
ould argue that the temperatures rea
hedwere still not low enough to dete
t the tiny 
oupling between the two-dimensional planes.Another line of argument suggests that the extrapolated quantum 
riti
al point at a dopinglevel of x = 0:1 may not 
oin
ide with the a
tual lo
ation. In the three-dimensional po
ketthe fun
tional dependen
e of the N�eel temperature on doping might deviate from the linearbehavior observed for higher doping levels, as indi
ated in the left panel of Fig. 4.1. As a
onsequen
e, the alloy CeCu5:9Au0:1 might not be lo
ated well inside the 3D po
ket or mighteven fall outside it whi
h would serve as a simple explanation of why 3D spin 
u
tuationshave not been seen at lowest temperatures. The error in the lo
ation of the quantum 
riti
alpoint determined from an extrapolation of the experimental data 
an, however, be estimatedtheoreti
ally. This is one of the purposes of this 
hapter. We will further 
larify how thedimensional 
rossover is re
e
ted in thermodynami
 quantities: 
orrelation length, spe
i�
heat, thermal expansion and the Gr�uneisen parameter.Lo
al quantum 
riti
alityApart from the spe
i�
 questions posed by experiment the 2D{3D dimensional 
rossovers
enario is also of interest for the notion of lo
ally 
riti
al phase transitions in metals. Q. Si etal. [20, 21℄ have proposed a s
enario for heavy fermion systems where the 
riti
al 
u
tuationsof the lo
al magneti
 moments 
oexists with the extended two-dimensional spin 
u
tuationsof the 
ondu
tion ele
trons. They are interwoven and nurture ea
h other in su
h a waythat they be
ome 
riti
al together. In 
ontrast to, for example, the Hertz theory where the
riti
al 
u
tuation modes are all extended the important feature of this new s
enario is thein
lusion of lo
ally 
riti
al modes, whi
h is the reason why this s
enario has been dubbed alo
al quantum phase transition.The s
enario of a lo
al quantum phase transition has also been proposed for CeCu6�xAuxin order to explain the infamous !=T s
aling of the sus
eptibility [38℄.A ne
essary 
ondition for the development of lo
al quantum 
riti
ality is the existen
e oftwo-dimensional spin 
u
tuations. The asso
iated lo
al spin sus
eptibility is 
hara
terizedby a logarithmi
 divergen
e of the Mermin{Wagner type (3.1). This singularity feeds ba
kinto the 
oupling to the lo
al moments giving rise to important nonlinear e�e
ts that areeventually responsible for why the extended and lo
al modes be
ome 
riti
al in a 
oordinatedfashion. In three dimensions, however, the sus
eptibility is non-singular and su
h feedba
k isharmless: the 
onventional s
enario of the Hertz model is expe
ted to apply. A

ordingly, ina material with a non-vanishing 
oupling in the third dimension the lo
al quantum 
riti
alityshould pass away when the 2D to 3D 
rossover o

urs. All the predi
tions of lo
al quantum
riti
ality are therefore restri
ted to a regime where the two-dimensional spin 
u
tuationsprevail, i.e. to high temperatures, and do not apply to the immediate vi
inity of the quantum
riti
al point. The position of the dimensional 
rossover in the phase diagram will thereforealso 
larify where the s
enario of lo
al quantum 
riti
ality is expe
ted to break down.ModelWe are interested in the limit when the spin fu
tuations are almost two-dimensional, i.e. whenthey prefer to propagate in two-dimensional planes and their mobility between the planes56
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Figure 4.2: Sket
h of a 
u
tuation mode with (I) high momentum 
orresponding to a 
orre-lation length � smaller than the stret
hed distan
e between the planes � � 1=p��2 � a=p�,where a is a latti
e 
onstant and � is the anisotropy parameter, and (II) low momentum thatextends over several planes and is e�e
tively three dimensional, � � 1=p��2 � a=p�.is restri
ted. In a tight-binding pi
ture we 
an asso
iate a hopping amplitude t with themovement of the spin 
u
tuations in the planes and an amplitude t0 des
ribing their hoppingbetween the planes. Their two dimensional 
hara
ter is re
e
ted in the ratio of these hoppingamplitudes, � � t0=t� 1. The resulting energy{momentum dispersion is given by�(k) = t (2� 
os kxa� 
os kya) + t0 (1� 
os k?a) � �20 �k2q + � k2?� for kq; k? < � � 1=a :(4.1)where �0 = apt=2 and a is a latti
e 
onstant. The momentum 
omponent k? is perpendi
ularto the planes and kx; ky and kq are the 
omponents in the plane. The approximation is validfor small momenta with the inverse latti
e 
onstant as a momentum 
uto�, � � 1=a, andit des
ribes the long-distan
e behavior that 
ontrols the 
riti
al behavior. The 
ontributionof the perpendi
ular momentum 
omponent is weighted with the small number � = t0=t. Inthe limit � ! 0 the perpendi
ular 
omponent of momentum does not 
ontribute and truetwo-dimensional physi
s is re
overed. With an appropriate substitution of the perpendi
ularmomentum we 
an rewrite the above dispersion relation as�(k) = �20 �k2q + k2?� for kq < � � 1a and k? <p��2 � p�a : (4.2)The dispersion now seems to be isotropi
 in momentum spa
e, but the 
uto� for the perpen-di
ular 
omponent now 
orresponds to an inverse stret
hed latti
e 
onstant of a=p�. Thisprovides an alternative physi
al pi
ture that will be suitable for an intuitive understanding ofthe dimensional 
rossover in 
riti
ality. By in
orporating the anisotropy parameter in a newstret
hed latti
e 
onstant a=p� = apt=t0 the approa
h to the two-dimensional limit � ! 0
an be interpreted as an in
reased separation of the two-dimensional planes; for � = 0 theplanes have an in�nite separation and therefore do not 
ommuni
ate with ea
h other. The
rossover from 2D to 3D 
riti
ality o

urs when the 
orrelation length � has in
reased su
hthat it starts to extend over several stret
hed distan
es a=p�, see Fig. 4.2.We are going to des
ribe the dynami
s of the antiferromagneti
 spin 
u
tutions with theHertz theory (2.23) with a dynami
al exponent z = 2. The above 
onsiderations motivatethe modi�
ations of the Gaussian propagator (2.27),��10 (i!n;k) = Æ0 + �20 �k2q + � k2?�+ j!nj=T0 : (4.3)57



Chapter 4. Anisotropi
 Hertz TheoryThe a
tion of the three-dimensional anisotropi
 Hertz theory then reads (
ompare with (2.23))SAH[�℄ = 1�V X!n;k 12�T (i!n;k)��10 (i!n;k)�(�i!n;�k) + S(4)[�℄S(4)[�℄ = g 1�4V 4 X!nj ;kjj=1;2;3;4 V Æ0� 4Xj=1 kj1A � Æ0� 4Xj=1 !nj1A (4.4)� ��T (i!n1;k1)�(i!n2;k2)� ��T (i!n3;k3)�(i!n4;k4)� :We have just explained that for momenta in the range between [p��;�℄ the spin 
u
tuationsare e�e
tively two dimensional; they do not extend over a distan
e of the stret
hed latti
e
onstant 1=p��2. In parti
ular, for su
h momenta the perpendi
ular 
omponent of momen-tum be
omes a dead label of the 
u
tuation modes �. The dead label 
an be absorbed byintrodu
ing e�e
tive two dimensional �elds,�2D(i!n;kq) � V2DV Xk? �(i!n;kq) = Z ��� dk?2� �(i!n;kq) = ���(i!n;kq) for k? 2 [p��;�℄ :(4.5)For high momenta the a
tion will only be a fun
tional of �2D and the e�e
tive theory istherefore a two-dimensional one. It is instru
tive to relate the quarti
 
oupling of the e�e
tive2D theory to the quarti
 
oupling g appearing in (4.4),S(4)[�2D℄ = �g� 1�4V 42D X!nj ;kqjj=1;2;3;40 V2DÆ0� 4Xj=1 kqj1A � Æ0� 4Xj=1 !nj1A (4.6)� ��T2D(i!n1;kq1)�2D(i!n2;kq2)� ��T2D(i!n3;kq3)�2D(i!n4;kq4)� :The prime on the summation indi
ates that the momenta are restri
ted to the intervall kqj 2[p��;�℄. We 
an read o� the e�e
tive two-dimensional quarti
 
ouplingg2D = �g� () g2D Z ��� dk?2� = g : (4.7)We are mostly interested in the almost two-dimensional limit, i.e. in the 
ase where theanisotropy parameter � is small. The anisotropi
 Hertz theory is then e�e
tively two-dimensionalex
ept for the small momentum range [0;p��2℄. We will see that for high temperaturesT > ��2 this momentum range leads only to small 
orre
tions to the thermodynami
s. Inthe following we will adopt the point of view of high temperatures: we will measure all quanti-ties in units appropriate for the e�e
tive high-temperature, high-momentum two dimensionaltheory.Parti
ularitiesTo what extend does the anisotropi
 Hertz model di�ers from its true 2D and 3D 
ounterpartsanalyzed in Chapter 3? Are there any qualitatively new features to be expe
ted?The most signi�
ant di�eren
e is the presen
e of the anisotropy parameter � whi
h tunesbetween the 2D and 3D limits. It will turn out that the anisotropy parameter � is a relevant58
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Figure 4.3: Phase diagram of the anisotropi
 Hertz model. Three-dimensional spin 
u
tu-ations dominate in the shaded po
ket around the quantum 
riti
al point. Two-dimensionalspin 
u
tuations prevail in the non-shaded part of the phase diagram. The quantum 
riti
alregime inside the fan spanned by the solid lines is divided into four sub-regimes with di�erentbehaviors of the 
orrelation length. In parti
ular the 
rossover from sub-region II to sub-regionIII happens for ��2 � ��2.quantity with respe
t to the two-dimensional �xed point. We will show that it 
arries thesame s
aling dimension as the 
ontrol parameter r. In Chapter 1 we explained in detail thatthe thermal expansion is sensitive to relevant operators to whi
h the pressure 
ouples. If itis possible to vary not only the 
ontrol parameter but also the anisotropy parameter withpressure, both will 
ontribute to the thermal expansion. Moreover, sin
e they 
arry the sames
aling dimension both 
ontributions will be equally important when the 
ow is governed bythe two-dimensional �xed point. In parti
ular, the additional 
ontribution to the thermalexpansion stemming from a pressure dependen
e of the anisotropy parameter � is�� = � 1V dSd� ���p : (4.8)This additional 
ontribution 
onstitutes a new feature of the anisotropi
 Hertz model.In Fig. 4.3 we o�er the reader a glimpse of the phase diagram of the anisotropi
 Hertzmodel whi
h we will derive in detail in the forth
oming se
tions. It should be 
ompared tothe diagrams displayed in Se
tion 3.4 for d = 2; 3 and z = 2. To avoid a 
lutter of lines wehave omitted the 
rossover to the non-Gaussian regime. As before, the physi
s of the orderedregime (dark gray area) is beyond the s
ope of the Hertz theory and will not be dis
ussed here.Around the quantum 
riti
al point (indi
ated by the light gray area) the physi
s is dominatedby the 3D �xed point. In this regime the 
rossover lines as well as the leading thermodynami
behavior 
oin
ides with the isotropi
 Hertz model of Chapter 3. The dimensional 
rossoverto the 2D regime o

urs upon in
reasing the temperature or the 
ontrol parameter above theinverse stret
hed latti
e 
onstant p��2. Interesting new features emerge in the 2D regime,59



Chapter 4. Anisotropi
 Hertz Theorywhi
h are all linked to the 
utting o� of the Mermin{Wagner divergen
e (3.1) present in thetrue 2D Hertz model. In parti
ular, this divergen
e prevented an estimate for the 
riti
alordering temperature T
. As was explained in detail in Chapter 3 these divergen
es areasso
iated with the e�e
tive 
lassi
al theory. In the anisotropi
 Hertz model the asso
iatedlogarithmi
 divergen
e is 
ut o� by the anisotropy parameter � and an estimate for the 
riti
altemperature 
an be obtained. The lo
ation in the phase diagram where these logarithmi
Mermin{Wagner divergen
ies are neutralized is given by the 
ondition �2 = ��2, and it isasso
iated with a dimensional 2D{3D 
rossover of the e�e
tive 
lassi
al theory.MethodsWe are going to apply three di�erent methods to investigate the properties of the anisotropi
Hertz model. In Se
tion 4.1 we apply a Millis RG treatment. We modify the solution alreadypresented in Chapter 3 to the anisotropi
 
ase. It turns out that we have to apply a two-stepRG pro
ess. In the �rst stage the anisotropi
 Hertz theory is res
aled with respe
t to the 2D�xed point. During this �rst stage the anisotropy parameter � is a relevant quantity in theRG sense: it will grow. At a 
ertain RG s
ale it will have rea
hed the isotropi
 3D limit � = 1and the RG 
ow stops. In the se
ond stage the resulting e�e
tive isotropi
 3D Hertz theoryis treated within the standard approa
h of Chapter 3. In Se
tion 4.2 we use the methodof dimensional redu
tion put forward by S. Sa
hdev [33, 2℄, whi
h will allow us to 
omputethe 
rossover fun
tions for the 
orrelation length as a fun
tion of temperature, anisotropyparameter � and 
ontrol parameter r. Finally, in Se
tion 4.3 we apply the large N methodwhi
h provides reliable information about the fun
tional dependen
e of the N�eel temperatureon � and r.4.1 Millis' RG analysisIn this se
tion we will modify the RG method of Se
tion 2.2 to take into a

ount the anisotropyin momentum spa
e of the propagator (4.3). The idea is to use a two-step RG pro
ess. Firstthe theory is s
aled towards the �xed point in spa
e dimension d = 2. Under this s
aling theanisotropy parameter � will grow and the model will 
ow toward an isotropi
 Hertz theory.The anisotropy parameter is therefore a relevant operator during the �rst stage. The RGequations whi
h will govern this 
ow will be derived in the following se
tions. At some s
alehowever the isotropi
 limit � = 1 will be rea
hed and the theory 
an be treated with the usualisotropi
 RG equations of Chapter 2. In this se
ond stage the model 
ows towards the 3D�xed point.Cuto� pro
edureIn order to derive the RG equations we have to spe
ify the 
uto� pro
edure we are going toapply. We will 
hoose an anisotropi
 
uto� pro
edure whi
h interpolates between the puretwo-dimensional and the pure three-dimensional 
ase. For the perpendi
ular 
omponent ofthe momentum we take � as a 
uto�: �� � k? � �. For the radial part of the parallel
omponent we 
hoose the bound: 0 � kq �q�2 � �k2?. The momentum-spa
e volume thenbe
omes 1�3 Z d3k = 1�3 Z ��� dk? Z p�2��k2?0 dkq 2�kq = 2� �1� �3� (4.9)60



4.1. Millis' RG analysis
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Figure 4.4: Evolution of the sphere in momentum spa
e during the 
ow towards the isotropi
3D limit a

ording a

ording to the 
uto� pro
edure (4.9).whi
h interpolates ni
ely between the value 4�=3 for the 3D limit, � = 1, and the value 2�of the 2D limit, � = 0. Fig. 4.4 represents the evolution of the momentum-sphere and itsen
losed volume as the anisotropy parameter, �, in
reases under the RG 
ow. In the isotropi
3D limit the usual three-dimensional sphere in momentum spa
e is re
overed.Gaussian 
ontributionIt is instru
tive to 
onsider �rst the Gaussian 
ontribution only. The Gaussian free en-ergy (2.33) modi�ed for the three-dimensional anisotropi
 Hertz model with the above 
uto�s
heme applied reads (z = 2)��d0V T0��FG = �N2 �� �Z�� dk?2� p�2��k2?Z0 dkq(2�)2 2�kq 1Z0 d�� �
oth �2T � 1� ar
tan �Æ0 + k2q + �k2?= �N2 0BBBB�K2 Z �p��2 dk k| {z }2D part + K2p��2 Z p��20 dk k2| {z }3D part
1CCCCA� Z 10 d�� �
oth �2T � 1� ar
tan �Æ0 + k2 :(4.10)We have subtra
ted the zero temperature 
ontribution and introdu
ed the dimensionlesstemperature T = T=T0. The surfa
e of the d-dimensional momentum sphere Kd was de-�ned in (2.45). In the se
ond line after performing an integration by parts with respe
t tothe perpendi
ular momentum 
omponent k? the Gaussian energy separated into two parts.We 
an interpret the part asso
iated with a high momentum k as the two-dimensional 
on-tribution and the low momentum part as the three-dimensional 
ontribution. The modeswith a high momentum probe only a small region in spa
e and therefore do not per
eive the
oupling between the two-dimensional planes. These high-momentum modes are e�e
tively61



Chapter 4. Anisotropi
 Hertz Theorytwo-dimensional. The modes with suÆ
iently small momenta, however, 
annot resolve thespatial distan
es between the planes and therefore live in three-dimensional spa
e, see Fig. 4.2.4.1.1 Flow to the isotropi
 limitRG equationsDuring the 
ow towards the isotropi
 limit the two-dimensional 
u
tuations are integratedout step by step leading to a renormalization of the 
oupling 
onstants. The RG equationsare derived in the spirit of Millis' original treatment, des
ribed in Chapter 2. In parti
ular,we will always measure the free energy and the quarti
 
oupling in two (!) dimensionalunits F = F��30=(T0V �), u = g��30=(T0V �) and temperature T = T=T0, where V is thethree dimensional volume. Using the same 
onventions the RG equations for the 
ow to theisotropi
 limit read� F(b)� log b = (d+ z)F(b) � 12 N a0(Æ(b);T (b); �(b))� �(b)� log b = 2 �(b)� T (b)� log b = z T (b) (4.11)� Æ(b)� log b = 2 Æ(b) + 4 (N + 2)u(b) a2(Æ(b);T (b); �(b))� u(b)� log b = (4� d� z)u(b) � 4 (N + 8)u2(b) a4(Æ(b);T (b); �(b))where d = z = 2 is implied. The four RG equations are now supplemented by an additionalone for the anisotropy parameter �, whi
h has the s
aling dimension 2 and is therefore arelevant quantity. The fun
tions an are given bya0(Æ; T; �) = K2�2 Z �0 d�� 
oth �2T ar
tan �Æ +�2+�� Z ��� dk?2� Z p�2��k2?0 kqdkq2� 2�� 
oth �2T ar
tan �Æ + k2q + � k2?a2(Æ; T; �) = � ��Æ a0(Æ; T; �) (4.12)a4(Æ; T; �) = � ��Æ a2(Æ; T; �)and Kd is de�ned in (2.45). The leading 
orre
tion at �nite temperatures stems from the
ontribution due to the renormalization of momentuma0(Æ; T; �) � a0(Æ; 0; �) = K2�2 Z 10 d�� �
oth �2T � 1� ar
tan �Æ +�2 +O �e��=T � : (4.13)4.1.2 Crossover parametersThe solution of the RG equation for the anisotropy parameter is �(b) = �b2. The s
ale b�where the theory rea
hes the isotropi
 limit, �(b�) = 1, 
an therefore be identi�ed asb� � 1p� : (4.14)62



4.1. Millis' RG analysisIn this se
tion we are 
on
erned with the values the parameters attain at this 
rossover s
ale.These res
aled parameters then a
t as the initial or e�e
tive parameters for the isotropi
3D 
ow. The derivation of the 
rossover values follows along the lines of the 
al
ulationspresented in 
hapter 2 and the presentation will therefore be kept 
on
ise.Quarti
 
ouplingDuring the 
ow to the isotropi
 limit the theory is at its upper 
riti
al dimension: the quarti

oupling is marginal. The RG equation for the quarti
 
oupling u 
an be rewritten as anintegral u(b) = u1 + 4(N + 8)u g(b) (4.15)g(b) = Z log b0 dx a4(R(ex)e2x;T ezx; �e2x) : (4.16)In the vi
inity of the quantum 
riti
al point the quarti
 
oupling is given byu(b) � u1 + 4(N + 8)ua4 log b = 14(N + 8) a4 �log b e 14(N+8) a4 u��1 ; (4.17)wherea4 � a4(0; 0; �) = K2p�p32�p��2  2 ar
tan 1 +r2 ��2� !� 2 ar
tan 1�r2 ��2� !+ log � + ��2 +p2���2� + ��2 �p2���2! = K2�  1 +O���2� �2! :At the 
rossover s
ale b� = 1=p� the quarti
 
oupling takes the valueu� � u(b�) = 14(N + 8) a4 �log ��1=2 e 14(N+8) a4 u��1 : (4.18)E�e
tive massAs in Se
tion 2.2.3 we separate the trivial s
aling dimension of the running mass, Æ(b) =R(b) b2. The result for the zero-temperature running mass, �(b), follows the derivation of(3.20), �(b) ' r��log �b2 e 24(N+8) a4 u��N+2N+8 : (4.19)The 
ontrol parameter r� of the primary, two-dimensional �xed point readsr� � 1(2(N + 8)a4u)N+2N+8  Æ0 + 4 (N + 2) a2(0; 0)Z � logp�0 dx e�2x u(ex)! : (4.20)63



Chapter 4. Anisotropi
 Hertz TheoryThe temperature 
orre
tion RT (b) (2.56) to the running mass, R(b) = �(b) + RT (b), at the
rossover s
ale b� = 1=p� is given byRT (b�) = 4 (N + 2)K2T (4.21)� log T 1=2=(p��)Zlog T 1=2=� dx e2x u(�T � 12 ex) 1Z0 dv� 4 v (
oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)2 :The temperature 
orre
tion depends on two parameters. In the quantum 
riti
al regime themagnitude of the parameter T =(��2) appearing in the upper limit of the x-integral determineswhether the 
ontribution from the RG traje
tory towards the isotropi
 limit is signi�
ant.Similarly, the Fermi liquid regime is divided into two sub-regimes by the parameter r�=(��2).In the 3D regime the 
ontributions from the 2D 
ow 
an be negle
ted to leading order. Theinteresting 
ase here is the 2D regime whi
h we will 
onsider in the following.Temperature 
orre
tion in the quantum 
riti
al 2D regime: T � ��2 and � � TAs in the 
ase of the 2D isotropi
 theory a logarithmi
 divergen
e is expe
ted in the 2D regimefrom s
aling into the 
lassi
al region. In the isotropi
 
ase this divergen
e was 
ut o� by therunning mass in the denominator of the integrand of the temperature 
orre
tion (3.24). Inthe anisotropi
 
ase the divergen
e for the e�e
tive mass at the 
rossover s
ale is either 
uto� by the 
ombination R(:)=T in the denominator or by the upper limit of the x-integral in(4.21). The result will therefore depend on the 
ombination R�=(��2).We will pro
eed as in the 
ase of the isotropi
 theory in d = 2. After integrating by partswith respe
t to the x-integral expression (4.21) be
omesRT (b�) = 4 (N + 2)K2T (4.22)�8>><>>:264xu(�T � 12 ex) 1Z0 dv� 4 e2xv (
oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)2375x=log T 1=2=(p��)x=log T 1=2=�� log T 1=2=(p��)Zlog T 1=2=� dxx ddx 264u(�T � 12 ex) 1Z0 dv� 4 e2xv (
oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)23759>=>; :First let us 
onsider the surfa
e term,264xu(�T � 12 ex) 1Z0 dv� 4 e2xv (
oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)2375x=log T 1=2=(p��)x=log T 1=2=�= log T 1=2p�� u(��1=2) 1Z0 dv� 4 T��2 v (
oth v � 1)(R�=(��2) + 1)2 + �2 T��2 v�2 +O�u T�2 log T�2� (4.23)= log T 1=2p�� u(��1=2)� 11 +R�=(��2) +O���2T log ��2T ��+O�u T�2 log T�2�64



4.1. Millis' RG analysisIn the last line we extra
ted the leading 
ontribution in the 2D regime T � ��2. It stemsfrom small arguments of the hyperboli
 fun
tion, i.e. from s
aling into the 
lassi
al regime.The integral of (4.22) 
an be treated along the lines of the derivation of the 
orrelationlength at the upper 
riti
al dimension in the isotropi
 theory of Se
tion 3.2.2. The originof the leading 
ontribution lies in the 
u
tuations whi
h lead to the logarithmi
 Mermin{Wagner divergen
es (3.1) and whi
h 
ome from small arguments of the hyperboli
 fun
tion.Expanding the hyperboli
 fun
tion the integral of (4.22) be
omes in leading order [
f. (3.25)℄,log T 1=2=(p��)Zlog T 1=2=� dx 2x u(ex�T � 12 )R(ex�T � 12 )T �1e2x�1 +R(ex�T � 12 )T �1e2x�2 : (4.24)This 
an be evaluated with a saddle point approximation. The integrand 
onsists of a fun
tionstrongly peaked at xmax = log T 1=2=R�1=2 and a slowly varying part. The leading behavior ofthe integral then depends on whether the position of this peak is lo
ated within the integrationregion or not.Sub-regime R� � ��2: In this sub-regime the peak lies in the integration region and theintegral 
an be approximated by the saddle point 
ontribution,xmax u(exmax�T � 12 )log T 1=2=(p��)Zlog T 1=2=� dx 2R(exmax�T � 12 )T �1 e2x�1 +R(exmax�T � 12 )T �1e2x�2= xmax u(exmax�T � 12 )�1 +O���2R� ��The surfa
e term is negligible in the subregion R� � ��2. Using the expression (4.17) for therunning quarti
 
oupling 
onstant the e�e
tive mass at the 
rossover s
ale be
omes in leadingorder [
f. (3.27)℄ R� = �+ � N + 2N + 8 T log TR�log ��2R� (4.25)where we have introdu
ed the \renormalized" 
uto��� � � e 14(N+8) a4 u : (4.26)Sub-regime R� � ��2: When the peak is beyond the integration region the integral is sub-leading and the 
ontribution from the surfa
e term dominates. In leading order we obtain,R� = �+ � N + 2N + 8 T log T��2log �e 24(N+8) a4 u =�� : (4.27)Temperature 
orre
tion in the 2D Fermi liquid regime: �� ��2 and �� TFollowing the derivation of (3.31) we obtain in leading order for the temperature 
orre
tionR� = �+ �26 N + 2N + 8 T 2� log ����� 12� ; (4.28)65



Chapter 4. Anisotropi
 Hertz Theory4.1.3 Flow towards the 3D �xed pointAfter the theory has rea
hed the isotropi
 limit at the s
ale b� = 1=p� the 
ow is governed bya new set of RG equations: the RG equations of the 3D isotropi
 Hertz model (2.40-2.43) for adynami
al exponent z = 2. However, sin
e we have 
hosen units of measurements with respe
tto the two-dimensional theory the fun
tion fn of Eqs. (2.44) should be multiplied by �=�, sothat e�e
tively the surfa
e of the three dimensional momentum sphere K3 appearing in thefn fun
tions (2.44) gets repla
ed by K3�=� = K2=�. Furthermore, the initial 
onditions forthe 3D 
ow are given by the 2D running parameters at the 
rossover s
ale b� = 1=p�,F(b�) = F�Æ(b�) = Æ� = R�b�2 (4.29)u(b�) = u� ;Solving the new RG equation for example for the quarti
 
oupling (2.43) we obtainu(b) = u�b�b�1 for b > b� : (4.30)i.e. the quarti
 
oupling de
reases for s
ales larger than b�. The quarti
 
oupling is irrelevantwith respe
t to the three-dimensional �xed point.4.1.4 Correlation lengthFollowing the derivation of (3.4) the 
orrelation length is given by the expression��2 = �+RT (b�) + 4 (N + 2)K2 u� T 32p��2 (4.31)� 1Zlog T 1=2=(p��) dx 1Z0 dv� 4 v (
oth v � 1) ex�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2xv)2 :The zero temperature gap � is to be taken at the s
ale set by the 
orrelation length b = ��(
ompare with Se
tion 3.2),
� ' 8>>>>>><>>>>>>:

r��log ��2��2�N+2N+8 if ��2 � ��20� r��log ��2��2 �N+2N+8 + N+2N+8 �2 f2(0;0)3�K2 �log ��p��2 1A 1� N+2N+8 1� 1log ��p��2 ! if ��2 � ��2(4.32)Note that f2(0; 0) is non-universal and depends on the 
ut-o�.In the following we list the results for the di�erent regimes of Fig. 4.3.66



4.1. Millis' RG analysisQuantum 
riti
al 2D regime: T � ��2 and �� TUp to 
orre
tions of order O(T =(��2))�3=2 the 
orrelation length is given by the e�e
tivemass R�. Using the results obtained in Se
tion 4.1.2 we get in leading order��2 = �+ � N + 2N + 8 T 8>>>><>>>>: log T =��2log ��2=��2 for ��2 � ��2log T =(��2)log ��2=(��2) for ��2 � ��2 : (4.33)where the \renormalized" 
uto� �� was de�ned in (4.26). Solving this impli
it equationiteratively as in the derivation of (3.28) and dis
arding (logarithmi
) 
orre
tions we obtainthree di�erent sub-regimes denoted as I, II and III in Fig. 4.3
��2 = 8>>>>>>>>><>>>>>>>>>:

� for I: ��2 � � N + 2N + 8 T log log ���2=T �log ���2=T � � �� N + 2N + 8 T log log ���2=T �log ���2=T � for II: j�j; ��2 � � N + 2N + 8 T log log ���2=T �log ���2=T �� N + 2N + 8 T log �T =(��2)�log ���2=(��2)� for III: j�j � � N + 2N + 8 T log log ���2=T �log ���2=T � � ��2(4.34)Upon approa
hing the phase boundary in the quantum 
riti
al 2D regime the temperaturedependen
e of the 
orrelation length involves some 
ompli
ated logarithmi
 
orre
tions, whi
h
an be tra
ed ba
k to the fa
t that (a) the e�e
tive zero-temperature theory is at its upper
riti
al dimension d+z = 4 and (b) the e�e
tive �nite temperature theory is at its lower 
riti
aldimension d = 2 leading to Mermin{Wagner divergen
es (3.1). When the 
rossover betweenregions II and III is rea
hed for ��2 = ��2 the 
u
tuations start to noti
e the small 
ouplingin the third dimension, ultimately allowing a 
lassi
al �nite-temperature phase transitionwhi
h would be prohibited in 2D. A

ordingly, the logarithmi
 temperature 
orre
tions aremodi�ed upon entering region III.Quantum 
riti
al 3D regime: T � ��2 and �� TNow the 
ow towards the isotropi
 limit is negligible and the 
orrelation length is given by(3.5), ��2 = �+ 4(N + 2)K2� �32� � �32�p2 u� T 3=2p��2 : (4.35)with u� given by (4.18). With the limiting expression (4.17) for the 
oeÆ
ient a4 this formulasimpli�es to ��2 = �+p2� ��32� � �32� N + 2N + 8 T 3=2p��2 log ���2=(��2)� : (4.36)Depending on their relative values either the 
ontrol parameter r via � or the temperaturedominates the 
orrelation length, indi
ated by the shaded part of regions I and region IVrespe
tively in Fig. 4.3. 67
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ation of the extrapolated QCP is ambiguous be
ause of logarithmi
 
or-re
tions in the fun
tional dependen
e (4.39) of the 
riti
al temperature on r.2D Fermi liquid regime: �� ��2 and �� TThe mass R�, now given by expression (4.28), again determines the 
orrelation length,��2 = �+ �23 N + 2N + 8 T 2� log ���2=�� : (4.37)3D Fermi liquid regime: �� ��2 and �� TThe leading 
ontribution to the 
orrelation length is given by expression (3.10),��2 = �+ N + 2N + 8 �36 1log ���2=(��2)� T 2p�p��2 : (4.38)In both Fermi liquid regimes the temperature dependen
e is sub-leading.4.1.5 Estimate of the phase boundaryStri
tly speaking the position of the phase boundary 
annot reliably be determined withinthe RG analysis of this se
tion, as was explained in detail in Se
tion 2.2.4. Upon approa
hingthe phase boundary from the disordered side higher order intera
tions in
rease in importan
esin
e the e�e
tive �nite-temperature theory is below its upper 
riti
al dimension, and sothe Ginzburg 
riterion is ful�lled before the phase boundary is rea
hed. However, we willnevertheless use the results of the 
orrelation length to get an estimate of the position ofthe �nite-temperature phase transition. The result obtained will be 
on�rmed by Sa
hdev'smethod of dimensional redu
tion in Se
tion 4.2 as well as the large N analysis in Se
tion 4.3.68



4.1. Millis' RG analysisSetting the 
orrelation length in expressions (4.33) and (4.36) to in�nity we obtainr��2 ' 8>>>>>><>>>>>>: �� N + 2N + 8 T
��2 log �T
=(��2)��log ��2��2�1�N+2N+8 for ��2 � T
��3=2 � (3=2)p2 N + 2N + 8 1�log ��2��2�1�N+2N+8 � T
��2�3=2 for T
 � ��2 : (4.39)The 
orre
tions to the 
ontrol parameter from the s
aling towards the se
ondary, 3D �xedpoint are subleading and have been negle
ted, r ' r�, see Eq. (4.32). The phase boundaryin the 2D regime, ��2 � T
, depends on temperature as T
 log T
=(��2), i.e. the linear de-penden
e of the 
riti
al temperature on the 
ontrol parameter has logarithmi
 
orre
tions.This implies that one 
annot unambiguously extrapolate the phase boundary from high tem-peratures. The lo
ation of the extrapolated quantum 
riti
al point depends sensitively onthe range of 
riti
al temperatures used in the extrapolation pro
ess; this is indi
ated by thethin lines in Fig. 4.5. In parti
ular, this prevents us from using the extrapolated QCP ofCeCu6�xAux (see Fig. 4.1) to draw any 
on
lusions about the value of the anisotropy param-eter ��2.The phase boundary is logarithmi
ally suppressed in 
omparison with the 
rossover linebetween the quantum 
riti
al to the Fermi liquid regime, � � T . The logarithmi
 suppressionis rooted in the Mermin{Wagner divergen
e (3.1) whi
h prohibits a phase transition for atruely two dimensional system (with N > 2). The asymmetry between the slopes of the N�eeltemperature and the quantum 
riti
al-Fermi liquid 
rossover line is therefore a qualitativemeasure of the anisotropy present in the material.4.1.6 Thermal expansionIt is reasonable to assume that the 
oupling between the 2D dimensional planes is a�e
tedwhen pressure is applied, whi
h means that the anisotropy parameter � is generally dependenton pressure. This leads to an additional 
ontribution to the thermal expansion,�� = � 1V dSd� ���p ; (4.40)where the derivative (��=�p) is approximately 
onstant for weak pressure dependen
e. Thisis a novel e�e
t not en
ountered in the isotropi
 Hertz model.Solving the RG equations we obtain for the interesting part of the entropy [
f. (2.63)℄SQCP = N2 K2 T log T 1=2=(p��)Zlog T 1=2=� dx Z 10 dv� 2v e�2xsinh2 v ar
tan 2 e2x vR(ex�T � 12 )T �1e2x + 1!+ N2 K2 T 32p��2 1Zlog T 1=2=(p��) dx Z 10 dv� 2v e�3xsinh2 v ar
tan 2 e2x vR(ex�T � 12 )T �1e2x + 1! : (4.41)The �rst term is due to the s
aling pro
ess towards the isotropi
 limit and it will dominatein the 2D regimes. The se
ond term results from the RG 
ow of the e�e
tive 3D isotropi
69



Chapter 4. Anisotropi
 Hertz Theorymodel and therefore dominates in the 3D regimes. From the isotropi
 model we are alreadyfamiliar with the 
ontribution �QCP, whi
h measures the pressure dependen
e of the 
ontrolparameter r [
f. (3.44)℄�QCP = N2 K2log T 1=2=(p��)Zlog T 1=2=� dx �R(ex�T � 12 )�r Z 10 dv� 4v2 e2 x sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2+N2 K2 pTp��2 1Zlog T 1=2=(p��) dx �R(ex�T � 12 )�r Z 10 dv� 4v2 ex sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2 :(4.42)In addition, we now have to 
onsider the derivative of the entropy (4.41) with respe
t to �.There is an expli
it dependen
e of the entropy SQCP on the anisotropy parameter appearingin the limits of the x-integral. Moreover, there is an impli
it � dependen
e hidden in therunning mass R(:), whose RG traje
tory itself depends on the 
hoi
e of �. However, the
ontribution due to the impli
it dependen
e is always sub-leading, sin
e it is at most of orderd��2=d� � O(u), and it 
an be negle
ted. The new 
ontribution to the thermal expansion inthe anisotropi
 Hertz model therefore reads�� = ��SQCP�(��2)= N2 K22 � T��2�3=2 1Zlog T 1=2=(p��) dx Z 10 dv� 2v e�3xsinh2 v ar
tan 2 e2x vR(ex�T � 12 )T �1e2x + 1! :(4.43)where �� is measured in units of (�(��2)=�p)�=(��30). Interestingly the 
ontributions of thederivative with respe
t to the arguments in the limits of integral in expression (4.41) for theentropy 
an
el ea
h other.The behavior of the thermal expansion 
an be 
lassi�ed a

ording to the four regimesalready en
ountered above for the 
orrelation length. The analysis of expression (4.42) 
loselyfollows the derivation of Se
tion 3.3.2, ex
ept in the quantum 
riti
al 2D regime whi
h willbe presented in some detail.Quantum 
riti
al 2D regime: T � ��2 and �� TIn the quantum 
riti
al 2D regime we 
an negle
t the sub-leading se
ond term in the expressionfor the thermal expansion �QCP (4.42). The following analysis will resemble that of the70



4.1. Millis' RG analysis
orrelation length in this regime. Following Se
tion 3.3.2 we perform an integration by parts�QCP = N2 K2 (4.44)�8>><>>:264x�R(ex�T � 12 )�r Z 10 dv� 4v2 e2x sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2375log T 1=2=(p��)log T 1=2=�� log T 1=2=(p��)Zlog T 1=2=� dxx ddx 264�R(ex�T � 12 )�r Z 10 dv� 4v2 e2 x sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)23759>=>; :The lower limit of the surfa
e term yields a negligible non-universal 
ontribution of orderO(T =�2 log T =�2). After substituting the e�e
tive mass R� = R(1=p�) by the 
orrelationlength, whi
h is permissible in the 2D regime, the upper limit giveslog T 1=2p��! ���2�r Z 10 dv� 4v2 T =(��2) sinh�2 v(��2=(��2) + 1)2 + (2T =(��2) v)2= log T 1=2p��! ���2�r � 11 + ��2=(��2) +O���2T log ��2T �� : (4.45)The leading 
ontribution of the integral whi
h remains after integrating by parts 
an beextra
ted in a similar manner to that for the thermal expansion in Se
tion 3.3.2 in 2D. Thehyperboli
 fun
tion is expanded to leading order and the v-integral is performed to yieldlog T 1=2=(p��)Zlog T 1=z=� dxx ddx �R(ex�T � 1z )�r 1R(ex�T � 1z )T � 2z e2x + 1 : (4.46)This expression is evaluated with a saddle point approximation. The maximum of the peakedfun
tion is lo
ated at xmax = log �T 1=2. As for the 
orrelation length the behavior dependson whether this maximum is lo
ated within the integration region or not.Sub-regime ��2 � ��2: For this sub-regime the maximum is lo
ated within the integrationregion and the saddle point gives the leading 
ontribution. Furthermore, the surfa
e term issub-leading. The thermal expansion is given to leading order by�QCP = N8� ���2�r log T��2 : (4.47)Sub-regime ��2 � ��2: Now the saddle point is beyond the integration region and theleading 
ontribution to the thermal expansion results from the surfa
e term,�QCP = N8� ���2�r log T��2 : (4.48)71



Chapter 4. Anisotropi
 Hertz TheoryUsing the formulae for the 
orrelation length of Se
tion 4.1.4 in the quantum 
riti
al2D regime and its iterative solution (
ompare Se
tion 3.3.2) the leading behavior 
an besummarized as
�QCP � N8�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
log T��2�log ��2��2�N+2N+8 for III: ��2 � ��2log log ��2T�log ��2T �N+2N+8 for II: ��2 � ��2 and �� T log log ��2Tlog ��2Tlog Tr�log ��2r �N+2N+8 for I: ��2 � ��2 and �� T log log ��2Tlog ��2T : (4.49)

For the anisotropi
 
ontribution �� we obtain the leading 
ontribution from the s
alinginto the 
lassi
al regime, i.e. for small arguments of the hyberboli
 fun
tion,�� = N2 K22 � T��2�3=2 1Zlog T 1=2=(p��) dx e�3x log 2 e2xR(ex�T � 12 )T �1e2x + 1 +O(1)! (4.50)
� N2 K26 log T��2 + ��2 � N2 K26 8>>>><>>>>: log T��2 for III: ��2 � ��2log log ��2T for II: ��2 � ��2 and �� T log log ��2Tlog ��2Tlog Tr for I: ��2 � ��2 and �� T log log ��2Tlog ��2TThe derivation of the leading behavior in the other regimes follows Se
tion 3.3.2 and wesimply present the results below.Quantum 
riti
al 3D regime: T � ��2 and �� T�QCP = p2� 3 � �32�N32� �log ��2��2��N+2N+8 pTp��2 and �� = N2 �K23 T��2 (4.51)2D Fermi liquid regime: �� ��2 and �� T�QCP ' N12 Tr and �� = N2 �K29 Tr (4.52)3D Fermi liquid regime: �� ��2 and �� T�QCP ' N�24 �log ��2��2�� N+22(N+8) Tp��2pr and �� = N2 �K23 T��2 (4.53)As anti
ipated in the introdu
tion the additional 
ontribution �� due to the anisotropyparameter is as important as �QCP in the 2D regimes. In the 3D regimes, on the other hand,it gives only a sub-leading 
ontribution. 72



4.1. Millis' RG analysis4.1.7 Spe
i�
 heatThe leading 
ontributions of the spe
i�
 heat in the 2D and 3D regimes 
onform with theisotropi
 theory with the 
orresponding spa
e dimensions. Following the derivation of (3.34)for the spe
i�
 heat we get
QCP = N2 K2 log T 1=2=(p��)Zlog T 1=2=� dxZ 10 dv� � 2 vsinhv�2 �R(ex�T � 12 )T �1e2x + 1��R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2+N2 K2 pTp��2 1Zlog T 1=2=(p��) dxZ 10 dv� � 2 vsinhv�2 �R(ex�T � 12 )T �1e2x + 1� e�x�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2 :(4.54)The leading 
ontributions are given belowQuantum 
riti
al 2D regime: T � ��2 and �� T
QCP = N12 log �2T (4.55)Quantum 
riti
al 3D regime: T � ��2 and �� T
QCP = N12 log 1� + N6 � p2� 15 � �52�N64� pTp��2 (4.56)2D Fermi liquid regime: �� ��2 and �� T
QCP = N6 log ��1=2 � N6 log �r1=2 (4.57)3D Fermi liquid regime: �� ��2 and �� T
QCP = N12 log 1� + N6 � N�12 prp��2 (4.58)In the 3D regimes the 
riti
al 
ontribution is sub-leading. The ba
kground is universal in thesense that it depends only on the anisotropy parameter �.4.1.8 E�e
tive 
riti
al exponentsThe s
aling analysis for quantum 
riti
al points of Chapter 1 predi
ted 
riti
al exponents forthe spe
i�
 heat and thermal expansion. These exponents depend on the s
aling dimension,�, of the free energy (1.15). When the so-
alled hypers
aling hypothesis is obeyed this s
alingdimension is simply given by the dimensionality of the zero-temperature theory, i.e. � = d+z.In the anisotropi
 Hertz model where we observe a dimensional 
rossover between two-and three-dimensional behavior hypers
aling is trivially violated sin
e the e�e
tive spatialdimensionality varies between d = 2 and d = 3.. A

ordingly, there exist no well-de�ned
riti
al exponents 
hara
terizing the whole 
riti
al regime. However, we 
an 
onsider e�e
tive73
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Figure 4.6: E�e
tive 
riti
al exponents for the spe
i�
 heat (left panel), 
 = 
0 + T p
 , andthe two 
ontributions to the thermal expansion (right panel), �QCP = T p� and �� = T p� . The
rossover shown 
orresponds to the line ��2 = 105 r in the phase diagram of Fig. 4.3.exponents whi
h in turn lead to the 
on
ept of the e�e
tive dimension de� when applying(e�e
tive) hypers
aling with � = de� + z. In the quantum 
riti
al regime the s
aling analysisyields for the spe
i�
 heat (1.26) and the thermal expansion (1.27) (using y0 = 1, z = 2 and� = 1=2) 

r � T (de��2)=2 and �
r � T (de��2)=2 : (4.59)In Fig. 4.6 the e�e
tive exponents of spe
i�
 heat and thermal expansion are plotted, as
al
ulated from the Gaussian part of the anisotropi
 Hertz model. The quarti
 
ouplingwill only indu
e logarithmi
 
orre
tions to the thermal expansion in the quantum 
riti
al2D regime II of Fig. 4.3, see (4.49) and (4.50); for an analysis of the e�e
tive exponentsthese 
orre
tions will be negle
ted. Three di�erent exponents p
 , p� and p� are shown,
orresponding to the 
riti
al part of the spe
i�
 heat 
QCP and the two 
ontributions to thethermal expansion �QCP and ��, respe
tively. They were determined with the formulap = dd log T log� df(T )d log T � (4.60)where f(T ) represents the quantity of interest. The formula is 
onstru
ted in su
h a way thatit automati
ally eliminates a 
onstant ba
kground 
ontribution. For example, the spe
i�
heat 
oeÆ
ient for a Fermi liquid at low temperatures is given by 
 = 
0+AT 2, whi
h yieldsa temperature exponent of p = 2.For high temperature both the spe
i�
 heat and the thermal expansion depend onlylogarithmi
ally on temperature, leading to vanishing e�e
tive exponents. Upon entering thequantum 
riti
al 3D regime the exponents of 
QCP and �QCP in
rease as expe
ted to 1=2.The exponent of �� however grows to 1 and is therefore only sub-leading. At even lowertemperatures the quantities rea
h their Fermi liquid values.74



4.2. Dimensional redu
tion analysis4.2 Dimensional redu
tion analysisIn this se
tion we apply a method proposed by S. Sa
hdev [33, 2℄ to the anisotropi
 Hertzmodel. It is based on 
on
epts originally developed to des
ribe 
riti
al phenomena in �nite-sizesystems, and 
an be naturally transfered to the theory of quantum 
riti
ality. The quantumphase transition o

urs at zero temperature and its 
riti
al properties are 
hara
terized by ane�e
tive dimensionality d + z. When the temperature is �nite, however, the dynami
s alongthe imaginary-time dimension is restri
ted by the inverse temperature � = 1=T . Whereas the
riti
al 
u
tuations 
an still extend to in�nity in d spatial dimensions they are now limitedin the other z dimensions attributed to imaginary time. This means that we 
an think ofquantum 
riti
ality at �nite temperatures as the 
riti
al behavior in a system whi
h is in�nitein d dimensions and �nite in z dimensions.This method o�ers the possibility of deriving 
rossover fun
tions in 
losed form. It istherefore espe
ially suitable for the investigation of the anisotropi
 Hertz model, in whi
hthe �nite-temperature 
rossover is 
omplemented by the dimensional 
rossover triggered bythe anisotropy parameter �. The method 
onsists of two steps. First, applying a standardrenormalization group the Hertz theory is s
aled towards the zero-temperature �xed point.An e�e
tive theory is then derived whi
h des
ribes the �nite temperature properties.4.2.1 Flow to the zero-temperature �xed pointIn order to derive the RG equations governing the zero-temperature 
ow we apply the fol-lowing 
uto� pro
edure. We introdu
e a single 
uto� � for the integral over Matsubarafrequen
ies, whi
h are dense at zero temperature, and the three momentum integrals,Z � � � �� �2Z��2 d!2� p�2�!Z�p�2�! dk?2� p�2��k2?�!Z0 dkq(2�)2 2�kq 1Æ + k2q + � k2? + j!j= 14�2� �Z0 dk? �2Z�k2? dy �2Zy dx 1Æ + x : (4.61)The sus
eptibility � is given by (4.3) with the bare mass Æ0 repla
ed with the running massÆ. Moreover, we assume that the theory has been res
aled appropriately to eliminate thes
ales �0 and T0. As in the Millis' RG treatment of the last se
tion, the theory is initiallyres
aled with respe
t to the d = 2 �xed point. Under this s
aling the anisotropy parameter� grows with the s
aling dimension 2, �(b) = � b2. The RG 
ow is governed by the standardRG equations of �4 theory [18℄ whi
h for a �nite 
uto� renormalization �! �=b readÆ0 = b2 Æ + 4(N + 2)uZ ��=b �! (4.62)u0 = b4�d�z  u� 4(N + 8)u2 Z ��=b �2! ; (4.63)75



Chapter 4. Anisotropi
 Hertz Theorywhere d = z = 2. The primed values on the right hand side are the renormalized quantities.In the limit of an in�nitesimal s
ale transformation, log b� 1, these equations simplify to� Æ(b)� log b = 2 Æ(b) + 4(N + 2) 12�2 u(b) �4Æ(b) + �2 �1� �(b)3 � (4.64)� u(b)� log b = �4(N + 8) 12�2 u2(b) �1� �(b)3 � : (4.65)The running quarti
 
oupling is readily obtainedu(b) = u1 + 4 (N + 8) 12�2 u (ln b+ 16� (1� b2)) � 4�24 (N + 8) 1log �b2e 4�24 (N+8)u� : (4.66)At the upper 
riti
al dimension the limiting behavior of the running mass �(b) = Æ(b)b�2 isgiven by the di�erential equation��(b)� log b � 2(N + 2)�2 u(b) �b�2�2 ��(b)��1� �(b)3 � (4.67)whi
h has the solution [
f. (4.19)℄�(b) � r log "b2 e �2(N+8) u#!N+2N+8 ; (4.68)where we introdu
ed the 
ontrol parameter r.We will now 
onsider now the theory at a 
ertain s
ale b 
hosen in su
h a way that thequarti
 
oupling 
onstant u(b) 
an be treated perturbatively. To do so either the s
ale mustbe suÆ
iently large so that the running 
oupling 
onstant is suÆ
iently small, or the theorymust have rea
hed its isotropi
 limit, i.e. �(b) = 1 for b = b� � 1=p�. At the isotropi
 limitthe zero-temperature Hertz theory is above its upper 
riti
al dimension, d+ z > 4 for d = 3and z = 2, and is therefore well des
ribed by mean �eld theory. The essen
e of Sa
hdev'smethod is that in the vi
inity of the quantum 
riti
al point the �nite temperature properties
an also be derived by treating the quarti
 
oupling as a perturbation.4.2.2 E�e
tive theory for the zero Matsubara modeAt �nite temperatures the 
riti
al 
u
tuations are restri
ted in imaginary time but 
an stilldevelop in the three spatial dimensions. In the language of Matsubara and momentum spa
ethis means that the available momenta are still 
ontinuous but the Matsubara frequen
iesare gapped. The 
riti
al �nite-temperature properties will be determined by the gapless, zeroMatsubara mode. In the following an e�e
tive model for this zero Matsubara mode is derivedby perturbatively taking into a

ount the in
uen
e of the gapped modes. It has been pointedout by S. Sa
hdev [33, 2℄ that all ultraviolet divergen
es, i.e. all 
uto� dependen
es, of thezero temperature theory 
an be absorbed by appropriate 
ounterterms (see also e.g. Ref. [25℄,Chapter 10.2), resulting in a universal T dependen
e of the 
orrelation length.76



4.2. Dimensional redu
tion analysisWe will start from the anisotropi
 Hertz theory whose parameters have been s
aled a
-
ording to the zero-temperature RG equations above,S[�℄ = 12T (b)X!n Z d3k(2�)3�T (i!n;k) ��(b) b2 + k2q + �(b) k2? + j!nj� �(�i!n;�k)+u(b) Z 1=T (b)0 d� Z dR ��T (�;R)�(�;R)�2 : (4.69)The s
ale b is understood to be �xed and smaller than the 
rossover s
ale b� = 1=p�. It isimportant to note that under s
aling the temperature T has also grown with the dynami
alexponent z, T (b) = T bz. The e�e
tive �nite-temperature a
tion for the zero Matsubaramodes ~'(k) = (T (b))1=2 �(0;k) reads (
ompare also the dis
ussion of Se
tion 2.2.2)Se� [~'℄ = 12 Z d3k(2�)3 ~'T (k) �R(b) + k2q + �(b) k2?� ~'(�k) (4.70)+U(b)T (b) Z 4Yi=1 d3ki(2�)3 Æ �P4i=1 ki� �~'T (k1)~'(k2)� �~'T (k3)~'(k4)� :The e�e
tive parameters U(b) and R(b) result from integrating out the gapped Matsubaramodes. To lowest order the e�e
tive quarti
 
oupling U(b) is just given by the res
aled
oupling u(b), U(b) = u(b) +O(u2(b)) : (4.71)The e�e
tive mass R(b), however, is modi�ed in �rst order in u(b) by the gapped modes,R(b) = �(b)b2 + 4(N + 2)u(b)Z d3k(2�)3 8<:T (b) X!n 6=0 1�(b)b2 + k2q + �(b) k2? + j!nj�Z d!2� 1�(b)b2 + k2q + �(b) k2? + j!j�+O(u2(b)) : (4.72)The last term is an appropriate 
ounterterm 
hosen in su
h a way that for zero temperaturethe running mass redu
es to R(b) = �(b)b2.4.2.3 Correlation lengthWithin the e�e
tive theory (4.70) we 
an again apply perturbation theory in order to evaluatethe 
orrelation length �. To lowest order it is given by��2b2 � ��2(b) = R(b) + 4(N + 2)U(b)T (b) Z d3k(2�)3 1��2(b) + k2q + �(b) k2? : (4.73)where the fa
tor b2 again a

ounts for the trivial s
aling dimension. Using expression (4.72)we 
an express the 
orrelation length in terms of the zero temperature mass gap �(b),��2(b) = �(b)b2 + 4(N + 2)u(b)Z d3k(2�)3 8<:X!n 6=0 T (b)�(b)b2 + k2q + �(b) k2? + j!nj (4.74)�Z d!2� 1�(b)b2 + k2q + �(b) k2? + j!j + T (b)��2(b) + k2q + �(b) k2?� :77



Chapter 4. Anisotropi
 Hertz TheoryFollowing Refs. [33, 2℄ we separate this expression into three terms��2(b) = �(b)b2 + 4(N + 2)u(b) (R1(b) +R2(b) +R3(b)) ; (4.75)whereR1(b) = Z d3k(2�)3  X!n T (b)�(b)b2 + k2q + �(b) k2? + j!nj � Z d!2� 1�(b)b2 + k2q + �(b) k2? + j!j!R2(b) = �Z d3k(2�)3 � T (b)�(b)b2 + k2q + �(b) k2? � T (b)k2q + �(b) k2?� (4.76)R3(b) = Z d3k(2�)3 � T (b)��2(b) + k2q + �(b) k2? � T (b)k2q + �(b) k2?� :To evaluate these we have to spe
ify a 
uto� pro
edure for the remaining momentum integrals.This seems to 
ontradi
t the 
laim of S. Sa
hdev [33, 2℄ that we should obtain a universaltemperature dependen
e for the 
orrelation length. However, as we will see, the 
uto� �only enters in 
ombination with the anisotropy parameter, ��2, to give a s
aling parameterof dimension 2 whi
h tunes the dimensional 
rossover. We will apply the same 
uto� s
hemeas outlined in Se
tion 4.1.1. After 
onverting the Masubara sum into an integral (usingT (b)=(�(b)b2) = T =�(b) and T (b)=�(b) = T =�) we get for R1(b)R1(b) = Z � d3k(2�)3 1Z0 dz� �
oth zT (b)2 � 1� z��(b)b2 + k2q + �(b) k2?�2 + z2= �2�2T (b) 1Z0 dkq 12 log T =(��2k2q )Z12 log T (b)=�2 dxZ 10 dv� e2x 4v (
oth v � 1)(�(b)T �1e2x + 1)2 + (2ve2x)2 (4.77)The lower limit of the x-integral 
an be extended to minus in�nity in the universal limit�!1. Furthermore,R2(b) = �2�2T (b)  s�(b)��2 ar
tans ��2�(b) + 12 log�1 + �(b)��2 �! (4.78)and similarly for R3(b). Now it is apparent that for z = 2 the three fun
tions Rn have thesame s
aling dimension, 2. The trivial s
aling fa
tors therefore drop out in the expression(4.75) and only the s
ale dependen
e of the running quarti
 
oupling 
onstant u(b) and themass gap �(b) remains. The reason is that the zero-temperature theory is at the upper
riti
al dimension where logarithmi
 
orre
tions o

ur. These are re
e
ted in the remainings
ale dependen
e of the zero-temperature parameters. If the anisotropy parameter � is thesmallest s
ale in the problem, the s
ale b of u(b) and �(b) is set by the 
orrelation length �.However, for ��2 < ��2 the zero-temperature parameters 
an be taken at b = 1=p�.We �nally obtain for the 
orrelation length the quasi-s
aling form��2��2 = �(b)��2 + �N + 2N + 8 T��2 log�1 "b e �22 (N+8)u#	� T��2 ; �(b)��2 ; ��2��2� (4.79)78



4.2. Dimensional redu
tion analysiswhere we have introdu
ed the s
aling fun
tion,	 (a; b; 
) � pb ar
tan 1pb �p
 ar
tan 1p
 + 12 log�1 + b1 + 
�+�(a; b) (4.80)�(a; b) � 1Z0 dkq 12 log(a k�2q )Z�1 dx 1Z0 dv� e2x 4v (
oth v � 1)(ba�1e2x + 1)2 + (2ve2x)2 : (4.81)This result should be 
ompared to (4.21) and (4.31) derived within the framework of theMillis RG.In the following we will analyze the s
aling fun
tion 	 and determine its behavior indi�erent regimes. It will be 
onvenient to perform an integration by parts with respe
t to kqin the de�nition of �,� (a; b) = (4.82)12 log aZ�1 dx 1Z0 dv� e2x 4v (
oth v � 1)(ba�1e2x + 1)2 + (2ve2x)2 +pa 1Z12 log a dx 1Z0 dv� ex 4v (
oth v � 1)(ba�1e2x + 1)2 + (2ve2x)2 :The �rst integral is due to the boundary 
ontribution and it will dominate for large a whereasthe se
ond integral dominates for small a. The derivation of the leading behavior 
loselyfollows the treatment of the 
orrelation length of Se
tion 4.1.4 and gives	 (a; b; 
) = 12 � �pb if b� 1log b if b� 1 �+ 12 � �p
 if 
� 1log 
 if 
� 1 �+�(a; b) (4.83)
�(a; b) = 8>>>>>>>>><>>>>>>>>>:

12 log ab if a� b; a� 1; b� 112 log a if a� b; a� 1; b� 1�( 32 ) �( 32)p2 pa if a� b; a� 1�6 ab if a� b; a� 1�212 apb if a� b; a� 1 : (4.84)
This results in the same 
rossover lines and the same leading behaviors for the 
orrelationlength as obtained within the Millis RG treatment in Se
tion 4.1.4. However, it is interestingto note that the logarithmi
 Mermin{Wagner divergen
e (3.1) enters in the form of the one{loop 
orre
tion (4.73) to the e�e
tive theory. It is en
oded in the logarithmi
 dependen
e ofthe s
aling fun
tion on the 
ombination ��2=(��2). Upon approa
hing the phase boundarythe divergen
e is 
uto� by the anisotropy parameter ��2, whi
h in turn leads to the twosub-regions in the quantum 
riti
al 2D-regime already found in Se
tion 4.1.4.4.2.4 Phase boundaryThe perturbative analysis of the e�e
tive theory for the zero Matsubara mode (4.70) su�ersfrom the same drawba
ks as the Millis RG analysis as far as the estimate of the phase boundary79
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 Hertz Theoryis 
on
erned. The perturbative one-loop treatment will break down at the Ginzburg 
riterionbefore the 
riti
al temperature is rea
hed. As before, we will nevertheless use the aboveresults to obtain an estimate for the N�eel temperature T
(r).The estimate of the phase boundary T
(r) depends 
ru
ially on the order of limits takenin the anisotropi
 Hertz model. Whereas we �nd a �nite temperature solution for the phaseboundary for a �nite anisotropy parameter �, this solution vanishes for � = 0 due to thepresen
e of a Mermin{Wagner divergen
e (3.1). In the 2D limit, � = 0, we �nd that the
orrelation length is impli
itly given in the limit ��2 ! 0 by� = 0 : ��2 = �(b) + �2 N + 2N + 8 log�1 "b e �22 (N+8)u# T log� T��2� (4.85)whi
h possesses no solution with a diverging 
orrelation length. This 
ontrasts with thesituation with a �nite value for �: 
onsider the limit ��2 ! 0 in (4.79) for �nite � > 0,�(1=p�)��2 = ��N + 2N + 8 T
��2 log�1 " 1p� e �22 (N+8)u#	� T
��2 ; �(1=p�)��2 ; 0� : (4.86)The expression 
an be simpli�ed for high and low 
riti
al temperatures T
.2D regime: T
 � ��2In the 2D regime the phase boundary is lo
ated in the region of the phase diagram where�(1=p�) � ��2 and T � ��2. Using the appropriate limiting behavior of the s
alingfun
tion 	 we get r��2 = ��N + 2N + 8 T
��2 log � T
��2��log ��2��2�1�N+2N+8 : (4.87)3D regime: T
 � ��2r��2 = ��3=2� �32�p2 N + 2N + 8 1�log ��2��2�1�N+2N+8 � T
��2�3=2 (4.88)This is in agreement with the estimate obtained in Se
tion 4.1.5.4.3 Large N analysisThe third method with whi
h we shall ta
kle the anisotropi
 Hertz model is large N analysis(see e.g. Ref. [36℄). It is a systemati
 expansion in 1=N where N is the number of 
omponentsof the �eld �. The Millis RG treatment as well as the analysis of Sa
hdev's e�e
tive theoryhave the drawba
k that they break down when the Ginzburg 
riterion is ful�lled. As a
onsequen
e the 
lassi
al region, whi
h always 
overs the phase boundary (
f. Fig. 3.1), 
annotbe addressed within these two approa
hes. The large N analysis on the other hand yieldsreliable information about the 
lassi
al regime, sin
e it only relies on 1=N as a small parameter.In parti
ular, it will 
on�rm the fun
tional dependen
e of the 
riti
al temperature on the
ontrol parameter r obtained with the former methods.80



4.3. Large N analysisWe will brie
y sket
h the derivation of the equations whi
h will be
ome exa
t in the limitN ! 1. We introdu
e a Hubbard{Stratonovi
h �eld � de
oupling the quarti
 term in theHertz a
tion (2.23), Z = Z D�D� e�S[�;�℄ (4.89)where S is now given byS[�; �℄ = 12 1� X!n;k �Æ0 + �+ k2q + � k2? + j!nj��(i!n;k)�(�i!n;�k)� �16�u �2 : (4.90)We have again used the two-dimensional quarti
 
oupling u, giving rise to the additionalfa
tor of �=� (
ompare the dis
ussion pre
eding (4.7)). Integrating out the � �elds yields ana
tion solely dependent on �:S[�℄ = � �16�u �2 + N2 tr log �Æ0 + �+ k2q + � k2? + j!nj� : (4.91)Again we assume that the theory has been appropriately res
aled to absorb the parameters�0 and T0. Applying a saddle point approximation to the remaining fun
tional integral over� leads to the 
ondition � = 4N� u� tr 1Æ0 + �+ k2q + � k2? + j!nj : (4.92)The saddle point approximation 
an be justi�ed in the limit of a large number of 
omponentsN while treating the quarti
 
oupling u as of order 1=N .By 
al
ulating the sus
eptibility we 
an identify Æ0+� with ��2, where � is the 
orrelationlength, ��1(k; i!n) = Æ0 + �+ k2q + � k2? + j!nj : (4.93)4.3.1 Zero-temperature mass gapAt zero temperature the saddle point 
ondition be
omes� = Æ0 + 4N�u� Z d3k(2�)3 Z d!2� 1� + k2q + � k2? + j!j : (4.94)We 
an identify the position of the quantum 
riti
al point with the 
ondition that the massgap � vanishes at the quantum phase transition,Æ
 = �4N�u� Z d3k(2�)3 Z d!2� 1k2q + � k2? + j!j : (4.95)Introdu
ing the 
ontrol parameter r � Æ0 � Æ
Nu=�2 (4.96)that measures the distan
e to the quantum 
riti
al point we obtain for the mass gap� = Nu�2 r + 4N�u� Z d3k(2�)3 Z d!2� � 1� + k2q + � k2? + j!j � 1k2q + � k2? + j!j� : (4.97)81



Chapter 4. Anisotropi
 Hertz TheoryWith the help of the s
aling fun
tion�� ���2� � 2�3�� Z d3k(2�)3 Z d!2� � 1k2q + � k2? + j!j � 1� + k2q + � k2? + j!j�� log 1p��2= 23  1 +s ���2 ar
tanr��2� !� 12 �1 + ��23� � log�1 + ���2� ; (4.98)where we applied the 
uto� s
heme of Se
tion 4.1.1, this 
an be rewritten asNu�2 r = �(1 + 4Nu2�2  log 1p��2 + �� ���2�!) : (4.99)The fun
tion � has the limiting behavior�(x) = 8>><>>: 12 log 1x + 43 +O�1x log 1x� for x� 112 + �3px+O (x) for x� 1 : (4.100)In the 3D regime, �� ��2, the relation (4.99) simpli�es tor = � log0�e e �2Nu��2 1A for �� ��2 ; (4.101)whi
h means that the mass gap is simply proportional to the 
ontrol parameter r. In the 2Dregime, �� ��2, we obtainr = � log0�e8=3e �2Nu� 1A for �� ��2 : (4.102)As expe
ted, at the upper 
riti
al dimension, d + z = 4, the 
orrelation length exponent �deviates from its Landau value � = 1=2 by logarithmi
 
orre
tions, � � r= log 1r .4.3.2 Correlation lengthThe 
orrelation length as a fun
tion of 
ontrol parameter r and temperature T is given by��2 = Nu�2 r + 4N�u� Z d3k(2�)3 (T X!n 1��2 + k2q + � k2? + j!nj � Z d!2� 1k2q + � k2? + j!j) :(4.103)Rearranging terms and applying the 
uto� s
heme of Se
tion 4.1.1 this 
an be rewritten as��2(1 + 4Nu2�2  log 1p��2 + �� ��2��2�!) = Nu�2 r + 4Nu2� T �� T��2 ; ��2��2� ; (4.104)where the s
aling fun
tion � is de�ned in (4.81).82



4.4. Dis
ussion4.3.3 Phase boundarySetting ��2 = 0 in expression (4.104) yields for the 
riti
al temperature T
r = �2�T
�� T
��2 ; 0� : (4.105)In the following we will use the limiting behavior (4.84) of the s
aling fun
tion � to distinguishagain between the 2D and the 3D regime.2D regime: T
 � ��2In the 2D regime we 
an approximate �(x; 0) � logpx and obtainr = ��T
 log T
��2 : (4.106)3D regime: T
 � ��2In the 3D regime, �(x; 0) � � �32� � �32�px=2, we getr = ��3=2 � (3=2)p2 T 3=2
p��2 : (4.107)This again 
on�rms the result (4.39) obtained in the framework of the Millis RG.4.4 Dis
ussionWe have investigated the anisotropi
 Hertz model (4.4) with a spe
ial emphasis on the di-mensional 
rossover. We applied three di�erent methods | the Millis RG, the method ofdimensional redu
tion and the large N method | in order to determine the 
rossover lines.In 
omparison with the solution of the isotropi
 Hertz theory presented in Chapter 3we found three new 
rossover lines asso
iated with the dimensional 
rossover, see Fig. 4.3.These are determined by 
omparing the squared inverse 
orrelation length ��2, the tempera-ture T and the 
ontrol parameter r with the squared inverse stret
hed latti
e 
onstant ��2,see Fig. 4.2. The parameter ��2 determines the extent of the 3D po
ket around the quan-tum 
riti
al point where the three-dimensional spin 
u
tuations dominate. Furthermore, the
rossover line ��2 � ��2 signi�es that 
lose to the 
lassi
al �nite temperature transition thethree-dimensional 
hara
ter of the theory dominates. It is asso
iated with the 
uto� of thelogarithmi
 Mermin{Wagner divergen
e (3.1) present in two spa
e dimension. As a 
onse-quen
e, the N�eel temperature (4.39) is logarithmi
ally suppressed by a fa
tor log T
=(��2) andvanishes in the limit ��2 ! 0, in agreement with the Mermin{Wagner theorem (for N > 2).The logarithmi
 suppression of the N�eel temperature 
an be estimated by 
omparing with thequantum 
riti
al{Fermi liquid 
rossover line, and the di�eren
e between their slopes yields aqualitative estimate of the anisotropy present in the system.Moreover, we have shown that the anisotropy parameter � is a relevant quantity in theRG sense in the regime where the two-dimensional spin 
u
tuations dominate, i.e. whenthe RG 
ow is still towards the primary, 2D �xed point. SuÆ
iently 
lose to the quantum
riti
al point, i.e. within the 3D po
ket (see Fig. 4.3), the RG 
ow is eventually dominated83
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Figure 4.7: Thermal expansion (left panel) and spe
i�
 heat 
oeÆ
ient (right panel) in thequantum 
riti
al regime r = 0 for di�erent anisotropies ��. The inset in ea
h graph shows alogarithmi
 plot of the same 
urves. The dimensional 
rossover at a temperature T � ��2 is
learly seen as a knee in the temperature dependen
e of the thermal expansion whereas thereare only small signatures in the spe
�
 heat. In both graphs dimensionless units have been
hosen.by the se
ondary, 3D �xed point. Within the 3D po
ket all physi
al quantities exhibit s
alingbehavior with the s
aling variables: anisotropy ��2, temperature T and zero-temperaturegap �. The relevan
e of the anisotropy parameter � with respe
t to the primary �xed pointis parti
ularly important when 
onsidering the thermal expansion, whi
h in the 2D regimeis 
omposed of two equally important 
ontributions: �QCP (4.42) arising from the pressuresensitivity of the 
ontrol parameter r, and �� (4.43) stemming from the pressure sensitivityof the anisotropy parameter �. However, within the 3D po
ket the additional 
ontribution�� is only sub-leading in 
omparison to �QCP.We expe
t that the experimental identi�
ation of the dimensional 
rossover in the 
om-pound CeCu6�xAux is more easily a
hieved by measuring the thermal expansion than thespe
i�
 heat. The underlying reason has already been dis
ussed in detail in Chapter 1: thethermal expansion is more singular than the spe
i�
 heat whi
h makes it also easier to dete
t
rossover behavior. In Fig. 4.7 theoreti
al 
urves of the thermal expansion and the spe
�
heat are shown at the 
riti
al value r = 0 for di�erent anisotropies. Whereas there are onlyweak signatures at the dimensional 
rossover in the spe
i�
 heat, a pronoun
ed knee is visiblein the thermal expansion initiating the 
rossover from a logarithmi
 divergen
e to a squareroot suppression as a fun
tion of temperature, see Se
tion 4.1.6. It should be noted that thespe
i�
 heat 
oeÆ
ient smoothly 
rosses over from a logarithmi
 temperature dependen
e toa square root dependen
e at r = 0. In parti
ular, the slope de
reases monotoni
ally at thedimensional 
rossover and no S
hottky-like anomaly is expe
ted.In outlook we mention that it seems promising to 
onsider a further quantity likely tobe even more sensitive to the dimensional 
rossover than the thermal expansion: the elasti

onstant [39, 40℄ whi
h 
an be obtained by measuring sound velo
ities. Taking only thepressure sensitivity of the 
ontrol parameter into a

ount the elasti
 
onstant 
 is proportionalto the se
ond derivative of the free energy with respe
t to the 
ontrol parameter, 
 / d2F=dr2,84



4.4. Dis
ussionand it is therefore the quantum 
riti
al 
ounterpart of the spe
i�
 heat at the 
lassi
al �nitetemperature transition. The elasti
 
onstant is expe
ted to be very sensitive to 
hanges in thes
aling behavior, and it is therefore a possible 
andidate for the dete
tion of the dimensional
rossover in CeCu6�xAux.
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Appendix A
A.1 Gr�uneisen parameter for gapped systems | QCP of non-intera
ting bosonsIn this se
tion we modify the expansion (1.24) of the s
aling fun
tion 	LT in the low-temperature regime in order to a

ount for the physi
s of gapped systems, i.e. systems whoseentropy vanishes exponentially with temperature, S � e��=T where � is an energy gap.For illustration let us 
onsider the simple 
ase of non-intera
ting bosons in three dimen-sions. The free energy reads [41℄F = TV Z d3k(2�)3 log�1� e��(�k��)� = �T V�3T g5=2(z) : (A.1)where V is the volume. We introdu
ed the thermal wavelength �T =p2�=(mT ), the fuga
ityz = e�=T and the fun
tion ga, ga(z) = 1Xn=1 znna ; (A.2)whi
h has the 
onvenient property zg0a(z) = ga�1(z). Moreover, we used a quadrati
 dispersionfor the bosons �k = k2=(2m). In writing (A.1) we 
on�ned ourselves to the disordered side,z < 1, where the bosons are not 
ondensed yet. Bose-Einstein 
ondensation takes pla
ewhen the (negative) 
hemi
al potential rea
hes zero. The 
hemi
al potential 
an thereforebe identi�ed with the 
ontrol parameter of the quantum 
riti
al point. Taking the derivativewith respe
t to temperature we obtain the entropy,S = V�3T �52g5=2(z)� g3=2(z) log z� : (A.3)Comparing this expression with the s
aling form of the entropy in the quantum 
riti
al regimeintrodu
ed in (1.23) we 
an 
on
lude that the 
riti
al exponents are given by (applying hy-pers
aling � = d+ z and using d = 3),z = 2 and � = 1=2 : (A.4)Furthermore, for the sake of 
omparison with se
tion 1.3.3 we introdu
e the non-universaltemperature s
ale T0 = 2�=(mV 2=3) and the 
ontrol parameter r = �=T0 < 0. We 
an identifythe s
aling fun
tions to be 	QCR(x) = 52g5=2 (ex)� x g3=2 (ex) (A.5)	�LT(x) = x3=2	QCR(�1=x) (A.6)86



A.1. Gr�uneisen parameter for gapped systems | QCP of non-intera
ting bosonsSin
e we restri
ted ourselves from the beginning to the un
ondensed phase, � < 0, the s
alingfun
tion 	+LT for positive values of the 
ontrol parameter is beyond this simple approa
h. We
an expli
itly evaluate the limits for small arguments x! 0,	QCR(x) = 52� �52�+ 32� �32�x+O(x2) (A.7)	�LT(x) = x1=2 e�1=x +O �x3=2e�1=x� : (A.8)The s
aling fun
tion in the quantum 
riti
al regime 	QCR is analyti
 as assumed in (1.24).The Gr�uneisen parameter in the quantum 
riti
al regime 
an be read o� from (1.28) to be�QCR;
r = �2 �(3=2)5 �(5=2) � TT0��1 : (A.9)On the other hand, the s
aling fun
tion 	�LT is non-analyti
! In parti
ular, the entropy doesnot de
ay algebrai
ally as assumed in (1.25) but falls o� exponentially. The exponentialde
ay of the entropy represents an Arrhenius fa
tor e�j�j=T des
ribing the thermal ex
itationsa
ross the gap of the ex
itation spe
trum of size �! In general, all gapped systems have anentropy de
aying exponentially at low temperatures, and they are therefore not 
aptured bythe expansion Ansatz (1.24).For gapped system the s
aling fun
tion 	LT is rather expe
ted to behave as	LT(x) = C1 xae�C2=x + : : : for x! 0 (A.10)where C1 and C2 are some positive 
onstants and a is a positive or negative exponent. Inparti
ular, for the non-intera
ting Bose gas we have C1 = C2 = 1 and a = 1=2. Repeatingthe analysis of se
tion 1.3.3 for the modi�ed expansion (A.10) we obtain for the leading
ontribution of the spe
i�
 heat and the thermal expansion in the low-temperature regimeT �S�T � C1C2 jrj�(��z)� TT0 jrj��z�a�1 e�C2jrjvzT0=T (A.11)�S�r � �C1C2 �z jrj�(��z) 1r � TT0 jrj��z�a�1 e�C2jrjvzT0=T : (A.12)This yields the universal Gr�uneisen parameter for gapped systems in the low-temperatureregime �
r = �zr for jrj (T=T0)� 1�z � 1 : (A.13)Interestingly, one would have obtained this result from expression (1.28) by just taking naivelythe limit of the spe
i�
 heat exponent y0 !1.In parti
ular, for the non-intera
ting Bose gas we have��;
r � � (�S=��)T (�S=�T ) = 8>><>>: �2 �(3=2)5 �(5=2) 1T for 0 < ��� T1� for � �� T : (A.14)87



Appendix AA.2 Lindhard fun
tionIn this se
tion we evaluate the Lindhard fun
tion (2.14) and determine its form in the limitof small momentum and frequen
y. Let us 
onsider the Lindhard fun
tion as a fun
tion ofthe 
omplex frequen
y variable z,�0(z;k) = � 1�V X
m;q 1(�i
n + �q) (�i
n � z + �q+k) = � 1V Xq f(�q)� f(�q+k)�q � �q+k + z ; (A.15)where f is the Fermi fun
tion and the Matsubara sum has been evaluated by standard meth-ods. The physi
al (retarded) response fun
tion, the dynami
al suszeptibility, is given in thelimit as we approa
h the real frequen
y axis from above�0(! + i0+;k) = �00(!;k) + i�000(!;k) : (A.16)The imaginary part �000 des
ribes the dissipation due to the ex
itations of virtual ele
tron{holepairs out of the Fermi sea usually known as Landau damping,�000(!;k) = � Z dq(2�)3 (f(�q)� f(�q+k)) Æ (�q � �q+k + !) : (A.17)The Lindhard fun
tion 
an be evaluated expli
itely in the free ele
tron model, i.e. by assuminga simple quadrati
 dispersion relation �k = k2=(2m�)�� [see se
tion 5.1 of [26℄℄. A dis
ussionof the low{momentum, low{frequen
y properties in the general 
ase 
an be found in [42℄. Atsmall frequen
ies we 
an expand the se
ond Fermi fun
tion and the expression simpli�es atzero temperature to an integral over a surfa
e region in momentum spa
e�000(!;k) � � ! Z dq(2�)3 ���f(�q)��q � Æ (�q � �q+k + !) (A.18)= �NF ! Z d
q4� Æ (�q � �q+k + !)�����q=�F :ferromagneti
 instabilityIf the spin{density wave instability is of a ferromagneti
 nature, i.e. if the instability o

ursat k = 0, the above expression 
an be simpli�ed further. Expanding the energy �q+k insidethe delta fun
tion for small k and assuming an isotropi
 Fermi surfa
e the angular integral
an be evaluated and yields for theferromagneti
 instability: �000(!;k) � �2NF !vFk�(vF2k2 � !2) : (A.19)The frequen
ies ! > vFk are lying outside the parti
le{hole 
ontinuum and the Landaudamping vanishes in this frequen
y range. The momentum vFk therefore provides a natural
uto� for Landau damping. The dispersive part, �00, is an even fun
tion of frequen
y andmomentum. Its value at zero frequen
y and zero momentum is easily evaluated to give thedensity of states at the Fermi energy NF. The 
orre
tions to it will start quadrati
ally infrequen
y and momentum. 88



A.3. Linked 
luster expansionantiferromagneti
 instabilityIn the 
ase of an antiferromagneti
 instability the Lindhard fun
tion has a maximum at a�nite waveve
tor k = Q0. The 
riti
al behaviour is then dominated by the small 
u
tuationsÆk = k � Q0 around this value. It turns out that in 
ontrast to the ferromagneti
 
asethe leading 
ontribution to the dissipative part does not depend on the momentum. Settingk = Q0 in (A.18) the remaining integral over the momentum surfa
e is expe
ted to givea �nite value whi
h will however depend on the spe
i�
 energy{momentum relation. Thatmeans the leading 
ontribution to the dissipative part reads for anantiferromagneti
 instability: �000(!;Q0) � ! : (A.20)The dispersive part, �00, will also depend on the spe
i�
 band stru
ture. The important ob-servation is that the leading 
orre
tions in the momentum 
u
tuations Æk starts quadrati
allysin
e �0(k; 0) has a maximum at k = Q0.A.3 Linked 
luster expansionHere we 
ite expli
itly the 
ontributions of all diagrams of the linked 
luster expansion upto se
ond order in the quarti
 
oupling u in the Hertz' theory (2.23). The 
orre
tions to theGaussian part of the free energy are given by the linked 
luster diagrams,F � FGaussian = � 1� Dexp h�S(4)iE
onne
ted (A.21)where the average has to be taken with respe
t to the quadrati
 part S(2) of (2.23). Thefollowing diagrams 
ontribute,= ��gN2I2 = ��g2NI2= �� g22 8N3JI2 = �� g22 32N2JI2= �� g22 32NJI2 = �� g22 16NK (A.22)= �� g22 8N2K : 89



Appendix AWe introdu
ed the quantitiesI = 1�V X!n;k�0(i!n;k) ; J = � 1�V X!n;k�0(i!n;k)�0(�i!n;�k) ;K =� 1(�V )4 X!nj ;kjj=1;2;3;4V Æ 4Xi=1 ki!�Æ 4Xi=1 !in! (A.23)� �0(i!1n;k1)�0(i!2n;k2)�0(i!3n;k3)�0(i!4n;k4) :where �0 is the Hertz propagator (2.27). This results in the free energy,F = FG + gN(N + 2)I2 + g22! �8N(N + 2)2I2J + 8N(N + 2)K� : (A.24)
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Chapter 5Introdu
tion5.1 Motivation: disorder e�e
ts in heavy fermionsThe unusual properties of heavy fermion materials [43℄, for example the un
onventional,i.e., non-Fermi liquid magneti
 sus
eptibility and (weakly divergent) spe
i�
 heat are stillla
king a 
omplete theoreti
al understanding. In some of these materials disorder seems tobe an essential ingredient of the physi
s observed and at the origin of the non-Fermi liquidbehavior. The role of disorder in these systems 
an be multifarious.Many experimental results 
an be des
ribed within the rather simple Kondo disordermodel (KDM) [44, 45℄. It assumes that ea
h magneti
 moment of the rare-earth ions 
ouplesindependently to the spins of the 
ondu
tion ele
trons via an ex
hange intera
tion J . However,the ex
hange 
ouplings between the lo
al moments, e.g. the RKKY intera
tion mediatedindire
tly by the 
ondu
tion ele
trons, are negle
ted. In the simplest version of the KDMthe in
uen
e of disorder is only taken into a

ount in the form of a spatial variation of the
oupling J(R). This ex
hange intera
tion enters physi
al quantities only in the form of theKondo temperature TK that depends exponentially on J(R), namely TK � e�1=(2J(R)�) where� is the density of states of the 
ondu
tion ele
trons. Due to this exponential dependen
e amodest variation of the ex
hange 
oupling, J(R), 
an lead to a broad distribution of Kondotemperatures and, 
onsequently, to a dramati
 e�e
t on the low temperature properties.However, many heavy fermion systems are lo
ated near a magneti
 instability where thephysi
s is more 
ompli
ated. The 
ondu
tion ele
trons are 
olle
tively bound to the rare-earth ions, s
reening their lo
al moments. The binding energy is the Kondo temperature TK.Near the magneti
 stability this Kondo e�e
t 
ompetes with the RKKY intera
tion betweenthe lo
al moments that is struggling to align them and thus to establish long range order [46℄.Whi
h me
hanism prevails depends on how the asso
iated energy s
ales, TK and TRKKY,
ompare with ea
h other [46℄. (Magneti
 instabilities in 
lean metals and the asso
iatedquantum phase transitions formed the subje
t of the �rst part of this work.) The presen
e ofdisorder will possibly alter the physi
al pi
ture 
ompletely. A general s
aling argument in the
ase of \bond-disorder", i.e. statisti
al variation of the 
oupling between the lo
al moments,states that disorder 
annot be negle
ted if the 
orrelation length exponent of the 
lean system,�, and the spatial dimension d ful�ll the so-
alled Harris 
riterion [2℄:� < 2d : (5.1)Disorder is then a relevant perturbation to the 
lean theory, ultimately leading eventually92



5.2. Model of a magneti
 mini-domainto new �xed points. In parti
ular, the Harris 
riterion is ful�lled and randomness has tobe taken into a

ount in two and three dimensions for the Hertz{Millis theory presented inChapter 2 where we have � = 1=2. Beyond the knowledge of its relevan
e, however, the roleof disorder in quantum 
riti
al systems is only poorly understood [2℄.An e�e
t whi
h may result from the presen
e of disorder is the generation of magneti
\droplets", lo
ally 
on�ned 
ondensation of the magnetization order parameter surroundedby an otherwise on average unordered medium. Due to disorder 
u
tuations of the intera
-tions there are small regions in spa
e where the RKKY intera
tion lo
ally dominates over theKondo e�e
t leading to the formation of small magneti
 domains. These magneti
 dropletswill dominate, for example, the sus
eptibility, resulting in so-
alled \GriÆth{M
Coy" singu-larities [2℄.In a series of papers A. H. Castro Neto and B. A. Jones [47, 48, 49℄ 
onsidered thedynami
s of su
h a single magneti
 droplet and gave qualitative arguments proposing thatit should behave as an e�e
tive spin 
oupled to an ele
tron liquid undergoing a \
lusterKondo e�e
t". Properties like the 
luster Kondo temperature depend on the number oflo
al moments of whi
h the 
luster is formed. The statisti
s of 
luster sizes is re
e
ted ina distribution of 
luster Kondo temperatures leading to anomalous thermodynami
 behaviorin the spirit of the KDM. This viewpoint was 
hallenged by A. J. Millis, D. K. Morr andJ. S
hmalian [50, 51℄ suggesting that the dissipative bath of ele
trons suppresses the tunnelingbetween the 
luster 
on�gurations for larger droplets destroying the 
luster Kondo e�e
t. Inanother letter N. Shah and A. J. Millis [52℄ studied an extended magneti
 nanostru
ture andfound that the quantum 
u
tuations within the 
luster, whi
h had been previously ignored,have a dramati
 e�e
t on the low temperature behavior. GriÆth{M
Coy phases near quantum
riti
al points remain to be a 
ontentious issue and further work is required to fully understandtheir 
ompli
ated nature.5.2 Model of a magneti
 mini-domainIn the following 
hapters we would like to 
ontribute to the understanding of the physi
s ofmagneti
 
lusters by 
onsidering the dynami
s of the smallest possible magneti
 droplet: anantiferromagneti
ally ordered domain whi
h 
onsists of just two strongly 
oupled lo
alizedspin-12 , HMD = Kij Si(R=2)Sj(�R=2) ; (5.2)lo
ated at positions R=2 and �R=2. In heavy fermion materials the spin-orbit intera
tionsare quite strong due to the heavy masses of the rare-earth ions and spin rotation invarian
e isdestroyed. We assume that this leads to a preferred easy axis in the material along whi
h themoments tend to order. We will take this into a

ount with a strongly anisotropi
 Ising-likeex
hange 
oupling, (Kij) = diagfK?;K?;Kzg where jK?j � Kz : (5.3)The disorder 
u
tuations favor the 
oupling between the two sele
ted lo
al moments givingrise to a tiny magneti
 droplet. We assume that the 
oupling between the moments is mu
hstronger than their 
oupling to the remaining f-ele
tron system, so that the latter 
an benegle
ted. Furthermore, the gas of magneti
 droplets is so dilute that the intera
tion betweendroplets is also negligible. The lo
al physi
s is therefore governed by the Hamiltonian (5.2)93



Chapter 5. Introdu
tionin 
ombination with the intera
tion of the lo
al moments to the 
ondu
tion ele
tron system,to be des
ribed below.
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In the limit of a large Ising 
oupling, Kz � K?,the lo
al moments tend to form what we 
all in thefollowing an antiferromagneti
 mini-domain, Fig. 5.2.The four energy levels of the Hamiltonian (5.2) arewell separated into two pairs, see Fig. 5.1. This shouldbe 
ontrasted with the 
ase of an SU(2)-symmetri

oupling where the eigenstates are given by a singletand a degenerate triplet. For an antiferromagneti

oupling Kz > 0 the degenerate ferromagneti
 
on-�gurations have a mu
h higher energy. If Kz is thelargest energy s
ale involved the Hilbert spa
e 
anbe 
on�ned to the two lowest-lying levels in the low-temperature limit. Their eigenstates 
orrespond tothe even and odd 
ombinations of the two antiferro-magneti
 
on�gurations shown in Fig. 5.2,j+i = 1p2 (j"#i + j#"i) ;j�i = 1p2 (j"#i � j#"i) : (5.4)This e�e
tive two level system | the mini-domain |may be represented by a pseudospin ~� , where � i, i =1; 2; 3, are the usual Pauli-matri
es. The small energydi�eren
e of �K?=2 between the two states j+i andj�i then 
orresponds to a \pseudo-magneti
" Zeemansplitting and the low-temperature Hamiltonian HMD
an be expressed as HMD = K?2 �3 : (5.5)When the mini-domain is 
oupled to the 
ondu
tion ele
trons quantum 
u
tuations be-tween the two 
on�gurations of the mini-domain are indu
ed, whi
h will eventually lead tonon-trivial dynami
s. We model the intera
tion between the mini-domain and the 
ondu
tion
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oupling Kz between the lo
alized spins.94



5.3. Overview: two-impurity Kondo modelele
trons by a Kondo 
oupling of ea
h spin to the Fermi sea,HK = 2J ij �si(R=2) Sj(R=2) + si(�R=2) Sj(�R=2)� (5.6)= J ijXkq �ei(k�q)R=2 
yk��i��
q� Sj(R=2) + e�i(k�q)R=2 
yk��i��
q� Sj(�R=2)� :The 
oupling J ij is assumed to be the same for both impurity spins, thus preserving paritysymmetry of the Hamiltonian HK . However, it will in general be anisotropi
, i.e.,(J ij) = diagfJ?; J?; Jzg : (5.7)The ele
trons, 
k�, are assumed to belong to a featureless band with the kineti
 part H0 =Pk�(�k� � �)
yk�
k�. The model Hamiltonian whose analysis will o

upy the following 
hap-ters reads H = H0 +HMD +HK : (5.8)We will be mainly interested in the dynami
s of the model in the parameter regime wherethe energy s
ale Kz responsible for the formation of the mini-domain is predominant. InChapter 6 we derive the 
orre
tions to the low-energy Hamiltonian (5.5) by treating theKondo 
oupling J as a perturbation. Through se
ond-order pro
esses, the Kondo 
ouplingJ will indu
e transitions between the states (5.4) of the low-temperature Hilbert spa
e viavirtual ex
itations of the ferromagneti
 states, j ""i and j ##i. This will result in an e�e
tivepseudospin{Kondo Hamiltonian.In Chapter 7 we will restri
t the model in the sense that we assume that (a) the perpen-di
ular 
oupling between the spins vanishes identi
ally, K? = 0, and (b) the ele
troni
 bathat the respe
tive impurity sites are not 
orrelated with ea
h other. Although these simpli-�
ations might appear arti�
ial in the 
ontext of Kondo impurities in heavy fermions it isnot only helps understand the various me
hanisms 
ompeting with ea
h other but also has anatural realization in double-quantum dot systems. As we will explain the two assumptions(a) and (b) allow for a quantum phase transition: As a fun
tion of the 
ouplings Kz, Jz andJ? the mini-domain either freezes in one of its two 
on�gurations or is s
reened in a \
lus-ter Kondo e�e
t". The theory des
ribing the phase transition is indeed an e�e
tive Kondomodel. In experimental realizations of the redu
ed mini-domain model in terms of quan-tum dots this transition leads to a universal jump in the 
ondu
tan
e or to a 
hara
teristi
zero-bias anomaly depending on the experimental set-up.5.3 Overview: two-impurity Kondo modelThe Hamiltonian (5.8) is a variant of the two-impurity Kondo model, whi
h has been studiedalready for over twenty years. In its original formulation | in 
ontrast to (5.8) | it assumesan SU(2)-symmetri
 ex
hange 
oupling, Kq = K? = K. In the following we will give a shortoverview of its main 
hara
teristi
s.The two-impurity Kondo model was introdu
ed by C. Jayaprakash, H. R. Krishna-murthyand J. W. Wilkins in Ref. [53℄, where they identi�ed the di�erent ground states existing inits parameter spa
e. There are two di�erent energy s
ales to be 
ompared: the 
ouplingK and the single-impurity Kondo temperature TK . If the 
oupling is small, jKj � TK ,ea
h impurity is separately s
reened by the 
ondu
tion ele
trons and the 
oupling K plays a95



Chapter 5. Introdu
tionminor role. For large antiferromagneti
 
oupling, K � TK , the two impurities form a singletand are de
oupled from the low-energy dynami
s of the 
ondu
tion ele
trons. Finally, forlarge ferromagneti
 
oupling, �K � TK , the model maps onto a two-
hannel spin-1 KondoHamiltonian. A generi
 
hannel anisotropy leads to the so-
alled two-stage Kondo e�e
t:upon lowering the temperature the stronger 
oupled 
hannel s
reens half a unit of the spin-1impurity. At even lower temperatures the remaining spin-12 is quen
hed by the other 
hannelleaving a lo
al Fermi liquid. This early pi
ture was subsequently 
on�rmed by numeri
alrenormalization group 
al
ulations (NRG) [54, 55℄ and Monte Carlo studies [56℄.Generi
ally, there is a smooth 
rossover between the di�erent regimes, e.g. the sus
epti-bility shows a smooth transition from the Kondo regime, jKj � TK , to the strong 
ouplingregime, jKj � TK . That means that there is no quantum phase transition separating theregimes in the generi
 
ase. However, the situation 
hanges drasti
ally in the presen
e of a 
er-tain type of parti
le{hole symmetry. This 
an be rationalized by a phase-shift argument givenin Ref. [57℄. When the 
ouplingK is varied the phase shift is expe
ted to 
hange 
ontinuouslyfrom the unitary-limit value �=2 in the Kondo phase to zero in the strong 
oupling phase.However, in the presen
e of parti
le{hole symmetry this 
annot happen sin
e a well-de�nedzero-energy phase-shift 
an only be 0 or �=2. As a 
onsequen
e, there must be a point in thephase diagram whi
h does not belong to either phase, but 
orresponds to some kind of phasetransition. In the 
ase of a �rst order transition the phase shift would jump from one value tothe other. However, NRG 
al
ulations [58, 59℄ indi
ated that the transition is 
ontinuous. A
onformal-�eld theory approa
h by I. A�e
k et al. [59℄ and a Abelian bosonization analysisby J. Gan [60, 61, 62℄ identi�ed the 
riti
al theory to be indeed of non-Fermi liquid type andtherefore not 
hara
terizable in terms of a well-de�ned phase shift. The 
riti
al theory wasshown to be a two-
hannel Kondo model [63℄: only a single Majorana fermion 
ouples to theimpurity spins, whi
h is ensured by a hidden SO(7) symmetry [59, 60, 61, 62℄.
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Chapter 6Magneti
 Mini-Domain in a MetalIn this 
hapter we analyze the mini-domain model (5.8) in the limit of strong 
oupling wherethe energy s
ale Kz that holds the mini-domain together is mu
h larger than any other s
aleinvolved in the problem. To zeroth order in the Kondo 
ouplings, Jz and J?, the e�e
tiveHamiltonian is just given by HMD, de�ned in equation (5.5). It was obtained by trun
atingthe Hilbert spa
e taking into a

ount only the low-lying antiferromagneti
 states, j #"i andj "#i, whi
h 
an be des
ribed by an e�e
tive pseudospin, see Fig. 5.1. In this 
hapter we
onsider the modi�
ations of the e�e
tive low-energy Hamiltonian due to the 
ouplings of thelo
al moments to the ele
trons. We will �nd that the 
ondu
tion ele
trons indu
e transitionbetween the two antiferromagneti
 
on�gurations. Taking these pseudospin 
ips into a

ountthe e�e
tive Hamiltonian has the form of an e�e
tive Kondo Hamiltonian in a pseudo-magneti
�eld. Moreover, we will show that it is of a two-
hannel type.
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Figure 6.1: Spe
i�
 heat of CeCu6�xAux fromRef. [37℄, see main text.

In Fig. 6.1 the spe
i�
 heat ofCeCu6�xAux is shown. This heavyfermion 
ompound orders antiferromag-neti
ally for doping levels larger thanthe 
riti
al value of x = 0:1. The log-arithmi
 divergen
e of the spe
i�
 heat
oeÆ
ient dire
tly at the 
riti
al dop-ing 
an be understood in the frameworkof the the Hertz{Millis theory presentedin Chapter 2 under the assumption thatthe spin 
u
tuations are dominantly twodimensional [7℄. However, even for adoping level of �fteen and twenty per-
ent of gold, i.e. far away from the zerotemperature magneti
 instability x =0:1, the spe
i�
 heat 
oeÆ
ient does notsaturate at lowest temperatures as it isexpe
ted of a Fermi liquid. Instead, thepe
uliar in
rease persists whi
h suggeststhat the system still possesses a substan-tial amount of residual entropy.The residual entropy may be explained by the presen
e of almost degenerate two-level97



Chapter 6. Magneti
 Mini-Domain in a Metalsystems like the mini-domain that is the subje
t of this 
hapter. Moreover, the 
hara
ter-isti
 feature of the e�e
tive two-
hannel Kondo model, whi
h governs the dynami
s of thestrongly 
oupled mini-domain, are non-Fermi liquid signatures, for example, a logarithmi
allydiverging spe
i�
 heat 
oeÆ
ient [64, 12, 63℄. One might spe
ulate that the similar signa-tures observed in CeCu6�xAux are due to the formation of a dilute gas of small magneti
mini-domains, ea
h generi
ally undergoing two-
hannel Kondo type physi
s. However, as wewill explain in detail in the following se
tions, the e�e
tive Hamiltonian always in
ludes apseudo-magneti
 �eld. Pronoun
ed non-Fermi liquid behavior is only expe
ted if this �eldis suÆ
iently small 
ompared to the e�e
tive Kondo temperature. Thus whether or not thetwo-
hannel Kondo e�e
t develops depends on the mi
ros
opi
 details.We will start in Se
tion 6.1 by analyzing the symmetries of the model (5.8). In Se
tion 6.2we introdu
e the pseudospin notation for the 
ondu
tion ele
trons. By applying a S
hrie�er{Wol� transformation we will derive the e�e
tive Hamiltonian in the strong 
oupling limit,Kz ! 1. Finally, in Se
tion 6.5 this e�e
tive Hamiltonian is treated within a poor man'srenormalization group treatment to investigate its low-energy behavior.6.1 Symmetries6.1.1 Conservation of the z-
omponent of total spinIt will turn out to be 
ru
ial that the z-
omponent of spin of the mini-domain is 
onserved.The restri
ted low-energy Hilbert spa
e 
onsists of the two antiferromagneti
 states j"#i andj #"i, whi
h are eigenstates of the operator Sz(R=2) + Sz(�R=2) with eigenvalue zero. The
orresponding pseudospin of the mini-domain thus 
arries a zero z-
omponent of spin. Inparti
ular, if the pseudospin is 
ipped, e.g. from j "#i to j #"i, the spin of the mini-domaindoes not 
hange. Moreover, sin
e the Kondo 
oupling of the ele
trons to the mini-domain,(5.6), 
onserves spin, it follows that an ele
tron 
annot transfer spin to the mini-domain inpseudospin-
ip pro
esses. We at on
e 
on
lude that for symmetry reasons the up- and down-spin ele
trons have to 
ouple separately to the mini-domain at low temperatures leading totwo di�erent 
hannels. The 
onservation of the z-
omponent of total spin,Sztot = Sz(R=2) + Sz(�R=2) + 12Xk 
yk��z��
k� (6.1)in the model Hamiltonian (5.8) is the underlying reason for the degenera
y of these two
hannels.At this point we should remark on the physi
al justi�
ation of this symmetry. The modelwas motivated by the physi
s of heavy fermions whi
h are 
hara
terized by strong spin-orbit
oupling arising from their heavy rare-earth ions. In fa
t, the strong spin-orbit 
oupling isthe driving for
e whi
h eventually leads to the pronoun
ed anisotropy of the dire
t 
ouplingK between the two impurity spins (5.2). All the spins of our model should therefore rather beregarded as e�e
tive spins arising, e.g., from the lowest-lying two-level systems of a multipletof the total angular momentum that is split by 
rystal �elds. In order to have a preservedspin z-
omponent, a residual axial symmetry has to be present. The pi
tures I and II ofthe mini-domain Fig. 5.2 do not take this into a

ount and are therefore misleading. Oneshould rather think of the mini-domain as 
onsisting of the 
on�gurations shown in Fig. 6.2.98



6.1. Symmetries
I II

Figure 6.2: Two 
on�guration of themini-domain with a axial symmetry.The wiggly lines indi
ate the strong
oupling Kz between the spins.

However, we will 
ontinue to ignore the subtleties aris-ing from the modi�
ations of the band stru
ture dueto spin-orbit s
attering and maintain the momentumlabel on the kineti
 energy of the 
ondu
tion ele
trons,�k�.6.1.2 ParityGenerally, a parity transformation reverses position rand momentum p and leaves the spin s un
hanged,r �! �r ;p �! �p ; (6.2)s �! s :In parti
ular, the spin �eld given by the two lo
alizedimpurity spins transforms asSi(�R=2) �! Si(�R=2) : (6.3)Under parity the 
on�guration I shown in Fig. 5.2 or inFig. 6.2 transforms to 
on�guration II and vi
e versa,i.e. the eigenstates of the low-energy Hilbert spa
e (5.4), j+i and j�i, have even and oddparity, respe
tively. Sin
e they are eigenstates of the pseudospin operator �3 introdu
ed in(5.5), this pseudospin 
omponent 
an be identi�ed as the parity operator P in pseudospin-spa
e. In parti
ular, the pseudospin ~� itself transforms as~� �! �3 ~� �3 = 0� ��1��2�3 1A under P . (6.4)We will demand invarian
e of the model under parity transformation, whi
h implies that thedispersion relation satis�es �k� = ��k�.6.1.3 Time-reversal symmetryA time-reversal operation T leaves the position r un
hanged and reverses momentum p andthe spin s, r �! r ;p �! �p ; (6.5)s �! �s :The spin �eld transforms a

ordingly asSi(�R=2) �! �Si(�R=2) : (6.6)As in the 
ase of parity the states j+i and j�i therefore also have a de�nite signature undertime-reversal. The time-reversal operator in pseudospin-spa
e is given by �3C where C is the99



Chapter 6. Magneti
 Mini-Domain in a Metal
omplex-
onjugation operator,~� �! �3 C~� ��3C��1 = 0� ��1�2�3 1A under T . (6.7)We will assume that the model (5.8) is also invariant under time-reversal, leading to therequirement �k� = ��k;��.6.2 Pseudospin notationThe Kondo 
oupling (5.6) inter
hanges pseudospin, i.e., parity between the minidomain andthe ele
trons. It is therefore 
onvenient to introdu
e an expli
it pseudospin index for theele
trons. This is easily done with the new operators [54℄	q�+ = q� �1 + sin qRqR ��1=2 Z d
4� 
os�qR2 � 
q�	q�� = q� �1� sin qRqR ��1=2 Z d
4� sin�qR2 � 
q� ; (6.8)whi
h ful�ll the 
ommutation relationsf	yq��;	q0�0�0g = Æ(q � q0)Æ��0Æ��0 : (6.9)Only these modes 	q�� are important in the two-impurity Kondo problem (5.6); all othermodes de
ouple from the impurities. The new operators transform under parity asP 	q�� Py = q� �1� sin qRqR ��1=2 Z d
4� 8<: 
os�qR2 �sin�qR2 � 9=; 
�q� = �	q�� : (6.10)The third index therefore represents parity and 
an be identi�ed as the pseudospin index ofthe ele
trons. It will 
ouple to the pseudospin of the mini-domain in inter
hanging pro
esses.The Kondo Hamiltonian (5.6) 
an now be reformulated in terms of the operators (6.8):HK = 1p2 J ij X�=+;��i�Sj� : (6.11)We have introdu
ed the even/odd 
ombination of the impurity spins�S+S�� = U� S(R=2)S(�R=2)� ; (6.12)where the transformation is given byU = U�1 = U> = 1p2 � 1 11 �1 � : (6.13)Furthermore, � is de�ned as�i� =Xkq X�=+;�� g k;(��) g q� 	yk;�;(��) �i�� 	q�� ; (6.14)100



6.3. E�e
tive mini-domain Hamiltonianwhere � = � and the sum over momenta is to be understood as the integralPkq � R10 dk dq.The 
ouplings g, g k+ = 4�2(2�)3 kr1 + sinkRkR ;g k� = i 4�2(2�)3 kr1� sinkRkR ; (6.15)originate essentially from the normalization of the operators (6.8).6.3 E�e
tive mini-domain HamiltonianThe form (6.11) for the Kondo Hamiltonians is well suited to deriving the e�e
tive low-energyHamiltonian. We will apply a S
hrie�er{Wol� transformation treating the Kondo 
ouplingsJz and J? as perturbations. We expand the wave fun
tion j	i of the mini-domain in thebasis fj ""i; j "#i; j #"i; j ##ig where S(R=2) and S(�R=2) a
t on the �rst and se
ond entry,respe
tively, j	i =  ""j""i +  "#j"#i +  #"j#"i +  ##j##i : (6.16)The stationary S
hr�odinger equation 
an be expressed as1H0BB�  "" "# #" ## 1CCA = E0BB�  "" "# #" ## 1CCA : (6.17)In this representation the dire
t impurity-spin 
oupling HMD of the model Hamiltonian Htakes the form HMD = 14 0BB� Kz �Kz 2K?2K? �Kz Kz 1CCA : (6.18)As already indi
ated in Fig. 5.1 this matrix has the eigenvalues �Kz=4 � K?=2 whi
h livein the low-energy sub-spa
e spanned by the states j "#i and j #"i, and the doubly degenerate1In the 
hosen basis the impurity spins have the matrix representationsSx(R=2) = 12 0BB� 1 11 1 1CCA ; Sx(�R=2) = 12 0BB� 11 11 1CCA ;Sy(R=2) = 12 0BB� �i �ii i 1CCA ; Sy(�R=2) = 12 0BB� �ii �ii 1CCA ;Sz(R=2) = 12 0BB� 1 1 �1 �1 1CCA ; Sz(�R=2) = 12 0BB� 1 �1 1 �1 1CCA :101



Chapter 6. Magneti
 Mini-Domain in a Metalhigh energy value Kz=4.2 The Kondo Hamiltonian HK (6.11) is given in this basis byHK = 12 0BB� 2Jz�z+ J? ���+ ����� J? ���+ +���� 0J? ��++ ��+�� 2Jz�z� 0 J? ���+ +����J? ��++ +�+�� 0 �2 Jz�z� J? ���+ �����0 J? ��++ +�+�� J? ��++ ��+�� �2 Jz�z+ 1CCA ; (6.19)where the standard notation ��� = �x� � i�y� has been used. The e�e
tive low-energyHamiltonian is obtained by restri
ting the Hamiltonian to the sub-spa
e given by the statesfj"#i; j#"ig,eH = � H22 +H21G11H12 +H24G44H42 H23 +H21G11H13 +H24G44H43H32 +H31G11H12 +H34G44H42 H33 +H31G11H13 +H34G44H43 � ; (6.20)with the Green fun
tion Gij = (E �Hij)�1 : (6.21)In the restri
ted Hilbert spa
e the S
hr�odinger equation redu
es toeH�  "# #" � = E�  "# #" � : (6.22)Equation (6.22) is so far still exa
t, but at this stage eH depends impli
itly through theGreen fun
tion on the energy E. This impli
it energy dependen
e will now su

essively beeliminated by expanding eH in the small parameters K?, Jz and J?. The zeroth and �rstoder 
ontributions are eH(0) = � H0 �Kz=4 H0 �Kz=4 � ; (6.23)eH(1) = � Jz�z� K?=2K?=2 �Jz�z� � ; (6.24)respe
tively. For the se
ond order 
ontribution one needs the Green fun
tions to zeroth orderG11 = G+O(J) = G44 (6.25)G = (E �H0 �Kz=4)�1 : (6.26)The se
ond order term of the e�e
tive Hamiltonian then readseH(2) = 12J2?� �+L G��L +��RG�+R �+L G��R +��RG�+L�+RG��L +��L G�+R �+RG��R +��L G�+L � ; (6.27)where we introdu
ed ��iR�iL� = U��i+�i�� (6.28)with the transformation U de�ned in (6.13). The four entries of eH(2) 
an be interpreted asvirtual ex
itations of the mini-domain to the ferromagneti
 part of the Hilbert spa
e. Theo�-diagonal entries thereby indu
e transitions between the states j"#i and j#"i. The impli
it2In the 
ase of isotropi
 
oupling Kz = K?, whi
h is not 
onsidered here, the matrix HMD has the usualthree degenerate levels that form the spin 1 triplet and a single level, the singlet.102



6.3. E�e
tive mini-domain Hamiltonianenergy dependen
e of eH(2) still has to be removed. Before doing so, however, we would liketo transform the Hamiltonian eH to the proper pseudospin basis given by fj+i; j�ig,�j+ij�i� = U�j "#ij #"i� (6.29)�H = U eHU =Wn�n ; (6.30)where we introdu
ed the operators Wn by expanding the Hamiltonian in Pauli matri
es. Thesum goes from n = 0 to 3 and �0 is de�ned as the identity matrix.3 By 
onstru
tion the
omponents �1, �2 and �3 
omprise the pseudospin of the antiferromagneti
 mini-domain.The non-vanishing 
omponents of W of zeroth, �rst and se
ond order are4W (0)0 = H0 �Kz=4 ; (6.31)W (1)1 = Jz�z� ; (6.32)W (1)3 = K?=2 ; (6.33)W (2)0 = 12 � eH(2)11 + eH(2)22 � = 14J2?X� ��+� G��� +��� G�+� � ; (6.34)W (2)1 = 12 � eH(2)11 � eH(2)22 � = 14J2?X� ���+� G���� +��� G�+��� ; (6.35)W (2)2 = � i2 � eH(2)12 � eH(2)21 � = � i4 J2?X� ���+� G���� � ���� G�+��� ; (6.36)W (2)3 = 12 � eH(2)12 + eH(2)21 � = 14J2?X� ���+� G��� + ���� G�+� � : (6.37)The term W (1)3 is the previously mentioned pseudo-magneti
 �eld stemming from the Hamil-tonian (5.2) that leads to a pseudo-magneti
 Zeeman splitting. We now eliminate the depen-den
e of W (2)n on the energy E by expanding it perturbatively in J . To this end 
onsider theoperator whi
h appears in W (2)n�i�G�j�0 = Xkk0qq0X��0 ��0 g k(��) g k0(�0�0) g q�g q0�0 �i�� �j�0�0 (6.38)�	yk�(��)	q��G	yk0�0(�0�0)	q0�0�0 :When we 
ommute the Green fun
tionG either to the right or to the left of all the 	 operators,the energy dependen
e of G 
an be removed by using the S
hr�odinger equation in zerothorder. In order to keep the formulae simple we will make an additional simpli�
ation: we willassume that the ele
tron energies �q� only depend on the absolute value of the momentum,�jqj = �q. The spin dependen
e has already dropped out sin
e we have assumed that our3The matri
es �n are�0 = � 1 00 1 � ; � 1 = � 0 11 0 � ; � 2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � :4The 
omponents of W 
an be easily obtained by using the properties of the Pauli matri
es, Wn =12 trfH�ng. 103
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oupling, J , whi
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ip in the
on�guration of the mini-domain (see main text).model is invariant under time-reversal and parity symmetry. Beyond that, we now supposethe Fermi surfa
e to be isotropi
. This is not an essential assumption, but it keeps theformulae manageable. For an isotropi
 Fermi surfa
e the ele
tron operators 	q�� have asimple 
ommutation relation with the kineti
 part of the Hamiltonian,[	q��;H0℄ = (�q � �)	q�� : (6.39)Using the S
hr�odinger equation in zeroth order one obtains to within order of O(J)	yk�(��)	q��G	yk0�0(�0�0)	q0�0�0t (�Kz=2 + �k � �q)�1	yk�(��)	q��	yk0�0(�0�0)	q0�0�0 (6.40)t 	yk�(��)	q��	yk0�0(�0�0)	q0�0�0 (�Kz=2� �k0 + �q0)�1 :Only the symmetrized form of the approximated Green fun
tion yields a hermitian expression.So we �nally obtain�i�G�j�0 = Xkk0qq0X��0 ��0 g k(��) g k0(�0�0) g q�g q0�012 ��k � �q � �k0 + �q0��Kz=2 (6.41)��i�� �j�0�0 	yk�(��)	q��	yk0�0(�0�0)	q0�0�0 :The se
ond order pro
esses involve four ele
tron operators. After normal ordering we willretain from this expression only the parts that are most relevant in the RG sense and dis
ardthe irrelevant 
u
tuations. Using�i�� �j�0�0 	yk�(��)	q��	yk0�0(�0�0)	q0�0�0 = �i�� �j�0�0 	yk�(��)	q0�0�0 	q��	yk0�0(�0�0) ; (6.42)this leads to the approximation	yk�(��)	q0�0�0 	q��	yk0�0(�0�0) �! : 	yk�(��)	q0�0�0 : h	q��	yk0�0(�0�0)i (6.43)�h	yk�(��)	q0�0�0i : 	q��	yk0�0(�0�0) : + h	yk�(��)	q0�0�0ih	q��	yk0�0(�0�0)i= (1� fq) Æq;k0Æ�;�0Æ�;�0�0 : 	yk�(��)	q0�0�0 : �fq0Æq0;kÆ�0;�Æ�0;�� : 	yk0�0(�0�0)	q�� :+ (1� fq)Æq;k0Æ�;�0Æ�;�0�0fq0Æq0;kÆ�0;�Æ�0 ;�� ;104
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ess shown in Fig. 6.3 whi
h are taken into a

ount inthe approximation made in (6.44).where the 
olons indi
ate normal ordering.5 E�e
tively, only the ex
hange pro
esses remain.Due to the spin stru
ture the dire
t pro
esses do not 
ontribute. Inserting this expressioninto (6.41) �nally results in�i�G�j�0 �! Xkq Xk0�  �0g2k0� (1� fk0)12 (�k + �q � 2�k0)�Kz=2 ��i�j��� (6.44)� �g2k0(��0�)fk012 (2�k0 � �q � �k)�Kz=2 ��j�i���! g k(��) gq(��0) : 	yk�(��)	q�(��0) :+ Æ��0 Xkq X� �g2k(��) g2q�trf�i �jg (1� fq)fk�k � �q �Kz=2 ;where the indi
es i and j are either + or �. In order to interpret the three terms obtainedabove we would like to visualize them diagrammati
ally. We swit
h ba
k from the properpseudospin basis fj+i; j�ijg to the basis given by fj"#i; j#"ig, whose states 
orrespond tothe settings of the two impurity spins lo
ated at di�erent positions in spa
e. As an examplewe 
onsider the 
ontribution from the operator ��L G�+R, whi
h already appeared as an o�-diagonal entry in (6.27). Here the index L refers to the position �R=2 and the index R to theposition R=2. This operator 
ontains the following 
ombination of the usual Fermi operators:
y#(�R=2)
"(�R=2) 
y"(R=2)
#(R=2) � 
y#;L
";L 
y";R
#;R. The spin of the ele
tron on the right-hand side is 
ipped from down to up and the spin of the ele
tron on the left-hand side is 
ippedfrom up to down. Sin
e the Kondo 
oupling 
onserves spin the impurities at the respe
tivelo
ations have to reverse their spins in the opposite way. This is depi
ted in Fig. 6.3, whi
hshould be read from top to bottom. The domain starts in the j#"i 
on�guration. An in
omingele
tron 
ips the mini-domain into the high-energy ferromagneti
 state j##i. A further ele
trons
attering o� the domain brings it ba
k to the low-energy state j"#i. E�e
tively, this pro
essof se
ond order in the Kondo 
oupling J 
hanges the state of the mini-domain from j#"i tothe j"#i-
on�guration.5Normal ordering of fermioni
 operators is de�ned as : 	yn	m : � 	yn	m � h	yn	mi = h	m	yni � 	m	yn,where the indi
es n and m represent the appropriate set of quantum numbers.105



Chapter 6. Magneti
 Mini-Domain in a MetalThe approximation we made above in negle
ting the 
u
tuation amounts to 
onne
tingoutgoing ele
tron lines with in
oming ones, see Fig. 6.4. If this is done with lines 
orrespondingto operators at the same position, i.e. either R=2 or �R=2, it will lead to a dire
t pro
esswhi
h vanishes after summing over all possible orientations of spin. There are three remainingterms whi
h 
orrespond to ex
hange pro
esses and are shown in Fig. 6.4. They are analogousto the terms obtained in (6.44). From the diagrams it is apparent that the ele
trons mediatean e�e
tive 
oupling between the two states j"#i and j#"i.Now we would like to pro
eed in evaluating the operators W (2)n further. It will be helpfulto de�ne G�kq;k0 � 1� fk012 (�k + �q)� �k0 �Kz=2 � fk0�k0 � 12(�k + �q)�Kz=2 : (6.45)Putting the above result for the operator �i�G�j�0 into the expressions for W (2)n we getW (2)0 = J2?Xkq�0�Xk0� � g2k0� G�kq;k01A�g k� g q� : 	yk�� Æ�� 	q�� : (6.46)+ 2J2?Xkq X�� �� g2k� g2q� fk(1� fq)�k � �q �Kz=2 ;W (2)1 = J2?Xkq�0�Xk0� � g2k0� G+kq;k01A�g k� g q;�� : 	yk�� �3�� 	q�;�� : ; (6.47)W (2)2 = i J2?Xkq�0�Xk0� g2k0� G�kq;k01A g k� g q;�� : 	yk�� �3�� 	q�;�� : ; (6.48)W (2)3 = J2?Xkq�0�Xk0� g2k0� G�kq;k01A g k� g q� : 	yk�� Æ�� 	q�� : (6.49)+ 2J2?Xkq X�� g2k� g2q� fk(1� fq)�k � �q �Kz=2 :As anti
ipated in the introdu
tion the above operators 
onserve the spin of the ele
trons sin
ethe above expressions are diagonal with respe
t to the ele
tron spin. That means that thespin-up and -down ele
trons 
ouple separately to the pseudospin of the mini-domain leadingto two 
hannels. Introdu
ing generalized Pauli-matri
es �m, m = 0; : : : ; 3, for the parity indexof the ele
tron operators, 
f. footnote on page 103, the e�e
tive Hamiltonian up to se
ondorder 
an be written as�H = H0 +Xkq J imn(k; q) : 	yk�� �i�� �m��	q�� : �n2 + (K? + h?) �32 (6.50)where we have dis
arded the 
onstant �Kz=4 and the 
onstant 
ontribution from W (2)0 .As already mentioned the sum over momenta is to be understood as the integral Pkq �R10 dk dq. The �rst term is the usual diagonal part of the ele
trons, the se
ond term 
ontainsa pseudospin{Kondo 
oupling and the third term is a pseudospin{Zeeman splitting. The106



6.3. E�e
tive mini-domain Hamiltoniannon-vanishing entries of the 
oupling matrix J are� J 000(k; q) J 003(k; q)J 030(k; q) J 033(k; q) � = J2?Xk0��G�kq;k0 g2k0� g k� g q�� �� 1� � � ;� J 311(k; q) J 312(k; q)J 321(k; q) J 322(k; q) � = �JzX� g k� g q;��� � 0i 0 � (6.51)+ J2?Xk0�� g2k0� g k� g q;�� ��G+kq;k0 iG�kq;k0i �G+kq;k0 ��G�kq;k0 ! :In the notation of generalized Pauli matri
es, the 
omponent J 000(k; q) 
orresponds to apotential s
attering term. The 
omponent J 003(k; q) des
ribes the 
u
tuations around thepseudo-magneti
 �eld generated by the ele
trons and a
ts on the pseudospin. The 
ompo-nent J 030(k; q), on the other hand, is the pseudo-magneti
 �eld generated by the mini-domainand a
ting on the ele
trons. All the other 
omponents 
omprise the a
tual pseudospin Kondo
oupling matrix.The 
omponents in the 1-2{pseudospin spa
e given by the se
ond matrix of (6.51) 
oupleto the �3-part of the 
ondu
tion ele
tron spin, so the spin-up and the spin-down 
hannelhave a relative minus sign in these 
omponents. However, this relative minus sign 
an beeliminated by a rotation by � of the spin-down 
omponents of the ele
trons around the z-axisof the pseudospin. This rotation is given by the unitary operatorD = expf i �2Xk 	yk#� �3��	k#�g : (6.52)As is shown in Appendix B.1, this rotation applied to the e�e
tive Hamiltonian (6.50), H =D �HDy, yieldsH = H0 +Xkq X�=";#Jmn(k; q) : 	yk�� �m��	q�� : �n2 + (K? + h?) �32 (6.53)The 
oupling matrix is given by Jmn(k; q) = J 0mn(k; q)+J 3mn(k; q). The restri
tions imposedby symmetry on the 
oupling matrix Jmn(k; q) are analyzed in Appendix B.2.The pseudo-magneti
 �eld h? generated in se
ond order is the RKKY intera
tion [65℄between the two impurity spins mediated by the ele
tronsh? = 4J2?Xkq X�� g2k� g2q� fk(1� fq)�k � �q �Kz=2 (6.54)= 4J2? Z d3k(2�)3 d3q(2�)3 fk(1� fq)�k � �q �Kz=2 
os (kR) 
os (qR) :In the se
ond line we introdu
ed again the three-dimensional integrals. In 
ontrast to theusual dis
ussion of the RKKY intera
tion an additional energy di�eren
e of Kz=2 appears inthe denominator. This is due to the fa
t that the se
ond order pro
ess underlying h? involvesvirtual ex
itations to the ferromagneti
 states whi
h have an energy Kz=2 higher than theantiferromagneti
 ones of the restri
ted Hilbert spa
e. Usually, one 
onsiders the RKKY107



Chapter 6. Magneti
 Mini-Domain in a Metalintera
tion in the 
omplete Hilbert spa
e of the two impurity spins and it has the form of theHamiltonian (5.2) but with K repla
ed by the RKKY 
oupling. The pseudo-magneti
 �eldh? and the transverse 
oupling K? appear therefore in the e�e
tive Hamiltonian on an equalfooting. In the restri
ted Hilbert spa
e, however, only the x- and y-, i.e., the perpendi
ular
omponents of the dire
t K-
oupling and of the generated RKKY intera
tion a�e
t the low-energy states of the mini-domain. The z-
omponent of the generated RKKY-intera
tion justyields the 
onstant energy shift W (2)0 that we dis
arded.6.4 Parameters of the e�e
tive HamiltonianIn the following the e�e
tive parameters are evaluated in the limits when the mi
ros
opi
parameter kFR is either mu
h smaller or larger than one. In these limits the Kondo 
ouplingJ and the pseudo-magneti
 �eld h? 
an be obtained without knowing the exa
t dispersionrelation, �q, of the 
ondu
tion ele
trons. In the following we set temperature T = 0.6.4.1 Pseudo-magneti
 �eldWe give here the results for the limits small and large kFR at temperature T = 0. The detailsof the 
al
ulations are found in Appendix B.3.� kFR� 1 h? � �4(J?�)2 min�D; D2K?� (6.55)where D is a band 
ut-o� and � the density of states per spin at the Fermi energy.� kFR� 1h? � (J?�)2 2vFkF(kFR)3 8><>: 2 
os2 (kFR)� +O(��3) for �� 1�2 
os (2kFR) + 2� log� 
os2 (kFR) +O(�) for �� 1(6.56)where � = RKz=(2vF), vF =d�(kF)=dk is the Fermi velo
ity and � = k2F=(2�2vF).The result for large kFR depends on an additional parameter �, whi
h is given by the ratioof two energy s
ales. The energy Kz=2 is the separation between the antiferromagneti
 andthe ferromagneti
 states, 
f. Fig. 5.1, and thus originates from the dire
t intera
tion (5.2)between the two impurity spins forming the mini-domain. The other energy s
ale vF=R
orresponds to the inverse time the ele
trons need to travel ballisti
ally from one impurity toanother. So there exist two forms of 
ommuni
ations between the impurities, one is given bythe dire
t intera
tion and the other is mediated by the 
ondu
tion ele
trons. These two formsof 
ommuni
ations 
ompete with ea
h other. The ele
troni
 way of 
ommuni
ation is moreeÆ
ient if the time R=vF is shorter than the time given by 2=Kz , i.e. if � is smaller than one.In this 
ase h? exhibits the known 
os(2kFR) os
illations of the RKKY-intera
tion. However,if � is larger than one the dire
t intera
tion dominates over the ele
trons and the 
os(2kFR)os
illations 
hange into 
os2(kFR) os
illations.108



6.4. Parameters of the e�e
tive HamiltonianBesides the pseudo-magneti
 �eld that splits the pseudospin levels of the mini-domain,there exist the pseudo-magneti
 �eld J30(k; q) that a
ts on the pseudospin of the ele
trons.The latter will renormalize the former and we obtain a 
orre
tion that 
an be estimated ash? �! h? + J 033 h? � = h? +O(J?�)4; (6.57)where � is the sus
eptibility of the ele
trons. The renormalization is of higher order in the
oupling J? and will be negle
ted in the following. The axial symmetry present in our modelforbids that di�erent 
omponents of the pseudo-magneti
 �eld in the x- and y-dire
tion willbe generated.6.4.2 Pseudospin Kondo 
ouplingIn this se
tion we simplify the expressions for the 
oupling matrix J (6.51). In the RG sensethe momentum dependen
e of J (k; q) is irrelevant and we will hen
eforth set the momentaequal to the Fermi momentum. We 
ite here only the leading order 
ontributions in the limitskFR small and large. The details 
an be found in the Appendix B.3.� kFR� 1� J00 J03J30 J33 � =� 2vF(J?�)20� A A+O (kFR)2A�1 +O (kFR)2� A+O (kFR)2 1A� J11 J12J21 J22 � =vF(Jz�)kFRp3 � 0 01 +O (kFR)2 0 � (6.58)+ 2vF(J?�)2 kFRp3 0� 0 A+O (kFR)2S �1 +O (kFR)2� 0 1Awhere vF is the Fermi velo
ity and � = k2F=(2�2vF) is the density of states per spinat the Fermi energy. The 
oeÆ
ients A and S depend on the band 
ut-o� D and arede�ned in (B.37) and (B.36), respe
tively. The 
oeÆ
ient A is parti
le{hole asymmetri
and S is parti
le{hole symmetri
.� kFR� 1� J00 J03J30 J33 � � �2vF (J?�)2 0BB� A sin(kFR) 
os(kFR)(kFR)2 F(�)A sin(kFR)kFR 
os(kFR)kFR F(�) 1CCA (6.59)� J11 J12J21 J22 � � vF (Jz�) � 0 01 0 �+ 2vF (J?�)2 0� 0 
os(kFR)kFR F(�)S 0 1Awhere � = RKz=(2vF) and the fun
tion F is de�ned in (B.31).109



Chapter 6. Magneti
 Mini-Domain in a MetalIn the 
ase of a parti
le{hole symmetri
 model the potential s
attering terms J00 and J30vanish identi
ally irrespe
tive of the value kFR. This is analogous to the usual Andersonmodel in the lo
al moment regime; in addition to the Kondo 
ouplings the S
hrie�er{Wol�transformation generally yields a potential s
attering term whi
h, however, vanishes in the
ase of parti
le{hole symmetry [66℄.6.5 Poor man's s
aling analysisWe have seen in the last se
tion that the e�e
tive low-energy Hamiltonian is given by thetwo-
hannel pseudospin Kondo model with a pseudo-magneti
 Zeeman splitting. The two-
hannel Kondo model in zero (pseudo-)magneti
 �eld exhibits non-Fermi liquid physi
s belowthe 
hara
teristi
 temperature s
ale TK , whi
h is the Kondo temperature [12, 64℄. However,the non-Fermi liquid features 
an be destroyed by either a (pseudo-)magneti
 �eld, that a
tson the e�e
tive impurity, or a 
hannel anisotropy. These two types of operators are relevantwith respe
t to the two-
hannel non-Fermi liquid �xed point and drive the systems towardsa stable Fermi liquid at low temperatures [67℄. The 
hannel isotropy in our 
ase is se
ureddue to the 
onservation of total spin (6.1). The total pseudo-magneti
 �eld K? + h? onthe other hand will destroy the non-Fermi signatures. It has been shown [68, 12℄ that thetemperature s
ale asso
iated with the run-away 
ow from the non-Fermi liquid �xed pointis given by TFL = (KT + hT )2=TK . In order for a pronoun
ed non-Fermi liquid regime toexist this temperature s
ale must be mu
h smaller than the Kondo temperature TK , seeFig. 6.5. Sin
e we have introdu
ed the 
oupling 
onstant K? as a bare parameter of ourmodel we adopt the point of view that it 
an be used to tune the e�e
tive pseudo-magneti
�eld to zero, K? + h? = 0. The 
oupling K? thus plays the role of a 
ontrol parameter thatdetermines the temperature width of the logp2 plateau of the entropy in Fig. 6.5, whi
his the 
hara
teristi
 signature of the two-
hannel Kondo �xed point. Besides, the questionremains whether the mi
ros
opi
 parameters allow for a sizeable Kondo temperature or not.The Kondo temperature 
an be obtained via the poor man's s
aling treatment [69, 66℄.As usual, its s
aling equations des
ribe the 
ow of the e�e
tive 
oupling 
onstants while theband 
ut-o� D is redu
ed. The s
aling equations are�Jmn� logD = �� "klm "pjnJkpJlj ; (6.60)where all indi
es now run from 1 to 3. We have introdu
ed � = 1=vF and "pjn is the totallyantisymmetri
 tensor with the normalization "123 = 1. All the other parameters, e.g. thepotential s
attering term J00 or the pseudo-magneti
 �eld, are s
ale invariant in lowest order.Taking into a

ount only the non-vanishing entries these equations redu
e to�J12� logD = 2 � J21 J33 (6.61)�J21� logD = 2 � J12 J33 (6.62)�J33� logD = 2 � J12 J21 : (6.63)All 
omponents grow in absolute value towards strong 
oupling upon lowering the 
uto� D ifthe 
ondition signfJ12J21J33g = �1 is ful�lled. Dividing equation (6.61) by equation (6.62)110
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aling analysis
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PSfrag repla
ementslogp2log 2log 4TFLTKKzFigure 6.5: The left panel shows the evolution of the entropy of the mini-domain 
oupled bya strong Ising-like 
oupling Kz. For high temperatures the mini-domain entropy is given bylog 4. At a temperature s
ale of the order of the Ising 
oupling the mini-domain forms andthe high-energy ferromagneti
 states are frozen out, see Fig. 5.1. At the Kondo temperatureTK the entropy is further lowered by half to the typi
al two-
hannel Kondo value of logp2.Finally, at the 
rossover s
ale TFL = (K? + h?)2=TK the Zeeman splitting destroys the non-Fermi liquid signatures, and the system is driven towards a stable Fermi liquid phase. The
orresponding RG 
ow is sket
hed in the right panel.and (6.61) by (6.63) lead to the so-
alled s
aling traje
tories(J12)2 � (J21)2 = 
onst ; (6.64)(J33)2 � (J12)2 = 
onst0 : ; (6.65)A set of traje
tories is shown in Fig. 6.6. Using the traje
tories the s
aling equation 
an besolved analyti
ally. In the 
ase where the 
ouplings grow with de
reasing band-width we 
anextra
t the energy s
ale TK at whi
h the 
ouplings have s
aled to a value of order O(1). Inthe following we would like to solve the s
aling equations in the limits kFR large and small.Using the estimates derived in the previous se
tion we will obtain an expression for the Kondotemperature TK .6.5.1 Limit kFR� 1Consider �rst the limit kFR� 1. From the estimate (6.58) in this regime we havejJ33j � jJ12j if kFR� 1 : (6.66)The relationship between the other pairs of 
ouplings 
an in prin
iple be arbitrary, so we willlimit ourselves to 
ertain spe
ial 
ases. In the limit kFR� 1 the relationship sign(J33J12) =�1 holds and the 
ondition for a 
ow towards strong 
oupling be
omes J21 > 0, i.e. Jz� > 0.1. Large parti
le{hole asymmetryThe �rst 
ase we 
onsider is representative for a large parti
le{hole asymmetry. Weassume the parti
le{hole asymmetry parameter A to be of order O(1), while the remain-ing small parameters are of the same order O(kFR) � O(Jz�) � O(J?�). A

ording to111
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oupling if signfJ33J12g = �1.(6.58) the two 
omponents J33 and J21 are of se
ond order in these small parameterswhereas the 
omponent J12 is of third order. So in this 
ase we have the followinghierar
hy among the Kondo 
ouplingsjJ33j � jJ21j � jJ12j : (6.67)After integrating the s
aling equations and expanding in the small 
oupling J12 we �ndfor the Kondo temperatureTK � D e� �4 � J21 = D e� p3�4 Jz� kFR : (6.68)2. Small parti
le{hole asymmetryNow we would like to assume that the parti
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ording to (6.58)the following hierar
hy for the 
ouplingsjJ21j � jJ33j � jJ12j : (6.69)Integrating the s
aling equations and expanding a

ording to this hierar
hy results inthe Kondo temperatureTK � D �����p8J21J33 ������ 12 � J21 = D ����� p2Jz� kFRp3 (J?�)2A ������ p32 Jz� kFR : (6.70)We 
an summarize that in the limit kFR � 1 the Kondo temperature is suppressed by kFRin the denominator of the exponent. 112



6.6. Dis
ussion6.5.2 Limit kFR� 1In the opposite limit kFR� 1 the estimates (6.59) yield the hierar
hyjJ21j � jJ33j = jJ12j for kFR� 1 : (6.71)Again we have the relationship signfJ33J12g = �1 leading to the 
ondition J21 > 0, i.e. Jz� >0, for a 
ow to strong 
oupling. Integrating the s
aling equation and expanding in the small
ouplings gives the Kondo temperatureTK � D ���� J122J21 ���� 12� J21 = D ����(J?�)2Jz� 
os(kFR)kFR F(�)���� 12 Jz� : (6.72)where � = RKz=(2vF) and the fun
tion F is de�ned in (B.31).6.6 Dis
ussionIn this 
hapter we have 
onsidered a simple model of a magneti
 droplet 
onsisting of twolo
al moments (5.8). We have shown that for strong Ising-like 
oupling of the two lo
almoments the e�e
tive theory is given by a two-
hannel Kondo Hamiltonian with a Zeemansplitting (6.53). The degenera
y of the two 
hannels is ensured by the assumption that anaxial symmetry of the droplet is present, see Fig. 6.2. We estimated the 
ouplings of thee�e
tive Kondo model in terms of the parameters of the high energy theory, negle
ting thee�e
t of spin{orbit 
oupling on the band stru
ture of the 
ondu
tion ele
trons; we expe
tthat its in
lusion will not qualitatively alter the results. We found that the development ofnon-Fermi liquid physi
s in the e�e
tive model requires �ne-tuning in order to eliminate theZeeman splitting, whi
h would otherwise drive the system to a stable Fermi liquid phase. Wedetermined the Kondo temperature of the e�e
tive model in di�erent parameter regimes withthe help of a poor man's s
aling analysis. We found that for small separation of the lo
almoments, kFR � 1, the Kondo temperature is suppressed whereas in the other limit it issizable.We 
an 
on
lude that the s
enario of a dilute gas of magneti
 droplets, ea
h indepen-dently exhibiting a two-
hannel Kondo e�e
t is not expe
ted to be generi
 in heavy fermion
ompounds be
ause it requires �ne-tuning. It therefore remains spe
ulative that the observednon-Fermi liquid behavior of these materials 
an be attributed to the dynami
s of magneti
droplets.
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Chapter 7Mini-Domains in Quantum DotsIn this 
hapter we 
onsider a spe
ial 
ase of the mini-domain model (5.8). We assume (a) thatthe transverse dire
t 
oupling K? vanishes identi
ally and (b) that the 
ondu
tion ele
tronsat the respe
tive impurity sites are un
orrelated, i.e. the 
ondu
tion ele
trons at ea
h impuritysite belong to two independent baths. To be de�nite the Hamiltonian that is 
onsidered inthis 
hapter reads H = KzSzLSzR + Xj=L;RHKj ; (7.1)where the index L and R labels the left and right impurities and ele
tron baths. HKj des
ribesthe 
oupling of the jth bath to the jth impurity via an anisotropi
 Kondo Hamiltonian,HKj = H0[
k�j ℄ +Xn�� JnSnj 
y�j�n��
�j : (7.2)The ele
tron operators of ea
h bath are 
�j =Pk 
k�j and the kineti
 part of the Hamiltonianis H0[
k�j ℄ =Pk�(�k � �)
yk�j
k�j . The Kondo 
oupling is assumed to be the same for ea
himpurity and has the anisotropi
 form (Jn) = (J?; J?; Jz). A s
hemati
 representation of themodel is shown in Fig. 7.1.Whereas we 
on�ned ourselves in Chapter 6 to the strong 
oupling limit only, Kz � jJnj,the two assumptions (a) and (b) simplify the model dramati
ally so that we will be ableto analyze its properties in the whole parameter spa
e. We will show that the physi
s inthe strong 
oupling limit, Kz � jJnj, is qualitatively di�erent. Due to the absen
e of atransverse dire
t 
oupling, K?, the two antiferromagneti
 
on�gurations of the mini-domainare degenerate (
ompare Fig. 5.1). This results in a strong-
oupling phase 
hara
terized byPSfrag repla
ements KzJ Jbath L bath R
Figure 7.1: S
hemati
 representation of the mini-domain model Hamiltonian (7.1).114



7.1. Strong 
oupling analysisa non-zero residual entropy of log 2. This is in 
ontrast to the strong-
oupling phase ofthe general model (5.8) des
ribed by an e�e
tive two-
hannel Kondo model with a \pseudo-magneti
" �eld (6.53) derived in Chapter 6. Here, due to the generi
 
hannel anisotropythe strong 
oupling phase is 
hara
terized by a lo
al Fermi-liquid �xed point with vanishingresidual entropy. The degenera
y of the ground state of the mini-domain leading to theresidual entropy log 2 is also the underlying reason why the model (7.1) shows a quantumphase transition usually absent in the generi
 two-impurity Kondo model (without parti
le{hole symmetry; 
ompare Se
tion 5.3). That a phase transition has to exist in parameterspa
e 
an be understood by 
omparing with the weak 
oupling limit, Kz = 0: The twoimpurities are de
oupled and will be separately s
reened by their respe
tive ele
tron baths.Ea
h impurity spin then forms a 
omposite singlet with the ele
troni
 spins, resulting in alo
al Fermi liquid with a residual entropy of log 1. The ground states in the weak and strong
oupling limits thus di�er in their residual entropy and therefore have to be separated by aphase transition.The existen
e of the phase transition in the mini-domain model (7.1) was �rst realizedby N. Andrei, G. T. Zim�anyi and G. S
h�on [9℄. They 
onsidered the same Hamiltonian as amodel of two 
oupled quantum dots. It was 
onje
tured that the quantum phase transition is
ontinuous in nature and qualitative arguments were given for how the 
ondu
tan
e throughthe double dot system should behave at low temperatures. We were able to solve this issue.It will be shown in the following se
tions that the quantum phase transition belongs to theKosterlitz{Thouless universality 
lass [70℄. The 
ondu
tan
e at the phase transition has ape
uliar zero-bias anomaly and we will determine its 
hara
teristi
 exponent.This 
hapter is organized as follows. We will start in Se
tion 7.1 with an analysis of themodel in the limit of strong Ising 
oupling, Kz. We will determine the s
aling dimensionof the least irrelevant operator and derive a 
riterion for where the strong 
oupling phaseshould be
ome unstable. In Se
tion 7.2 this 
riterion is borne out by a suitable mapping ofthe mini-domain model (7.1) to a 
ertain generalized Anderson model whi
h we then analyze.With the help of a S
hrie�er{Wol� transformation we show that the e�e
tive theory nearthe phase transition is a Kondo model with the two antiferromagneti
 
on�gurations of themini-domain, see Fig. 5.2, playing the role of the pseudospin. As a 
onsequen
e, the phasetransition between the strong 
oupling phase and the Kondo-s
reened phase belongs to theKosterlitz{Thouless universality 
lass as explained in detail in Se
tion 7.3. In Se
tion 7.4 theresults are 
ompared with numeri
al renormalization group (NRG) 
al
ulations by M. Vojtaand T. Prus
hke and physi
ally interpreted. The robustness of our results is dis
ussed inSe
tion 7.5. Finally, in Se
tion 7.6 we present predi
tions for two experiments des
ribed bythe mini-domain model where the quantum phase transition shows itself either in a universaljump in the 
ondu
tan
e or in a 
hara
teristi
 zero-bias anomaly.The work of this 
hapter is published in Ref. [11℄.7.1 Strong 
oupling analysisIn the strong 
oupling limit, Kz � jJnj, the two impurity spins form an antiferromagneti
mini-domain with the 
on�gurations j"#i and j#"i, see Fig. 5.2. In zeroth order in the Kondo
oupling, Jn, these two 
on�gurations form a degenerate doublet, see Fig. 5.1, sin
e a

ordingto assumption (a) the transverse 
oupling is identi
ally zero, K? = 0. This degeneratedoublet will eventually lead to a residual entropy of log 2 in the strong 
oupling phase. As in115



Chapter 7. Mini-Domains in Quantum DotsChapter 6 we would like to derive an e�e
tive Hamiltonian by performing a S
hrie�er{Wol�transformation that takes into a

ount the 
u
tuation indu
ed by the Kondo 
oupling Jn.Due to the fa
t that the impurities 
ouple to di�erent ele
tron baths the e�e
tive Hamiltonianis easily derived and has the formH =H0 +H
ip where H0 = Xj=L;R24H0[
k�j ℄ +X�� JzSzj 
y�j�z��
�j35 : (7.3)The z-
omponent of the Kondo 
oupling leaves the low-energy Hilbert spa
e of the mini-domain invariant. It represents a s
attering potential for the 
ondu
tion ele
trons of size Jz,the sign of whi
h depends however on the 
on�guration of the mini-domain. The leading termof the indu
ed mini-domain 
ips in a perturbative expansion in J? is of order O(J2?=Kz),H
ip = 4J2?Kz �S+LS�R
y#L
"L
y"R
#R + h:
:� : (7.4)A pro
ess des
ribed by H
ip has already been depi
ted in Fig. 6.3. However, in 
ontrastto the dis
ussion following Fig. 6.3 in Chapter 6 the ele
tron operators in (7.4) 
annot be
ontra
ted sin
e they belong to di�erent Fermi seas. This is a 
onsequen
e of assumption(b), that the ele
trons 
oupled to the respe
tive impurities belong to di�erent baths andare therefore un
orrelated. In parti
ular, no RKKY intera
tion is generated. That meansthat the doublet forming the mini-domain remains degenerate and will not be split by agenerated \pseudo-magneti
" �eld as in Chapter 6. In this sense the doublet represents aperfe
t pseudospin.What is the ground state of the strong 
oupling Hamiltonian (7.3)? The part H
ip is theonly term in (7.3) whi
h 
ouples the di�erent 
on�gurations of the pseudospin, j"#i and j#"i.In its absen
e the mini-domain is \frozen" in either of these 
on�gurations and the groundstate therefore has a residual entropy of log 2. The 
ip term H
ip 
omprises four ele
tronoperators and at �rst sight it seems to be irrelevant in the RG sense1. Sin
e ea
h ele
tronoperator 
arries a s
aling dimension of 1=2, its bare s
aling dimension is dim[H
ip℄bare =2 and the log 2 �xed point seems to be stable. However, this 
on
lusion is only valid forsmall 
oupling Jz as we will explain in the following. Due to the presen
e of the spin-
ipoperators in (7.4) the term H
ip a
quires an anomalous dimension. When the pseudospin ofthe mini-domain is 
ipped on
e by H
ip the 
ondu
tion ele
trons experien
e an instantaneoussign 
hange in the s
attering potential Jz . This whirls up both Fermi seas, leaving a foamof an in�nite number of ex
ited parti
le{hole pairs. It takes an unusually long time untilthe seas have 
almed down again. This phenomenon is known as Anderson's orthogonality
atastrophe [71, 72℄. In the presen
e of a sharp Fermi edge the unusual long-time responseresults in a so-
alled x-ray edge singularity whi
h manifests itself in an anomalous s
alingdimension of the 
ip operator H
ip.In the following we will determine this s
aling dimension using Hop�eld's rule of thumb [73℄.To adjust the Fermi sea to a new ground state after the mini-domain has 
ipped on
e, a 
er-tain amount of spin �n has to 
ow to in�nity away from the impurity sites. Hop�eld noti
ed1We will use the 
onvention that the s
aling dimension of an operator O derives from its 
orrelation fun
tionin the following way: hO(t)O(0)i � t�2dim[O℄ :For example the s
aling dimension of the kineti
 Hamiltonian H0[
k�j ℄ is 1. Contributions to the Hamiltonianwith a s
aling dimension 1 are dubbed marginal, whereas 
ontributions with s
aling dimensions smaller orlarger than 1 are 
alled relevant or irrelevant, respe
tively.116



7.2. Bosonization: generalized Anderson modelthat the 
olle
tive response of a Fermi sea depends only on �n in the long-time limit: the
orresponding 
orrelation fun
tion de
ays as t�(�n)2 . In our problem, we will have to 
onsiderfour di�erent Fermi seas (j = L;R, � ="; #) ea
h 
ontributing independently. A single mini-domain 
ip o

urs when the 
ip operator H
ip a
ts on
e on the Fermi seas. In the absen
e ofany further 
ips the long-time limit of the 
orrelation fun
tion is given a

ording to Hop�eld'srule by hH
ip(t)H
ip(0)iH0 � t� Pj=L;R;�=";# (�n�;j)2 : (7.5)The index on the 
orrelator indi
ates that it is to be 
al
ulated with respe
t to the HamiltonianH0. The transfered spins are easily obtained by the use of the Friedel sum rule [66℄. Considerthe mini-domain 
ip pro
ess shown in Fig. 6.3, whi
h involves the operator S+LS�R
y#L
"L
y"R
#R.Let us start with the Fermi sea of the spin up ele
trons in the right-hand bath. The 
reationoperator 
y"R adds one spin up. Moreover, due to the spin 
ip operator S�R the s
atteringpotential seen by these ele
trons 
hanges suddenly from +Jz to �Jz a

ompanied by a 
hangein the asso
iated phase shift from ÆJz to �ÆJz . A

ording to Friedel's sum rule the 
hangein the phase shifts leads to a transfer of spin �2ÆJz=�. Altogether, the Fermi sea of the upele
trons in the right bath have to rearrange a spin of magnitude �n";R = 1�2ÆJz=�. Similararguments yield for the other Fermi seas �n#R = ��n#L = �n"L = ��n"R. The s
alingdimension of the 
ip operator H
ip with respe
t to the \frozen mini-domain" phase of residualentropy log 2 represented by H0 
an thus be read o� to bedim [H
ip℄ = 12 Xj=L;R;�=";#(�n�;j)2 = 2�1� 2ÆJz� �2 : (7.6)This result is veri�ed in Appendix B.4 with the bosonization te
hnique following K. D. S
hotteand U. S
hotte [74℄. Indeed, in the absen
e of the s
atterer, ÆJz = 0, the s
aling dimension is2 as naively guessed in the beginning. For small phase shifts, i.e. small Jz, the \frozen mini-domain" �xed point is stable with respe
t to the 
ip term H
ip sin
e it is irrelevant. However,mini-domain 
ips are relevant if the phase shift is larger than a 
riti
al value ÆJz > ÆT ,ÆT = �2 �1� 1p2� : (7.7)Beyond this 
riti
al value 
u
tuations of the mini-domain grow towards low energies givingrise to a new phase. The \frozen" mini-domain �xed point and the asso
iated log 2 entropyphase be
omes unstable.It turns out that the spe
ial value of the phase shift, ÆT , is well known as the Toulousepoint of the single-impurity anisotropi
 Kondo model [66℄. In the next se
tion we will exploitthe spe
ial properties of the Toulouse point whi
h enables us to identify the quantum phasetransition taking pla
e at ÆT .7.2 Bosonization: generalized Anderson modelAt the Toulouse point the single-impurity anisotropi
 Kondo model is exa
tly solvable in
losed form. This be
omes espe
ially apparent in the framework of bosonization [75℄. Inthis se
tion we will bosonize the mini-domain Hamiltonian (7.1). After performing a unitary117



Chapter 7. Mini-Domains in Quantum Dotstransformation and subsequent refermionization we will show that the model takes the form ofa generalized Anderson model. We will repeat the strong 
oupling analysis whi
h is espe
iallyrevealing in this new formulation sin
e at the Toulouse point the generalized Anderson modelsimpli�es to the usual single-impurity Anderson model [66℄ as was noti
ed before by S. Kehreinand M. Vojta [10℄.In bosonizing the mini-domain Hamiltonian we 
losely follow Ref. [68℄. We sti
k mostlyto the 
onventions outlined in the introdu
tory tutorial on bosonization by J. von Delftand H. S
h�oller [76℄; the sole ex
eption will be a di�erent normalization of the ele
tron Greenfun
tion from that in Ref. [76℄ whi
h 
an be a

ounted for by repla
ing all fermioni
 operatorsby 
von Delft, S
h�oller !p2� 
, su
h that f
yn(x); 
n0(x0)g = Ænn0Æ(x� x0).The Kondo intera
tion (7.2) is lo
al in spa
e. It therefore involves only the s-wave ele
-trons; the other ele
trons are de
oupled from the impurity spins. The s-wave ele
trons forman e�e
tive one-dimensional system that is amenable to the bosonization te
hnique. For thispurpose they are des
ribed by one-dimensional so-
alled 
hiral �elds,
�j(x) =Xk e�ikx
k�j ; x 2 (�1;1) ; (7.8)where k � p� pF is the radial momentum relative to the Fermi momentum. The x > 0 andx < 0 portions of the 
hiral �eld are asso
iated with the in
oming and outgoing s
atteringstates, respe
tively. We will also need the density of states per spin of in
oming or outgoingele
trons, i.e. of an ele
tron living on a half-line, � = 1=(2�vF). The 
entral ingredient in thefollowing treatment is the bosonization identity
�j(x) = 1p2�aF�j e�i��j(x) ; (7.9)where a is a short distan
e 
uto�, F�j is an anti
ommuting Klein fa
tor, fF y�j ; F�0j0g =2Æ��0Æjj0, and ��j is the 
orresponding bosoni
 �eld whi
h obeys the 
ommutation relation[��j(x); �x0��0j0(x0)℄ = 2�iÆ(x � x0)Æjj0Æ��0 : (7.10)Transforming to bosoni
 
harge and spin �elds �s=
;j = 1p2 (�"j � �#j) ; the bosonized versionof the Hamiltonian HKj (7.2) is given by [75, 68℄HKj = H0[�
j℄ +H0[�sj℄ + Jzp2�Szj �x�sj(0) + J?2�a �e�ip2�sj(0)S+j F y#jF"j + h:
:� : (7.11)Assuming a linear dispersion �k = vFk the kineti
 parts areH0[�℄ = vF Z dx2� 12 : (�x�(x))2 : : (7.12)The bosonization treatment shows expli
itly that the 
harge degrees of freedom representedby the �eld �
j de
ouple from the spin dynami
s in the Kondo model. The 
harge �eld �
jwill be omitted in the following. Applying a general Emery{Kivelson transformation [63℄ withthe \boundary 
ondition 
hanging operator" [74, 77℄U
 = exp24i
 Xj=R;LSzj�sj(0)35 ; (7.13)118



7.2. Bosonization: generalized Anderson modelparametrized by 
, the Hamiltonian HKj transforms into ~HKj = U
HKj U y
 with~HKj = H0[�sj ℄+� Jzp2� � 
vF�Szj �x�sj(0)+ J?2�a �e�i(p2�
)�sj(0)S+j F y#jF"j + h:
:� : (7.14)The important thing to note is that the Ising 
oupling of the mini-domain, KzSzLSzR, isinvariant under this transformation.For the spe
ial value 
 = p2� 1 the exponentials appearing in expression (7.14) have thesame form as in the bosonization identity (7.9). For this spe
ial value the Kondo Hamiltonian
an be refermionized upon introdu
ing a new pseudo-fermion �eld 	j representing solitoni
spin ex
itations of the original 
ondu
tion ele
trons. (There exists another interesting value
 = p2 where the model 
ollapses to two 
oupled spin-boson models, see Appendix B.5.) Wewill further represent the spin operators Snj in terms of fermion operators dj , e.g. Szj = dyjdj� 12 .For details, in parti
ular how to ensure proper anti
ommutation relations among the fermions,see, e.g., Appendix D of Ref. [68℄. The refermionized mini-domain Hamiltonian (7.1) takesthe form of a generalized Anderson model,HGA = Kz �dyRdR � 12��dyLdL � 12�+Pj=R;L hH0[	j ℄ + V �dyj	j(0) + h:
:�+W �dyjdj � 12� : 	yj(0)	j(0) :i ; (7.15)where the 
olons indi
ate normal ordering. The new 
oupling 
onstants V and W are de�nedin terms of the Kondo 
ouplings,V = J?p2�a and W� = p2Jz�� (p2� 1) : (7.16)As promised above, the spe
ial properties of the Toulouse point emerge here naturally. Atthe Toulouse point the 
oupling W vanishes, whi
h implies Jz� = 1 � 1=p2 as explained indetail in the following se
tion.7.2.1 Phase shift relationshipBefore making the 
onne
tion with the strong 
oupling analysis of Se
tion 7.1 we have tospend some time on the subtleties of how the results depend on the applied 
uto� s
heme.Generally, the 
uto� s
heme strongly in
uen
es the meaning of the 
oupling 
onstants ofthe Hamiltonian. In the original formulation of the mini-domain model (7.1) the Kondointera
tion was point-like and the 
ondu
tion ele
trons belonged to a band with a �nitewidth, i.e. 
uto�, D. On the other hand, the bosonization pro
edure relies on extending theband to in�nity: the sum over radial momenta k in (7.8) extends from minus to plus in�nity.The 
uto� was reintrodu
ed with the short distan
e 
uto� a in the bosonization identity (7.9).This e�e
tively 
orresponds to a Kondo intera
tion with a �nite range in spa
e. A thoroughdis
ussion of this issue 
an be found in Appendix A of Ref. [68℄.The appli
ation of di�erent 
uto� pro
edures in the two formulations implies that one hasto be very 
areful in identifying the 
ouplings of the generalized Anderson model, W and V ,with the Kondo 
ouplings, Jz and J?, in the original formulation (7.1). The identi�
ation(7.16) is only valid within the bosonization 
uto� s
heme. A way out of this dilemma isprovided by the 
al
ulation of 
ertain physi
al observables whi
h are independent of the119



Chapter 7. Mini-Domains in Quantum Dots
uto� s
heme applied, i.e. whi
h des
ribe measurable low-energy properties of the model.One su
h quantity is the phase shift. After the phase shift is 
al
ulated within the di�erent
uto� s
hemes the identi�
ation of the 
oupling 
onstants 
an be made by 
omparing theresults. The phase shift of the original mini-domain model (7.1) as well as of the generalizedAnderson model (7.15) 
an be easily 
al
ulated for J? = 0 and V = 0. For a�nite band 
uto� s
heme ÆJz = ar
tan (�Jz=2) Im g
(0)1� (�Jz=2) Re g
(0) = ar
tan ��Jz�F2 �ÆW = ar
tan (�W=2) Im g	(0)1� (�W=2)Re g	(0) = ar
tan ��W�SF2 �(7.17)the phase shifts asso
iated with the intera
tions Jz and W are given in terms of the Greenfun
tion of the 
ondu
tion ele
trons, 
, and the solitoni
 fermions, 	, respe
tively. The lastequality is only valid in the 
ase of parti
le{hole symmetry when the lo
al Green fun
tion,g(!) = Pk(! � �k + i0+)�1, in ea
h 
ase redu
e to g
(0) = �i��F and g	(0) = �i��SF,respe
tively, where �F and �SF are the density of states of the respe
tive fermions. On theother hand, the phase shifts read within thebosonization 
uto� s
heme ÆJz = �Jz�2ÆW = �W�2 : (7.18)Loosely speaking, the Born approximation of the phase shifts in the �nite band 
uto� s
heme,i.e. the expansion of expression (7.17) to �rst order in the 
oupling 
onstants, yields theexa
t result in the bosonization 
uto� s
heme provided the respe
tive densities of states areidenti�ed with ea
h other.Now we are in a position to establish a universal relationship between the mini-domainHamiltonian (7.1) to the generalized Anderson model (7.15) in the limit V; J? ! 0. Repla
ingthe 
oupling 
onstants in (7.16) by the phase shifts (7.18) derived within the bosonization
uto� s
heme we obtain2ÆW� = p2�2ÆJz� ��1� 1p2�� = p2�2ÆJz� � 2ÆT� � for V = J? = 0 : (7.19)In the strong 
oupling analysis of Se
tion 7.1 we found that the mini-domain starts to 
u
tuatewhen the phase shift ÆJz ex
eeds a 
riti
al value ÆT (7.7) identi�ed as the Toulouse point. We
an easily verify that the asso
iated 
riti
al value for the phase shift ÆW is zero. We summarizethat exa
tly at the Toulouse point, where the quantum phase transition is supposed to happen,the 
oupling W in the generalized Anderson model (7.15) vanishes.7.2.2 On the Toulouse lineAs S. Kehrein and M. Vojta [10℄ have pointed out, forW = 0 the generalized Anderson modelsimpli�es to the 
onventional (parti
le{hole symmetri
) single-impurity Anderson model. TheIsing intera
tion Kz plays the role of the lo
al Coulomb repulsion and V is the hybridizationbetween the solitoni
 fermions, 	, and the pseudo-fermions, d, on the e�e
tive Andersonimpurity. The bath index, j, 
an be identi�ed with a pseudospin, R �* and L �+,HA = Kz �dy*d* � 12��dy+d+ � 12�+ X�=*;+ hH0[	�℄ + V �dy�	�(0) + h:
:�i : (7.20)120



7.2. Bosonization: generalized Anderson model
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Figure 7.2: Corresponden
e between the 
on�gurations of the impurity spins forming themini-domain and the e�e
tive single impurity des
ribed by the Anderson model. The anti-ferromagneti
 
on�gurations of the mini-domain, (ii) and (iii), 
an be attributed to a singlyo

upied Anderson impurity with a well-de�ned pseudospin of either * or +.The pseudospin is indeed exa
tly the one already introdu
ed in Chapter 6. In Fig. 7.2the 
orresponden
e between the 
on�gurations of the original two impurity spins and thee�e
tive single Anderson impurity is illustrated. The antiferromagneti
 mini-domain, (ii) and(iii) of Fig. 7.2, forms in the strong 
oupling limit Kz � �SFV 2, where �SF is the density ofstates of the solitoni
 fermions. In the language of the Anderson model this is the so-
alledlo
al moment regime where the Anderson impurity is singly o

upied and has a de�nitepseudospin of either * or +. The pseudospin is thus in one-to-one 
orresponden
e with thetwo antiferromagneti
 
on�gurations of the mini-domain already depi
ted in Fig. 5.2.When the 
oupling Kz is redu
ed the pseudo
harge 
u
tuations of the Anderson model,i.e. the ex
itations of the doubly o

upied state(i) and the empty state (iv), grow in impor-tan
e. The Anderson impurity 
annot be asso
iated with a well-de�ned pseudospin any more;it is said to enter a mixed valen
e regime. The transition from the lo
al moment to the mixedvalen
e regime is known to be a 
rossover: the Anderson model does not exhibit a quantumphase transition! The phase transition in the generalized Anderson model is thus to be foundnot along the Toulouse line, W = 0, but rather perpendi
ular to it, i.e. by 
onsidering itsbehavior in the presen
e of a �nite 
oupling W .Let us 
onsider the Anderson model (7.20) in its lo
al moment regime, Kz � �SFV 2, and121



Chapter 7. Mini-Domains in Quantum Dotsinvestigate how a small 
oupling W a�e
ts its behavior. After applying a S
hrie�er{Wol�transformation, whi
h treats the hybridization V perturbatively, the Anderson model redu
esin the lo
al moment regime to an e�e
tive isotropi
 Kondo model [66℄,HA = X�=*;+H0[	�℄ + 4V 2Kz X�;�=*;+ ~S	y�(0)~���	�(0) (7.21)where the pseudospin of the Anderson impurity is represented by the spin-12 operator ~S =12P�;�=*;+ dy�~���d� and the 
oupling 
onstant is 4V 2=Kz . Note that no potential s
atterer isgenerated sin
e the Anderson model (7.20) is parti
le{hole symmetri
. Equation (7.21) is initself an important result. It states expli
itly that the two antiferromagneti
 
on�gurations,i.e. the pseudospin of the mini-domain are governed by a Kondo Hamiltonian in the strong
oupling regime, Kz � �SFV 2, at least on the Toulouse line W = 0. Let us perturb thise�e
tive Kondo model by swit
hing on a small 
ouplingW . The 
orresponding intera
tion in(7.15) 
an be separated into two parts,W X�=*;+�dy�d� � 12� : 	y�(0)	�(0) : (7.22)= WX�;� Sz 	y�(0)�z��	�(0) + W2 �dy*d* + dy+d+ � 1��: 	y*(0)	*(0) : + : 	y+(0)	+(0) :� :The �rst part des
ribes the pseudospin 
u
tuations and a
ts only on the low-energy Hilbertspa
e of the Anderson impurity, i.e. states (ii) and (iii) in Fig. 7.2. The se
ond part representsthe pseudo
harge 
u
tuations and a�e
ts the high-energy states, (i) and (iv). In the lo
almoment regime the 
harge 
u
tuations are frozen out and a small 
oupling W modi�es thestrong 
oupling Kondo Hamiltonian (7.21) only with the 
ontribution involving the pseudospindegree of freedom, ÆH =WX�;� Sz 	y�(0)�z��	�(0) : (7.23)A small intera
tion W thus shifts the z-
omponent of the Kondo 
oupling in the strong
oupling Hamiltonian (7.21) leading to an e�e
tive anisotropi
 Kondo model, HA+ ÆH, with
oupling 
onstants (
ompare with (7.2)),Jz =W + 4V 2Kz and J? = 4V 2Kz : (7.24)Before analyzing this e�e
tive Kondo model we would, however, like to extend the strong
oupling analysis away from the Toulouse line.7.2.3 Strong 
oupling analysisIn the last se
tion we 
onsidered the strong 
oupling limit, Kz � �SFV 2, of the generalizedAnderson model (7.15) on the Toulouse line W = 0 whi
h after a S
hrie�er{Wol� trans-formation lead to an e�e
tive Kondo model. Afterwards we perturbed this e�e
tive Kondomodel with the small intera
tion W . In doing so we negle
ted the e�e
t of the intera
tion Won the S
hrie�er{Wol� transformation itself. In the present se
tion we would like to remedythis short
oming by performing a S
hrie�er{Wol� transformation of the generalized Anderson122



7.2. Bosonization: generalized Anderson modelmodel (7.15) in the presen
e of a �nite intera
tion W . We will show that the resulting e�e
-tive theory is still des
ribed by a Kondo Hamiltonian but with power-law renormalizationsof the e�e
tive Kondo 
ouplings. These renormalizations arise from a x-ray edge singularityasso
iated with the virtual ex
ited high-energy states. As long as the Anderson impurityis �xed in a 
ertain 
on�guration the intera
tion W just a
ts as a potential s
atterer. If,however, a pseudo-fermion hops onto or o� the impurity this potential s
atterer 
hanges itssign instantly, leading to a long-time response of the asso
iated (solitoni
) Fermi seas in asimilar manner to that dis
ussed in Se
tion 7.1.In order to derive the e�e
tive Hamiltonian of the generalized Anderson model in thestrong 
oupling limit the usual S
hrie�er{Wol� transformation has to be modi�ed. Insteadof working in frequen
y spa
e we will prefer the time domain in whi
h the physi
s is eas-ier to understand. The following 
al
ulation was strongly inspired by a re-derivation of theAnderson{Yuval{Hamann s
aling equations [78℄ of the anisotropi
 Kondo model in the frame-work of bosonization, whi
h is presented in Appendix B.6.Consider the generalized Anderson model (7.15) in its bosonized version. The intera
tionW 
an be formally eliminated by applying the Emery{Kivelson transformation (7.13) with
� =W�, U
�HGAU y
� = Kz �dyRdR � 12��dyLdL � 12�+ X�=*;+H0[��℄ +Hint : (7.25)Now W enters only the hybridization termHint = Vp2�a X�=*;+�dy�e�i(1�W�)��(0)F� + h:
:� : (7.26)In the strong 
oupling regime, Kz � �SFV 2, the Anderson impurity is only singly o

upied.The low-energy Hilbert spa
e 
onsists of the two states j*i and j+i whi
h have an asso
iatedlo
al moment, i.e. pseudospin, and are separated from the doubly o

upied and empty state byan energy Kz=2. The hybridization V will indu
e virtual ex
itations to the high energy stateswhose dynami
s will lead to the e�e
tive low-energy Hamiltonian. In order to derive it we
onsider the S-matrix proje
ted onto the low-energy Hilbert spa
e perturbatively expandedin the hybridization V ,P T e�i 1R�1 d�Hint(t)P = 1Xn=0 1Z�1 dt2n : : : dt1t2n>���>t1 P iHint(t2n) : : : iHint(t1)P : (7.27)where T is the time-ordering operator. The proje
tion operator is given by P =P�=*;+ j�ih�j.Sin
e the intera
tion Hamiltonian Hint 
ommuni
ates between the high- and low-energy se
-tors only even powers of Hint survive after proje
tion. The produ
ts of 2n Hint operators
an be divided into n virtual ex
itations ea
h 
onsisting of a 
onse
utive appli
ation of twointera
tion Hamiltonians Hint. Ea
h of these will leave the low-energy subspa
e invariant. Ifthe hybridization V is small the virtual ex
itations are rare and well separated in time, seeFig. 7.3. They will eventually 
omprise the e�e
tive low-energy Hamiltonian. Consider one123
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Figure 7.3: Visualization of a parti
ular time evolution of the Anderson impurity in thestrong 
oupling regime, Kz � �SFV 2, as des
ribed by the s
attering matrix (7.27). At timesTj the high-energy Hilbert spa
e is visited via virtual ex
itations. These are well separated dueto the smallness of the hybridization V , and their extension in time, tj, is 
on�ned sin
e theIsing 
oupling Kz is large.pair of intera
tion Hamiltonians forming a virtual ex
itationt2m+1Z�1 dt2m t2mZ�1 dt2m�1iHint(t2m)iHint(t2m�1) � �iZ Tm+1�1 Hint(Tm) ; (7.28)with Hint(Tm) = �i 1Z0 dtHint(Tm + t=2)Hint(Tm � t=2) ;where we have introdu
ed the 
enter-of-time and relative 
oordinates. We have extendedthe upper limit of the integral over the relative time t to in�nity and repla
ed the upperlimit of the integral over the 
enter-of-time Tm by the one of the following pair, Tm+1. Wehave thereby negle
ted the intera
tion between adja
ent virtual ex
itations. In the followingwe would like to integrate over t. Introdu
ing the spin notation Sz = 12P�=*;+ �dy�d� andS+ = dy*d+ to represent the two states of the low-energy Hilbert spa
e we getHint(Tm) = �i V 22�a Z 10 dt e�iKzt=2 X�=*;+ he�i2Sz�(1�W�)��(Tm+t=2)ei2Sz�(1�W�)��(Tm�t=2)+�S+F"F y# e�i�(1�W�)��(Tm+t=2)ei�(1�W�)���(Tm�t=2) + h:
:�i :The os
illating fa
tor e�iKzt=2 guarantees that the virtual ex
itations are only short-lived sothat we 
an expand the term in the bra
ket in the small relative time t. To this end we applythe operator produ
t expansion (
ompare Ref. [76℄)ei���(t)e�i���(t0) = (1 + i(t� t0)=a)��2 + �a(1 + i(t� t0)=a)1��2�t0��(t0) + : : : (7.29)to the �rst term and integrate over the relative time t using the integralZ 10 e�iKzt=2(1 + it=a)�� = �i2�(1� �)Kz (aKz=2)� : (7.30)124



7.3. E�e
tive Kondo model: 
u
tuating mini-domainAfter introdu
ing the pseudospin �eld � = 1p2P�=*;+ ���, we obtain in leading order forlarge Kz Hint = 4V 2Kzp2� (1�W�) � �2� (1�W�)2� �aKz2 �(1�W�)2�1Sz �x�(0)+ 4V 2Kz2�a �S+e�ip2(1�W�)�(0)F y+F* + h:
:� : (7.31)Before identifying the 
oupling 
onstants of the e�e
tive low-energy Hamiltonian we have toaddress a subtle point. In integrating out the virtual ex
itations on the time-s
ale of order1=Kz we e�e
tively redu
ed the short distan
e 
uto� from a to aK , where the new 
uto� isof order aK � 1=Kz . This has to be a

ounted for in the impli
it 
uto� dependen
e of thevertex operators appearing in the pseudospin-
ip term in (7.31). This is similar to the originof renormalization of the perpendi
ular Kondo 
oupling in the Anderson{Yuval{Hamann RGas outlined in Appendix B.6. The impli
it 
uto� dependen
e of the vertex operator be
omesapparent after normal ordering,ei�� = �2�aL ��22 : ei�� : = � aaK��22 �2�aKL ��22 : ei�� : = � aaK��22 ei���; (7.32)where �� denotes the �eld de�ned with respe
t to the new 
uto� aK . This e�e
tively leads tothe substitution 4V 2Kz2�a ! 4V 2Kz2�aK � aaK�(1�W�)2�1 (7.33)in the se
ond term of (7.31). In a �nal step we undo the Emery-Kivelson transformationleading to an e�e
tive Kondo model in its bosonized form.7.3 E�e
tive Kondo model: 
u
tuating mini-domainThe low-energy degrees of freedom of the generalized Anderson model (7.15) in the limit ofstrong 
oupling, Kz � �SFV 2, are des
ribed by an e�e
tive Kondo model (
ompare (7.11)),HGA = H0[ ��℄ + Jzp2�Sz�x ��(0) + J?2�aK �e�ip2��(0)S+F y+F* + h:
:� ; (7.34)where the pseudo
harge �eld, �
 = 1p2P�=*;+ ��, has been omitted sin
e it de
ouples fromthe pseudospin. The Kondo 
ouplings are given in terms of the hybridization V , Ising 
ouplingKz, intera
tion W and the short distan
e 
uto� a:Jz =W + 4V 2Kz Cz(W )�aKz2 �(1�W�)2�1J? = 4V 2Kz C?(W )�aKz2 �(1�W�)2�1 (7.35)where Cz(W ) � (1 � W�)�[2 � (1 � W�)2℄ and we have further introdu
ed the fun
tionC?(W ) � (2=(aKKz))(1�W�)2�1. The arguments given in Se
tion 7.2.3 suggest that C? is a125
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ements
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JzFigure 7.4: Kosterlitz{Thouless 
ow diagram representing the RG equations (7.37). ForJz < �jJ?j the 
ouplings 
ow towards a line of �xed point asso
iated with the \frozen mini-domain" phase. For parameters Jz > �jJ?j the 
oupling are determined by a single �xedpoint des
ribing the \
u
tuating mini-domain" phase.fun
tion of W only and is of order one. The derivation presented does not yield a fun
tionalrelationship between C? and W , and it remains in general an unknown prefa
tor. However,both fun
tions have the important propertylimW!0 Cz(W ) = Cz(0) = 1 and limW!0C?(W ) = C?(0) = 1 : (7.36)The e�e
tive Kondo 
ouplings (7.24) derived on the Toulouse line W ! 0 are modi�ed bypower-law renormalizations dependent on Kz due to x-ray edge singularities indu
ed by a�nite intera
tion W . They are indeed re
overed from (7.35) in the limit W ! 0.Now we are �nally in a position to address the question of the quantum phase transitionin the mini-domain model posed in Se
tion 7.1. It is the same phase transition that theanisotropi
 Kondo model exhibits when the 
oupling Jz is in
reased from negative valuestowards zero. A

ording to the poor man's s
aling equations [69℄, (B.74),d(Jz�)d log a = 2 (J?�)2 ;d(J?�)d log a = 2(Jz�)(J?�) ; (7.37)and the asso
iated RG 
ow depi
ted in Fig. 7.4, the separatrix, whi
h separates the RG 
owsto weak and strong 
oupling, is given by the 
ondition Jz = �jJ?j. For Jz < �jJ?j theferromagneti
 phase of the Kondo model is stable with a residual entropy of log 2. This isapparently the \frozen mini-domain" phase: the domain 
ips between 
on�gurations (ii) and(iii) in Fig. 7.2 are frozen out. Its degenera
y leads to the �nite residual entropy. For 
ouplingsJz > �jJ?j the Kondo 
oupling 
ows to the strong-
oupling Fermi liquid �xed point with anentropy of log 1. The pseudospin of the Anderson impurity is bound into a singlet with thepseudospin of the solitoni
 fermions. The antiferromagneti
 mini-domain is still well-de�ned,but due to the 
oupling to the 
ondu
tion ele
tron it 
u
tuates so strongly that it eventuallygets quen
hed. Correspondingly, we will dub it the \
u
tuating mini-domain" phase. The126



7.3. E�e
tive Kondo model: 
u
tuating mini-domainquantum phase transition that happens at Jz = �jJ?j is governed by the s
aling equations(7.37) whi
h are 
hara
teristi
 of the so-
alled Kosterlitz{Thouless universality 
lass [70, 79℄.7.3.1 Phase boundaryThe 
riterion Jz = �jJ?j yields for the 
riti
al 
oupling K
rz separating the frozen and
u
tuating mini-domain phasesW = �4 21�(1�W�)2 (Cz(W ) + C?(W )) V 2a(1�W�)2�1K
rz 2�(1�W�)2 ; (7.38)or equivalentlyK
rz (�W )(2�(1�W�)2)�1 = (7.39)h4 21�(1�W�)2 (Cz(W ) + C?(W ))i(2�(1�W�)2)�1 �V 2a(1�W�)2�1�(2�(1�W�)2)�1:In the vi
inity of the Toulouse point we 
an expand in the small 
oupling W and we obtainW = � 8K
rz �V 2a(1�W�)2�1�(2�(1�W�)2)�1 : (7.40)It is apparent that the 
riti
al 
ouplingK
rz > 0 depends 
ru
ially on how the phase transitionis approa
hed in the parameter spa
e spanned by W and V ,K
rz � 8<: �8W�1V 2 �!1 for W ! 0��8W�1 �V 2a(1�W�)2�1�(2�(1�W�)2)�1 �! 0 for V ! 0 : (7.41)In the limit W ! 0� for a �nite hybridization V the 
riti
al 
oupling diverges. This orderof limits 
orresponds to the regime a

essible by the simple strong 
oupling analysis on theToulouse line of Se
tion 7.2.2. The reverse order of limits, however, is ex
lusively the realmof the 
onsiderations of Se
tion 7.2.3, sin
e here the 
riti
al Ising 
oupling vanishes (whilemaintaining Kz � �V 2) and the intera
tion W < 0 has to be 
onsidered as a large s
ale inthe strong 
oupling limit. In this region of parameter spa
e the x-ray edge like power-lawrenormalizations indu
ed by the intera
tion W are an important result of the physi
s takingpla
e.The power-law renormalizations of the e�e
tive Kondo 
ouplings (7.35) are a

ompaniedby an expli
it dependen
e on the short distan
e 
uto� a. Indeed this expli
it 
uto� dependen
eis ne
essary in order to re
over universality as we will explain in the following. The e�e
tiveKondo model (7.34) was derived in su
h a way that in the end it had its own short distan
e
uto� aK . In parti
ular, this was a
hieved by a

ounting for the impli
it 
uto� dependen
e ofthe vertex operator (7.32). As a 
onsequen
e, the e�e
tive 
ouplings J? and Jz are supposedto be invariant upon a res
aling of the old 
uto� a of the underlying generalized Andersonmodel. Whereas the Ising intera
tion Kz has a zero s
aling dimension (and the s
alingdimension of W 
an be negle
ted to lowest order in J?), the hybridization V is not invariantupon res
aling a. However, the 
ombination V 2a(1�W�)2�1 is! This 
an be shown within theAnderson{Yuval{Hamann RG approa
h to the Kondo model [78℄ (see Appendix B.6). Thes
aling dimension of the hybridization V results from the s
aling dimension of the original127



Chapter 7. Mini-Domains in Quantum Dotsperpendi
ular intera
tion J? of the Kondo Hamiltonian (7.2) that 
oupled the single spinsof the mini-domain to their baths. The RG equation for the perpendi
ular 
oupling (derivedwithin the bosonization 
uto� s
heme) reads (B.72)d log J?d log a = 1� (1� Jz�)2 : (7.42)Using the relationships (7.16) between the Kondo 
ouplings and the intera
tions W and Vthis translates into d log V 2d log a = 1� (1�W�)2 ; (7.43)whi
h 
on�rms that the 
ombination V 2a(1�W�)2�1 is s
ale invariant. Its s
ale invarian
eensures that it 
an be expressed in terms of universal quantities. Indeed it is dire
tly relatedto the Kondo temperature TK of a single Kondo Hamiltonian (7.2). If the UV 
uto� 1=ais res
aled to this 
hara
teristi
 temperature s
ale the non-perturbative 
hara
ter of Kondophysi
s be
omes apparent: the perpendi
ular Kondo 
oupling, J? = Vp2�a, has res
aled toa value of order one,�V 2a(1�W�)2�1�(2�(1�W�)2)�1 � a�1J (1�(1�W�)2=2)�1? � TK : (7.44)The 
ombination V 2a(1�W�)2�1 in the e�e
tive 
ouplings (7.35) 
an therefore be repla
edby the Kondo temperature and, 
onsequently, the dependen
e on the 
uto� a of the high-energy theory be removed. The s
ale invarian
e thus eventually ensures the universality ofthe e�e
tive Kondo theory des
ribing the 
u
tuating mini-domain.The 
ombination on the left-hand side of (7.44) is just the one appearing in the expressionfor the 
riti
al 
oupling (7.40). The important point to note is that it is proportional tothe Kondo temperature TK , irrespe
tive of the relative values of the small intera
tions Wand V . In the following we would like to �x the prefa
tor in expression (7.44). To this endthe de�nition of the Kondo temperature has to be spe
i�ed. We will identify the Kondotemperature using the value the impurity spe
i�
 heat 
oeÆ
ient attains in the limit of lowtemperature, 
 = limT!0Cimp=T , TK � w�23 
�1 (7.45)where w = 0:41071::: is the Wilson number [66℄. The spe
i�
 heat 
oeÆ
ient 
an easily be
al
ulated on the Toulouse line, i.e. for W = 0, 
 = 1=(3�SFV 2), where �SF is the density ofstates of the solitoni
 fermions. This yields the universal asymptoti
 behavior of the phaseboundary near the Toulouse point,�SFW
r = � 8w�2 TKK
rz � �1:974 TKK
rz : (7.46)In general, universality is expe
ted in the so-
alled s
aling limit when all 
hara
teristi
 energys
ales are mu
h smaller than the energy 
uto� s
ale. For example, in our problem the s
alinglimit 
an be rea
hed by sending the short distan
e 
uto� a to zero while holding both theKondo temperature TK and the Ising 
oupling Kz �xed. From equation (7.44) it follows thatin the s
aling limit the perpendi
ular Kondo 
oupling vanishes, J? ! 0. This then means128



7.3. E�e
tive Kondo model: 
u
tuating mini-domainthat the 
riti
al ratio TK=K
rz just depends on Jz . Using the relationship (7.17) and (7.19)we obtain in thes
aling limit: TKK
rz = �w�2p2 sin2 � �2p2�8 �F (J
rz � Jz) � 0:575�F (J
rz � Jz) :(7.47)The 
riti
al 
oupling J
rz is given by �FJ
rz = 2=� tan ÆT � 0:315.7.3.2 Chara
teristi
 energy s
ales near the transitionClose to the quantum phase transition on both sides of the phase boundary there exists a
hara
teristi
 energy s
ale. Far away from the Toulouse point, the distan
e to the phasetransition is measured by the RG invariantC � (J?�)2 � (Jz�)2 : (7.48)The RG invariant C vanishes on the separatrix, i.e. at the phase transition. Consider theres
aled 
oupling Jz(T ) after s
aling the 
uto� of the e�e
tive Kondo model Kz to the tem-perature T , log TKz = �12 Jz(T )�ZJz� d(J 0z�)C + (J 0z�)2 : (7.49)In the 
u
tuating mini-domain phase the 
oupling between the pseudospin of solitoni
 spinex
itations and the pseudospin of the mini-domain grows under renormalization and a energys
ale T � is dynami
ally generated, the 
olle
tive Kondo temperature of the e�e
tive low-energytheory (7.34). It 
an be estimated by sending the res
aled 
oupling to in�nity Jz(T )!1,T � � Kz e 12jJz�j e� �2pC � e� �2pC : (7.50)We have used the fa
t that 
lose to the phase transition the bare 
oupling Jz is ne
essarilynegative. In the frozen mini-domain phase on the other hand, where C < 0, the 
ouplings
ow to zero. Nevertheless, we 
an distinguish an energy s
ale asso
iated here with the 
hangeof the s
aling behavior of, for example, the perpendi
ular 
oupling J?(T ),log TKz = J?(T )�ZJ?� d(J 0?�)2J 0?�p(J 0?�)2 + jCj = 8>>><>>>: 12pjCj log J?(T )J? for jJ?�j �pjCj12jJ?�j � 12jJ?(T )�j for jJ?(T )�j �pjCj ;(7.51)i.e. it s
ales either algebrai
ally or exponentially with temperature. The 
rossover temperatureT
ross where jJ?(T )�j 'pjCj 
an be determined to beT
ross � Kz e 12jJ?�j e� log(1+p2)2pjCj : (7.52)When the phase transition is approa
hed, for example by varying the Ising 
oupling Kz, C /jKz �K
rz j ! 0, the 
rossover temperature T
ross as well as the 
olle
tive Kondo temperatureT � vanish exponentially. 129



Chapter 7. Mini-Domains in Quantum Dots7.4 Phase diagram: 
omparison with NRGThe treatment of the pre
eding se
tion allowed us to determine the phase boundary (7.47)in the vi
inity of the Toulouse point. We established that here the quantum phase transitionbelongs to the Kosterlitz{Thouless universality 
lass. The Toulouse point 
orresponds to theextreme anisotropi
 limit of single-impurity Kondo 
ouplings, J? � Jz , and the questionremains how the phase transition 
hanges away from the Toulouse point. Continuity suggeststhat it evolves 
ontinuously towards the isotropi
 point of Kondo 
ouplings J? � Jz. But one
an a priori not ex
lude that another �xed point might intervene in between. The questions
an be answered with the help of the numeri
al renormalization group (NRG) [66℄. An NRGstudy of the generalized Anderson model (7.15) was performed by M. Vojta and T. Prus
hke,and it is explained in detail in Ref. [11℄. In the present se
tion we will outline the mainresults. This will 
omplement the pi
ture of the phase diagram.For an NRG treatment the generalized Anderson model (7.15) has 
ertain advantagesover the original two-impurity model (7.1). The two bands of spinful fermions of the two-impurity model are 
omputationally demanding. The generalized Anderson model on theother hand already takes into a

ount the fa
t that the respe
tive 
harge se
tors of the twofermioni
 bands de
ouple from the impurities, and therefore features only a single band of(pseudo-)spinful fermions allowing for high-a

ura
y numeri
al simulations down to lowestenergy s
ales and temperatures. A

ording to the relationship (7.19) between the phase shiftsof the two formulations of the mini-domain model and the expression (7.17) the followingrange of values for Jz 
an be 
overed by varying the intera
tion W (for small J? and V ,respe
tively)�SFW 7�! �FJz = 2� tan � 1p2 ar
tan��2 �SFW�+ ÆT � ;(�1;1) �! � 2� tan��2 (1�p2)� ; 2� tan �2� = [�0:485;1) : (7.53)Importantly, this in
ludes the isotropi
 point Jz � J? � 1. In parti
ular, a vanishing Kondo
oupling, Jz = 0, maps onto W�SF = (2=�) tan[�(1�p2)=2℄ � �0:485. The Toulouse point,W = 0, 
orresponds to the Kondo 
oupling �FJz = 2=� tan ÆT � 0:315.7.4.1 NRG 
ow and entropyIn the left panel of Fig. 7.5 NRG 
ow diagrams are shown displaying the energies of a fewlow-lying many-body eigenstates as fun
tion of the number of NRG steps N . The data inthe upper graph a) 
learly shows that for small values of Kz the same �xed point is rea
hedfor various V and W | this �xed point 
an be identi�ed with the Fermi-liquid phase with aresidual entropy S0 = 0. In parti
ular, it is also rea
hed for Kz = 0, the limit where the twoimpurity spins are separately Kondo s
reened by their respe
tive fermioni
 baths. This provesthat the Fermi-liquid of two separately Kondo-s
reened impurities is adiabati
ally 
onne
tedto the \
u
tuating mini-domain" regime whi
h 
an be 
hara
terized by pseudospin s
reeningbelow the 
olle
tive Kondo temperature T � (7.50). In the lower graph b) 
ow diagrams forlarger values of Kz are shown. The �xed points rea
hed at low energies are very similar fordi�erent parameter sets, but not identi
al. This is 
onsistent with the notion of a line of �xedpoints expe
ted from the Kosterlitz{Thouless RG 
ow of Fig. 7.4. Further eviden
e that thequantum phase transition belongs to the Kosterlitz{Thouless universality 
lass is provided130
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urves), the high-temperature ln 4 entropy isquen
hed in a single step, whereas two-stage s
reening o
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lose to isotropi
 Kondo 
oupling. Kz is: solid 0, long-dash 10�5, long-dash-dot 1:3� 10�5, short-dash 1:5� 10�5, short-dash-dot 10�4. b) W�F = �0:034, V = 1:5� 10�5(K
rz = 5:6�10�9), i.e., 
lose to the Toulouse point of the individual Kondo impurities. The Kz valuesare: solid 0, long-dash 10�9, long-dash-dot 1:5 � 10�9, short-dash 3� 10�9, short-dash-dot 10�7. 
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Chapter 7. Mini-Domains in Quantum Dotsby the fa
t that no additional �xed point is observed for Kz � K
rz , whi
h 
ould possibly
orrespond to an (unstable) 
riti
al �xed point.In the right panel of Fig. 7.5 the impurity entropy S(T ) is plotted as a fun
tion of temper-ature. At high temperatures the two single impurities o

upy a total of four states, resultingin an entropy of log 4. Upon lowering the temperature this high temperature value getsquen
hed. However, this quen
hing pro
ess depends 
ru
ially on the values of the Ising 
ou-pling Kz and the Kondo temperature TK of a single impurity. In the parameter regimeKz � TK the individual Kondo s
reening of the two impurity spins by their respe
tive ele
-tron bath is so overwhelming that the log 4 entropy is redu
ed in a single step to zero,resulting in two lo
al Fermi liquids. In the other regime Kz � TK the energy s
ale givenby the Ising intera
tion is dete
ted, leading to a quen
hing of only half the high energy en-tropy to log 2 at a temperature T � Kz. This 
orresponds to a redu
tion of the Hilbertspa
e to the low-energy states depi
ted in Fig. 5.2, giving rise to an e�e
tive pseudospin: themini-domain is born. Below a temperature T < Kz the physi
s is hen
e dominated by the
u
tuating mini-domain. Its fate depends on the Kondo 
oupling Jz, or equivalently on theintera
tion W , giving rise to a 
riti
al value for the Ising intera
tion K
rz . Above the 
riti
alvalue Kz > K
rz the 
u
tuations of the mini-domain are frozen out leaving a non-zero residualentropy of log 2: this is the frozen mini-domain phase. For 
ouplings TK < Kz < K
rz onthe other hand the remaining log 2 entropy gets quen
hed at a temperature of the order of a
olle
tive energy s
ale T � (7.50) attributed to the e�e
tive low-energy theory des
ribing themini-domain physi
s. For suÆ
iently large 
ouplings Jz and W the 
u
tuating mini-domainis always s
reened, giving a vanishing residual entropy as shown in graph 
) in the right panelof Fig. 7.5.7.4.2 Phase diagram
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Figure 7.6: S
hemati
 phase diagram of themini-domain model (7.1), see text.

In Se
tion 7.3 we were able to determine thenature of the quantum phase transition andthe dependen
e of the phase boundary (7.47)in the vi
inity of the Toulouse point. TheNRG study showed that this phase transitionalso extends to the isotropi
 limit of Kondo
ouplings, Jz � J?, and that it is governedthroughout by the Kosterlitz{Thouless uni-versality 
lass. In parti
ular, there is no �xedpoint of a di�erent nature interfering. Withthis result from the NRG the following pi
-ture of a phase diagram emerges (Fig. 7.6).In the regime Kz � TK ea
h impu-rity is separately Kondo-s
reened by its re-spe
tive ele
troni
 bath and mini-domainphysi
s does not play any role. This is theregime where the high-energy entropy log 4 isquen
hed in a single step to zero, 
f. Fig. 7.5.Only below the dashed line in Fig. 7.6 do we�nd the regime where the low-energy physi
sis dominated by a well-de�ned mini-domain.132



7.4. Phase diagram: 
omparison with NRG

-0.4 -0.3 -0.2 -0.1 0

0.30.20.10

W ρF

0

0.01

0.02

0.03

0.04

T
K

(1
)  / 

K
z

Jz ρ

-0.4-0.20 c
0

0.01

0.02

0.03

0.04

Figure 7.7: Phase diagram of the generalized single-impurity Anderson model (7.15) dedu
edfrom NRG 
al
ulations for NRG dis
retization parameter � = 2. The verti
al dashed lineshows the Toulouse point of the individual Kondo impurities. Small values of V have been usedto rea
h the universal regime TK � D. The upper horizontal axis shows the 
orrespondingvalues of Jz in the bosonization 
uto� s
heme. The error bar shows the typi
al un
ertaintyin the numeri
al determination of TK=K
rz . The inset shows the same data for TK=K
rz , nowplotted as fun
tion of the RG invariant 
 of the single-impurity model (7.54) | this plot
overs the range of positive as well as negative Jz (here 
 > 0). The lines are a guide to theeye only.The Ising intera
tion Kz is strong enough to bind the two impurity spins into an antiferro-magneti
 
on�guration. The two ferromagneti
 impurity states de
ouple from the low-energyphysi
s giving rise to a log 2 plateau in the temperature dependen
e of the entropy, see rightpanel of Fig. 7.5. The fate of the mini-domain depends on its 
oupling to the 
ondu
tionele
trons. If the 
oupling strength is suÆ
iently strong a non-perturbative energy s
ale T �is dynami
ally generated below whi
h the 
ondu
tion ele
trons are 
olle
tively bound to themini-domain, quen
hing the remaining degree of freedom. This is the phase of the 
u
tuatingmini-domain. At a 
riti
al 
oupling strength however the 
u
tuations of the mini-domainare frozen out. The mini-domain is frozen in one of the two antiferromagneti
 
on�gurationsleading to a residual entropy of log 2. This is a

ompanied by a quantum phase transition ofthe Kosterlitz{Thouless universality 
lass indi
ated by the solid line in Fig. 7.6.The phase boundary determined by NRG [11℄ is shown in Fig. 7.7. As already mentionedin Se
tion 7.3 in the s
aling limit near the Toulouse point the 
riti
al value of the ratio TK=Kz
an just be labeled by the z-
omponent of the Kondo 
oupling Jz. This is done in the mainpanel of Fig. 7.7 where the horizontal axis is labeled by Jz andW . However, a proper label forthe horizontal axis would a
tually be an RG invariant C of the single-impurity Kondo model,as in the inset of Fig. 7.7. This is espe
ially important near the isotropi
 limit Jz � J?, as wewill explain in the following. A

ording to the Anderson{Yuval{Hamann RG [78℄ approa
h(see Appendix B.6), whi
h is appli
able for arbitrary Jz in the limit of small perpendi
ular133
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Figure 7.8: Dependen
e of the slope of the phase boundary near the Toulouse point on theNRG dis
retization parameter � de�ning the logarithmi
 dis
retization of the 
ondu
tion band.The dashed line is a linear �t. Ea
h data point involves an extrapolation of the numeri
alresults at �nite negative W to W ! 0�.
oupling J?, su
h an RG invariant is given by
 = 2(J?�)2 + "1��1� 2ÆJz� �2#+ 2 ln�1� 2ÆJz� � : (7.54)Identi
al low-energy behavior is expe
ted even for di�erent values of intera
tion parametersas long as they 
an be attributed to the same RG invariant 
. Near the Toulouse point the
ontribution of J? to the RG invariant 
an be negle
ted and 
 is unambiguously given byJz, re
overing the label of the main panel. For small values of both Jz and J?, however, theexpression for 
 
an be expanded and redu
es to the poor man's version already en
ounteredin (7.48), 
 � 2 C = 2(J?�)2 � 2(Jz�)2 : (7.55)The limit of isotropi
 Kondo 
ouplings, J? = Jz, 
orresponds therefore to a vanishing RGinvariant, 
 = 0, and the 
ontribution of J? 
annot be negle
ted any more. In parti
ular, thismeans that near the limit of isotropi
 Kondo 
oupling the RG invariant is the proper labelfor the horizontal axis of the phase diagram.It turned out that some NRG results show a relatively strong dependen
e on the NRGdis
retization parameter � [11℄. Fig. 7.7 shows the phase diagram for � = 2; results forother � values are similar, but the 
riti
al ratio TK=K
rz was found to di�er by 50% or more.Therefore, an extrapolation to �! 1 was performed for a few important quantities. A sampleextrapolation is shown in Fig. 7.8 for the slope of the phase boundary near the Toulouse point,whi
h was determined analyti
ally in Se
tion 7.3. The extrapolated value of KzW=V 11�� � 8,with 2� = (1� 2ÆW =�)2, is 
onsistent with the exa
t result (7.40).The maximum value of the ratio TK=K
rz of the phase boundary shown in Fig. 7.7 o

ur-ring near Jz = 0 was also analyzed for di�erent dis
retization parameters and was found toextrapolate to (TK=K
rz )max = 0:1� 0:03.Alternatively, one 
an draw a quantum phase diagram in the plane where the tem-perature T is plotted versus Ising 
oupling Kz for a �xed Kondo temperature TK , see134



7.5. Symmetries and perturbationsFig. 7.9. For T = 0 there is a quantum phase transition at the 
riti
al 
oupling Kz = K
rzfrom a Fermi liquid with residual entropy S0 = 0 to the \frozen mini-domain" phase withS0 = log 2. At T > 0 only smooth 
rossovers o

ur, indi
ated by the dashed and dot-ted lines. At the dashed lines, the entropy S 
hanges by log 2. For small Kz there isa single 
rossover at the single-impurity Kondo temperature TK where the log 4 entropyis quen
hed in a single step to zero. This 
rossover splits into two when Kz approa
hesvalues of order TK | then the two-stage quen
hing of the entropy des
ribed above is ob-served. In this regime the upper 
rossover temperature, T0, is asso
iated with the for-mation of the magneti
 mini-domain where relative 
u
tuations of the two impurity spinsare frozen out. The lower 
rossover temperature is the 
olle
tive energy s
ale T � belowwhi
h the pseudospin of the mini-domain is s
reened. Generally, for a Kosterlitz{Thouless
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Figure 7.9: Quantum phase diagram in the Kz{Tplane.

transition this energy s
ale van-ishes exponentially upon approa
h-ing the phase transition,T � � T0 e�A=pjK
rz �Kzj (7.56)where A is a fun
tion of TK . ForKz � K
rz another 
rossover hap-pens at a temperature s
ale T
ross(7.52), whi
h however has mu
hweaker signatures. Here the 
har-a
ter of the leading 
orre
tions tothe entropy and other quantities
hanges. For a more detailed dis-
ussion of these 
orre
tions we re-fer the reader to Se
tion 7.6. This
rossover s
ale T
ross also vanishesexponentially near the 
riti
al 
ou-plingK
rz . For largeKz the entropy
hange from log 4 to log 2 o

ursaround T � Kz, and therefore T0approa
hes Kz in this limit.7.5 Symmetries and perturbationsTo what extent do the results presented in the previous se
tions depend on the details ofthe models under 
onsideration? To answer this question we will investigate whether andhow (small) perturbations of (7.1) qualitatively 
hange the physi
s. Fermi-liquid phases withvanishing residual entropy are stable against small perturbations, but this is not ne
essarilythe 
ase for our \frozen mini-domain" 
hara
terized by a residual entropy of log 2. Theexisten
e of this log 2 phase is a fundamental feature of the mini-domain model (7.1), givingrise to a quantum phase transition. Indeed the general mini-domain model (5.8) was suitablyredu
ed in this 
hapter with the two assumptions mentioned in the introdu
tion| (a)K? = 0and (b) un
orrelated ele
troni
 baths | in order to a
hieve exa
tly this stability. In thefollowing we will dis
uss the ne
essary 
onditions for these assumptions to hold.135



Chapter 7. Mini-Domains in Quantum DotsLet us start by 
onsidering the e�e
t of a magneti
 �eld in the z-dire
tion a
ting on theimpurity spins. A staggered magneti
 �eld, hs(SzL�SzR), will dire
tly destroy the degenera
yof the two antiferromagneti
 
on�gurations, j "#i and j #"i. A homogeneous magneti
 �eldh(SzL + SzR), on the other hand, will not destroy the log 2 phase. It is interesting how theseterms modify the generalized Anderson model (7.15). The magneti
 �eld h results in a termhP�=*;+ dy�d� whi
h breaks parti
le{hole symmetry in the generalized Anderson model andtherefore modi�es only the position of the phase boundary. However, the staggered magneti
�eld hs leads to a term hsP�=*;+ �dy�d� whi
h 
orresponds to a (pseudo-)magneti
 �elda
ting on the pseudospin of the Anderson model. Only the staggered magneti
 �eld is arelevant perturbation destroying the log 2 phase.Apart from these magneti
 �elds in the z-dire
tion there are other relevant terms whi
hlift the two-fold degenera
y and whi
h have the forms:S+j j = L;R; (7.57)S+LS�R ; (7.58)S+LS�R	yi�	j� i; j = L;R; (7.59)S+LS�R	yi����	j� i; j = L;R (7.60)and their hermitian 
onjugates. It turns out that all these operators are forbidden if weimpose the following two symmetry 
onditions: the model should be invariant under the twoseparate spin rotations of ea
h impurity and its ele
troni
 bath about an angle of �, i.e., underthe transformation Uj = ei�Izj (7.61)with j = L;R. Izj is the z-
omponent of total spin of sub-system j, Izj = Szj+Pk 
yk�j 12�z��
k�j .In the presen
e of these �-rotation symmetries, Uj, the terms (7.57) { (7.60) are absent andthe frozen mini-domain phase survives. The quantum phase transition from the frozen mini-domain with residual entropy log 2 to the phase of Kondo s
reened impurities therefore justrelies on the symmetries UL and UR (in the absen
e of a staggered magneti
 �eld).The model (7.1) 
onsidered here possesses by 
onstru
tion symmetries beyond Uj . Theyare not ne
essary for the stability of the log 2 phase. For example, the two baths are assumedto have the same Kondo 
oupling Jn. This parity symmetry 
an be relaxed without destroy-ing the frozen mini-domain phase. Furthermore, the z-
omponent of spin of ea
h system,Izj , is 
onserved in our model sin
e we 
hose Jx = Jy = J?. This symmetry 
an also beperturbed without lifting the two-fold degenera
y. Moreover, the frozen mini-domain phaseis stable against breaking of the parti
le-hole symmetry whi
h we impli
itly assumed in thebosonization treatment when we linearized the dispersion relation of the 
ondu
tion ele
trons.In all these situations, we therefore expe
t that all of the qualitative results, i.e., the stru
tureof the phase diagram and the nature of the quantum phase transition, are una�e
ted.However, any perturbation whi
h breaks either UL or UR (or both) will generi
ally generateone of the relevant 
ouplings (7.57{7.60) whi
h all destroy the log 2 phase. In the followingwe brie
y dis
uss two su
h 
ases whi
h are likely to o

ur in experimental realizations.Let us relax assumption (a), i.e. 
onsider a situation where a small spin-
ip 
oupling (7.58)is added on top of the large Ising intera
tion of the spins,ÆH?LR = K? �SxLSxR + SyLSyR� : (7.62)136



7.6. Experimental impli
ations: transportIn realizations of our model based on spins and strongly anisotropi
 spin-orbit intera
tions |as we originally had in mind, see Se
tion 5.1 | su
h a term will always be present. A smallK? will immediately lead to a tunneling between the two pseudospin 
on�gurations of themini-domain: their degenera
y is lifted, the two spins form a singlet and the log 2 residualentropy is quen
hed 
ompletely.Two-impurity Kondo models with K? = Kz have been widely studied | see the shortreview in Se
tion 5.3. As argued in Refs. [57, 59℄ the resulting phase diagram depends on thepresen
e or absen
e of parti
le{hole symmetry (whi
h, however, does not modify the phasediagram forK? = 0 as pointed out above). In the absen
e of parti
le{hole symmetry the phasetransition at K? = 0 is repla
ed by a smooth 
rossover. However, in the presen
e of parti
le{hole symmetry, the s
attering phase shifts of the ele
trons 
an only take the values 0 or �=2.As the Kondo-s
reened phase and the inter-impurity singlet phase have di�erent phase shifts,there has to be a phase transition in between. This transition is not of Kosterlitz{Thoulesstype, but is 
hara
terized [59, 60, 61, 62℄ by a 
riti
al �xed point asso
iated with a residualentropy of logp2. Nevertheless, this transition will merge with ours in the limit K? ! 0, asan in�nitesimal K? does not a�e
t the Kondo-s
reened phase but leads immediately to theformation of an inter-impurity singlet in the frozen mini-domain phase.Now let us dispense with assumption (b), whi
h means allowing for a 
oupling betweenthe two Fermi seas, e.g., by tunneling between the two leadsÆHtunnelingLR = Xk;k0;��tkk0 : 
yk�L
k0�R : + h:
:� : (7.63)While this term is not relevant by power 
ounting, it will indu
e an RKKY intera
tion betweenthe spins and therefore generate the relevant 
oupling (7.59) and (7.58) or (7.62). As su
h aterm also breaks parti
le{hole symmetry, the quantum phase transition will be repla
ed by asmooth 
rossover.7.6 Experimental impli
ations: transportIn this se
tion we dis
uss how the phase diagram and, more importantly, the 
orrespond-ing quantum phase transition 
an be revealed in transport experiments. What is the most
hara
teristi
 signature of the Kosterlitz{Thouless quantum phase transition whi
h we foundhappens in the mini-domain model (7.1)?The most famous example of a Kosterlitz{Thouless transition is probably the vortexbinding{unbinding transition in super
uid 4He �lms [79℄. This transition is governed bythe same RG 
ow, see Fig. 7.10. When a path is taken in parameter spa
e similar to theone shown by the dashed line in Fig. 7.10 a vortex binding{unbinding transition takes pla
e.Starting on the left hand side the RG 
ow is towards a line of �xed points 
orrespondingto a super
uid with a 
ertain value of the super
uid density �s=T depending on the initial
onditions. Dire
tly at the phase transition indi
ated by the bla
k dot the parameter 
owis towards a 
riti
al, universal value [13℄ of the super
uid density �
rs =T
 before it vanishesbe
oming a normal 
uid. The vortex binding{unbinding transition is therefore 
hara
terizedby a universal jump of the super
uid density at the phase transition from �
rs =T
 to zero. Thisis impressively 
on�rmed by experiments as shown in the left panel of Fig. 7.10.Interestingly, the analogue of the super
uid density in the mini-domain model is the s
at-tering phase shift Æ of the 
ondu
tion ele
trons, and the arguments for a universal jump in137
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riti
al tem-perature for over 70 di�erent experiments on 4He �lms for di�erent substrates and �lm thi
k-ness [80℄. Right panel: Kosterlitz{Thouless 
ow governing the vortex binding{unbinding tran-sition in 4He �lms. E
 is the 
ore energy of a vortex. The dashed line represents a possiblepath in parameter spa
e; the quantum phase transition o

urs at the bla
k dot. At the transi-tion the super
uid density jumps from the 
riti
al value �
rs =T
 = 3:491 � 10�9 g 
m�2 K�1to zero giving rise to the universal slope in the graph of the left panel.the super
uid density 
arry over to a universal jump in Æ. Let us re
all the analysis of thee�e
tive low-energy theory in Se
tion 7.3, espe
ially its RG 
ow diagram Fig. 7.4. In the\frozen mini-domain" phase the system 
ows towards a line of �xed points and the �xedpoint value of the Kondo 
oupling Jz and the asso
iated phase shift Æ in
rease 
ontinuouslyupon approa
hing the phase boundary. Dire
tly at the phase transition the �xed point valueof the phase shift a
quires the Toulouse value ÆT = �=2(1 � 1=p2). After 
rossing the phaseboundary, however, the physi
s is 
ontrolled by a single strong 
oupling �xed point whi
h
orresponds to the unitary limit Æ = �=2. At the Kosterlitz{Thouless quantum phase tran-sition the phase shift therefore undergoes the universal jump from ÆT to �=2! The analysispresented in Se
tion 7.3 was 
on�ned to the vi
inity of the Toulouse point. However, univer-sality demands that the phase shift, whi
h is a measurable low-energy property of the model,jumps by the same value along the whole phase boundary of the phase diagram, Fig. 7.6,given that no further �xed point is intervening. That the latter does not happen was shownby the NRG 
al
ulations.We shall show in the following that depending on the type of experiment the universal jumpof the phase shift results in either a universal fra
tional 
riti
al 
ondu
tan
e or a 
hara
teristi
zero-bias anomaly.7.6.1 Universal 
ondu
tan
e of Ising-
oupled quantum dotsConsider �rst the experimental set-up sket
hed in the left panel of Fig. 7.11 where the 
on-du
tan
e through the left dot is measured. The linear 
ondu
tan
e 
an be obtained from theKubo formula [81℄, G = lim!!0 e2~ 1! 1Z0 dt ei!th[j(t); j(0)℄i ; (7.64)138
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Figure 7.11: Left panel: Experimental set-up to measure the 
ondu
tan
e through a singledot. Right panel: At T=0 (solid line), the 
ondu
tan
e takes the universal value G
r =G0 
os2 �2p2 , (7.66), at the quantum phase transition. Dashed line: s
hemati
 plot of the
ondu
tan
e at �nite T . Corre
tions to the T = 0 result are logarithmi
 at the transition.The exponent d � 2 dim[H
ipe� ℄� 2 = 8(2Æ� � 2ÆT� )2 � 8(2Æ� � 2ÆT� ) is given by the dimension ofthe domain 
ip term (7.4).where the 
urrent operator is given by j(t) = ddt 12 �N̂L1 � N̂L2�. The operator N̂Lj 
ounts thetotal number of ele
trons in the upper (L1) and lower (L2) left lead. The linear 
ondu
tan
ethrough the left dot is given ex
lusively in terms of the ele
tron degrees of freedom whi
h are
oupled to the lo
al moment on the dot, i.e. whi
h parti
ipate in the Kondo e�e
t [81℄. IfKondo s
reening prevails, (in the 
ase of a symmetri
 
oupling of the leads to the dot) the
ondu
tan
e for T ! 0 will be given by the 
ondu
tan
e quantum G0 = 2e2=(2�~) [81℄. Inthe frozen mini-domain phase on the other side of the phase diagram, spin 
ips are 
ompletelysuppressed for T ! 0 and therefore we 
an assume a stati
 spin 
on�guration to 
al
ulateG(T = 0). For su
h a potential s
attering problem, the 
ondu
tan
e is given by [81℄G(T = 0) = G0 sin2 Æ : (7.65)Dire
tly at the quantum phase transition, the 
ondu
tan
e therefore takes the universal valueG
r(T = 0) = G0 sin2 ÆT = G0 
os2 � �2p2� � 0:197G0 ; (7.66)and it jumps to the Kondo value G0 upon entering the Kondo-s
reened phase. This universalfra
tional 
ondu
tan
e at the quantum phase transition is one of the remarkable features ofthe mini-domain model (7.1).It is interesting to 
ompare this to the well-known result for the usual Kondo e�e
t, wherethe 
ondu
tan
e jumps from 0 to G0 when the ex
hange 
oupling J is tuned from ferromag-neti
 to antiferromagneti
. In Se
tion 7.2.3 we found that the e�e
tive theory des
ribing thequantum phase transition is just su
h a Kondo model, but the fermioni
 degrees of freedom inthis e�e
tive Kondo model (7.34) are 
ompli
ated solitoni
 ex
itations in terms of the originalfermions. While the phase shift of these solitons vanishes at the quantum phase transition,the phase shift of the physi
al ele
trons takes the fra
tional value ÆT leading to a fra
tional
ondu
tan
e. 139



Chapter 7. Mini-Domains in Quantum DotsIn the right panel of Fig. 7.11 the zero-temperature 
ondu
tan
e 
lose to the phase tran-sition is shown. At any �nite temperatures, the jump in the 
ondu
tan
e is strongly smearedas sket
hed s
hemati
ally in the �gure. There are di�erent 
rossover s
ales whi
h we havealready dis
ussed in the 
ontext of the temperature dependen
e of the entropy, see Fig. 7.9.The T -dependen
e at lowest temperature is determined by the dimension of the leading ir-relevant operators. In the Kondo-s
reened phase, Æ � ÆT , the leading 
orre
tions for T ! 0to the Kondo 
ondu
tan
e G0 are Fermi-liquid like and of order (T=T �)2 for T � T �. HereT � is the solitoni
 Kondo temperature (7.50) and is exponentially small 
lose to the quantumphase transition. However, at a temperature of order T �,T � T � ' A exp24� BqTKKz � TKK
rz 35 ) TKKz � TKK
rz � B2log2A=T ; (7.67)logarithmi
 temperature 
orre
tions take over. (The quantities A and B depend on the Ising
oupling Kz and on the single impurity Kondo temperature TK .) A

ording to the poorman's s
aling equations (7.37) the strong 
oupling limit, J � � 1, is only rea
hed when theenergy 
uto� has res
aled to a value of the order of T �. If, however, the RG 
ow is stoppedat a temperature T > T �. Then the e�e
tive 
ouplings are rather of orderJ (T )� � 1log T=T � : (7.68)This leads to a 
orre
tion of the phase shift Æ and, as 
onsequen
e, a temperature 
orre
tionto the 
ondu
tan
e of order 1logT=T � . The same holds true in the frozen mini-domain phasenear the transition where the 
orre
tion is of order 1log T=T
ross with the 
rossover temperatureT
ross de�ned in (7.52). On the other hand, deep in the frozen mini-domain phase the 
urrentoperator j 
an be 
al
ulated perturbatively in the single-impurity Kondo 
ouplings. Theleading 
ontribution stems from the 
olle
tive mini-domain 
ip and is of order j � O(J2?) andtherefore 
arries the same s
aling dimension as the domain 
ip operator H
ipe� (7.4). Puttingthis into the Kubo formula we obtain the s
aling dimension of the asso
iated 
ondu
tan
edim[G℄ = 2 dim[j℄�2 = 2dim[H
ipe� ℄�2. Hen
e, the temperature 
orre
tion deep in the frozenmini-domain phase is given byG(T ) / T 2dim[H
ipe� ℄�2 = T 8( 2Æ� � 2ÆT� )2�8( 2Æ� � 2ÆT� ) : (7.69)In the set-up 
onsidered here, Fig. 7.11, the mini-domain 
onsists of real spins and aperpendi
ular dire
t 
oupling, K?, will always be present in 
ontrast to the assumptionson whi
h the mini-domain model (7.1) is based. All the above 
onsiderations are thereforeonly valid for temperatures large enough that the splitting of the antiferromagneti
 doublet,Fig. 5.1, is not yet resolved. This might appear too a
ademi
. Nevertheless, the Kosterlitz{Thouless phase transition gives rise to a remarkable universal fra
tional 
ondu
tan
e in thisexperiment and this may serve as an illustration that a quantum phase transition might be apossible me
hanism for the generation of non-integer 
ondu
tan
e features in nanostru
tures,su
h as the infamous 0.7 
ondu
tan
e anomaly [82℄ observed in quantum point 
onta
ts.7.6.2 Zero-bias anomaly of 
apa
itively 
oupled quantum dotsThe model is probably most easily experimentally realized in a system of two 
apa
itively
oupled quantum dots. The ele
tron{ele
tron intera
tion has a dramati
 e�e
t on small140
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ondu
tan
e betweentwo 
harge 
oupled quantum dots. To observe the 
ondu
tan
e anomaly the 
onta
ts have tobe suÆ
iently 
lose. Right panel: S
hemati
 plot of the zero bias anomaly of the 
ondu
tan
eat T = 0. In the \frozen mini-domain" phase, Æ < Æ
, the 
ondu
tan
e diverges algebrai
allya

ording to (7.73). At the quantum phase transition, Æ = Æ
, the exponent takes the universalvalue �2(p2� 1) a

ording to (7.74). In the Kondo s
reened phase, Æ > Æ
, the 
ondu
tan
eis �nite for V ! 0.quantum dots. It manifests itself in a 
harging energy EQ = (Q � CVG)2=(2C), where Cis the 
apa
itan
e and Q the 
harge of a dot and VG is the gate voltage. The number ofele
trons in the ground state of a quantum dot 
an be 
ontrolled by the gate voltage VG. ForCVG = n+ 1=2 the two ground states with n and n+ 1 ele
trons on the dot are degenerate,and at su
h a degenera
y point the ground state of ea
h dot 
an be des
ribed by an e�e
tivepseudospin S. It was realized by Matveev [83, 84℄ that an additional 
oupling of a dot to a leadat the degenera
y point leads to an e�e
tive anisotropi
 Kondo model in the 
ase of spinlessfermions. The ele
trons 
arry pseudospin up if they belong to the lead, and pseudospin downif they are lo
ated on the dot. Ele
trons 
an be 
onsidered as spinless if for example the dotis pla
ed in a suÆ
iently strong magneti
 �eld so that one spin 
omponent de
ouples fromthe low-energy physi
s of the problem, or, alternatively, strong spin-orbit s
attering mixesthe spin 
hannels separating energeti
ally one e�e
tive 
hannel by the spin-orbit energy s
ale.We would now like to 
onsider two su
h dot{lead systems both tuned to their respe
tivedegenera
y points. If the two dots are 
apa
itively 
oupled this intera
tion takes the formof pure Ising intera
tion in the language of pseudospins, SL and SR. The 
apa
itatively
oupled 
harge boxes are just des
ribed by the mini-domain model (7.1). This experimentalrealization has already been suggested by N. Andrei et al. [9℄.In this realization using 
harge states the 
ondu
tan
e is not easily measured. We proposeinstead another experiment, sket
hed in Fig. 7.12. We assume that in addition to the strong
apa
itive 
oupling Kz the two dots are 
oupled by weak tunneling �. In the Matveevlanguage this tunneling term takes the formHtun = �S+LS�R
y#L
#R + h:
: (7.70)It will be 
ru
ial in the following that the tunneling is into the ele
troni
 degrees of freedom,141



Chapter 7. Mini-Domains in Quantum Dots
�i, whi
h also parti
ipate in the single-impurity Kondo e�e
t (7.2). For this to be the 
asethe distan
e between the 
onta
ts has to be suÆ
iently small, as indi
ated in Fig. 7.12.We 
al
ulate the 
ondu
tan
e in perturbation theory in the inter-dot tunneling �. We�rst 
onsider the \frozen mini-domain" phase. Following the arguments given in Se
tion 7.1,the dimension of the tunneling term (or equivalently of the 
urrent operator) with respe
t tothe \frozen mini-domain" �xed point is given bydim[Htun℄ = �2Æ� �2 +�1� 2Æ� �2 : (7.71)This is smaller than 1, i.e. it is a relevant perturbation to the mini-domain Hamiltonian.At this stage it is essential that the ele
trons involved in tunneling also parti
ipate in thesingle-impurity Kondo e�e
t. If this were not the 
ase the s
aling dimension would rather bedim[Htun℄ = 2(2Æ� )2+1 missing the 
omposite 
hara
ter between impurity spin and 
ondu
tionele
trons rendering the tunneling perturbation irrelevant.Similar arguments to those in the previous se
tion yield for the 
ondu
tan
eG(T ) � �2 T 2 dim[Htun℄�2 = �2 T�4 2Æ� (1� 2Æ� ) : (7.72)This divergen
e of the 
ondu
tan
e arises be
ause the tunneling is a relevant perturbationwhi
h will �nally destroy the \frozen mini-domain" phase and quen
h its residual entropylog 2 below some small energy s
ale. Eq. (7.72) is therefore only valid for suÆ
iently small �,when this energy s
ale is smaller than the temperature T . Furthermore, a �nite domain-
iprate indu
ed by (7.4) is required to obtain a �nite 
urrent. Above we impli
itly assumed that� is so small that it determines the bottlene
k for 
harge transport.At �nite voltage V � T , T in (7.72) 
an be repla
ed by V and we expe
t a zero-biasanomaly 
hara
terized by a pronoun
ed peak in the 
ondu
tan
e:G(V ) � jV j�4 2Æ� (1� 2Æ� ) : (7.73)As the quantum phase transition is approa
hed, the divergen
e in
reases and at the Kosterlitz{Thouless transition it takes the universal formG
r(T ) � T�2(p2�1) � T�0:83 ; (7.74)G
r(V ) � jV j�2(p2�1) � jV j�0:83 (7.75)up to logarithmi
 
orre
tions.In the Kondo-s
reened Fermi liquid phase, the s
aling dimension of the tunneling Hamil-tonian (7.70) will be marginal, leading to a 
onstant 
ontribution to the 
ondu
tan
e belowthe 
hara
teristi
 temperature s
ale T �G(V ) � G(T ) � 
onst: (7.76)In Fig. 7.12 we show s
hemati
ally the nonlinear 
ondu
tan
e as a fun
tion of voltage, V , inthe vi
inity of the quantum phase transition.In 
ontrast to (7.72) and (7.76), N. Andrei et al. [9℄ obtained an exponentially small
ondu
tan
e in the \frozen mini-domain" phase and G � T 4 in the Fermi liquid phase, whi
hwe believe are in
orre
t. 142



7.7. Dis
ussion7.7 Dis
ussionWe have 
onsidered the model (7.1) of two lo
al moments 
oupled by an Ising intera
tion Kz,where ea
h lo
al moment is in addition 
oupled to its own fermioni
 bath via a Kondo inter-a
tion with the asso
iated energy s
ale TK . This model exhibits a quantum phase transition.We have derived the e�e
tive theory near the phase transition, whi
h turned out to bean e�e
tive Kondo model. As a 
onsequen
e, we were able to 
on
lude that the quantumphase transition belongs to the Kosterlitz{Thouless universality 
lass. In deriving the e�e
tivemodel we made use of a spe
ial point in parameter spa
e known as the Toulouse point whi
hturned out to be part of the phase boundary. We applied a S
hrie�er{Wol� transformationin the time domain to 
apture power-law renormalizations of the e�e
tive Kondo 
ouplingsarising from an orthogonality 
atastrophe in the high-energy se
tor. This was ne
essary inorder to obtain a universal e�e
tive Kondo theory independent of the 
uto� stru
ture of theoriginal high-energy theory (7.1). The Kondo pseudospin degree of freedom was shown to
orrespond to the degenerate 
on�gurations of a magneti
 mini-domain. Interestingly, thefermioni
 degrees of freedom of the e�e
tive Kondo model are solitoni
 spin ex
itations of the
ondu
tion ele
trons.The following physi
al pi
ture of the quantum phase transition emerged. For energieslarger than the Ising intera
tion Kz the two lo
al moments 
u
tuate independently. At anenergy s
ale of order ofKz a well-de�ned mini-domain forms. Consequently, for lower energiesthe two lo
al moments 
u
tuate in a 
orrelated fashion. This dynami
s is des
ribed by theabove mentioned e�e
tive Kondo model. The quantum phase transition is now asso
iatedwith the fate of this 
u
tuating mini-domain. The 
ontrol parameter is the ratio of theIsing intera
tion Kz and the Kondo temperature TK of a single impurity. For TK � Kzthe 
u
tuations freeze out at lowest energies and the mini-domain is lo
ked in one of thetwo degenerate 
on�gurations, giving rise to a residual entropy of log 2. For TK � Kz,however, the mini-domain undergoes a 
luster Kondo e�e
t, being s
reened by 
olle
tive spinex
itations of the two 
ondu
tion Fermi seas.Due to the solitoni
 nature of the fermioni
 degrees of freedom involved in the 
olle
tiveKondo e�e
t the phase shift of the 
ondu
tion ele
trons jumps at the phase transition from�=2(1� 1=p2) to �=2. This universal jump in the phase shift is the analogue of the universaljump in the super
uid densities at the vortex binding{unbinding transition in super
uid 4He�lms. The universal jump in the phase shift would give rise to 
hara
teristi
 signatures intransport experiments, su
h as a universal jump in the 
ondu
tan
e or a 
hara
teristi
 zero-bias anomaly.
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Appendix B
B.1 Unitary transformation: absorption of a minus signIn this appendix it will be shown expli
itly that the Hamiltonian (6.50) 
an be transformedto (6.53) by the unitary transformationD � eA = expf i �2Xk0 	yk0�0�0 12(1� �3�0�0)�3�0�0 	k0�0�0g : (B.1)The diagonal part H0 and the pseudospin-Zeeman splitting in (6.50) remain invariant underthe rotation D. Only the term 
ontaining the pseudospin-Kondo 
oupling will be a�e
ted byD. Due to the stru
ture of the 
oupling matrix J imn(k; q), 
f. (6.51), the pseudospin-Kondo
oupling 
onsists only of the following operators	yk�� �m��	q�� where m = 0 or 3 ; (B.2)	yk�� �3�� �m��	q�� where m = 1 or 2 ; (B.3)where a summation over the spin and pseudospin indi
es is implied, however not over themomenta. To evaluate the transformation of these operators we will use the Baker-Haussdor�formula whi
h reads DBDy = eAB e�A = 1Xn=0 1n! [A;B℄n ; (B.4)where [A;B℄n+1 = [A; [A;B℄n℄ and [A;B℄0 = B. The operator B is one of the two operators,(B.2) or (B.3). First we 
al
ulate the required 
ommutators.1. B = 	yk�� �m��	q��In this 
ase the 
ommutator of A and B vanishes for m = 0 or 3,[A;B℄ = [A;	yk�� �m��	q��℄ = 0 if m = 0 or 3 ; (B.5)so that B remains invariant under D.2. B = 	yk�� �3�� �m��	q��The index m is understood to be either 1 or 2. In this 
ase the 
ommutators read[A;B℄1 = �� 	yk�� 12(1� �3��)�m3l�l��	q�� (B.6)[A;B℄2 = �2 	yk�� 12(1� �3��)�m��	q�� (B.7)[A;B℄n+2 = ��2 [A;B℄n (B.8)144



B.2. Symmetries of the e�e
tive mini-domain HamiltonianInserted into the Baker{Hausdor� formula this givesDBDy = B + 1Xn=1 1(2n)! [A;B℄2n + 1Xn=0 1(2n+ 1)! [A;B℄2n+1 (B.9)= B + 1Xn=1 1(2n)! (��2)n�1 [A;B℄2 + 1Xn=0 1(2n+ 1)! (��2)n [A;B℄1 (B.10)= B + 2��2 [A;B℄2 = 	yk�� �m��	q�� (B.11)With the transformation D we 
an therefore eliminate the 
oupling to the �3 
omponent.Consequently, the relative minus sign between the spin-up and spin-down 
omponents isremoved and we end up with the e�e
tive Hamiltonian (6.53).B.2 Symmetries of the e�e
tive mini-domain HamiltonianWe would like to 
onsider whi
h kind of 
onstraints on the parameters of the e�e
tive Hamil-tonian (6.53) are posed by symmetries. However, in order to avoid a dis
ussion of the sym-metry properties of the rotation operator D, (6.52), whi
h was applied to obtain the e�e
tiveHamiltonian, we will rather 
onsider the preliminary e�e
tive Hamiltonian (6.50)�H = H0 +Xkq J imn(k; q) : 	yk�� �i�� �m��	q�� : �n2 + (K? + h?) �32 : (B.12)As explained in the text the symmetry properties of the 
oupling matrix of the e�e
tiveHamiltonian Jmn(k; q) follow straightforwardly from the those of J imn(k; q).1. Hermiti
ityFrom the 
ondition that the Hamiltonian must be hermitian it follows that(J imn)�(k; q) = J imn(q; k) : (B.13)In parti
ular, if one negle
ts the momentum dependen
e the 
oupling matrix will bereal.2. Conservation of the z-
omponent of the total spinThe basis of our model was the assumption that the z-
omponent of the total spin,Sz(R=2) + Sz(�R=2) + 12Pk� 
yk� �z�� 
k� , is 
onserved. The pseudospin of the mini-domain � 
ommutes with Sz(R=2) + Sz(�R=2) by 
onstru
tion, so the 
onservation ofthe z-
omponent of spin redu
es to the 
ondition[ �H;Xk� 
yk� �z�� 
k� ℄ = 0 ; (B.14)from whi
h one derives the 
ondition on the 
ouplingJ imn(k; q) = 0 for i = 1; 2 : (B.15)145



Appendix B3. ParityA

ording to (6.4) the pseudospin �n, n = 0; 1; 2; 3, transforms under parity as�n �! (1� 2Æn1)(1� 2Æn2)�n ; (B.16)where in this 
ase no summation over the index n is implied. The ele
tron operatorstransform under parity as (6.10) 	q�� �! �	q�� : (B.17)Invarian
e under parity yield the following 
ondition on the 
ouplingJ imn(k; q) = (1� 2Æn1)(1� 2Æn2)(1� 2Æm1)(1 � 2Æm2)J imn(k; q) : (B.18)4. Time-reversal symmetryUsing the transformation properties of the pseudospin (6.7) and of the ele
tron operatorsunder time-reversal, 	q�� �! i��2��	q�� ; (B.19)we obtain the 
ondition on the 
oupling(J imn)�(k; q) = (1� 2Æn1)(1� 2Æm1)(2Æi0 � 1)J imn(k; q) : (B.20)The 
oupling matrix at the Fermi momentum, J imn � J imn(kF; kF), plays a spe
ial role inthe analysis of the e�e
tive Hamiltonian sin
e the deviations from it are irrelevant in theRG sense. From the requirement of hermiti
ity it follows that the 
oupling J imn will bereal. Moreover, spin 
onservation, parity and time-reversal symmetry demand that only the
oeÆ
ients J 011;J 000;J 003;J 030;J 033 and J 312;J 321 are non-vanishing. As outlined in Se
tion 6.4all these 
ouplings ex
ept J 011 are generated in the S
hrie�er-Wol� transformation.B.3 E�e
tive parameters of the mini-domain HamiltonianB.3.1 Pseudomagneti
 �eldFor T = 0 the pseudomagneti
 �eld (6.54) readsh? = 1�4 J2?R2 kFZ0 dk 1ZkF dq k q�k � �q �Kz=2 sin (kR) sin (qR) : (B.21)We will start by 
onsidering the 
ase kFR � 1. To obtain the leading order in this limit wenegle
t the os
illatory part altogether. Furthermore, we introdu
e the density of states perspin �(�� �F) = 4�k2(2�)3 dkd(�� �F) : (B.22)and assume the density of states to be 
onstant�(!) = ��(D2 � !2) ; (B.23)146
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Figure B.1: Stationary-phase integration 
ontours. C1 is used for the integral I1 and C2for the integral I2.where D is the 
ut-o� of the band. We obtain the following estimate for the pseudomagneti
�eld h? � 4J2? 0Z��F d!1 1Z0 d!2 �(!1)�(!2)!1 � !2 �Kz=2� 4(J?�)2 0Z�D d!1 DZ0 d!2 1!1 � !2 �Kz=2= �4(J?�)2�Kz log� Kz=2Kz=2 +D�+ (Kz + 4D) log�Kz + 4DKz + 2D��� �8(J?�)2( D log 2 if D � KzD2Kz if D � Kz� �8(J?�)2 min�D; D2Kz� if kFR� 1 : (B.24)The derivation in the limit kFR� 1 is more elaborate. We will use the method of steepestdes
ent [85℄, for whi
h we �rst have to deform the integration 
ontours of the integrals in(B.21) to stationary phase 
ontours. As a �rst step 
onsider the integralI1 = 1ZkF dq q�k � �q �Kz=2 sin (qR) = 12 i 1ZkF dq q�k � �q �Kz=2 �eiqR � e�iqR� (B.25)The stationary-phase integration 
ontour we use for this integral is shown in Fig. B.1. The
ontour C1 is needed for the �rst term of I1 with the positive imaginary part in the exponent.For the se
ond term with the negative imaginary part in the exponent we use the 
ontourC1 re
e
ted in the real axis. These 
ontours together with the real axis do not en
lose anysingularity. Furthermore, the part over the quarter 
ir
le vanishes at in�nity in ea
h 
ase andthe integral I1 be
omesI1 = kF2 1Z0 dt e�kFRt� kF(1 + it)�k � �kF(1+it) �Kz=2eikFR + kF(1� it)�k � �kF(1�it) �Kz=2e�ikFR� : (B.26)147



Appendix BWe pro
eed analogously with the se
ond integral. ConsiderI2 = kFZ0 dk k�k � �q �Kz=2 sin (kR) = 12 i kFZ0 dk k�k � �q �Kz=2 �eikR � e�ikR� : (B.27)We deform the integration along the 
ontour C2 shown in Fig. B.1, and again for the negativeimaginary exponent we use the 
ontour re
e
ted in the real axis. These 
ontours do notsurround any singularity, and the integral over the horizontal part vanishes at in�nity. Weare left withI2 = kF2 1Z0 du e�kFRu�� ikFu�kFiu � �q �Kz=2 � kF(1 + iu)�kF(1+iu) � �q �Kz=2eikFR� (B.28)� � ikFu��kFiu � �q �Kz=2 + kF(1� iu)�kF(1�iu) � �q �Kz=2e�ikFR�� :The ele
tron energy, �k, is an even fun
tion of k whi
h is ensured by the symmetries of ourmodel, time-reversal invarian
e and parity symmetry, so the �rst and third term 
an
el ea
hother.Combining the results of both integrals we 
an rewrite the expression for the pseudomag-neti
 �eld (B.21). We obtainh? = � 12�4 J2? k4FR2 Re8<: 1Z0 dudt e�kFR(u+t) (B.29)� � (1 + iu)(1 + it)�kF(1+iu) � �kF(1+it) �Kz=2 e�i2kFR + (1 + iu)(1 � it)�kF(1+iu) � �kF(1�it) �Kz=2��So far we have not made use of any approximations. However, we have put the expressionfor h? into a form suitable for the appli
ation of the method of steepest des
ent in the limitkFR� 1. This will be done in the following. The exponential fa
tor with the large kFR in theexponent ensures that the term in the square bra
kets 
ontributes only for small (u+t). Sin
eboth integration variables, u and t, are positive it follows that the 
ontribution is appre
iableonly if both u and t are small. So in order to obtain the leading 
ontribution in (kFR)�1 weexpand the term in the square bra
ket in u and t simultaneously. It readsh? � � 12�4 J2? k4FR2 Re8<: 1Z0 du dt e�kFR(u+t)� � 1vFkFi(u� t)�Kz=2 e�i2kFR + 1vFkFi(u+ t)�Kz=2��= 12�4 J2? k2FvFR3 Re8<: 1Z0 du dt e�(u+t) 1Z0 d� e�RKz2vF � �ei(2kFR+(u�t)�) + ei(u+t)��9=;= (J?�)2 2vFkF(kFR)3 �
os (2kFR)� � ����F(�) ������ = RKz2vF ; (B.30)148



B.3. E�e
tive parameters of the mini-domain Hamiltonianwhere we have introdu
ed the Fermi velo
ity vF = d�(kF)=dk and the density of states perspin at the Fermi energy � = k2F=(2�2vF). Furthermore, the fun
tion F is de�ned asF(�) = 1Z0 d� e��� 11 + �2 : (B.31)Due to the energy Kz=2 in the denominator, whi
h is the energy di�eren
e between theantiferromagneti
 and the ferromagneti
 states, the result is dependent on the parameter� = RKz=(2vF). For small and large � the fun
tion F is approximatelyF(�) = 8><>: 1� � 2�3 +O( 1�5 )�2 + (
 � 1)� + � log�+O(�2) (B.32)where 
 = 0:5772 : : : is the Euler 
onstant. So we obtain �nally for h? the leading 
ontributionin (kFR)�1 for small and large � = RKz=(2vF),h? � (J?�)2 2vFkF(kFR)3 8><>: 2 
os2 (kFR)� +O(��3)(�2 � �) 
os (2kFR) + 2�(
 + log�) 
os2 (kFR) +O(�2) (B.33)It is interesting to note that the limit � � 1 re
overs the usual expression for the RKKYintera
tion. For large � the 
os(2kFR) os
illation 
hange into 
os2(kFR) os
illations.B.3.2 Pseudospin Kondo 
ouplingSetting the momenta of the 
oupling matrix J (k; q) (6.51) equal to the Fermi momentumyields for the �nite 
omponents� J00 J03J30 J33 � = 4(2�)4J2? k2FXk k2 G�kFkF;k0BB� 1 sin (kFR)kFR sin (kR)kRsin (kFR)kFR sin (kR)kR 1CCA (B.34)� J11 J12J21 J22 � = 12�2Jz k2Fs1��sin (kFR)kFR �2� 0 01 0 � (B.35)+ 4(2�)4J2? k2Fs1��sin (kFR)kFR �2Xk k20� 0 �sin (kR)kR G�kFkF;k�G+kFkF;k 0 1AIt will be 
onvenient to introdu
e the quantities S and A, whi
h are essentially the integralsover G+kFkF;k and G�kFkF;k respe
tively. Therefore, S is parti
le{hole symmetri
 and A parti
le{149



Appendix Bhole antisymmetri
. At zero temperature we obtain the estimatesS � � 12� 4�(2�)3 1Z0 dkk2 G+kFkF;k = � 12� 1Z��F d! �(!) � 1� f(!)�! �Kz=2 + f(!)! �Kz=2�� 1Z�1 d! �(�!) + �(!)2� f(!)Kz=2� !� DZ�D d! f(!)Kz=2� ! = log�1 + DKz=2� (B.36)and A � � 12� 4�(2�)3 1Z0 dkk2 G�kFkF;k = 1Z��F d! �(!)2� � f(!)! �Kz=2 � 1� f(!)�! �Kz=2�� 1Z�1 d! �(�!)� �(!)2� f(!)Kz=2� !� �0� 0Z�D d! !! �Kz=2 = �0D� �1 + Kz=2D log� Kz=2Kz=2 +D��� 8<: �0D� �1 + Kz2D log �Kz2D �� if D � Kz�0� D2Kz if D � Kz : (B.37)In the line indi
ated by � we have assumed the density of states per spin to be�(!) = (�+ �0 !)�(D2 � !2) ; (B.38)where � = k2F=(2�2vF) is the density at the Fermi energy. Irrespe
tive of the value of kFRthe 
omponents J00 and J30 are always proportional to A and therefore vanish exa
tly in the
ase of parti
le{hole symmetry.To obtain an estimate in the limit of small kFR we again negle
t the os
illatory terms inthe integrals. For kFR� 1 the leading order 
ontribution reads� J00 J03J30 J33 � =� 2vF(J?�)20� A A+O (kFR)2A�1 +O (kFR)2� A+O (kFR)2 1A� J11 J12J21 J22 � =vF(Jz�)kFRp3 � 0 01 +O (kFR)2 0 � (B.39)+ 2vF(J?�)2 kFRp3 0� 0 A+O (kFR)2S �1 +O (kFR)2� 0 1A :In the other limit of large kFR we again use the method of steepest des
ent analogous tothe evaluation of h?. Consider for example the 
omponent J33. Using the stationary-phase150



B.4. S
aling dimension of the leading irrelevant operatorintegration 
ontours of Fig. B.1 this integral 
an be rewritten asJ33 = 4(2�)4 J2? k2F 1Z0 dkk2 G�kFkF;k sin (kR)kR (B.40)= 4(2�)4 J2? k5FkFR Re8<: 1Z0 du e�kFRu eikFR� 1 + iu�F � �kF (1+iu) �Kz=2 + 1 + iu�kF (1+iu) � �F �Kz=2�9=; :The leading 
ontribution in (kFR)�1 is obtained when the term in the bra
kets is expandedfor small u:J33 � 4(2�)4 J2? k5FkFR Re8<: 1Z0 du e�kFRu eikFR� 1�vFkF iu�Kz=2 + 1vFkF iu�Kz=2�9=;= �2vF (J?�)2 
os(kFR)kFR F(�)������ = RKz2vF ; (B.41)where we again used the fun
tion F de�ned in (B.31) and � = k2F=(2�2vF) is the density ofstates at the Fermi energy. The other 
oupling 
omponents 
an be derived similarly and weget� J00 J03J30 J33 � �� 2vF (J?�)2 0BB� A sin(kFR) 
os(kFR)(kFR)2 F �RKz2vF �A sin(kFR)kFR 
os(kFR)kFR F �RKz2vF � 1CCA (B.42)� J11 J12J21 J22 � �vF (Jz�) � 0 01 0 �+ 2vF (J?�)2 0B� 0 
os(kFR)kFR F �RKz2vF �S 0 1CA :The 
omponents of the e�e
tive Kondo 
oupling are ordered in the following hierar
hyjJ21j > jJ33j = jJ12j if kFR� 1 : (B.43)B.4 S
aling dimension of the leading irrelevant operatorIn the strong 
oupling analysis of the mini-domain model (7.1) in Se
tion 7.1 the s
alingdimension of the 
ip operator H
ip (7.4) was determined using Hop�eld's rule of thumb. Inthis appendix the result obtained is veri�ed with the help of the bosonization te
hnique alongthe lines of the treatment of the x-ray edge singularity by K. D. S
hotte and U. S
hotte [74℄.We would like to obtain the s
aling dimension with respe
t to the unperturbed Hamilto-nian H0 of (7.3). Let j0L; 0R; �L; �Ri be the ground state of H0 where �L; �R ="; # indi
atesthe spin of the left and right impurity and j0ji, with j = L;R, represents the ground stateof the 
ondu
tion ele
trons in the left and right lead, respe
tively. Sin
e we assume that thetwo impurities are frozen into the antiferromagneti
 
on�gurations we have �L = ��R. The151



Appendix B
orrelator (7.5) whose time dependen
e determines the sought-after s
aling dimension thenreads hH
ip(t)H
ip(0)iH0 = X�=";#h0L; 0R; �;��jH
ip(t)H
ip(0)j0L; 0R; �;��i= �4J2?Kz �2 hh0L; 0R; #; " j hS+RS�L 
y#R
"R
y"L
#Lit hS+LS�R
y#L
"L
y"R
#Rit=0 j0L; 0R; #; "i(B.44)+h0L; 0R; "; # j hS+LS�R
y#L
"L
y"R
#Rit hS+RS�L 
y#R
"R
y"L
#Lit=0 j0L; 0R; "; #ii :Sin
e the left and right sub-systems are not 
oupled by the Hamiltonian H0 the matrixelements fa
torize into produ
ts of matrix elements involving only degrees of freedom of asingle sub-system. Moreover, we assume the left and right sub-systems to be symmetri
 sothat we 
an drop the index R=L altogether yielding2�4J2?Kz �2 h0; # j hS�
y"
#it hS+
y#
"it=0 j0; #ih0; " j hS+
y#
"it hS�
y"
#it=0 j0; "i : (B.45)Realizing that the remaining produ
t 
onsists of matrix elements that are time-reversed toea
h other we are �nally left withhH
ip(t)H
ip(0)iH0 = 2�4J2?Kz �2M(t)M�(�t) (B.46)where the matrix element is given byM(t) = h0; # jS�(t)
y"(t)
#(t)S+(0)
y#(0)
"(0)j0; #i : (B.47)The time-dependen
e of the operators stems from using the intera
tion representation,O(t) = eiH(1)0 tOe�iH(1)0 t ; (B.48)and the Hamiltonian H(1)0 des
ribes a single sub-system only, H(1)0 = H0[�℄ + Jzp2�Sz�x�(0).The 
orrelator (B.47) is easily evaluated within bosonization, 
ompare se
tion 7.2. Applyingthe bosonization identity (7.9) it be
omesM(t) = 1(2�a)2 h0; # jeiH(1)0 tS�F y" ei�"(0)F# e�i�#(0)e�iH(1)0 tS+F y# ei�#(0)F" e�i�"(0)j0; #i (B.49)The Klein fa
tors 
an
el ea
h other, F y�F� = 1, and 
an be omitted. (Their time dependen
e
an be negle
ted in the limit of large system size.) The essential step will be the appli
ationof a general Emery{Kivelson transformation (7.13) with 
 = p2Jz�, where � = 1=(2�vF),whi
h transforms the bosonized Hamiltonian into a diagonal form,U
H(1)0 U y
 = X�=";#H0[�� ℄ (B.50)where H0[�� ℄ is given by (7.12). Introdu
ing the transformed va
uum U
 j0i = j0̂i and thespin �eld �s = 1p2 (�" � �#) the 
orrelator redu
es toM(t) = 1(2�a)2 h0̂jeip2(1�Jz�)�s(t)e�ip2(1�Jz�)�s(0)j0̂i : (B.51)152



B.5. Spin{Boson model representationThe a
tual attra
tiveness of the bosonization approa
h is that the remaining 
orrelator ofbosoni
 �elds 
an be evaluated [76℄,M(t) = 1(2�a)2 (1 + it=a)�2(1�Jz�)2 : (B.52)Correspondingly, the 
orrelator behaves in the long-time limit ashH
ip(t)H
ip(0)iH0 � 2�4J2?Kz �2 1(2�a)4 (it=a)�4(1�Jz�)2 ; (B.53)implying a s
aling dimension of the 
ip operator in agreement with the result of Se
tion 7.1dim [H
ip℄ = 2 (1� Jz�)2 = 2�1� 2ÆJz� �2 : (B.54)In the last step we made use of the relationship between the 
oupling 
onstant Jz and thephase shift in the bosonization 
uto� s
heme, 
ompare (7.18).B.5 Spin{Boson model representationIn the mapping of the mini-domain model (7.1) onto the generalized Anderson model (7.15)in Se
tion 7.2 we made use of the Emery{Kivelson transformation (7.13) with the value
 = p2 � 1. In this appendix we are going to show that for another value the mini-domainmodel 
an be put into the form of two 
oupled spin{boson models [86℄. For the parti
ularvalue 
 = p2 the bosoni
 �elds de
ouple from the spin 
ip operator in expression (7.14).Introdu
ing the Fourier 
omponents for the derivative of the bosoni
 spin �elds,�x�sj(x) =Xk>0r2�kL �bkje�ikx + bykjeikx� e�ak=2 ; (B.55)the kineti
 Hamiltonian (7.12) 
an be rewritten asH0[�sj℄ = vF Z dx2� 12 : (�x�sj(x))2 :=Xk>0!k bykjbkj � H0[bkj℄ ; (B.56)with !k = vFk. Ea
h single-impurity Kondo model redu
es to a so-
alled spin{boson modeland the mini-domain model then takes the formHCSB =KzSzLSzR + Xj=L;R H0[bkj ℄ + �Sxj +Xk>0 �k Szj �bykj + bkj�! ; (B.57)where the parameters are given in terms of the Kondo 
ouplings by� = J?�a and �k =r2�kL � Jzp2� �p2vF� e�ak=2 : (B.58)The properties of the spin{boson model are 
ompletely parametrized by the spe
tral fun
tionJ(!) �Xk>0 �2k Æ(! � !k) = 2�! e�!=!
 : (B.59)The last equality de�nes the Ohmi
 form of the spe
tral fun
tion 
hara
terized by the strength�, and !
 is a 
uto�. From the mapping it follows that � = (Jz� � 1)2 with � = 1=(2�vF)and !
 = vF=a. 153



Appendix BB.6 Anderson{Yuval{Hamann RGIn this se
tion we rederive in the bosonoziation approa
h the s
aling equations of the Kondomodel found by P.W. Anderson, G. Yuval and D.R. Hamann (AYH) [78℄. We �nd that inthe language of bosonization the AYH RG 
an be reinterpreted as a sequen
e of in�nitesimalunitary transformations. We will perform the RG on a Hamiltonian level by 
onsidering theimaginary time S-matrix instead of its average, the partition fun
tion, as was done by AYH.We start from the bosonized version of the Kondo Hamiltonian (
ompare Se
tion 7.2):HK = H0[�℄ + Jzp2�Sz�x�(0) + J?2�a �S+Fe�ip2�(0) + h.
.� : (B.60)The Jz term 
an be absorbed into the s
aling dimension of the vertex operator appearing inthe spin-
ip term by applying the \boundary 
ondition 
hanging operator" [74, 77℄U
 � ei
Sz�(0) ; (B.61)with 
 = p2Jz� and the density of states � = 1=(2�vF). The transformed Hamiltonianbe
omes U
HKU y
 = H0 +Hint with the intera
tion HamiltonianHint = J?2�a �S+Fe�i��(0) + h.
.� where � = p2 (1� Jz�) : (B.62)The imaginary time S-matrix isS = T exp ��Z �0 d�Hint(�)� = 1Xn=0 (�1)n �Z0 d�n �nZ0 d�n�1 : : : �2Z0 d�1Hint(�n) : : : Hint(�1) :(B.63)In an RG-step we are going to integrate out short time s
ales and absorb the generated termsinto a renormalization of the 
oupling 
onstants. Formally this is a
hieved by separating fromea
h time integral an on-shell part�m+1Z0 d�m = �m+1�d�Z0 d�m + �m+1Z�m+1�d� d�m ; (B.64)where d� > 0 is in�nitesimally small. First let us 
onsider the e�e
t of the on-shell part ofthe mth integral only. We get: : : �m+3Z0 d�m+2 �m+2Z0 d�m+1 �m+1Z�m+1�d� d�m �mZ0 d�m�1Hint(�m+2)Hint(�m+1)Hint(�m)Hint(�m�1) : : := : : : �m+3Z0 d�m+2 �m+1Z0 d�m�1Hint(�m+2)�0B� �m+2Z�m�1 d�m+1 �m+1Z�m+1�d� d�mHint(�m+1)Hint(�m)1CAHint(�m�1) � � �+O(d�2) :154



B.6. Anderson{Yuval{Hamann RGOn the right-hand side of the equation we repla
ed the upper limit �m of the (m� 1)th timeintegral by �m+1 indu
ing an error of order d�2. However, this enables us to absorb the mthand (m+1)th spin 
ips into a renormalized intera
tion between adja
ent 
ips. These are the\
lose pairs" of AYH whi
h e�e
tively \will 
hange the mean magnetization slightly". Doingthis for all time integrals the S-matrix 
an be put into the formS = 1Xn=0 (�1)n ��d�Z0 d�n �n�d�Z0 d�n�1 : : : �2�d�Z0 d�1V (�; �n)Hint(�n)V (�n; �n�1) (B.65)Hint(�n�1)V (�n�1; �n�2) : : : Hint(�2)V (�2; �1)Hint(�1)V (�1; 0) ;where V (�m+1; �m) = 1 + �m+1Z�m d� 0 � 0Z� 0�d� d� 00Hint(� 0)Hint(� 00) +O(d�2) : (B.66)In the following we are going to simplify the expression for V further. Sin
e the time arguments� 0 and � 00 are separated at most by the small time d� we 
an apply an operator produ
texpansion [76℄ to the integrand. Always negle
ting 
ontributions of order d�2 we get (in thelimit of zero temperature)V (�m+1; �m) � 1 +� J?2�a�2 �m+1Z�m d� 0 � 0Z� 0�d� d� 00 �S+Fe�i��(� 0) + h.
.��S+Fe�i��(� 00) + h.
.�= 1 +� J?2�a�2 �m+1Z�m d� 0 � 0Z� 0�d� d� 00e�i2Sz��(� 0)ei2Sz��(� 00) (B.67)� 1 + d� � J?2�a�2 �m+1Z�m d� 0 �1� i2Sz�a�� 0�(� 0)� :This is the right moment to pause for a bit and to spend some words on the 
uto� pro
edurewe have 
hosen. We have applied a sharp 
uto� s
heme and separated a �xed time sli
e d�as the on-shell part of the time integral. We 
ould equally well have 
hosen a multipli
ativerenormalization of the upper limits of all time integrals in the S-matrix, �m ! �medl, with anin�nitesimal dl. This however would have led us to a time sli
e d� = � 0� � 0e�dl � � 0dl depen-dent on � 0 in the integrand of the expression for V . The renormalization of the intera
tionbetween spin 
ips V and all resulting s
aling equations therefore depend on the pre
ise formof the 
uto� s
heme (
f. also the appendix of AYH). In parti
ular, the remaining integral inexpression (B.67) 
an be most easily performed with the additive on-shell separation 
hosenhere, V (�m+1; �m) � 1 +� J?2�a�2 d� (�m+1 � �m � i2Sz�a (�(�m+1)� �(�m)))� exp"� J?2�a�2 d� (�m+1 � �m � i2Sz�a (�(�m+1)� �(�m)))#� exp"� J?2�a�2 d� (�m+1 � �m)#Ud�(�m+1)U yd�(�m) (B.68)155



Appendix Bwhere U is the \boundary 
ondition 
hanging operator" (B.61) in the intera
tion representa-tion with d� = �d�(J?=(2�a))2 2�a. Putting this result into the expression for the S-matrixwe getS = exp"� J?2�a�2 �d�# (B.69)�Ud� 1Xn=0 (�1)n ��d�Z0 d�n �n�d�Z0 d�n�1 : : : �2�d�Z0 d�1H 0int(�n) : : : H 0int(�1)U yd� ;where we have used U yd�(0) = U yd�(�) = U yd� sin
e for bosons �(�) = �(0). This expression forthe S-matrix should be 
ompared to equation (15) of AYH [78℄. The renormalized intera
-tion Hamiltonian is given by an in�nitesimal unitary transformation of the bare intera
tionHamiltonian,H 0int = U yd�HintUd� = J?2�a �S+Fe�i�0�(0) + h.
.� where �0 = �+ d� : (B.70)The displa
ement of the upper limits of all time integrals by the sli
e d� leads e�e
tively to arenormalization of the short distan
e 
uto� a! a0 = a+vFd� . Hen
e, before identifying therenormalized 
oupling 
onstants, we have to take into a

ount the impli
it 
uto� dependen
eof the bosoni
 �eld in the vertex operator of the intera
tion Hamiltonian. This is easily doneif we normal order it sin
e in this form the 
uto� dependen
e be
omes expli
it,e�i�0�(0) = �2�aL ��02=2 : e�i�0�(0) : : (B.71)Now we have arrived at the �nal stage of this derivation. Comparing the parameters of therenormalized intera
tion Hamiltonian H 0int with the original version Hint we 
an read o� therenormalizations of the 
oupling 
onstants,a �! a0 = a+ vFd�Hint �! H 0intJ?a�1+�2=2 �! J 0?a0�1+�02=2 = J?a�1+�02=2� �! �0 = �+ d� :In its di�erential form the AYH s
aling equations for the Kondo model therefore readsd log �d log a = �2 (J?�)2 (B.72)d log J?�d log a = 1� �22 (B.73)with � = p2(1 � Jz�). In the limit of small Jz the AYH s
aling equations redu
e to thefamous poor man's s
aling equations of the Kondo modeld(Jz�)d log a = 2 (J?�)2d(J?�)d log a = 2(Jz�)(J?�) : (B.74)
156
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