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ZusammenfassungViele noh unerkl�arte Ph�anomene im Bereih der korrelierten Elektronensysteme werden mitden au�ergew�ohnlihen Eigenshaften von Quantenphasen�uberg�ange [1, 2℄ in Verbindung ge-braht, dass hei�t mit Phasen�uberg�angen, die am absoluten Temperaturnullpunkt unter Vari-ation eines �au�eren Kontrollparameters wie z.B. des Drukes statt�nden. Das theoretisheVerst�andnis von solhen Phasen�uberg�angen und deren Auswirkung auf physikalishe Eigen-shaften bei endlihen Temperaturen sowie deren eingehenden experimentellen Untersuhungsteht erst am Anfang und ist eines der aufregendsten Forshungsbereihe der heutigen Physik.Diese Arbeit besteht aus zwei Teilen, die sih jeweils mit solhen quantenkritishen Ph�ano-menen besh�aftigen. Im ersten Teil wird vorwiegend der Quantenphasen�ubergang betrahtet,der mit einer magnetishen Instabilit�at in itineranten Elektronensystemen verbunden ist. Imzweiten Teil steht die Physik von gekoppelten St�orstellen im Mittelpunkt. Im folgenden sollein kurzer �Uberblik �uber die einzelnen Kapitel dieser Arbeit gegeben werden.Im Vergleih zu den klassishen Phasen�uberg�angen, die bei einer endlihen Temperaturstatt�nden, sind Quantenphasen�uberg�ange streng genommen experimentell niht zug�anglih,da sie nur am absoluten Temperaturnullpunkt vorkommen. Der Experimentator ist deswegendarauf beshr�ankt, deren Einuss auf die physikalishen Eigenshaften bei endlihen Temper-aturen zu analysieren. Physikalishe Gr�o�en wie z.B. die spezi�she W�arme, deren Divergenzan einem klassishen Phasen�ubergang �ubliherweise wihtige Folgerungen auf dessen Univer-salit�atsklasse erm�oglihen, sind jedoh an einem Quantenphasen�ubergang niht vergleihbarsingul�ar. In Kapitel 1 wird erl�autert, dass der Gr�uneisen Parameter, das Verh�altnis zwishenthermisher Ausdehnung und spezi�sher W�arme, an einem durh Druk kontrollierten Quan-tenphasen�ubergang notwendigerweise divergiert und deshalb eine wihtiges experimentellesWerkzeug f�ur die Analyse von quantenkritishen Ph�anomenen darstellt vergleihbar mit derRolle der spezi�shen W�arme an einem klassishen �Ubergang. Durh eine Skalenanalysewird gezeigt, dass die Divergenz des Gr�uneisen Parameters durh den kritishen Exponenten� der Korrelationsl�ange harakterisiert wird. Erstaunliherweise wird der Vorfaktor dieserDivergenz ausshlie�lih durh eine Kombination von kritishen Exponenten bestimmt undist in diesem Sinne universell. Diese Universalit�at hat ihren Ursprung tats�ahlih in dervershwindenden Restentropie bei Temperatur Null, d.h. im dritten Hauptsatz der Thermo-dynamik. Weiterhin wird darauf hingewie�en, dass der magnetokalorishe E�ekt die analogeGr�o�e zum Gr�uneisen Parameter ist im Falle eines durh das Magnetfeld kontrollierten Quan-tenphasen�ubergangs. Die Ergebnisse von Kapitel 1 sind in Ref. [3℄ publiziert.Um die Vorhersagen der Skalenanalyse in einem bestimmten Modell zu �uberpr�ufen, wirdin Kapitel 2 zun�ahst eine Theorie von J. A. Hertz [4℄ vorgestellt, die in einfahster Weise diemagnetishe Instabilit�at in itineranten Elektronensystemen bei Temperatur Null beshreibt.Weiterhin wird in die Renormierungsgruppe (RG) eingef�uhrt, die A. J. Millis [5℄ auf dasHertz Modell angewendet hat, um dessen Temperaturverhalten zu untersuhen. In KapitelI



Zusammenfassung3 werden wir shlie�lih diese RG dazu verwenden, um zus�atzlih zur spezi�shen W�arme,die shon in den Refs. [5, 6℄ berehnet wurden, auh die thermishe Ausdehnung und denGr�uneisen Parameter des Hertz Modells zu bestimmen. Wir �nden, dass die Korrekturenzur Skalenanalyse aus Kapitel 1 h�ohstens logarithmish sind, und wir identi�zieren derenUrsahe.In Kapitel 4 wird eine anisotrope Version des Hertz Modells betrahtet, um den theo-retish erwarteten dimensionalen �Ubergang in dem Shwerfermion{System CeCu6�xAux zubeshreiben. Um dessen au�ergew�ohnlihes thermodynamishes Verhalten zu erkl�aren, wurdevon A. Rosh [7℄ vorgeshlagen, dass zweidimensionale Spinuktuationen das kritishe Ver-halten von CeCu6�xAux dominieren. Diese wurden dann in Neutronenstreuexperimenten [8℄auh tats�ahlih identi�ziert. Die magnetishe Ordnung, die unterhalb der N�eel Temperaturbeobahtet wird, hat jedoh dreidimensionalenCharakter, so dass die zweidimensionalen Spin-uktuationen nur ein Vorl�aufer zur tats�ahlihen magnetishen Ordnung darstellen. Nahe desPhasen�ubergangs wird deswegen ein Crossover von zwei- zu dreidimensionalem kritishen Ver-halten erwartet, den wir durh die anisotrope Hertz Theorie modellieren und verstehen wollen.Experimentell wurde der dimensionale Crossover im kritishen Verhalten jedoh noh nihtentdekt weder in den Neutronenstreudaten noh in thermodynamishen Gr�o�en. Unseretheoretishe Analyse sagt voraus, dass die Signaturen dieses Crossovers besonders ausgepr�agtsind in der Temperaturabh�angigkeit der thermodynamishen Ausdehnung. Diese Gr�o�e istdemnah gut geeignet, um den Crossover experimentell zu detektieren. Weiterhin bestimmenwir s�amtlihe �Ubergangslinien im Phasendiagramm. Dazu werden drei vershiedene Metho-den verwendet. Die erste Methode ist eine Modi�kation der Renormierungsgruppenmethodevon A. J. Millis. Um den dimensionalen Crossover zu beshreiben, wird dabei der RG Flussin zwei Phasen unterteilt. In der ersten Phase wird dieser Fluss von dem zweidimensionalenFixpunkt und in der zweiten Phase von dem dreidimensionalen Fixpunkt dominiert. Der Pa-rameter, der die Abweihung von dem isotropen Modell kontrolliert, ist w�ahrend der erstenRG Phase eine relevante Gr�o�e im RG Sinne, was zu einem zus�atzlihen singul�aren Beitragin der thermishen Ausdehnung f�uhrt. Die zweite Methode, mit der das anisotrope HertzModell undersuht wird, ist bekannt unter dimensionaler Reduktion und besteht aus der Her-leitung einer e�ektiven Theorie f�ur die Matsubara Nullmode. Die dritte Methode shlie�lihist eine Analyse, die im Limes N ! 1 exakt wird, wobei N die Anzahl der Komponentendes Ordnungsparameters ist.Im zweiten Teil der Arbeit besh�aftigen wir uns mit der Physik von gekoppelten St�orstellen.Es wird eine Variante des zwei-St�orstellen Kondo Problems betrahtet, das in einfahsterWeise den Wettbewerb zwishen Abshirmung der lokalen Momente durh den Kondo E�ektund magnetisher Ordnung beshreibt. Man geht davon aus, dass der Wettstreit zwishendiesen zwei Mehanismen den magnetishen Phasen�ubergang in den Shwerfermion-Systemendominiert. Die meisten Studien haben sih auf das zwei-St�orstellen Kondo Modell mit einerSU(2) symmetrishen Austaushwehselwirkung zwishen den St�orstellen konzentriert. Indieser Arbeit soll jedoh eine anisotrope Kopplung zwishen den magnetishen Momenten imMittelpunkt stehen. Dies ist unter anderem motiviert durh die anhaltende Kontroverse �uberdie Rolle von Unordnung in der N�ahe eines magnetishen �Ubergangs, worauf in Kapitel 5eingegangen wird. Wir shlagen vor, dass dieses Modell die Dynamik von kleinsten magnetis-hen Clustern beshreibt, die generish in der N�ahe eines Quantenphasen�ubergangs in einemstark anisotropen itineranten Magnet mit Unordnung entstehen.In Kapitel 6 wird gezeigt, dass das e�ektive Niederenergiemodell des stark anisotropenzwei-St�orstellen Kondo Problems gegeben ist durh ein Zweikanal{Kondo Modell. Dies istII



Zusammenfassungdeshalb so von Interesse, weil das Zweikanal{Kondo Modell zu einer der Universalit�atsklassengeh�ort, die sih durh eine lokale Niht-Fermi�ussigkeit auszeihnen. Sie bieten sih daherals alternativen Erkl�arungsversuh f�ur das ungew�ohnlihe Verhalten in den ShwerfermionSystemen wie etwa CeCu6�xAux an. Wie auh in vielen anderen Modellen, die durh eine�ektives Zweikanal{Kondo Modell beshrieben werden, ist auh hier ebenfalls ein e�ektivesMagnetfeld vorhanden, das die interessante Niht-Fermi�ussigkeitsphysik unterdr�ukt. Einausgepr�agtes Niht-Fermi�ussigkeitsverhalten wird deshalb nur in einem sehr engen Parame-terbereih erwartet.Im darauf folgenden Kapitel 7 shr�anken wir das betrahtete anisotrope zwei-St�orstellenKondo Problem weiter ein, indem wir annehmen, dass die lokalen Momenten jeweils an sepa-rate fermionishe B�ader koppeln. Wie shon von N. Andrei et al. [9℄ erkannt wurde, werdengewisse Systeme von gekoppelten Quantenpunkten durh ein solhes Modell beshrieben. Ins-besondere wurde von diesen Autoren betont, dass dieses Modell einen Quantenphasen�uber-gang von einer Singulett{ zu einer Dublett{Phase zeigt. Die Universalit�atsklasse als auh dieSignaturen des Phasen�ubergangs in Transportgr�o�en blieb jedoh unbeantwortet. S. Kehreinund M. Vojta [10℄ erkannten, dass f�ur bestimmte Werte der Parameter dieses Modell durhdie Physik des Anderson Modells wiedergegeben wird. In Kapitel 7 wird gezeigt, dass die kri-tishe Theorie des Quantenphasen�ubergangs tats�ahlih durh die Niederenergietheorie einesverallgemeinerten Anderson Modells beshrieben wird. Diese kritishe Theorie kann als eine�ektives Cluster{Kondo Modell interpretiert werden. Wir erhalten das verallgemeinerte An-derson Modell durh Bosonisierung des anisotropen zwei-St�orstellen Kondo Problems undAnwenden einer unit�aren Transformation mit anshlie�ender Refermionisierung. Die uni-verselle kritishe Theorie wird durh eine Shrie�er{Wol� Transformation hergeleitet, wobeikollektive Anregungen im Hohenergiesektor ber�uksihtigt werden. Nahdem wir die kri-tishe Theorie als Cluster{Kondo Modell identi�ziert haben, k�onnen wir folgern, dass derQuantenphasen�ubergang zwishen der Singulett{ und der Dublett{Phase der Kosterlitz{Thouless Universalit�atsklasse angeh�ort. Dies wird best�atigt durh eine Analyse mit der nu-merishen Renormierungsgruppe, die von M. Vojta und T. Prushke durhgef�uhrt wurdeund deren Ergebnisse zusammen mit den hier vorgestellten in Ref. [11℄ publiziert wurden.Der Phasen�ubergang hinterl�asst erstaunlihe Signaturen in Transportgr�o�en. Je nah ex-perimenteller Realisierung erwarten wir am �Ubergang einen universellen Sprung in der Leit-f�ahigkeit von einem Wert G = 2e=h os2 �=(2p2) nah 2e=h oder einer Anomalie in derSpannungsabh�angigkeit G � jV j�2(p2�1).Am Ende sei noh erw�ahnt, dass im Anhang B.6 die Anderson{Yuval{Hamann Renormie-rungsgruppengleihungen f�ur das Kondo Modell im Rahmen der Bosonisierung hergeleitetwerden. Dies erm�ogliht eine Interpretation der RG Transformationen als Sequenz von in-�nitesimalen unit�aren Transformationen.
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IntrodutionNowadays it is widely laimed that a route for understanding many open problems in thephysis of orrelated eletrons is o�ered by the peuliarities of quantum ritial phenomena [1,2℄, i.e. phase transitions at zero temperature. The theoretial study of their inuene on �nitetemperature properties and the orresponding experimental investigations are still in theirinfany and onstitute one of the most fasinating �elds of physis today.This thesis is divided into two parts eah with several self-ontained ontributions tothe physis of quantum ritial phenomena. The �rst part mainly onerns quantum phasetransitions in itinerant magnets suh as the heavy fermion ompounds, while the seond partfouses on the physis of oupled impurities. Below we give a short overview of the di�erenthapters.In ontrast to their lassial �nite temperature ounterparts, quantum phase transitions(QPT) are in a strit sense not experimentally aessible sine they our at zero temperature,and the experimentalist is rather limited to analysing their traes at non-zero temperature.As a onsequene, quantities suh as the spei� heat are not expeted to be as singularnear a QPT as they are lose to lassial �nite temperature transitions. In Chapter 1 weshow by a saling analysis that the Gr�uneisen parameter (the ratio of the thermal expansionand spei� heat) diverges lose to a pressure tuned QPT, and similarly the magnetoalorie�et lose to a magneti �eld tuned QPT. This divergene is haraterized by the orrelationlength exponent � of the QPT, and due to the third law of thermodynamis the prefator ofthis divergene is universal and solely given in terms of ritial exponents. The Gr�uneisenparameter therefore plays an essential role in the pursuit of quantum ritial phenomena, asimportant as, for example, the spei� heat in lassial phase transitions. The ontent ofChapter 1 is published in Ref. [3℄.In order to on�rm the above results for a spei� model, we then in Chapter 2 review thestandard theory for zero-temperature magneti instabilities in itinerant magneti systems dueto J. A. Hertz [4℄ and rederive the renormalization group (RG) equations of A. J. Millis [5℄. InChapter 3 we alulate the thermal expansion and the Gr�uneisen parameter in addition to thespei� heat, whih has been previously obtained [5, 6℄, and we ompare them to the resultsof the saling analysis of Chapter 1. It is found that for this spei� ase the orretions tosaling are at most logarithmi, and their origin is identi�ed.In Chapter 4 an anisotropi Hertz theory is proposed in order to make preditions aboutthe dimensional rossover expeted to our in the heavy fermion ompound CeCu6�xAux.In neutron sattering experiments [8℄ two-dimensional spin utuations have been observed,on�rming a senario proposed by A. Rosh [7℄ to aount for the peuliar properties observedin the spei� heat and the resistivity. However, the rystal struture of CeCu6�xAux is ofa three-dimensional harater, and it is believed that the dominane of two-dimensional spinutuations is only transient, eventually giving way to three-dimensional ones suÆiently1



Introdutionlose to the phase transition. Experimentally this dimensional rossover has not yet beenfound either in neutron sattering or in thermodynami quantities. We analyse it theoret-ially within the anisotropi Hertz theory of Chapter 4, and �nd that thermal expansionmeasurements are a likely andidate to detet the dimensional rossover in CeCu6�xAux ex-perimentally. The rossover lines in the phase diagram are also identi�ed and their signaturesin thermodynami quantities are determined. To this end three di�erent methods are applied.The �rst method is a generalization of the Millis renormalization group of Chapter 3 adaptedto the anisotropi Hertz theory. In order to aount for the dimensional rossover a two-stageRG is used: in the �rst stage the theory ows to the primary, two-dimensional �xed point,and during the seond stage the ow is governed by the seondary �xed point desribingthe three dimensional theory. The parameter ontrolling the anisotropy of the theory is arelevant quantity in the RG sense with respet to the three-dimensional �xed point, whihresults in an additional singular ontribution to the thermal expansion. The seond methodapplied to the anisotropi Hertz theory is known as dimensional redution, whih involves thederivation of an e�etive �nite-temperature theory for the zero-Matsubara mode. Finally, thethird method is a large N analysis.The seond part of this thesis is onerned with the physis of oupled loal moments andonsiders a variant of the two-impurity Kondo model. This model has aroused interest sineit provides a relatively aessible example of the ompetition between Kondo sreening andmagneti alignment of loal moments, whih is believed to be at the origin of the magnetiphase transition in heavy fermion ompounds. Most studies of this model have foused on anSU(2) invariant exhange oupling between the loal moments. Here, however, we onsiderthe strongly anisotropi version, i.e. an Ising-like oupling between the impurities, whih ismotivated by the ontroversy of the role of disorder e�ets near magneti instabilities, asdisussed in Chapter 5. This model is suggested to mimi the dynamis of small magnetidroplets, whih are likely to be generated lose to a quantum phase transition in stronglyanisotropi itinerant magnets in the presene of disorder.It is shown in Chapter 6 that the e�etive low-energy theory of strongly Ising-oupled loalmoments is given by a two-hannel Kondo model. This is partiularly interesting sine thetwo-hannel Kondo model belongs to one of the universality lasses of impurity problems thatare haraterized by loal non-Fermi liquid behavior. They thus o�er an alternative routeto explain the unusual physis observed in heavy fermion materials suh as CeCu6�xAux.It is argued that the magneti droplets might provide a generi realization of two-hannelKondo physis. Unfortunately, as in other proposals of e�etive two-hannel Kondo models,suh as the quadrupolar Kondo e�et [12℄, the e�etive model is invariably aompaniedby an e�etive magneti �eld that suppresses the interesting non-Fermi liquid physis, and�ne-tuning is therefore required for it to develop.In Chapter 7 the Ising-oupled two-impurity Kondo model is onsidered with eah loalmoment oupled to its own fermioni bath, whih is a ruial restrition on the model notpresent in the version of the preeding Chapter 6. Certain double quantum dot systems arenaturally represented by this model, as was realized by N. Andrei et al. [9℄. They pointedout the existene of a quantum phase transition within this model from an impurity doubletto a singlet phase. However, both the nature of the transition and its assoiated signaturesin transport remained unresolved. A �rst step in this diretion was provided by S. Kehreinand M. Vojta [10℄, who realized that for a ertain parameter set this model exhibits thephysis of the Anderson model. In Chapter 7 it is shown that the ritial theory of thequantum phase transition of this impurity model is indeed given by the low-energy theory of2



Introdutiona generalized Anderson model and an be interpreted as an e�etive luster Kondo model.The generalized Anderson model is obtained by bosonizing the original two-impurity model,applying a unitary transformation and refermionizing. The ritial theory is derived via aShrie�er{Wol� transformation that takes into aount non-trivial exitation e�ets in thehigh-energy setor. After having identi�ed the ritial theory as a luster Kondo model wean onlude that the quantum phase transition of the original model between the doubletand the singlet phase is in the Kosterlitz{Thouless universality lass. These onlusions havebeen on�rmed by a numerial renormalization group analysis arried out by M. Vojta andT. Prushke [11℄. We show that these results have interesting onsequenes for transportproperties. Beause the ritial degrees of freedom of the eletrons are ompliated solitoniexitations of the Fermi seas, their phase shift undergoes a universal jump whih is theanalogue of the universal jump of the superuid density in 4He �lms at the vortex binding{unbinding transition [13℄. Depending on the experimental set-up, this jump is reeted ineither a universal jump in the dimensionless ondutane from a value g = os2 �=(2p2) to1 at the transition or a harateristi zero-bias anomaly g � jV j�2(p2�1). The results ofChapter 7 have been published in Ref. [11℄.Finally, we mention that Appendix B.6 is self-ontained, and onsiders a re-derivationof the Anderson{Yuval{Hamann RG equations of the Kondo model within the bosonizationapproah. It is shown that within this formulation the RG transformations an be understoodas a sequene of in�nitesimal unitary transformations.
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Chapter 1Universally Diverging Gr�uneisenParameterIn setion 1.1 we briey review the onept of a quantum ritial point. In Setion 1.2 weintrodue the Gr�uneisen parameter and the magnetoalori e�et, whih are expeted toreveal many harateristi features of a quantum phase transition. We investigate this indetail in the framework of a saling analysis in Setion 1.3. It is shown that the Gr�uneisenparameter and the magnetoalori e�et neessarily diverge near quantum ritial points.We also explain that due to the third law of thermodynamis the form of this divergeneis universal. For these reasons the Gr�uneisen parameter and the magnetoalori e�et areargued to be very important tools in the analysis of quantum ritiality. In Setion 1.4 weomment on experiments whih have utilized the Gr�uneisen parameter to haraterize thequantum ritial point in ertain heavy fermion ompounds. The essene of this hapter ispublished in Ref. [3℄.1.1 IntrodutionA quantum mehanial system may possess di�erent ground states depending on the valuesof its oupling onstants. A transition between these ground states, i.e. phases, an beindued by varying a ertain oupling onstant. Sine the ground state is a zero-temperatureproperty of the system this phase transition is triggered by quantum utuations, in ontrastto the thermal utuations whih drive the familiar phase transitions at �nite temperatures.Phenomenologially, the distane to suh a quantum phase transition is desribed by theontrol parameter r, whih is some ompliated funtion of all the oupling onstants and theapplied �elds. The quantum phase transition ours when the ontrol parameter r vanishesand the position r = 0 in parameter spae is alled the quantum ritial point. Physially,the ontrol parameter might be tuned by varying pressure p, doping x, magneti �eld Hor some other quantity. In the immediate viinity of the quantum ritial point the ontrolparameter an be linearized in these physially aessible �elds, e.g. in the ase of pressuretuning r � (p� p)=p0, where p is the ritial pressure and p0 a ertain pressure sale, or inthe ase of magneti �eld tuning r � (H � H)=H0 with the ritial �eld H and a ertain�eld sale H0. 6
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Often the quantum ritial point is the zero-temperature endpoint of a line of seond or-der phase transitions in the ontrol parameter{temperature plane (r; T ). A generi phase dia-gram is shown in Fig. 1.1. It is important to un-derstand that the quantum ritial point whihseparates the two di�erent phases at zero temper-ature T = 0 is qualitatively di�erent from the restof the phase boundary at �nite T . Near the phasetransition the physis will be dominated by theorrelation length �, whih diverges at the phasetransition. The peuliarity at zero temperaturesis that there is not only a divergent orrelationvolume in spae, �d, but also in (imaginary) time,�r / �z, where d is the spae dimension and z theso-alled dynamial exponent. The phase transi-tion at zero temperature | the quantum phasetransition | is therefore haraterized by a divergent orrelation volume with an e�etivedimensionality d+ z. The ritial utuations at zero temperature are exlusively of a quan-tum mehanial nature. Their typial energy sale is given by ~=�r / ��z and vanishes asthe phase transition is approahed, � !1, a phenomenon known as \ritial slowing down".In terms of the zero-temperature ontrol parameter the orrelation length is given by� / jrj�� (1.1)where � is the orrelation length exponent of the quantum phase transition.How is the situation hanged when the temperature T is �nite? Then the quantumutuation are omplemented by the thermal utuations with their harateristi energysale of kBT . They will have to ompete with eah other and the winner happens to be theone with the larger energy sale,quantum utuations: ~=�r / ��zthermal utuations: kBT :For low temperatures away from the quantum ritial point the quantum utuations aroundthe quantum ground state still prevail. Their dominane is however hallenged when thetemperature is omparable to their typial energy sale ~=�r,kBT � ~=�r / ��z / jrj��z : (1.2)This identi�es the rossover to the quantum ritial regime, see Fig. 1.1. In the quantumritial regime the ompetition between quantum and thermal utuations are espeially�ere and it is preisely the existene of this regime that makes the study of quantum phasetransitions interesting. The �ere battle between utuations of thermal and quantum originis reeted in unusual, exiting �nite temperature properties, e.g. non-Fermi liquid behaviorin metalli systems. Moreover, the quantum ritial regime an extend to relatively hightemperatures depending on the mirosopi energy sales. Although the quantum phasetransition only ours at zero temperature it thus inuenes drastially the physis at �nitetemperatures. 7



Chapter 1. Universally Diverging Gr�uneisen ParameterWithin both regimes there might exist additional sub-regimes whih arise, for example,due to the presene of dangerously irrelevant operators. Suh a ase is disussed in Chapter 3.Finally, the quantum utuations have to give in suÆently lose to the �nite tempera-ture transition initiating a rossover to the lassial regime. The phase transition at �nitetemperature is only triggered by thermal utuations and quantum mehanis is not of im-portane for the ritial degrees of freedom: the system behaves lassially in the lassialregime. In partiular, at the lassial transition only the utuations in spae are ritial andthe divergent orrelation volume is thus on�ned to only d dimension, �d. In this sense thequantum{lassial rossover is analogous to a dimensional rossover of a system from d + zto d dimensions. The lassial �nite temperature transition is therefore, as mentioned before,qualitatively di�erent from the quantum phase transition. Tehnially speaking, they belongto di�erent universality lasses. Nevertheless, the portion of the phase diagram around the�nite temperature phase boundary that an be desribed exlusively in terms of lassial de-grees of freedom is quite small near the quantum ritial point. The lassial regime shrinksquikly to zero as the temperature is lowered. In fat, the ritial behavior assoiated withthe lassial phase transition is pratially unobservable at low enough temperatures.
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We know that the importane of utuationsinrease with dereasing dimensionality of thesystem. When the spatial dimensionality d of thephysial system is suÆiently low, i.e. below thelower ritial dimension, the thermal utuationswill totally suppress the phase transition at �nitetemperatures, although the existene of the quan-tum phase transition might still be seured due toits enhaned dimensionality d + z. A phase dia-gram of suh a system is depited in Fig. 1.2. Anexample is the Heisenberg ferromagnet in two di-mensions, whose magnetization has the internalsymmetry O(3). It possesses a quantum phasetransition but the ordered state is destroyed at�nite temperatures by the would-be Goldstonemodes [14℄.For a more omprehensive inrodution intoquantum ritial phenomena we refer the readerto Refs [2, 1℄.1.2 Great expetations: Gr�uneisen parameterIn the last setion we stressed the fat that the phase boundary in the phase diagram Fig. 1.1onsists of a line of lassial �nite-temperature transitions ending in a quantum ritial point.In the (r; T ) plane there exists only a single preferred diretion to approah the lassialtransition, namely the diretion perpendiular to the phase boundary; however, there are twoindependent diretions to approah the quantum ritial point. We expet that the variationsof, for example, the entropy along these two diretions yield omplementary information aboutthe nature of the quantum phase transition. This has not been appreiated before. It is shownin the following that this basi observation leads to interesting and very useful results.8



1.2. Great expetations: Gr�uneisen parameterConsider the total di�erential of the entropy in the (r; T ) planedS = �S�T ����r dT + �S�r ����T dr : (1.3)It is haraterized by two derivatives speifying the sensitivity of entropy to hanges in eithertemperature T or ontrol parameter r, the two axes of the phase diagram in Fig. 1.1. The�rst derivative is the variation of entropy S with respet to variations in temperature. It ismeasured by the (molar) spei� heat oeÆient whih is indeed often investigated in thepursuit of quantum ritiality,  = NAN �S�T ����r : (1.4)where NA is Avogadro's number and N is the number of partiles in the system. The seondderivative in (1.3) is the variation of the entropy with respet to variations in the ontrolparameter and is the quantity omplementary to the spei� heat. Depending on the experi-mental realization this derivative an also be identi�ed with well-known and experimentallyaessible thermodynami quantities. In the ase of pressure tuning, r � (p � p)=p0, it isproportional to the thermal expansion �,� = 1V �V�T ����p = 1V �2F�T�p = � 1V �S�p ����T = � 1V p0 �S�r ����T (1.5)where F is the Gibbs free energy, F = F (p; T ), whih depends on pressure p and temperatureT . If the quantum phase transition is ontrolled by the magneti �eld H, r � (H �H)=H0,this is the derivative of the magnetization M with respet to temperature,�M�T ����H = � �2F�T�H = �S�H ����T = 1H0 �S�r ����T (1.6)where the free energy is now given by F = F (H;T ).We will pay speial attention to the onstant entropy urves T (r)jS in the (r; T ) plane.The derivative along these urves is related to the ratio between the two partial derivativesdisussed above. We will disuss this onstant-entropy derivative in the form of the parameter,� = 1T dTdr ����S = � 1T (�S=�r)T(�S=�T )r : (1.7)In the ase of pressure tuning this ombination is proportional to the Gr�uneisen parameter�p [15, 16℄, the ratio of thermal expansion and (molar) spei� heat p =  T ,�p = �p = �p0Vm : (1.8)where Vm is the molar volume. For this reason we will often sloppily refer to the generalrelation (1.7) as the Gr�uneisen ratio irrespetive of the atual physial ontrolling �eld. Ifthe magneti �eld is used to ontrol the quantum phase transition the generalized Gr�uneisenratio (1.7) an be identi�ed as a magnetoalori e�et �H ,�H = �H0 = 1T �T�H ����S = � 1T (�S=�H)T(�S=�T )H = �(�M=�T )HH : (1.9)9



Chapter 1. Universally Diverging Gr�uneisen ParameterWhereas in the ase of pressure tuning the thermal expansion and spei� heat have to bemeasured separately in order to determine the Gr�uneisen parameter, in the ase of magneti�eld tuning the magnetoalori e�et an be diretly obtained experimentally.What do we know about the Gr�uneisen parameter? We now examine some lassialarguments whih suggest that unusual behavior ours at the quantum ritial point; thiswill be veri�ed by a saling analysis in Setion 1.3.If the system is dominated by a single energy sale E0, suh as the Fermi energy in thease of fermions or the Debye frequeny in the ase of phonons, the entropy an be ast intoa simple saling form [16℄ S =  � TE0� (1.10)where  is some saling funtion. Putting this saling form into the formula for the Gr�uneisenparameter (1.8) we obtain,�p = �p = � 1TVm (�S=�p)T(�S=�T )r = 1VmE0 �E0�p ; (1.11)i.e. �p is just given as the logarithmi derivative of the energy sale E0 with respet topressure1. In partiular, the Gr�uneisen parameter is independent of temperature. This resultis known as the Gr�uneisen law (see e.g. Ref. [16℄ x67). However, the physial situation we areinterested in is quite unusual in the sense that the typial energy sale near a quantum phasetransition, E0 � ��z, is about to vanish! Taking formula (1.11) literally, though naively, overto the senario of quantum ritiality would suggest a diverging Gr�uneisen parameter at thequantum ritial point.Another indiation that interesting behavior is to be expeted of the Gr�uneisen parameterin quantum ritial systems omes from the theory of lassial seond order phase transitions.It is known that the spei� heat, p, diverges at a lassial seond order phase transition withthe same ritial exponent as the thermal expansion, � (see Ref. [16℄ x148). In partiular,in the ratio of thermal expansion and spei� heat this divergene anels. This an beunderstood by writing the molar entropy in the form [16℄S = S(T; p� p(T )) (1.12)where the funtion p(T ) identi�es the phase boundary in the phase diagram of Fig. 1.1. Thederivative of the entropy with respet to its seond argument beomes in�nite for a seondorder phase transition as p! p. Retaining only the divergent terms we obtain for the spei�heat near the transitionp = T �S�T ����p = �T�S(T; p� p(T ))�p dpdT = Vm�TdpdT : (1.13)In the immediate viinity of the �nite-temperature phase boundary T(p), i.e. in the lassialregime of Fig. 1.1, we therefore expet the Gr�uneisen parameter to behave as�p = 1VmT dTdp : (1.14)1In the literature one often reads that the Gr�uneisen parameter equals the logarithmi derivative of theenergy sale E0 with respet to volume V instead of pressure p. This would result from onsidering the spei�heat in the ratio (1.8) at onstant volume and not at onstant pressure. While the latter is more suitable forour purposes, the physial ontent of the Gr�uneisen law however remains unhanged.10



1.3. Saling theoryThe Gr�uneisen parameter is thus just given by the logarithmi derivative of the phase bound-ary T(p). As the line of seond order phase transitions approahes zero temperature, T ! 0,it follows from the above formula that the Gr�uneisen law is in a ertain sense maximallyviolated at the quantum ritial point: the Gr�uneisen parameter diverges! In the followingsetion this predition is borne out by a saling analysis whih will also speify the nature ofthis divergene.1.3 Saling theoryIn this setion we analyze the quantities introdued in the last setion in the framework ofsaling theory [17℄. To this end we introdue the saling dimensions of the parameters in-volved. Traditionally, the saling dimension of the ontrol parameter is given by 1=� and thetemperature sales with the dynamial ritial exponent z. Furthermore, we introdue thesaling dimension � for the ritial part of the free energy per mole, fr. When hypersal-ing [17, 18℄ applies this saling dimension is equal to the e�etive dimensionality, � = d+ z.Upon resaling the unit length by a fator l an interval in spae �x is hanged to �x0 = �x l�1and therefore has saling dimension �1,�x �! �x0 = �x l�1r �! r0 = r l1=�T �! T 0 = T lzfr �! f 0r = fr l� : (1.15)Here we have introdued the dimensionless temperature T = T=T0, where T0 is some tem-perature sale.1.3.1 Saling AnsatzThe saling Ansatz we use is based on the assumption of sale invariane near the quantumritial point. This implies that as far as singular dependenes are onerned the orrelationlength � is the only relevant length in the system: the quantum ritial physis is independentof the mirosopi details. Mathematially, the sale invariane at ritiality is expressed byl� fr(r;T ) != fr(r l1=� ;T lz) ; (1.16)i.e. the sale transformation of the ontrol parameter and the temperature in the argumentsof the free energy per mole an be absorbed into the sale fator of the free energy itself.From equation (1.16) some remarkable properties of the Gr�uneisen parameter an be derived.First of all let us determine its saling dimension. Putting the saling Ansatz (1.16) into thede�nition of �, (1.7), we obtain�r(r;T ) = � 1T �2fr(r;T )�r�T ��2fr(r;T )�T 2 ��1!= � 1T �2(l�� fr(r l1=� ;T lz))�r�T  �2(l�� fr(r l1=� ;T lz))�T 2 !�1 (1.17)= �l1=� 1T lz �2fr(r l1=� ;T lz)�(r l1=�)�(T lz)  �2fr(r l1=� ;T lz)�(T lz)2 !�1 = l1=� �r(r l1=� ;T lz) :11



Chapter 1. Universally Diverging Gr�uneisen Parameter
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point, beause it arries the negative salingdimension of the relevant operator, i.e. theontrol parameter r. If there is no suh rele-vant operator r to whih pressure or mag-neti �eld ouples, i.e. no quantum riti-al point, the Gr�uneisen parameter will notdiverge algebraially. In partiular, if thequantum ritial point is washed out to aquantum ritial line (see Fig. 1.4) by, say,disorder, the saling dimension of the on-trol parameter is at most marginal alongthis line, i.e. dim[r℄ = 0. Aordingly, theGr�uneisen parameter diverges at most loga-rithmially with temperature in the quantum ritial regime�r � log T : (1.21)The quantity � thus o�ers a riterion for determining the existene of a quantum ritialpoint.Furthermore, a divergent �r implies that the spei� heat oeÆient  = (�S=�T )r is lesssingular than the quantity (�S=�r)T =T , whih is either proportional to �=T or (�M=�T )H=Tfor pressure or magneti �eld tuning, respetively. As a onsequene, the thermal expansion� and the temperature dependene of magnetization an be advoated to be the preferredquantities for the investigation of quantum ritial phenomena.1.3.3 UniversalityWe an learn more about the prefators �(0; 1) and �(1; 0) appearing in Eqs. (1.19) and(1.20), respetively, by going bak to the original saling Ansatz (1.16) for the free energy permole fr. Di�erentiating one with respet to temperature we obtain the saling form for themolar entropy, sr(r;T ) = l��+z sr(r l1=� ;T lz) : (1.22)Repeating the proedure of the last setion it is onvenient to rewrite the entropy by hoos-ing ertain sales in two di�erent ways suitable for either the quantum ritial or the low-temperature regime,sr(r;T ) = 8>>>><>>>>: T ��zz sr(r T �1=(�z); 1) = � TT0���zz 	QCR r � TT0��1=(�z)!jrj�(��z) sr(sign(r);T r��z) = jrj�(��z)	sign(r)LT � TT0 jrj��z� ; (1.23)with the orresponding a priori unknown universal saling funtions 	QCR and 	�LT. Notethat in the low-temperature regime we have had to introdue two saling funtions, 	+LT and	�LT, for positive and negative values of the ontrol parameter r respetively. Moreover, wetraded the dimensionless temperature T for the dimensionful onstant T0 in order to makeexpliit that the saling funtions and their arguments have the engineering dimension zero.To obtain the leading behavior of the molar entropy in the two regimes we must expand the13



Chapter 1. Universally Diverging Gr�uneisen Parametersaling funtions for small arguments. The funtion 	QCR is expeted to be regular for smallarguments sine there is no phase transition at r = 0 for �nite T ,	QCR(x) = 	QCR(0) + 	0QCR(0)x+ : : : for x! 0 : (1.24)An important attribute of quantum phase transitions omes into play in the onsideration ofthe other saling funtion 	�LT. This saling funtion desribes the low-temperature behaviorof the phases to the left and right of the quantum ritial point (see Fig. 1.1). Upon approah-ing zero temperature the entropy has to vanish aording to the third law of thermodynamis.This requirement restrits the small argument behavior of 	�LT in an essential way. We willassume that the entropy vanishes algebraially so that the low-temperature expansion of 	�LThas the form 	�LT(x) = C� xy�0 + : : : for x! 0 ; (1.25)where C� are onstants and the positive exponents y�0 > 0 haraterize the power-law behaviorof the spei� heat in the low-temperature regime,  � T y0 . For example, if the low-energyexitations are bosons in d spatial dimension with a dispersion ! � kp the exponent is givenby y0 = d=p, e.g. d and d=2 for an insulating antiferromagnet and ferromagnet, respetively.Gapped systems in whih the entropy vanishes exponentially in the low-temperature regimeare disussed in Appendix A.1. The limiting behavior of the two derivatives of the molarentropy with respet to either temperature or ontrol parameter are easily obtained,r = �sr�T = 8>>>><>>>>: 1T0 �� zz 	QCR(0) � TT0���2zz for jrj (T=T0)� 1�z � 11T0 y�0 C� jrj�(��z�zy0) � TT0�y�0 �1 for jrj (T=T0)� 1�z � 1 (1.26)and�sr�r = 8>>>><>>>>: 	0QCR(0) � TT0���zz � 1�z for jrj (T=T0)� 1�z � 1�(�� z � zy�0 ) C� jrj�(��z�zy�0 ) 1r � TT0�y�0 for jrj (T=T0)� 1�z � 1 :(1.27)The behavior of the general Gr�uneisen parameter (1.7) follows readily:�r = 8>>>><>>>>: � z	0QCR(0)(�� z)	QCR(0) � TT0�� 1�z for jrj (T=T0)� 1�z � 1��(�� z(1 + y�0 ))y�0 r�1 for jrj (T=T0)� 1�z � 1 : (1.28)Whereas in the quantum ritial regime jrj (T=T0)� 1�z � 1 the unknown saling funtionenters the prefator of the divergene, it disappears ompletely in the low-temperature regimejrj (T=T0)� 1�z � 1. The prefator is just given by a ombination of ritial exponents. Tomake this result manifest we give here the low-temperature behavior both of the Gr�uneisen14



1.3. Saling theoryparameter, �r;p, for a pressure-tuned QCP and of the magnetoalori e�et, �r;H , for amagneti-dield-tuned QCP, obtained using hypersaling � = d+ z:�r;p = ��(d� zy�0 )y�0 1Vm(p� p) for jp� pjT� 1�z � p0T� 1�z0�r;H = ��(d� zy�0 )y�0 1H �H for jH �HjT� 1�z � H0T� 1�z0 : (1.29)The exponent y�0 is understood to be either y+0 or y�0 for positive or positive ontrol parame-ters, p�p and H�H, respetively. All the exponents �, z, d and y�0 (and the molar volumeVm) an be determined by available means. When they are known the Gr�uneisen parameteris unambiguously determined. The saling analysis is thus not only able to determine thedivergene but also its prefator. In this sense the behavior of the Gr�uneisen parameter isuniversal in the low-temperature regime. This is the main result of this hapter. The under-lying reason why the saling analysis is so powerful here is the third law of thermodynamis,i.e. the absene of a residual entropy, whih requires the expansion (1.25).A possible appliation of the universal result (1.29) is for example the determinationof the loation of a putative quantum ritial point. In priniple, a measurement of theGr�uneisen parameter at di�erent pressures p allows extrapolation to the ritial pressure p.Alternatively, systems suh as heavy fermion materials an often be tuned to their quantumritial point either by pressure p or doping x. Assuming that they are related, p�p / x�x,measurements at ambient pressure on samples with di�erent doping levels ould lead to thedetermination of the ritial doping x.In the quantum ritial regime �r an also be put to important experimental use, althoughthe prefator is not universal: (using hypersaling � = d+ z)�r;p = �z	0QCR(0)d	QCR(0) 1Vmp0T� 1�z0 T� 1�z for jp� pjT� 1�z � p0T� 1�z0 ;�r;H = �z	0QCR(0)d	QCR(0) 1H0T� 1�z0 T� 1�z for jH �HjT� 1�z � H0T� 1�z0 : (1.30)The striking feature is obviously the divergene with falling temperature with the exponent1=(�z). The most important appliation is therefore the determination of the ombination ofritial exponents �z by measuring �r. In addition, the prefator of this divergene allowsan estimate of the rossover line in the (p; T ) or (H;T ) plane between the quantum ritialand low-temperature regimes beause it is inversely proportional to p0T� 1�z0 and H0T� 1�z0 ,respetively. The numerial prefator z	0QCR(0)d	QCR(0) is expeted to be of order one.1.3.4 RestritionsThere are several restritions whih should be mentioned. They are listed below.1. In an experiment usually �p = �=p is measured, rather than the ratio of the ritialontributions �r;p = �r=r;p. There may be leading non-ritial ontribution whihhave to be arefully subtrated in order to extrat the saling behavior of the Gr�uneisenparameter. A spei� example, the Gr�uneisen parameter of CeNi2Ge2, is presentedbelow. 15



Chapter 1. Universally Diverging Gr�uneisen Parameter

Figure 1.5: Experimental data [22℄ showing thermal expansion and spei� heat of CeNi2Ge2.They agree with the predition of the saling analysis for the quantum ritial regime leadingto a diverging Gr�uneisen parameter.2. There may be orretions to saling. Generally, the saling Ansatz (1.16) is expeted tohold only below the upper ritial dimension (d+z < 4 in �4 theories). Above the upperritial dimension orretions due to dangerously irrelevant operators may arise whihan destroy saling. In Chapter 2 it is shown for a partiular ase, the spin-density wavetransition desribed by the Hertz model, that the orretions on the paramagneti sideare at most logarithmi. It is also worth mentioning that truly Gaussian theories alsoobey the saling Ansatz (1.16).3. The third aveat of our saling treatment is of a more fundamental nature, and it on-erns the underlying assumption of the saling Ansatz (1.16). We assumed that at thequantum ritial point only a single diverging time sale haraterized by the dynamialexponent z plays a role. However, there might be senarios where this assumption doesnot apply. For example, in a nearly magneti metal there are two types of low-energydegrees of freedom, magneti utuations and fermioni quasipartiles, both of whihexhibit ritial slowing down [19℄. Furthermore, a loal quantum ritial point [20, 21℄,at whih loal degrees of freedom are driven ritial by (ritial) long-wavelength mag-neti utuations in two dimensions, would also require a modi�ation of the salingAnsatz (1.16).Nevertheless, for a wide lass of quantum ritial materials the onsiderations of the lastsetion are appliable. Beause of the many experimental possibilities it o�ers we expetthat the Gr�uneisen parameter beomes a widely-used tool in the investigation of quantumritiality. Indeed, it has already been applied to two heavy fermion systems as outlined inthe following. 16



1.4. Experiments

Figure 1.6: Experimental data [22℄ showing thermal expansion and spei� heat ofYbRh2(Si0:95Ge0:05)2. The Gr�uneisen parameter diverges, �r / T�x, but the exponent xseems to be inompatible with the onventional spin-density wave senario.1.4 ExperimentsThe theoretial predition of a diverging Gr�uneisen parameter has already been tested ex-perimentally by R. K�uhler et al. [22℄ in two metalli heavy-fermion ompounds exhibitingan antiferromagneti quantum phase transition, CeNi2Ge2 and YbRh2Ge2. They are espe-ially suited for studying quantum ritiality sine at ambient pressure they are loated verynear to the magneti instability making them amenable to thermal expansion measurements.(Thermal expansion is rather diÆult to measure under pressure.) Furthermore, they arestoihiometri and therefore lean with a low residual resistivity ensuring that the role ofdisorder is minimized.In Fig. 1.5 the thermal expansion and the spei� heat of a CeNi2Ge2 single rystal areshown. In zero magneti �eld the thermal expansion divided by temperature is desribed by anon-Fermi liquid divergene �=T � 1=pT over more than two deades in temperature rangingfrom 6 K down to 50 mK. Only after applying a magneti �eld does the divergene give way tothe saturation expeted for a Fermi liquid. This well-pronouned non-Fermi liquid behaviorsuggests that CeNi2Ge2 is quantum ritial at ambient pressure, i.e. the ritial pressure isp � 0. Below 3 K the spei� heat oeÆient an be well �tted with =T = 0� pT , wherethe square root dependene on temperature is attributed to the quantum ritial ontribution.One has to be areful to subtrat the non-ritial ontribution 0 in order to obtain the orretritial behavior of the G�uneisen parameter �r. The inset of the graph showing the thermalexpansion in Fig. 1.5 establishes that the exponent measured in the quantum ritial regimefor the Gr�uneisen parameter (1.30) is 1=(�z) = 1. These experimental �ndings agree witha onventional three-dimensional antiferromagneti spin-density wave senario desribed bythe Hertz model (see Chapter 2): � = 1=2, z = 2 and � = d + z = 5. Taking into aount17



Chapter 1. Universally Diverging Gr�uneisen Parameterfor the molar volume Vm the dimensionful prefator of the ritial G�uneisen parameter (1.30)has been determined [23℄ to be T0=p0 � 1:5 K/GPa. This identi�es the rossover line in thepressure{temperature phase diagram between the quantum ritial and the low-temperature,Fermi-liquid regime. It remains to be seen if this an be on�rmed by diretly measuring thepressure indued rossover to Fermi-liquid behavior in CeNi2Ge2.Previous measurements [24℄ on the stoihiometri ompound YbRh2Ge2 have revealeda very small N�eel temperature TN of about 65 mK, whih an be further suppressed bydoping it slightly with Ge. Fig. 1.6 shows the thermal expansion and spei� heat ofYbRh2(Si0:95Ge0:05)2 of R. K�uhler et al. [22℄. It an be learly seen that at an energy saleof about 300 mK the thermodynami behavior hanges. Up to now it is not yet lear whihphysial mehanism is assoiated with this energy sale. Nevertheless, the ritial behavioris assumed to set in only below 300 mK. The Gr�uneisen parameter is again found to diverge.The extrated exponent 1=(�z) = 0:7 however has to be taken with a pinh of salt sine the�t inluded data points well above the existing temperature sale of 300 mK. Nevertheless,it seems that the divergene annot be explained in the framework of an antiferromagnetispin-density wave instability whih would require an exponent 1=(�z) = 1.

18



Chapter 2Hertz Theory and Millis RGIn a seminal paper J. A. Hertz [4℄ pointed out the importane of quantum phase transitionsfor the physis at �nite temperatures. After 30 years the model he onsidered has beome thestandard theory for magneti instabilities in itinerant eletroni systems at zero temperature.Its �nite-temperature properties have been derived within a renormalization group treatment(RG) developed by A. J. Millis [5℄. Its most prominent feature is the non-Fermi liquid behaviorabove the zero-temperature instability , and it is used to desribe several experiments on heavyfermion ompounds.In Setion 2.1 we shortly review the Hertz model. The RG treatment proposed byA. J. Millis will be presented in Setion 2.2. Some subtle points in its derivation will bedisussed and minor errors appearing in the original paper [5℄ orreted. The solution of theRG equations is given in the following hapter, where we ompare the results for the thermalexpansion and Gr�uneisen parameter with the saling treatment of Chapter 1.2.1 Hertz' e�etive ationThe treatment of Hertz starts by onsidering the Hubbard interation Hamiltonian. Its loaldensity{density interation an be separated into a harge- and spin-density partHHubbard = UXi ni"ni# = U2 Xi (ni" + ni#)� U2 Xi (ni" � ni#)2 ; (2.1)where i labels the number of sites. Near a spin-density wave transition the harge densityutuations will be very fast in omparison to the ritial slow modes and an be negleted.Furthermore, the spin-density part an be reast into a form where the spin rotation symmetryis manifest. This an be ahieved by using the Fierz identity for Pauli matries [25℄����Æ = Æ��ÆÆ � 2 ����Æ (2.2)where � is the three-omponent vetor of Pauli matries and � is the antisymmetri tensor.With this identity the spin-density part of the Hubbard interation an be rewritten asHSDW = �U2 Xi (ni" � ni#)2 = �JXi 0�X�� 	yi� 12���	i�1A2 (2.3)19



Chapter 2. Hertz Theory and Millis RGwhere 	 is the eletron operator and the exhange oupling J = 2U=3. In the ontinuumlimit the orresponding partition funtion is given by Z = R D	�D	 e�S with the ationS = �Z0 d�d� 0 Z drdr0X� 	��(�; r)g�10 (� � � 0; r� r0)	�(� 0; r0) (2.4)�J �Z0 d� Z dr0�X�� 	��(�; r)12���	�(�; r)1A2 :The Fourier transform of the free eletron Green funtion is g0(i!n;k) = [�i!n + �k℄�1,where �k is the eletron energy with respet to the hemial potential. The spin-densityoupling of fourth order in the fermions an be deoupled by applying a Hubbard{Stratonovihtransformation1 on the real spin-density �eld pJ=2P�� 	�����	�,Z = Z	*exp24� �Z0 d� Z drX�� 	��(�; r)"�rJ2����(�; r)#	�(�; r)35+	;� : (2.5)The average has to be taken with respet to the real bosoni Hubbard{Stratonovih �eld �,whih is a three-omponent vetor, and the fermioni �eld 	,hÔi� � 1Z� Z D� Ô exp24�12 �Z0 d� Z dr�2(�; r)35 (2.6)hÔi	 � 1Z	 Z D	�D	 Ô exp24� �Z0 d�d� 0 Z drdr0X� 	��(�; r)g�10 (� � � 0; r� r0)	�(� 0; r0)35(2.7)with Z� = h1i� and Z	 = h1i	. The bosoni and the fermioni �elds are oupled and it is apriori not lear to whih ategory the ritial degrees of freedom belong. In the Hertz theoryit is assumed that the ritial modes are well desribed by the bosoni �eld alone in the sensethat an expansion of the e�etive ation in � is well-behaved. In Setion 2.1.1 we will shortlyomment on the validity of this assumption. The fermions are integrated out and one endsup with a Ginzburg{Landau free energy funtional 
 for the Hubbard{Stratonovih �eld �:ZZ	 = 1Z� Z D� e�
[�℄ with 
[�℄ = �Z0 d� Z dr12�2(�; r)� tr logf1�VG0g : (2.8)1The Hubbard{Stratonovih transformation for a real �eld ~x uses the identityZ dx1dx2 : : : dxn(2�)n=2 exp ��12~xTA~x+ ~xT ~y� = (detA)�1=2 exp�12~yTA�1~y�where A is a matrix. 20



2.1. Hertz' e�etive ationThe matries V and G0 are given byV = Æ�;� 0Ær;r0rJ2��;�0�(�; r) (2.9)G0 = Æ�;� 0Ær;r0Æ�;�0g0(� � � 0; r� r0) : (2.10)The trae is therefore meant to extend over time, spae and spin variables. The Hertz theoryassumes that the �eld � utuates around a vanishing expetation value, i.e. it desribesonly the disordered phase. Generally, there are two lasses of magneti instabilities to bedistinguished. In the ase of a ferromagneti instability the magneti order is homogenousand the Fourier omponents of the order parameter �eld only arry small momenta. Theferromagneti order parameter in spae is represented by a real �eld with three omponents,�(�;R). On the other hand, in an antiferromagnet the ritial degrees of freedom arry a�nite wave vetor �Q, �(�;R) = eiQR�Q(�;R) + e�iQR��Q(�;R) : (2.11)The utuations around the modulated magneti struture are in general desribed by aomplex �eld, �Q(�;R). An exeption is the ommensurate antiferromagnet where a mul-tiple of the modulation vetor Q oinides with a lattie vetor, in partiular ei2QR = 1.One an easily onvine oneself that in this ase ��Q(�;R) = �Q(�;R) and a real �eld suf-�es to desribe the ritial modes. More generally, the system might be instable againsta non-homogenous magneti struture haraterized by several di�erent modulation vetors.Suh a ritial theory omprises several in general omplex �elds, eah assoiated with theorresponding ordering wave vetor.In the magnetially disordered phase the logarithm in expression (2.8) arising from thefuntional determinant of the eletrons an be expanded in the utuations � = (�1; �2; �3)around the disordered ground state. The interesting lowest order terms are listed below2.� First order = �tr f(VG0)g = 0 (2.12)The ontribution of this diagram vanishes trivially in the absene of a magneti �eldsine the trae over spin indies gives zero, trf�ig = 0.� Seond order = �12tr�(VG0)2	 = J2 1�V Xp �L(p)�T (p)�(�p) (2.13)2The following spin traes are needed12 tr f�n�mg = Ænm ; 12trn�n�m�lo = i�nml ; 12trn�n�m�l�ko = ÆnmÆlk � ÆnlÆmk + ÆnkÆml :21



Chapter 2. Hertz Theory and Millis RGWe use the four-dimensional notation p = (i!n;k) for the fermioni Matsubara fre-queny and the momentum. The so-alled Lindhard funtion �L is given by�L(p) = �L(i!n;k) = � 1�V X
m;q g0(i
m;q)g0(i
m + i!n;q+ k) : (2.14)where 
m = 2�mT is here and in the following always a bosoni Matsubara frequeny.The Lindhard funtion is the basi fermioni vauum loop and is also known as thepolarization diagram [26℄.� Third order = �13tr�(VG0)3	 (2.15)= 23 �J2�3=2 1�3V 3 Xpjj=1;2;3 �V Æ0� 3Xj=1 pj1A�(3)(p1; p2; p3) i �nml�n(p1)�m(p2)�l(p3)The three �eld omponents appear in an antisymmetri ombination. As a onsequene,the three-point orrelation funtion �(3)(p1; p2; p3) has to be antisymmetri with respetto eah pair of its three arguments. This drastially restrits its behavior at large spatialand temporal distanes, i.e. for small momenta and frequenies.For a ferromagneti instability a possible lowest-order term in a gradient expansionsatisfying the antisymmetry onditions is�(3)(p1; p2; p3) � � ((k1 � k2) (k3 � k1) (i!n2 � i!n3) + yl:perm:) ; (2.16)It leads to the following term in the Ginzburg{Landau funtional for the �eld �(t;R):� 23 �J2�3=2 24�Z dR dt r2�(t;R)� ��t�(t;R)� �(t;R)� : (2.17)However, aording to power ounting [27℄ this term is irrelevant in the renormalizationgroup sense for the spae dimensions of interest and an be negleted.In the ase of a non-homogenous magneti instability the important ritial degrees offreedom are the Fourier omponents of the �eld � with a momentum that utuatesaround �nite ordering wave vetors. Depending on the symmetry of the non-homogenousmagneti struture there are two ases one has to distinguish. First let us assume thatno three of the ordering wave vetors happen to add to zero. As a onsequene, the�elds � are required to arry olletively a rather large momentum utuation in orderto ful�ll the momentum onservation demanded by the delta funtion in (2.15). SuhFourier omponents of the �elds do not however inuene the ritial behavior and thethird-order term (2.15) an be disarded in the analysis of ritiality. In partiular,22



2.1. Hertz' e�etive ationthis applies to the ase of the antiferromagnet with a single ordering wavevetor Q.The seond possibility is the speial ase of a magneti modulation that allows for aombination of ordering wave vetors Q1+Q2+Q3 = 0. In suh a ase the third-orderterm (2.15) may be important.� Fourth order = �14tr �(VG0)4	 = 12 �J2�2 1�4V 4 Xpjj=1;2;3;4 �V Æ0� 4Xj=1 pj1A (2.18)��ÆnmÆkl � ÆnkÆml + ÆnlÆmk��(4)(p1; p2; p3; p4)�n(p1)�m(p2)�k(p3)�l(p4)= 12 �J2�2 1�4V 4 Xpjj=1;2;3;4 �V Æ0� 4Xj=1 pj1A�(4)S (p1; p2; p3; p4)�n(p1)�n(p2)�m(p3)�m(p4) :In the last line we introdued the symmetrized four-point orrelation funtion, �(4)S , byinorporating the di�erent ontrations of the internal degrees of freedom of the �elds.The unsymmetrized four-point orrelation funtion is given by�(4)(p1; p2; p3; p4) = � 1�V Xq=(i
n;q) g0(q)g0(q + p1)g0(q + p1 + p2)g0(q + p1 + p2 + p3) :(2.19)Its frequeny and momentum dependene is irrelevant in the RG sense and an benegleted, reduing it to a loal ontat interation. However, the resulting ontribu-tion to the Ginzburg{Landau funtional depends on whether the magneti struture ishomogenous or not.Up to irrelevant terms, for the ferromagnet we simply have� 12 �J2�2 �(4)(0; 0; 0; 0)Z �0 d� Z dR ��T (�;R)�(�;R)�2 : (2.20)Note that in ontrast to the ontribution of third order in the �eld � there are no symme-try restritions whih require the loal ontat interation to vanish. (Loop and vertexorretions, however, lead to important orretions, see disussion of Setion 2.1.1.)The situation is more elaborate in the ase of an antiferromagnet. In order to satisfythe momentum onservation demanded by the delta funtion a �eld �Q of (2.11) isalways aompanied by its omplex onjugate ��Q. Taking into aount all possibleombination we �nally arrive at the expression for the antiferromagnet� 12 �J2�2 1�4V 4 Xpjj=1;2;3;4 �V Æ0� 4Xj=1 pj1A (2.21)� �A��nQ (p1)��nQ (p2)�mQ(p3)�mQ(p4) +B ��nQ (p1)�nQ(p2)��mQ (p3)�mQ(p4)� :23



Chapter 2. Hertz Theory and Millis RGwhere we again negleted irrelevant terms. The onstants, A and B, are given in termsof the four-point orrelation funtion,A =�(4)S (Q;Q;�Q;�Q) + �(4)S (�Q;�Q;Q;Q)B =�(4)S (Q;�Q;Q;�Q) + �(4)S (Q;�Q;�Q;Q) + �(4)S (�Q;Q;�Q;Q) (2.22)+ �(4)S (�Q;Q;Q;�Q) :Only for the ommensurate antiferromagnet does this fourth order interation redueto the simple form (2.20).The theory originally proposed by Hertz onsiders only a real �eld �. It is therefore appro-priate for the ferromagnet (with ertain restritions explained below) and the ommensurateantiferromagnet. We extend the �eld to N omponents giving rise to an O(N) internal sym-metry and making the Hertz theory amenable to large N methods. Combining all importantterms the Hertz theory reads3ZHertz = ZZ	 = 1Z� Z D� e�SHertz[�℄ (2.23)SHertz[�℄ = S(2)[�℄ + S(4)[�℄ (2.24)S(2)[�℄ = 1�V X!n;k 12�T (i!n;k)��10 (i!n;k)�(�i!n;�k) (2.25)S(4)[�℄ = g Z �0 d� Z dR ��T (�;R)�(�;R)�2 : (2.26)The normalization Z� =pdet (�V ) in front of the path integral an alternatively be absorbedinto a renormalization of the �elds �(i!n;k)! p�V �(i!n;k). In partiular, this should bedone in order to obtain the form of the Hertz theory as in Refs. [4℄ and [5℄. We prefer notto do this �nal step and keep instead the familiar fators 1=(�V ) in front of the Matsubaraand momentum sums. The propagator in any ase is given by �0 whih derives from thelow-frequeny, low-momentum behavior of the Lindhard funtion (see Appendix A.2),1� J�L(i!n;k) � ��10 (i!n;k) � Æ0 + �20 k2 + j!njT0kz�2 (2.27)where we introdue the dynamial saling exponent z. For an antiferromagneti instability thedynamial exponent is z = 2 and for a ferromagneti instability z = 3. (Again, higher orderorretions to the propagator are important, f. Setion 2.1.1.) The parameters Æ0, �0, T0 andthe quarti oupling g depend on mirosopi details. For the antiferromagneti instability theexat orrespondene between the bare parameters and the mirosopi parameters depends3For ompleteness we ite here the onvention we use for the Fourier transform:�(�;R) = 1�V X!n;k ei(kR�!n�)�(i!n;k)�(i!n;k) = Z dR Z d� e�i(kR�!n�) �(�;R)24



2.2. Millis' renormalization group treatmenton the spei� band struture of the material under onsideration. For a ferromagnetiinstability, on the other hand they an be evaluated and are given byÆ0 = 1� JNF (2.28)�20 = 112NFkF (2.29)T0 = 2� vFNF (2.30)g = J28 �(4)(0; 0; 0; 0) = �J248 Z dq(2�)3 �3��3q f(�q) � J248N 00F : (2.31)The expliit value for �20 has been obtained with the assumption of a quadrati energy dis-persion �k = k2=(2m�). In the bare theory, i.e. on the level of perturbation theory, theferromagneti instability ours if the mass vanishes, Æ0 = 1 � JNF = 0. This ondition isjust the well-known Stoner riterion.2.1.1 Validity of the Hertz theoryIn deriving the e�etive theory (2.23) we integrated out the eletroni degrees of freedom andexpanded in the magneti order parameter �. We have already mentioned that in doing sowe might have missed some important subtle physial features.It was realized by D. Belitz, T. R. Kirkpatrik and and T. Vojta [28℄ that in the ase ofthe ferromagnet in zero magneti �eld this proedure is indeed doomed to fail. They pointedout that the Fermi liquid possesses soft partile{hole exitations that are distint from themagneti order parameter utuations but nevertheless might ouple suÆiently strongly tothe latter to inuene their ritial behavior. In the ase of the ferromagnet these soft modes,whih have been integrated out, show up as non-analytiities in higher order orretions to thepolarization diagram [28, 29, 30℄ that have been negleted in the derivation of the last setion.These non-analytiities render the resulting e�etive theory for the magneti order parameter� non-loal and hard to analyze. The Hertz theory in its simple form (2.23) therefore does notapply to the itinerant ferromagnet. However, in the presene of a magneti �eld the SU(2)-spin rotational invariane is broken and, as a onsequene, the non-analytiities are ut o�.It is therefore believed that the Hertz theory with a dynamial saling exponent z = 3 is theproper desription for the quantum ritial endpoint of magneti �rst order transitions [31℄.The antiferromagnet on the other hand has a non-homogenous order parameter and ar-ries a non-zero ordering wavevetor. The fermioni soft modes are only soft for a vanishingwavevetor and their oupling to the antiferromagneti utuations are not expeted to spoilthe Hertz theory. The e�etive theory (2.23) with a dynamial saling exponent z = 2 there-fore expeted to desribe orretly the quantum phase transition in itinerant (ommensurate)antiferromagnets [32℄.However, this issue remains ontentious and is the subjet of urrent researh.2.2 Millis' renormalization group treatmentIn this setion we review the renormalization group (RG) treatment of the Hertz ation(2.23) introdued by A. J. Millis [5℄. The main ompliation in the RG analysis of (2.23)is the inlusion of the Matsubara frequeny dependene. Sine the Matsubara frequeny25



Chapter 2. Hertz Theory and Millis RGat �nite temperature is not a ontinuous variable like the momentum, the extension of forexample Wilson's momentum shell RG to the dynamial, i.e., frequeny-dependent part ofthe Hertz ation is not straightforward. The solution of Millis was to perform the RG noton the Lagrangian level but rather diretly on the free energy after onverting all Matsubarasums into integrals.2.2.1 Derivation of the RG equationsFirst onsider the free energy due to the Gaussian part of (2.23) only. It is given bye��FG = 1Z� Z D� e�S(2)[�℄ = �det��10 ��1=2=) FG = N2� X!n;k log��10 (i!n;k) = N2� X!n;k log�Æ0 + �20 k2 + j!njT0kz�2� (2.32)The sum over Matsubara frequenies an be onverted into an integral and (in the limitV !1) is given byFG = �T0 N2 V�d0 Z � ddk(2�)d Z �kz�20 d�� oth T0�2T artan k2�z �Æ0 + k2 (2.33)where � and � are (dimensionless) uto�s. The inlusion of the momentum in the upper limitof the energy integral in the ase of a ferromagnet z = 3 is not ontained in the Hertz ationas it stands (2.23). It is rather justi�ed with hindsight, sine we know that the natural uto�for partile{hole exitations in the ase of a ferromagneti instability sales with momentum k(see Appendix A.2). Furthermore, the momentum and frequeny integrals have been resaledso that the parameters T0 and �0 an be absorbed in the measure of the free energy andthe temperature. The mirosopi length sale �0 is presumably of the order k�1F . Note thatthe prefator V=�d0 in front of (2.33) is then basially the number of partile in the system,V kdF � NA. This implies that the free energy we are dealing with is not expliitly dependenton the volume. Its extensitivity is rather onneted to the number of partiles. Moreover,we an adopt the viewpoint that the mass is ontrolled by the pressure and we an identifythe thermodynami potential as the Gibbs free energy whih is a funtion of temperature,pressure and partile number, F = F (T; p;N ). This will be important later when we analyzethe thermal expansion. In the following it will be onvenient to onsider the dimensionlessfree energy density F = F�d0=(T0V ) and the dimensionless temperature T = T=T0.The orretion to the Gaussian part of the free energy an be obtained with a linkedluster expansion in the quarti oupling g. Up to seond order in u the result is (for detailssee Appendix A.3)F = FG + gN(N + 2)I2 + g22! �8N(N + 2)2I2J + 8N(N + 2)K�+O(g3) ; (2.34)26



2.2. Millis' renormalization group treatmentwhere we have introdued the three funtionsI = 1�V X!n;k�0(i!n;k) ; J = � 1�V X!n;k�0(i!n;k)�0(�i!n;�k) ;K =� 1(�V )4 X!nj ;kjj=1;2;3;4V Æ 4Xi=1 ki!�Æ 4Xi=1 !in! (2.35)� �0(i!1n;k1)�0(i!2n;k2)�0(i!3n;k3)�0(i!4n;k4)expressed in terms of the propagator (2.27). The important point for the RG proess is thatthe funtions I and J are just derivatives of the Gaussian free energy (2.33) with respetto the bare mass Æ0, I = (2=NV )�FG=�Æ0 and J = �I=�Æ0. At �rst sight the funtion Kdoes not have this property. To understand its ontribution in the Millis RG let us digress amoment to the usual momentum{shell RG. In the momentum-shell RG it is known [27, 18℄that the seond order diagram ontributing to the renormalization of u, (2.36)results in a momentum dependent quarti oupling. This means that the orrespondinginteration in real spae is non-loal. However, this momentum dependene is known to beirrelevant [27℄ and only the momentum independent term is to be kept in the RG proess. Theontribution K now stems exatly from the diagram in the linked luster expansion whih isobtain by pairing the two open legs at one vertex of the above diagram with the legs of theother vertex, = + : (2.37)(It is atually a sum of two diagrams with di�erent ontrations of the internal indies ofthe �elds involved; the dashed line represents the quarti interation g. The �rst diagram onthe right hand side of the equation is of order O(N2) and the seond diagram of order O(N)where N is the number of �eld omponents.) The momentum dependene whih this diagramindues in the momentum-shell RG manifests itself in the struture of the funtion K: allfour momenta and frequenies appear in the delta funtions. The analogous step of negletingthe indued momentum dependene in the momentum-shell RG is to demand frequeny- andmomentum onservation, represented by the delta funtions of K, only with respet to twofrequenies and two momenta. However, there are �42� = 6 possibilities to hoose two out offour, V Æ 4Xi=1 ki!�Æ 4Xi=1 !in! �! �42� V Æ (k1 + k2) �Æ (!1n + !2n) : (2.38)If we manipulate the delta funtions in this way the funtion K ollapses to 6I2J . E�etively,the funtion K thus leads to a ontribution in the Millis RG proess orresponding to 6I2J .The orretions are irrelevant in the RG sense. In Millis' original paper he swept these27



Chapter 2. Hertz Theory and Millis RGsubtleties under the arpet and as a starting point for the derivation of the RG equationsused the expansion of the free energy with K substituted by 6I2J ,F = FG + gN(N + 2)I2 + g22! 8N(N + 2)(N + 8)I2J +O(g3) + irrelevant terms : (2.39)We do not want to dwell on the justi�ation of the above statement but rather ontinuewith the derivation of the RG equations. They are derived from (2.39) in the spirit of themomentum-shell RG but on the level of the free energy: a momentum shell [�;�=b℄ is sepa-rated from the momentum integrals of the funtions FG, I and J . This shell will renormalizethe bare mass Æ0 and the quarti oupling g. Afterwards the integrand is resaled whih,via the momentum dependene of the upper limit of the frequeny integral, indues a seondrenormalization from the frequeny shell. This �nally yields the following RG equations4� F(b)� log b = (d+ z)F(b) � 12 N f0(Æ(b);T (b)) (2.40)� T (b)� log b = z T (b) (2.41)� Æ(b)� log b = 2 Æ(b) + 4 (N + 2)u(b) f2(Æ(b);T (b)) (2.42)� u(b)� log b = (4� d� z)u(b) � 4 (N + 8)u2(b) f4(Æ(b);T (b)) (2.43)where F = F�d0=(T0V ) is the dimensionless free energy (per partile), u = g�d0=(T0V ) thedimensionless quarti oupling and T = T=T0 the dimensionless temperature. We have intro-dued the three funtionsf0(Æ;T ) = Kd�d ��z�2Z0 d�� oth �2T artan �2�z �Æ +�2 + �Z ddk(2�)d 2�� oth �2T artan k2�z �Æ + k2f2(Æ;T ) = � ��Æ f0(Æ;T ) (2.44)f4(Æ;T ) = � ��Æ f2(Æ;T )and Kd = Z d
(2�)d = �2d�1�d=2�(d=2)��1 (2.45)is the surfae of the d-dimensional sphere in momentum spae. The �rst term of the funtionf0 arises from the renormalization due to the separated momentum shell | momentum is seton shell k = � | whereas the seond term is the renormalization due to the frequeny shell| frequeny is set on shell � = �. It turns out that the main e�et of the ontribution of the4 The above RG equation di�er from the equations in Millis' paper [5℄ in the following points. The fator�N=2 is missing in front of the funtion f0. The minus sign stems from the transformation of the Matsubarasum to an integral in the expression for the Gaussian part of the free energy. The fator N omes from thesummation over the internal degrees of freedom and the fator 1=2 is due to the fat that the �elds � are realand not omplex. The inverse of the same fator 1=2 is involved in the fator 4 in front of the funtion f2 whereMillis has only a fator of 2. Moreover, there is an additional fator of 2 in the funtion f4 in omparison toMillis. Similar di�erenes our in the funtions I and J de�ned above.28



2.2. Millis' renormalization group treatmentfrequeny shell is to renormalize zero temperature properties only. The additional orretionsat �nite temperatures due to the frequeny shell are exponentially suppressed,f0(Æ;T )� f0(Æ; 0) = Kd�d 1Z0 d�� �oth �2T � 1� artan �2�z �Æ +�2 +O(e��=T ) : (2.46)The leading ontribution to the thermodynami quantities like spei� heat and thermalexpansion therefore omes from the temperature dependene due to the separated momentum-shell.2.2.2 Classial limitTehnially speaking, the di�erene between the Hertz theory and the onventional \las-sial" �4-theory is the additional dependene on the Matsubara frequeny of the Gaussianpropagator (2.27). If we just neglet the non-zero Matsubara modes the remaining �eld or-responding to a Matsubara frequeny !0 = 0 is indeed governed by suh a lassial �4-theory.After resaling this �eld by ~'(k) = ��1=2 �(0;k) (f. disussion after (2.23)), the ation ofthe zero Matsubara mode readsSlass['℄ = 12V Xk ~'T (k) �Æ0 + �20k2� ~'(�k) (2.47)+ u�V 4 Xk1;k2;k3;k4 V Æ 4Xi=1 ki! (~'T (k1)~'(k2)) (~'T (k3)~'(k4))with a \lassial" quarti oupling whih depends on temperature, v � u=�. Formally, theHertz theory thus redues to the lassial theory (2.47) when the inuene of the non-zeroMatsubara modes an be negleted. This is the ase for temperatures larger than the energyuto� , T � ��z�2. The Hertz theory and in partiular the form of the propagator (2.27)is, of ourse, not justi�ed in this limit and therefore should not be interpreted physially. (Inits derivation we used the limiting behavior of the Lindhard funtion (2.14) for frequeniesless than momentum, ! � k � 1.) Nevertheless, in this limit the Millis RG equations shouldformally redue to the well-known RG equations of the lassial �4-theory. The onsiderationof this limit therefore provides a rosshek for the validity of the Millis RG equations (2.40{2.43).To redue Millis' RG equations to the lassial ones we substitute u(b) by v(b) = u(b)T (b).Moreover, we have to take the high temperature limit of the fn funtions, whih amounts toreplaing the oth funtions in the integrand by the inverse of their argument. After takingthe limit �!1 one ends up with the lassial RG equations of �4 theory [18℄� Æ(b)� log b = 2 Æ(b) + 4 (N + 2) v(b) Kd�dÆ(b) + �2 ; (2.48)� v(b)� log b = (4� d) v(b) � 4 (N + 8) v2(b) Kd�d(Æ(b) + �2)2 : (2.49)As pointed out by S. Sahdev [2℄ for small but �nite temperatures 0 < T � ��z�2 thee�etive theory is indeed given by (2.47), but with the bare parameters strongly renormalizedby the non-zero Matsubara modes. This leads to a oneptually di�erent point of view to the29



Chapter 2. Hertz Theory and Millis RGMillis approah and we will refer the reader to Refs. [2, 33℄. Nevertheless, if in the followingthe leading ontribution of some quantity is due to the high-temperature limit of the fnfuntions we will refer to it as resulting from \saling into the lassial regime".2.2.3 Running mass and orrelation lengthThe RG equation for the mass Æ an formally be integrated. After separating the trivialsaling dimension of the mass 1=� = 2 by substituting Æ(b) = R(b) b2 we getR(b) = Æ0 + 4 (N + 2) Z log b0 dx e�2x u(ex) f2(R(ex) e2x;T ezx) ; (2.50)where Æ0 is the bare mass appearing in the propagator �0 in (2.23). It is onvenient tointrodue the running mass at zero temperature,�(b) = Æ0 + 4 (N + 2) Z log b0 dx e�2x u(ex) f2(�(ex) e2x; 0) : (2.51)Sine we are interested only in the behavior of the theory in the viinity of the quantumritial point we an expand in �,�(b) � Æ0 + 4 (N + 2) f2(0; 0)Z log b0 dx e�2x u(ex)� 4 (N + 2) f4(0; 0) Z log b0 dx u(ex)�(ex)� (Æ0 � Æ) exp ��4 (N + 2) f4(0; 0) Z log b0 dxu(ex)� : (2.52)In the seond line we already extrated the behavior of � for large sales b by solving theimpliit equation of the �rst line, whih an be identi�ed with a �rst-order linear di�erentialequation. In doing so, we introdued the ritial bare mass Æ, whih identi�es the positionof the quantum ritial point,Æ = �4 (N + 2) f2(0; 0)Z 10 dx e�2x u(ex) : (2.53)With the help of (2.51) we obtain the temperature orretion to the running mass, whih isof �rst order in the running quarti oupling u,R(b)��(b) = 4 (N + 2) Z log b0 dx e�2x u(ex) �f2(R(ex) e2x;T ezx)� f2(�(ex) e2x; 0)�= RT (b) + ÆR(b) = RT (b) +O(u2) ; (2.54)where we have introdued the quantitiesÆR(b) = 4 (N + 2) Z log b0 dx e�2x u(ex) �f2(R(ex) e2x; 0)� f2(�(ex) e2x; 0)� ; (2.55)RT (b) = 4 (N + 2) Z log b0 dx e�2x u(ex) �f2(R(ex) e2x;T ezx)� f2(R(ex) e2x; 0)� : (2.56)The ontribution of the term ÆR is of higher order in u and has to be negleted. The runningmass onverges eventually for large sales to the orrelation length,R(b) = �(b) +RT (b) ' ��2 : (2.57)30



2.2. Millis' renormalization group treatment2.2.4 Quantum{lassial rossover: Estimate of the ritial temperatureIt is tempting to determine the �nite temperature phase transition in the (r; T ) plane by theondition of a vanishing e�etive mass, R(b) ' ��2,��2(r; T ) = 0 at T = T(r) : (2.58)However, we will explain in the following why the parameter region where ��2(r; T ) = 0 isbeyond the reah of the perturbative RG equations (2.40{2.43).As we have already mentioned the phase transition at �nite temperatures is governed byan e�etive lassial �4 or Ginzburg{Landau theory. In suh a theory the phase transitionis identi�ed with a sign hange of the mass, R / T � T. Near the ritial temperatureT the thermodynamial quantities are very sensitive to variations in the mass. Hene, wean identify the quantum{lassial rossover in the (r; T ) plane by omparing di�erent on-tributions to, for example, the spei� heat: the quantum ontribution whih arises fromthe expliit temperature dependene of the Hertz propagator, and the lassial ontributionwhih arises from the sensitivity of the renormalized mass, R, to temperature variations.The RG trajetory of the running mass R(b) itself depends on the temperature and it isthis impliit temperature dependene whih starts to dominate the thermodynamis at thequantum{lassial rossover [34℄.Below four spae dimension, however, the �nite temperature phase transition is notaptured by the Gaussian �xed point, but is rather desribed by the Wilson{Fisher �xedpoint [35℄. Therefore, there will be a further rossover in the (r;T ) plane from a Gaussianto the non{Gaussian behavior of the Wilson{Fisher �xed point. Sine the physis embodiedby the Wilson{Fisher �xed point is beyond the sope of the Millis RG analysis this rossoveris assoiated with the breakdown of the perturbative Millis RG treatment. This Gaussian tonon-Gaussian rossover is determined by the Ginzburg temperature (see below). So, stritlyspeaking, we are not able to loate the phase boundary sine the region where ��2(r; T ) = 0is beyond the appliability of the RG equations (2.40-2.43). Nevertheless, having pointed thisout we still use the vanishing mass riterion in the following to get a �rst estimate of theloation of the phase boundary.2.2.5 Gaussian{non-Gaussian rossover: Ginzburg temperatureThe Ginzburg temperature TG(r) de�nes the Gaussian{non-Gaussian rossover in the (r; T )plane just alluded to. It is based on the Ginzburg riterion whih an be formulated inseveral ways [18, 17℄. It arises naturally when the e�etive lassial Ginzburg{Landau theoryin less than four spae dimensions, whih desribes the �nite temperature phase transition,is onsidered as a rossover phenomena. Upon approahing the phase boundary at a �nitetemperature the singular part of the free energy density will asymptotially satisfy the usualsaling form [16℄ b�dfsing(R(b)b1=� ; v byv) � [R(b)℄�d fsing(1; v [R(b)℄��yv) (2.59)with the lassial quarti oupling v = uT introdued in setion 2.2.2. In the Gaussian regionthe exponents are given (up to logarithmi orretions) by the Landau values, � = 1=2 andyv = 4 � d. The singular free energy exhibits a rossover depending on the size of the so-alled Ginzburg parameter v [R(b)℄��yv . In the Gaussian region this parameter is small andan be treated perturbatively. In the non-Gaussian region, however, it beomes large and the31



Chapter 2. Hertz Theory and Millis RGphysis rosses over to the realm of the Wilson{Fisher �xed point. The rossover ours atthe Ginzburg temperature where the Ginzburg parameter attains a value of order one,v R��yv = uT R d�42 � 1 at T = TG(r) : (2.60)The Ginzburg temperature TG(r) de�nes a rossover line in the (r; T ) plane of the phase dia-gram beyond whih the Millis RG treatment breaks down. Consequently, in the non-Gaussianregion beyond TG(r) we annot extrat any reliable information from the perturbative RGtreatment presented in this hapter.2.2.6 Physial quantitiesFree energyIntegrating the RG equation for the dimensionless free energy we an rewrite it as an integralalong the RG trajetory, after aounting for the trivial saling dimension d+ zF(b) b�(d+z) b!1�! F = �N2 Z 10 dx e�(d+z)x f0(R(ex) e2x;T ezx) : (2.61)Again we reall that F is the free energy measured in units of T0V=�d0 . The important pointto note is that the free energy F has an expliit temperature dependene via the seondargument of the funtion f0 and an impliit T dependene due to the running mass. The RGtrajetory of R(b) itself depends on T [f. (2.50)℄ whih has to be taken into aount whenomputing the entropy.EntropyCorrespondingly, there are two terms when the derivative with respet to temperature istaken (measuring the entropy in units of V=�d0),S = �dFdT = SQCP + SCL : (2.62)The �rst term is due to the partial derivative with respet to temperature,SQCP = ��F�T = N2 Z 10 dx e�(d+z)x ��T f0(R(ex) e2x;T ezx) ; (2.63)and the subsript indiates that it is this term whih leads to the peuliar temperaturedependenes typial for quantum ritial phenomena. The seond term stems from the impliittemperature dependene of the RG trajetory of the running mass,SCL = �N2 Z 10 dx e(2�d�z)x f2(R(ex) e2x;T ezx)dRT (ex)dT : (2.64)It is this term whih is most singular near the phase boundary at �nite T initiating thequantum{lassial rossover. 32



2.2. Millis' renormalization group treatmentSpei� heatWe will onsider here the spei� heat oeÆient  = C=T , whih is just the derivative ofentropy with respet to temperature. We will measure the spei� heat oeÆient in units ofV=(�d0T0) in the following. There are two important ontributions to the spei� heat. Thequantum ritial ontribution is given byQCP = �SQCP�T = N2 Z 10 dx e�(d+z)x �2�T 2 f0(R(ex) e2x;T ezx) : (2.65)Near the phase boundary the temperature sensitivity of the RG trajetory of the runningmass takes over,CL = N2 Z 10 dx e(4�d�z)x f4(R(ex) e2x;T ezx)�dRT (ex)dT �2 : (2.66)It should be noted that there is also another term, the partial derivative of SCL with respetto temperature. However, the leading ontribution in the quantum and lassial regimes areQCP and CL, respetively. The quantum-lassial rossover an be estimated by omparingthese two ontributions with eah other.Thermal expansionThe thermal expansion is de�ned as the hange in volume as the system temperature ishanged with pressure p and partile number N held onstant:� = 1V �V�T ����p;N = 1V �2F�p �T = � 1V �S�p ����T;N : (2.67)Using the Gibbs free energy, F = F (T; p;N ), we have rewritten the thermal expansion as aderivative of entropy with respet to pressure. Near a pressure tuned quantum ritial pointthe ontrol parameter is proportional to the distane to the ritial pressure, r = (p� p)=p0,where p0 is an a priori unknown pressure sale. Up to a proportionality onstant we reognizethat the thermal expansion is atually the hange of entropy upon variation of the ontrolparameter r, � = � 1V p0 �S�r : (2.68)From now on we will measure the thermal expansion in units of 1=(�d0p0). Again we andistinguish between a ontribution due to the quantum ritial point,�QCP = ��SQPC�r = N2 Z 10 dx e(2�d�z)x �R(ex)�r ��T f2(R(ex) e2x;T ezx) ; (2.69)and a lassial ontribution dominating near the phase boundary,�CL = ��SCL�r = �N2 Z 10 dx e(4�d�z)x f4(R(ex) e2x;T ezx)dRT (ex)dT dR(ex)dr : (2.70)33



Chapter 2. Hertz Theory and Millis RGGr�uneisen parameterThe thermodynami Gr�uneisen parameter, �, is the ratio of the thermal expansion to thespei� heat � = �T : (2.71)In the following we will measure � in units 1=(V p0).
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Chapter 3Solution of Millis RG EquationsIn this hapter the solution of the RG equations is obtained. The results obtained earlierby U. Z�ulike and A. J. Millis [6℄ for the spei� heat in three spatial dimensions are om-plemented by its alulation in 2D. The thermal expansion and the Gr�uneisen parameterpresented here have not been alulated within Hertz' theory so far. We will ompare theresults with the predition of the saling treatment of Setion 1.3.The Hertz model an be suessfully treated within a perturbative Millis RG treatmentbeause for the physial systems of interest its e�etive dimension d + z is above or at theupper ritial dimension, d + z � 4, where the quarti oupling u is either an irrelevant or amarginal perturbation, respetively. In the Millis RG however not only the quarti ouplingu is treated as a small parameter. We will also expand in the distane to the quantum ritialpoint, whih is measured by both the ontrol parameter r and the temperature T . In doingso we obtain universal �nite temperature properties of the Hertz model assoiated with the�xed point of the quantum phase transition.It turns out that spae dimension d = 2 plays a speial role. It is known from a theoremdue to N. D. Mermin and H. Wagner [14℄ that generally in two spae dimensions systems witha ontinuous symmetry and �nite{range interations do not show a spontaneous marosopimagnetization at �nite temperatures. The underlying reason is the existene of logarithmiallydivergent utuations of would-be Goldstone modes. Tehnially the divergene stems fromthe IR part of the momentum integralZ dk kd�1 1m2 + k2 � � logm for m! 0 in d = 2 : (3.1)We will refer in the following to divergenes of this kind as Mermin{Wagner divergenes. Ingeneral, they appear in two spae dimensions irrespetive of the internal symmetry of the orderparameter O(N). The Mermin{Wagner divergene is reeted in logarithmi orretions toseveral thermodynami quantities in d = 2.For N > 2 there is indeed no magnetially ordered phase at �nite temperatures in twospae dimension, as one expets from the Mermin{Wagner theorem. However, the XY modelhas N = 2 and although in d = 2 there is no spontaneous marosopi magnetization it doesexhibit the peuliar Kosterlitz{Thouless transition, whih is of topologial nature. Finally,the infamous Ising model, N = 1, has only a Z2 symmetry and the Mermin{Wagner theoremdoes not apply. The ontinuous phase transition in two spae dimension of the Ising model aswell as the Kosterlitz{Thouless transition of the XY-model are, however, beyond the MillisRG approah and we will not pereive any signatures of the onset of order in these systems.35



Chapter 3. Solution of Millis RG EquationsIn order to familiarize the reader with the onfusing number of rossovers in the (r; T )plane of the phase diagram we have skethed them in Fig. 3.1. The regime of applia-bility of the perturbative Millis RG is given by the region on the right-hand side of theGaussian{non-Gaussian rossover line assoiated with the Ginzburg temperature TG. It willturn out that the quantum{lassial rossover, where the leading behavior to the spei� heat

phase

control parameter r

te
m

pe
ra

tu
re

 T

regime

QCP regime
Fermi liquid

quantum critical 

regime

non−Gaussian

PSfrag replaementsT = r�zTG
T = r�zTGT

ontrol parameter rtemperature T
ordered

region
0 0 IIIIIIIV

Figure 3.1: Phase diagram of the Hertz model.I: Fermi liquid regime, II+III: quantum ritialregime, IV: lassial and non-Gaussian regime.

and the thermal expansion starts tostem from the sensitivity the e�etivemass [34℄, is loated within the non-Gaussian region. Whereas for exam-ple in regions I, II and III the on-tribution �QCP (2.69) to the thermalexpansion dominates, the ontribution�CL (2.70) takes over only within re-gion IV. The non-Gaussian region IVmight be separated by the phase bound-ary from a magnetially ordered phase.We an only get an estimate for thephase boundary sine it is loated ina regime that is beyond the appliabil-ity of the perturbative RG. In partiu-lar, for spae dimension d = 2 Mermin{Wagner divergenes suppress this esti-mate to zero, suggesting that no orderedstate exists at �nite temperature. Re-gions II and III omprise the so{alledquantum ritial regime where the tem-perature dominates the thermodynam-is, T � jrj�z. It is this regime whih is assoiated with the peuliarity of the quantumritial point. The spei� heat as well as the thermal expansion show here a pronounednon-Fermi liquid behavior. Region II and III are separated by a rossover in the behavior ofthe orrelation length. Finally, the rossover to region I, T � jrj�z, is aompanied with arestoration of the usual Fermi liquid like dependenes of the thermodynamis.The following setions are organized as follows. Initially, the quarti oupling, the orre-lation length and the Ginzburg temperature are alulated. First this is done for the systemabove its upper ritial dimension, d + z > 4, and afterwards for d + z = 4, in whih aseadditional logarithmi orretions to saling are expeted. After that thermodynami quan-tities | spei� heat, thermal expansion and the Gr�uneisen parameter | are determined interms of the orrelation length. In the �nal setion the results are summarized and disussed.3.1 Above the upper ritial dimension: d+ z > 43.1.1 Quarti ouplingAbove the upper ritial dimension, d+ z > 4, the saling dimension of the quarti ouplingu is negative and the ontribution of order O(u2) in the RG equation (2.43) an be ignored.36



3.1. Above the upper ritial dimension: d+ z > 4The sale dependene of the quarti oupling is then given byu(b) = u b4�d�z for d+ z > 4 ; (3.2)where u is the bare quarti oupling of the theory.3.1.2 Correlation length �The expression for the running mass at zero temperature (2.52) an simply be integrated andyields, limb!1�(b) = (Æ0 � Æ) exp �4 (N + 2) f4(0; 0)u4� d� z � � r : (3.3)We introdued the ontrol parameter r / Æ0� Æ and absorbed the exponential fator into itsunits of measurements. The orrelation length is given by equation (2.57),��2 = limb!1 f�(b) +RT (b)g = r + 4 (N + 2)Kd �d+z�4 T 2z (3.4)1Zlog T 1=z=� dx 1Z0 dv� 4 v (oth v � 1) e(�2+2z)x u(ex�T � 1z )�R(ex�T � 1z )T �2=ze2x + 1�2 + (2 ezxv)2 :We have made use of expression (2.46) for the fn funtions in deriving the leading ontributionof the temperature dependent part RT (2.56). The leading behavior of the remaining integralan be extrated in the two limits orresponding to the quantum ritial regime, r T �2=z � 1,and the Fermi{liquid regime, r T �2=z � 1.Quantum ritial regime: r T �2=z � 1We have to distinguish between the spae dimensions d = 2 and d > 2.z > d � 2 > 0 : In the quantum ritial regime for d > 2 we an neglet the dependene ofthe integrand in expression (3.4) on R(:)T �2=z. Moreover, we an extend the lower limit ofthe x-integral to minus in�nity thereby negleting ontributions of order O �� T �1=z�(d�2)�z ,��2 = r + 4 (N + 2) Kdz os �d�22 z �� ��1 + d� 2z � � �1 + d� 2z �uT d+z�2z : (3.5)where � is the Gamma funtion and � is the Zeta funtion1. We an subdivide the quantumritial regime further in two regimes where either the �rst or the seond term dominatesgiving rise to the two sub-regimes II and III indiated in Fig. 3.1.1The following integrals have been used:Z 10 dy (2y)nsinh2 y = 2n�(n) �(n) and Z 10 dy ya1 + y2 = �2 os (a�=2) :37



Chapter 3. Solution of Millis RG Equationsd = 2 : As explained at length in the introdution, in two spae dimension we have tostruggle with Mermin{Wagner divergenes (3.1). These divergenes are assoiated with thee�etive lassial theory and orrespondingly we expet them to originate from the salinginto the lassial regime, i.e. from the IR-part of the v-integral of (3.4) (f. disussion inSetion 2.2.2).Consider only the double integral in (3.4) with the running oupling onstant (3.2). Ind = 2 the ombination R T �2=z ats as an IR-uto� for the v-integral. Without this termthe integral would diverge logarithmially. We an extrat this logarithmi divergene byintegrating by parts with respet to x,� 1Zlog T 1=z=� dxx ddx 1Z0 dv� 4 v (oth v � 1) ezx�R(ex�T � 1z )T �2=ze2x + 1�2 + (2 ezxv)2where we set expliitly d = 2. The surfae term is of order O(T =�z log T =�z) and has beennegleted. We expand the hyperboli funtion for small v, evaluate the v-integral and obtainin leading order � 1Zlog T 1=z=� dxx ddx 11 +R(ex�T � 1z )T �2=ze2x :To evaluate the remaining integral we will use a trik whih proves to be useful throughoutthe rest of this hapter, and so we now explain it in some detail. After taking the derivativeand multiplying both numerator and denominator with �1 + ��2T �2=ze2x�2 we get,1Zlog T 1=z=� dx x e2x�1 + ��2T �2=ze2x�2 (3.6)�8><>: �1 + ��2T �2=ze2x�2�1 +R(ex�T � 1z )T �2=ze2x�2 �2R(ex�T � 1z )T �2=z +R0(ex�T � 1z )ex�T � 3z�9>=>; :The term in front of the urly brakets is a strongly peaked funtion with a maximum loatedat xmax � log �T 1=z . Around this maximum the remaining term in the braket is only slowlyvarying and the argument of the running mass at the maximum, exmax�T � 1z = �� ! 1,tends to in�nity in the universal limit � ! 1. That means that around the maximum therunning mass has almost onverged to its limiting value ��2. The leading ontribution antherefore be obtained by a saddle point approximation whih in the universal limit � ! 1amounts to taking the slowly varying term in the braket at the maximum value xmax, giving1Z�1 dx 2 x ��2T �2=ze2x�1 + ��2T �2=ze2x�2 = log � T 1=z :Putting this result in the formula for the orrelation length we obtain for d = 2��2 � r + 4 (N + 2) Kd2 uT log 1��2 T �2=z (3.7)38



3.1. Above the upper ritial dimension: d+ z > 4Above the quantum ritial point, r = 0, we an solve the impliit equation for the orrelationlength iteratively and obtain in leading order��2(r = 0) = 4 (N + 2) Kd2 uT log 1uT 1�2=z +O�uT log log 1uT 1�2=z� : (3.8)Fermi liquid regime: r T �2=z � 1In the Fermi{liquid regime up to sub-leading temperature orretions the running mass inthe integrand an be replaed for low temperatures by the ontrol parameter r. The leadingontribution of the remaining integral an then be evaluated,��2 � r + 4 (N + 2)Kd uT d+z�2z 1Zlog T 1=z=� dx 1Z0 dv� 4 v (oth v � 1) e(2�d+z)x�r T �2=ze2x + 1�2 + (2 ezxv)2= r + 4 (N + 2)Kd uT 2 r d�z�22 1Zlog r1=2=� dx 1Z0 dv� 4 v (oth v � 1) e(2�d+z)x(e2x + 1)2 + �2 T r�z=2ezxv�2 (3.9)To lowest order the term T r�z=2 an be negleted in the denominator of the integrand.Moreover, for 2�d+ z > 0 the lower limit of the x-integral an be extended to minus in�nityinduing an error of order O �r1=2=��2�d+z. For 2 � z + d > 0 the remaining x-integral isonvergent and we obtain��2 � r + 4 (N + 2)Kd uT 2 r d�z�22 1Z�1 dx 1Z0 dv� 4 v (oth v � 1) e(2�d+z)x(e2x + 1)2= r + 4 (N + 2) �212 d� zsin �d�z2 �� Kd uT 2 r d�z�22 (3.10)where the temperature dependent ontribution is sub-leading.3.1.3 Estimate of the ritial temperatureWe an obtain an estimate for the ritial temperature T(r) from the riterion (2.58) thatthe orrelation length is in�nite at T. We �nd that this an only be ful�lled for negativevalues of the ontrol parameter, r < 0. As explained in detail in Setion 2.2.4, the value of Tdetermined in this way is only an estimate sine it falls into regime beyond the appliabilityof the Millis RG approah. We will distinguish between the ases d > 2 and d = 2.Critial temperature for d > 2Using the expression for the orrelation length (3.5) we obtain the ritial temperaturer = �4 (N + 2)Kdz os �d�22 z �� ��1 + d� 2z � � �1 + d� 2z �uT d+z�2z : (3.11)39



Chapter 3. Solution of Millis RG EquationsCritial temperature for d = 2The Mermin{Wagner divergenies (3.1) in two spae dimensions prohibit a solution of ��2 =0 at �nite temperatures. It appears that no ordered phase exists at �nite temperatures.Aording to (3.7) the e�etive mass ��2 dereases exponentially for r < 0 upon lowering thetemperature but never vanishes at �nite temperatures,��2 / T 2=ze� �jrj(N+2)uT : (3.12)3.1.4 Ginzburg temperatureThe Ginzburg temperature (2.60) determines the rossover line between Gaussian to non-Gaussian behavior, see Fig. 3.1. With the results for the orrelation length (3.5) and (3.7) wean determine TG(r). Again we distinguish between the ases d = 2 and d > 2.d > 2 : Putting the expression (3.5) for the orrelation length into the de�nition (2.60) weget an equation whih impliitly de�nes TG(r),uTG =  r + 4 (N + 2)Kdz os �d�22 z �� ��1 + d� 2z � � �1 + d� 2z �uT d+z�2zG ! 4�d2 : (3.13)The Ginzburg temperature di�ers from the ritial temperature (3.11) byTG � TT � z2d+z�2 os �d�22 z ��4 (N + 2)Kd � �1 + d�2z � � �1 + d�2z � (uT) d�24�d T 2�dz : (3.14)d = 2 : Putting the de�nition of the Ginzburg temperature for d = 2, ��2 = uTG(r), intothe expression for the orrelation length (3.7) we obtainr = uTG0�1� 4 (N + 2)Kd 12 log 1uT z�2zG 1A : (3.15)3.2 At the upper ritial dimension: d+ z = 4This setion onsiders two-dimensional spin utuations in a antiferromagneti metal, d =z = 2. The orresponding Hertz theory is at its upper ritial dimension, and it is plaguedby logarithmi orretions of di�erent origin.3.2.1 Quarti ouplingAt the upper ritial dimension the quarti oupling is marginal and we have to take intoaount the u2-term in its di�erential equation (2.43). The solution readsu(b) = u1 + 4(N + 8)u g(b) for d+ z = 4 (3.16)g(b) = Z log b0 dx f4(R(ex)e2x; T ezx) : (3.17)40



3.2. At the upper ritial dimension: d+ z = 4In the viinity of the quantum ritial point, i.e. for small temperatures and small runningmass, the quarti oupling is given approximately byu(b) � u1 + 4(N + 8)u f4 log b = 14(N + 8) f4 �log b e 14(N+8) f4 u��1 ; (3.18)where f4 � f4(0; 0) = K2� : (3.19)Note that f4 is independent of the uto�s � and �, i.e. it is universal. It is the produt of thesurfae of the two-dimensional sphere in momentum spae, K2 (2.45), and the surfae of thesphere in frequeny spae, 1=�.3.2.2 Correlation length �In ontrast to the ase d + z > 4, the exponential fator in the expression for the runningmass at zero temperature (2.52) now does not onverge leading to a sale dependent massgap, �(b) = r�log �b2 e 24(N+8) f4 u��N+2N+8 with r � Æ0 � Æ(2(N + 8)f4u)N+2N+8 : (3.20)The logarithmi dependene of the zero-temperature mass � on the sale b is harateristifor a �4 theory at the upper ritial dimension, d+z = 4. For � = 4�d+z > 0 the orrelationlength exponent � will deviate from its Landau value 1=2 and the leading orretion is knownto be linear in �, see e.g. Ref. [36℄. At the upper ritial dimension, � = 0, logarithmiorretions to saling our and are materialized in the sale dependene of �. In partiular,that means that we annot simply take the limit b ! 1 neither in the expression for theresaled quarti oupling (3.18) nor in the expression for the mass gap �. Choosing the sale�(b)b2 = �2 we obtain the following orretion to the orrelation length exponent ��(b) = r�log ��2�(b)�N+2N+8 =) 2� � � log�� log r = 241� N+2N+8log ��2�(b) 35�1 (3.21)where we have introdued a \renormalized" uto� ��, whih depends on the bare quartioupling onstant u, �� � � e �4(N+8)K2 u : (3.22)The expression for � agrees with the result of the epsilon expansion of the �4 theory [36℄ if weidentify � = 1= log ��p�(b) . At �nite temperature we will instead hoose the sale R(b)b2 = �2and identify the orrelation length with��2b2 ' R(b)b2 = �2 =) R(��) ' ��2 : (3.23)In the following the limiting behavior of the temperature orretion (2.56) will be evalu-ated, (RT = limb!1RT (b)),RT = 4 (N + 2)K2 T 1Zlog T 1=2=� dx 1Z0 dv� 4 v (oth v � 1) e2x u(ex�T � 12 )�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2xv)2 : (3.24)41



Chapter 3. Solution of Millis RG EquationsQuantum ritial regime: r �log ��2r ��N+2N+8 � TThe same arguments as in the analysis above the upper ritial dimension in d = 2 lead tothe leading behavior,RT � �4 (N + 2)K2 T 1Zlog T 1=2=� dxx ddx u(ex�T � 12 )1 +R(ex�T � 12 )T �1e2x� 4 (N + 2)K2 T 1Zlog T 1=2=� dx 2x u(ex�T � 12 )R(ex�T � 12 )T �1e2x�1 +R(ex�T � 12 )T �1e2x�2 : (3.25)In ontrast to what happens above the upper ritial dimension, the running quarti ouplingonstant now is only logarithmially varying. The integrand an thus be separated into aprodut of a strongly peaked funtion at the position xmax = log �T 1=z and a slowly varyingpart whih inludes the quarti oupling u. Applying a saddle point approximation we obtainRT � 4 (N + 2)K2 T u(exmax�T � 12 )xmax : (3.26)Using the expression (3.18) for the running quarti oupling we obtain the impliit equationfor the orrelation length��2 ' �(��) + � N + 2N + 8 T log ��2T �log ��2��2� = r�log ��2��2��N+2N+8 + � N + 2N + 8 T log ��2T �log ��2��2� : (3.27)There exist a sub-regime II (see Fig. 3.1) where the ontrol parameter still governs the orre-lation length,��2 � 8>>>>><>>>>>: r�log ��2r �N+2N+8 if II: T log log ��2Tlog ��2T � r �log ��2r ��N+2N+8� N + 2N + 8T log log ��2Tlog ��2T if III: r �log ��2r ��N+2N+8 � T log log ��2Tlog ��2T : (3.28)Note that the asymptoti expansion in the regime III is not very revealing sine the on-vergene is very slow. It is only meaningful in the negligible small sub-region of III wherelog log ��2T � 1.Fermi liquid regime: r �log ��2r ��N+2N+8 � TIn the Fermi liquid regime the orrelation length will be dominated by the zero temperatureontribution ��2 � � � r �log ��2� ��N+2N+8 . After a onvenient substitution we an extrat thetemperature orretion from expression (3.24)RT � 4 (N + 2)K2 T 2 �2 1Z� log(��) dx 1Z0 dv� 4 v (oth v � 1) e2x u(ex��)(R(ex��)�2e2x + 1)2 + (2T �2 e2xv)2 : (3.29)42



3.3. ThermodynamisIn the Fermi liquid regime we an neglet the term T �2 in the denominator of the integrand.This leads toRT � 4 (N + 2) �K23 T 2 �2 1Z� log �� dx e2x(R(ex��)�2e2x + 1)2 u(ex��) : (3.30)The remaining integral an again be evaluated with a saddle point approximation. Taking therunning quarti oupling at the saddle point, xmax = 0, we obtain for the orrelation length��2 ' �+ �26 N + 2N + 8 T 2� log ��2� � r�log ��2r �N+2N+8 + �26 N + 2N + 8 T 2r �log ��2r �N+2N+8�1 : (3.31)The temperature dependent orretion is harateristi of a Fermi liquid.3.2.3 Ginzburg temperatureAt the upper ritial dimension the quarti oupling, u, as well as the orrelation length aresale dependent. Choosing the sale b = �=� we obtain the Ginzburg temperature uTG(r) ���2 as a set of two equations parameterized by �,8><>: TG = N + 8�2 ��2 log ��2��2�r = ��2 �log �2 ��2�N+2N+8 �1� N + 2� log�N + 8�2 log ��2 ��2��� : (3.32)The asymptoti behavior of the Ginzburg temperature an be obtained by solving theseequations iteratively,r � � �N + 8 TG �log ��2TG�N+2N+8log ��2TG �(N + 2) log log ��2TG � �� : (3.33)3.3 Thermodynamis3.3.1 Spei� heatIn the following the expressions (2.65) and (2.66) are evaluated. Using the leading-temperatureontribution of the fn funtions (2.46) we get for expression (2.65) (after two onvenient sub-stitutions)QCP = N2 Kd T d�zz 1Zlog T 1=z=� dxZ 10 dv� � 2 vsinhv�2 �R(ex�T � 1z )T �2=ze2x + 1� e(z�d)x�R(ex�T � 1z )T �2=ze2x + 1�2 + (2 ezx v)2 :(3.34)43



Chapter 3. Solution of Millis RG EquationsQuantum ritial regime: r T �1=(�z) � 1z > d : We an neglet the RT�2=z terms and extend the lower limit of the x-integral tozero, negleting ontributions of order O �T 1=z=��z�d. The leading behavior readsQCP = N2 Kdz os � d2z�� ��2 + dz� � �1 + dz� T d�zz : (3.35)z = d : In the ase z = d the leading ontribution of the spei� heat will depend on theuto� �. We approximate the x-integral by log �=T 1=z and we getQCP = N2 2�Kd3 log �T 1=z : (3.36)z < d < 3z : In this ase the leading ontribution is given by the uto�.QCP = N2 2�Kd3 (d � z) �d�z � N2 Kd T d�zz 1Z0 dxxz�d�1 Z 10 dv� � 2 vsinhv�2 (2xz v)21 + (2xz v)2= N2 2�Kd3 (d � z) �d�z + N2 Kdz os � d2z�� ��2 + dz� � �1 + dz� T d�zz (3.37)We have negleted ontributions of order O �T 1=z=��3z�d. Note that the temperature depen-dent part is negative due to the fat that os � d2z�� = � ��os � d2z����.Fermi liquid regime: r T �1=(�z) � 1Substituting the running mass R(:) by the orrelation length, ��2, in the integrand we obtainfor the leading ontributionQCP = N2 Kd (��2) d�z2 1Z� log �� dxZ 10 dv� � 2 vsinhv�2 �e2x + 1� e(z�d)x(e2x + 1)2 + (2T �z ezx v)2� N2 2�Kd3 (��2) d�z2 1Z� log �� dx e(z�d)x1 + e2x : (3.38)In the seond line the term T �z in the integrand has been negleted and the v-integralperformed.z > d : Negleting ontributions of order O (��)d�z we getQCP = N2 �2Kd3 sin � z�d2 �� (��2) d�z2 : (3.39)z = d : As in the quantum ritial regime the integral over x leads to a logarithmi depen-dene on the uto�, log ��: QCP = N2 2�Kd3 log �� : (3.40)44



3.3. Thermodynamisd� 2 < z < d : The leading ontribution stems from the uto�QCP � N2 2�Kd3 (d� z) �d�z � N2 2�Kd3 (��2) d�z2 Z 1�1 dx e(z�d)x e2x1 + e2x= N2 2�Kd3 (d� z) �d�z + N2 �2Kd3 sin � z�d2 �� (��2) d�z2 : (3.41)We negleted ontributions of order O (��)d�z�2. Note that the temperature dependent partorresponds to a negative orretion, sine sin � z�d2 �� < 0.These results for the spei� heat di�er from the results obtained by U. Z�ulike et al. [6℄by a fator of 2. This fator an be traed bak to the fator 1=2 in the RG equation forthe free energy (2.40) whih originates from the fat that the �elds � in the Hertz model(2.23) are real. This fator was missing in Millis' original paper [5℄ (ompare also footnote onpage 28).Classial regimeNear a lassial phase transition the spei� heat diverges with diminishing distane to thephase boundary aording to C � R��, where R is the e�etive mass of the lassial theory.The exponent � is given by hypersaling [17℄, � = 2 � d�. In the viinity of the �nitetemperature transition the spei� heat oeÆient is therefore dominated by (2.66) whihgives the most diverging ontribution for a vanishing running mass R(:). Using the leadingbehavior of the fn funtions (2.46) the expression (2.66) beomesCL = N2 Kd�d 1Z0 dx ��R(ex)�T �2 1Z0 d�� oth� �2T ezx� 2�2�z � e(4�d�z)x �R(ex) e2x +�2��(R(ex) e2x +�2)2 + (�2�z �)2�2 :It is onvenient to perform two substitutions, �rst �=(2T ezx)! v and then ex ! ��ex,CL = N2 KdT 2�4�d+z 1Z� log(��)dx ��R(��ex)�T �2 1Z0 dv� 8 v oth v e(4�d+z)x �R(��ex) e2x�2 + 1��(R(��ex) �2e2x + 1)2 + (2�z T ezxv)2�2 :The leading ontribution will ome from the saling into the lassial regime, so we expand thehyperboli funtion for small arguments keeping only the leading ontribution. Afterwardswe an perform the v-integral,CL = N2 KdT �4�d 1Z� log(��) dx (��R(��ex)�T �2 �e2x + 1�2(R(��ex) �2e2x + 1)2) e(4�d)x(e2x + 1)2 :This integral an be evaluated with a saddle point approximation. The integrand onsistsof a produt of a slowly varying term in the urly brakets and a strongly peaked funtionwith the peak loated at xmax = 12 log 4�dd . The argument of the running mass at the peakmaximum is already very large, ��exmax , and the running mass therefore varies only slowlyat the peak position. Taking the value of the urly braket at the peak maximum we an45



Chapter 3. Solution of Millis RG Equationsevaluate the remaining integral. In the universal limit �!1 the orretions to this saddlepoint approximation vanish (ompare also Appendix D of Ref. [6℄),CL = N2 KdT �4�d����2�T �2 1Z�1 dx e(4�d)x(e2x + 1)2 = N2 (2� d)�Kd4 sin d�2 T ���2��2+d=2����2�T �2 :(3.42)The spei� heat diverges when the orrelation length grows to in�nity. The divergene isonsistent with the above mentioned hypersaling relationship with the Landau value � = 1=2,� = 2� d=2. The rossover to the atual lassial, Wilson{Fisher �x-point value �WF 6= 1=2ours at the Ginzburg temperature TG. Let us estimate the quantum{lassial rossoverat whih the lassial ontribution to the spei� heat, CL, starts to dominate over thequantum ontribution QCP. Using the expression for the orrelation length (3.5) we �ndthat the lassial part is of order CL � O(�4�du2T (z+2d�4)=z) whereas the quantum partQCP � O(T (d�z)=z). The lassial ontribution takes over if the orrelation length is oforder, ��2 � u 44�d T 2 (d+2z�4)z (4�d) : (3.43)Sine the temperature is very small we an onlude that the lassial ontribution CL is onlyimportant in the immediate viinity of the �nite-temperature phase transition. In partiular,the ondition (3.43) should be ompared with the de�nition of the Ginzburg riterion, ��2 =(uTG)2=(4�d); the latter will always be ful�lled �rst as the phase transition is approahed.This means that the quantum{lassial rossover of the spei� heat is loated within thenon-Gaussian region, see Fig. 3.1.3.3.2 Thermal expansionIn this setion we will evaluate the expressions (2.69) and (2.70) for the thermal expansion.Again we start with the ontribution due to the quantum ritial point. Using the leading-temperature ontribution of the fn funtions (2.46) we get (after two onvenient substitutions)�QCP = N2 Kd T d�2z (3.44)� 1Zlog T 1=z=� dx �R(ex�T � 1z )�r Z 10 dv� � 2 vsinhv�2 e(2+z�d) x�R(ex�T � 1z )T � 2z e2x + 1�2 + (2 ezx v)2 :Quantum ritial regime: r T �1=(�z) � 1z > d � 2 > 0 : For spae dimension d > 2 the running mass in the denominator of theintegrand an be negleted in the quantum ritial regime,�QCP = N2 Kd T d�2z 1Zlog T 1=z=� dx �R(ex�T � 1z )�r Z 10 dv� � 2 vsinhv�2 e(2+z�d) x1 + (2 ezx v)2 :Proeeding as before we take the argument of the running mass at the saddle point value ofthe double integral and obtain for �!1�QCP = N2 Kdz os �d�22 z �� ��2 + d� 2z � � �1 + d� 2z � ���2�r T d�2z : (3.45)46



3.3. Thermodynamisd = 2 : As was the ase for the orrelation length in two spae dimension we have to expetlogarithmi orretions from saling into the lassial regime. Before expanding the hyperbolifuntion we perform the trik of integrating by parts (setting d = 2)�QCP = �N2 Kd 1Zlog T 1=z=� dxx (3.46)� ddx �R(ex�T � 1z )�r Z 10 dv� � 2 vsinh v�2 ez x�R(ex�T � 1z )T � 2z e2x + 1�2 + (2 ezx v)2 ;where the surfae term is sub-leading. Expanding the hyperboli funtion to leading orderand performing the v-integral we obtain�QCP ' �N2 Kd 1Zlog T 1=z=� dxx ddx �R(ex�T � 1z )�r 1R(ex�T � 1z )T � 2z e2x + 1 : (3.47)The saddle point approximation leads to (�!1)�QCP ' �N2 Kd ���2�r 1Z�1 dxx ddx 1��2 T � 2z e2x + 1 ' N2 Kd2 ���2�r log 1��2 T � 2z : (3.48)Fermi liquid regime: r T �1=(�z) � 1Proeeding in the same way as for the orrelation length we obtain for the leading behaviorin the Fermi liquid regime�QCP = N2 �26 (d� z)Kdsin �d�z2 �� T (��2) d�z�22 ���2�r : (3.49)Classial regimeProeeding similarly as for the spei� heat in the lassial regime we obtain�CL = �N2 (2� d)�Kd4 sin d�2 T �4�d���2�T ���2�r : (3.50)The thermal expansion shows the same divergene in the lassial as the spei� heat. Thisholds generally for a phase transition of the seond kind (see Ref. [16℄ x148). In the followingwe onsider the quantum{lassial rossover for the thermal expansion. Using the expressionfor the orrelation length (3.5) we �nd that the lassial ontribution is of order �CL �O(�4�duT (d+z�2)=z) and the quantum one of order �QCP � O(T (d�2)=z). Comparing thesetwo we �nd the ondition for the quantum{lassial rossover to be��2 � (uT ) 24�d ; (3.51)whih oinides with the Ginzburg riterion. As for the spei� heat, the lassial regime isloated within the non{Gaussian region, see Fig. 3.1.47



Chapter 3. Solution of Millis RG Equations3.3.3 Gr�uneisen parameterIn this setion we list the ratios between the ritial ontributions to the thermal expansionand spei� heat.Quantum ritial regime: r T �1=(�z) � 1z = d = 2 : �r = 34� log 1��2T �2=zT log �T 1=z ���2�r (3.52)z 6= d = 2 : �r = z os � d2z��2� �2 + dz � � �1 + dz � T � dz log 1��2T �2=z ���2�r (3.53)d = z 6= 2 : �r = 3� �2 + d�2z � � �1 + d�2z �2� z os �d�22 z �� T d�2�zz �log �T 1=z��1 ���2�r (3.54)otherwise : �r = os � d2z��os �d�22 z �� � �2 + d�2z � � �1 + d�2z �� �2 + dz � � �1 + dz � T � 2z ���2�r (3.55)Fermi liquid regime: r T �1=(�z) � 1d = z : �r = 12 (��2)�1 (log ��)�1 ���2�r (3.56)d 6= z : �r = z � d2 (��2)�1���2�r : (3.57)Classial regimeIn the Gr�uneisen parameter the divergenes of spei� heat and thermal expansion anel,and it measures essentially the pressure dependene of the ritial temperature,�CL = �CLTCL = � ���2�rT ���2�T : (3.58)With the restritions mentioned in Setion 2.2.3 we an de�ne a ritial temperature by setting��2(T(r); r) = 0. With the help of this de�nition we an rewrite the Gr�uneisen parameter inthe viinity of the phase boundary as�CL = d log T(r)dr : (3.59)The Gr�uneisen parameter in the lassial region near the phase boundary essentially measuresthe pressure dependene of the ritial temperature T [16℄.3.4 Summary of results and disussionThe results of the rather lengthy derivations of the last setions are summarized in the fol-lowing. We list expliitly the results for d; z = 2; 3 and show the resulting phase diagrams forz = 2 and d = 2; 3. 48



3.4. Summary of results and disussionThe regime of appliability of the perturbative Millis RG is on�ned to the right-hand sideof the Ginzburg line TG(r) in the (r;T ) plane of the phase diagram, see following Figs. 3.2 and3.3. Depending on the spatial dimension and the internal symmetry of the order parameterO(N) there might exist a �nite temperature phase boundary originating in the quantumritial point and extending to higher temperatures. However, it will be loated in the non-Gaussian region not aessible with the approah of this hapter. Nevertheless, a ritialtemperature T(r) an be estimated in spae dimensions d > 2.The sale invariant ombination rT �1=�z of the ontrol parameter and the temperature de-�nes an important rossover line that separates the phase diagram into a Fermi liquid regime,rT �1=�z � 1, and a quantum ritial regime, rT �1=�z � 1. As the name suggests, in theFermi liquid regime the thermodynamis is that of a onventional Fermi liquid. The quantumritial regime on the other hand is haraterized by peuliar temperature dependenies ofthe orrelation length, spei� heat and the thermal expansion | the thermodynamis at�nite temperatures is strongly inuened by the presene of a quantum phase transition.The thermal expansion divided by temperature, �=T , whih approahes a onstant ina Fermi liquid at low temperatures, exhibits a distint divergene in the quantum ritialregime in agreement with the saling treatment of Chapter 1. For example, it diverges as�=T � T�1=2 in the three dimensional (ommensurate) antiferromagnet (d = 3; z = 2).This should be ontrasted with the temperature dependene of the spei� heat divided bytemperature, C=T = , whih also saturates towards a onstant in a Fermi liquid at lowtemperatures. Its behavior in the quantum ritial regime however is less spetaular thanthat of the thermal expansion. It either approahes a onstant with peuliar temperatureorretions for d = 3; z = 2 or it diverges rather slowly, e.g. logarithmially for d = 2; z = 2.As a onsequene, the ratio of these two quantities, the Gr�uneisen parameter, divergesas a funtion of temperature in the quantum ritial regime. This bears out the preditionmade in Chapter 1. In partiular, we an now ompare the properties of the Gr�uneisenparameter of a spei� model, the Hertz theory, with the general saling preditions (1.30)and (1.29). The (zero-temperature) Hertz model is above or at its upper ritial dimensionfor d; z = 2; 3 and saling is not neessarily expeted to apply due to the quarti oupling u,whih is a dangerously irrelevant operator. Nevertheless, we observe that the results agreeto within logarithmi orretions. These logarithmi orretions abound and it is interestingto examine their origin. Firstly, for d + z = 4 the zero-temperature theory is at its upperritial dimension whih leads to a logarithmi temperature dependene of the denominatorof �r in the quantum ritial regime. Seondly, for d = 2 the e�etive �nite temperaturetheory is at its lower ritial dimension resulting in a logarithmi temperature dependene ofthe numerator of �r in the quantum ritial regime that an be traed to a Mermin{Wagnerdivergene (3.1). Thirdly, for d = z the universal prefator in the Fermi liquid regime (1.29)expeted from the saling treatment is supposed to vanish. This is reeted in a furtherlogarithmi dependene of �r for d = z.
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Figure 3.2: Phase diagram of the Hertz' model for d = 3 and z = 2. In regime I Fermi liquidbehavior is observed in all thermodynami quantities. The quantum ritial regime onsists of regimeII and III whih are separated by a rossover in the behavior of the orrelation length. The Ginzburgline TG(r) identi�es the breakdown of the perturbative RG and gives the rossover line to the non-Gaussian regime. The ritial temperature T(r) is an estimate for the N�eel temperature. Units: ��2is measured in units of ��20 , T in T0,  in V=(�d0T0), � in 1=(�d0p0) and � in 1=(V p0). The ontrolparameter is given by r = (p� p)=p0.
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3.4. Summary of results and disussion
d = 3; z = 2 formulaquantum ritial regime II+III: r T �1 � 1��2 = 8<: r for II: r � uT 32(N+2) �( 32 )p2�3=2 uT 32 for III: r � uT 32 (3.5)r = �p2� 15 � �52�N64�2 T 12 = �0:0798N T 12 (3.37)�r = p2� 3 � �32�N32�2 T 12 = 0:0622N T 12 (3.45)�r = �2 � �32�5 � �52� T �1 = �0:7789 T �1 (3.55)Fermi liquid regime I: r T �1 � 1��2 = r (3.10)r = �N12 r 12 (3.41)�r = N24 T r� 12 (3.49)�r = �12r�1 (3.57)Ginzburg temperaturer = u2T 2G � (N + 2)�(3=2)p2�3=2 uT 3=2G (3.13)Estimate of the ritial temperaturer = �(N + 2)�(3=2)p2�3=2 uT 3=2 (3.11)
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3.4. Summary of results and disussiond = 2; z = 2 formulaquantum ritial regime III: r �log ��2r ��N+2N+8 � T log log ��2Tlog ��2T��2 � � N+2N+8T log log ��2Tlog ��2T (3.27)r = N12 log �2T (3.36)�r � N8� log log ��2T�log ��2T �N+2N+8 (3.48)�r � 32� log log ��2TT log �2T �log ��2T �N+2N+8 (3.52)quantum ritial regime II: T log log ��2Tlog ��2T � r �log ��2r ��N+2N+8 � T��2 � r�log ��2r �N+2N+8 (3.27)r = N12 log �2T (3.36)�r � N8� log Tr�log ��2r �N+2N+8 (3.48)�r � 32� log TrT log �2T �log ��2r �N+2N+8 (3.52)Fermi liquid regime I: r �log ��2r ��N+2N+8 � T��2 � r�log ��2r �N+2N+8 (3.31)r � N12 log �2r (3.40)�r � N12 Tr (3.49)�r = 12 1r log �pr (3.56)Ginzburg temperaturer � � �N+8 TG�log ��2TG �N+2N+8log ��2TG �(N + 2) log log ��2TG � �� (3.32)53



Chapter3.SolutionofMillisRGEquations

d = 2; z = 3 formulaquantum ritial regime: r T �2=z � 1��2 � r + N + 2� uT log 1uT 1=3 (3.8) = N6� ��83� � �53� T � 13 (3.35)� � N8� log 1uT 1=3 (3.48)�r � 34� �83� � �54� T � 23 log 1uT 1=3 (3.53)Fermi liquid regime: r T �2=z � 1��2 = r +O �uT 2 r� 32� (3.10) = N �12 r� 12 (3.39)� = N �24 T r� 32 (3.49)�r = 12 r�1 (3.57)
d = 3; z = 3 formulaquantum ritial regime r T �2=z � 1��2 = r + 4 (N + 2)3p3�2 ��43� � �43�uT 43 (3.5) = N6� log �T 1=3 (3.36)� = N6p3�2 ��73� � �43� T 13 (3.45)�r = � �73� � �43�p3� T � 23log �T 1=3 (3.54)Fermi liquid regime r T �2=z � 1��2 = r +O �uT 2 r�1� (3.10) = N6� log �r1=2 (3.40)� = N12� T r�1 (3.49)�r = 12 r�1 �log �r1=2��1 (3.56)
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Chapter 4Anisotropi Hertz TheoryThe work of this hapter was motivated by the observation of quasi two-dimensional an-tiferromagneti spin utuations in neutron sattering experiments on the heavy fermionompound CeCu6�xAux [7, 8℄. The rystal struture of this system is essentially of a three-dimensional harater and the two-dimensional spin utuations are only a preursor tothe three-dimensional magneti ordering observed below the N�eel temperature. Why two-dimensional utuations dominate an intrinsially 3D alloy is, however, only poorly under-stood. At suÆiently low temperatures one expets that the apparently very small ouplingof the spin utuations in the third dimension beomes important leading to a dimensionalrossover in the thermodynami quantities, although the experimental on�rmation of suha rossover has so far proved to be elusive.The presumed senario of a 2D{3D rossover in the viinity of the quantum ritial pointin CeCu6�xAux is skethed in Fig. 4.1. The quantum ritial point is housed in a poketwhere 3D spin utuations dominate the quantum ritial dynamis. From the measuredphase diagram of CeCu6�xAux (right panel of Fig. 4.1) the quantum ritial point has beenassoiated with a doping level of x = 0:1 after extrapolating linearly the N�eel temperature
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Chapter 4. Anisotropi Hertz Theoryfor various doping levels x > 0:1. Thermodynami measurements [7℄ as well as neutronsattering experiments [8℄ on CeCu5:9Au0:1 have not observed any signatures of 3D spinutuations at the lowest temperatures. One ould argue that the temperatures reahedwere still not low enough to detet the tiny oupling between the two-dimensional planes.Another line of argument suggests that the extrapolated quantum ritial point at a dopinglevel of x = 0:1 may not oinide with the atual loation. In the three-dimensional poketthe funtional dependene of the N�eel temperature on doping might deviate from the linearbehavior observed for higher doping levels, as indiated in the left panel of Fig. 4.1. As aonsequene, the alloy CeCu5:9Au0:1 might not be loated well inside the 3D poket or mighteven fall outside it whih would serve as a simple explanation of why 3D spin utuationshave not been seen at lowest temperatures. The error in the loation of the quantum ritialpoint determined from an extrapolation of the experimental data an, however, be estimatedtheoretially. This is one of the purposes of this hapter. We will further larify how thedimensional rossover is reeted in thermodynami quantities: orrelation length, spei�heat, thermal expansion and the Gr�uneisen parameter.Loal quantum ritialityApart from the spei� questions posed by experiment the 2D{3D dimensional rossoversenario is also of interest for the notion of loally ritial phase transitions in metals. Q. Si etal. [20, 21℄ have proposed a senario for heavy fermion systems where the ritial utuationsof the loal magneti moments oexists with the extended two-dimensional spin utuationsof the ondution eletrons. They are interwoven and nurture eah other in suh a waythat they beome ritial together. In ontrast to, for example, the Hertz theory where theritial utuation modes are all extended the important feature of this new senario is theinlusion of loally ritial modes, whih is the reason why this senario has been dubbed aloal quantum phase transition.The senario of a loal quantum phase transition has also been proposed for CeCu6�xAuxin order to explain the infamous !=T saling of the suseptibility [38℄.A neessary ondition for the development of loal quantum ritiality is the existene oftwo-dimensional spin utuations. The assoiated loal spin suseptibility is haraterizedby a logarithmi divergene of the Mermin{Wagner type (3.1). This singularity feeds bakinto the oupling to the loal moments giving rise to important nonlinear e�ets that areeventually responsible for why the extended and loal modes beome ritial in a oordinatedfashion. In three dimensions, however, the suseptibility is non-singular and suh feedbak isharmless: the onventional senario of the Hertz model is expeted to apply. Aordingly, ina material with a non-vanishing oupling in the third dimension the loal quantum ritialityshould pass away when the 2D to 3D rossover ours. All the preditions of loal quantumritiality are therefore restrited to a regime where the two-dimensional spin utuationsprevail, i.e. to high temperatures, and do not apply to the immediate viinity of the quantumritial point. The position of the dimensional rossover in the phase diagram will thereforealso larify where the senario of loal quantum ritiality is expeted to break down.ModelWe are interested in the limit when the spin futuations are almost two-dimensional, i.e. whenthey prefer to propagate in two-dimensional planes and their mobility between the planes56
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Figure 4.2: Sketh of a utuation mode with (I) high momentum orresponding to a orre-lation length � smaller than the strethed distane between the planes � � 1=p��2 � a=p�,where a is a lattie onstant and � is the anisotropy parameter, and (II) low momentum thatextends over several planes and is e�etively three dimensional, � � 1=p��2 � a=p�.is restrited. In a tight-binding piture we an assoiate a hopping amplitude t with themovement of the spin utuations in the planes and an amplitude t0 desribing their hoppingbetween the planes. Their two dimensional harater is reeted in the ratio of these hoppingamplitudes, � � t0=t� 1. The resulting energy{momentum dispersion is given by�(k) = t (2� os kxa� os kya) + t0 (1� os k?a) � �20 �k2q + � k2?� for kq; k? < � � 1=a :(4.1)where �0 = apt=2 and a is a lattie onstant. The momentum omponent k? is perpendiularto the planes and kx; ky and kq are the omponents in the plane. The approximation is validfor small momenta with the inverse lattie onstant as a momentum uto�, � � 1=a, andit desribes the long-distane behavior that ontrols the ritial behavior. The ontributionof the perpendiular momentum omponent is weighted with the small number � = t0=t. Inthe limit � ! 0 the perpendiular omponent of momentum does not ontribute and truetwo-dimensional physis is reovered. With an appropriate substitution of the perpendiularmomentum we an rewrite the above dispersion relation as�(k) = �20 �k2q + k2?� for kq < � � 1a and k? <p��2 � p�a : (4.2)The dispersion now seems to be isotropi in momentum spae, but the uto� for the perpen-diular omponent now orresponds to an inverse strethed lattie onstant of a=p�. Thisprovides an alternative physial piture that will be suitable for an intuitive understanding ofthe dimensional rossover in ritiality. By inorporating the anisotropy parameter in a newstrethed lattie onstant a=p� = apt=t0 the approah to the two-dimensional limit � ! 0an be interpreted as an inreased separation of the two-dimensional planes; for � = 0 theplanes have an in�nite separation and therefore do not ommuniate with eah other. Therossover from 2D to 3D ritiality ours when the orrelation length � has inreased suhthat it starts to extend over several strethed distanes a=p�, see Fig. 4.2.We are going to desribe the dynamis of the antiferromagneti spin ututions with theHertz theory (2.23) with a dynamial exponent z = 2. The above onsiderations motivatethe modi�ations of the Gaussian propagator (2.27),��10 (i!n;k) = Æ0 + �20 �k2q + � k2?�+ j!nj=T0 : (4.3)57



Chapter 4. Anisotropi Hertz TheoryThe ation of the three-dimensional anisotropi Hertz theory then reads (ompare with (2.23))SAH[�℄ = 1�V X!n;k 12�T (i!n;k)��10 (i!n;k)�(�i!n;�k) + S(4)[�℄S(4)[�℄ = g 1�4V 4 X!nj ;kjj=1;2;3;4 V Æ0� 4Xj=1 kj1A � Æ0� 4Xj=1 !nj1A (4.4)� ��T (i!n1;k1)�(i!n2;k2)� ��T (i!n3;k3)�(i!n4;k4)� :We have just explained that for momenta in the range between [p��;�℄ the spin utuationsare e�etively two dimensional; they do not extend over a distane of the strethed lattieonstant 1=p��2. In partiular, for suh momenta the perpendiular omponent of momen-tum beomes a dead label of the utuation modes �. The dead label an be absorbed byintroduing e�etive two dimensional �elds,�2D(i!n;kq) � V2DV Xk? �(i!n;kq) = Z ��� dk?2� �(i!n;kq) = ���(i!n;kq) for k? 2 [p��;�℄ :(4.5)For high momenta the ation will only be a funtional of �2D and the e�etive theory istherefore a two-dimensional one. It is instrutive to relate the quarti oupling of the e�etive2D theory to the quarti oupling g appearing in (4.4),S(4)[�2D℄ = �g� 1�4V 42D X!nj ;kqjj=1;2;3;40 V2DÆ0� 4Xj=1 kqj1A � Æ0� 4Xj=1 !nj1A (4.6)� ��T2D(i!n1;kq1)�2D(i!n2;kq2)� ��T2D(i!n3;kq3)�2D(i!n4;kq4)� :The prime on the summation indiates that the momenta are restrited to the intervall kqj 2[p��;�℄. We an read o� the e�etive two-dimensional quarti ouplingg2D = �g� () g2D Z ��� dk?2� = g : (4.7)We are mostly interested in the almost two-dimensional limit, i.e. in the ase where theanisotropy parameter � is small. The anisotropi Hertz theory is then e�etively two-dimensionalexept for the small momentum range [0;p��2℄. We will see that for high temperaturesT > ��2 this momentum range leads only to small orretions to the thermodynamis. Inthe following we will adopt the point of view of high temperatures: we will measure all quanti-ties in units appropriate for the e�etive high-temperature, high-momentum two dimensionaltheory.PartiularitiesTo what extend does the anisotropi Hertz model di�ers from its true 2D and 3D ounterpartsanalyzed in Chapter 3? Are there any qualitatively new features to be expeted?The most signi�ant di�erene is the presene of the anisotropy parameter � whih tunesbetween the 2D and 3D limits. It will turn out that the anisotropy parameter � is a relevant58
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Chapter 4. Anisotropi Hertz Theorywhih are all linked to the utting o� of the Mermin{Wagner divergene (3.1) present in thetrue 2D Hertz model. In partiular, this divergene prevented an estimate for the ritialordering temperature T. As was explained in detail in Chapter 3 these divergenes areassoiated with the e�etive lassial theory. In the anisotropi Hertz model the assoiatedlogarithmi divergene is ut o� by the anisotropy parameter � and an estimate for the ritialtemperature an be obtained. The loation in the phase diagram where these logarithmiMermin{Wagner divergenies are neutralized is given by the ondition �2 = ��2, and it isassoiated with a dimensional 2D{3D rossover of the e�etive lassial theory.MethodsWe are going to apply three di�erent methods to investigate the properties of the anisotropiHertz model. In Setion 4.1 we apply a Millis RG treatment. We modify the solution alreadypresented in Chapter 3 to the anisotropi ase. It turns out that we have to apply a two-stepRG proess. In the �rst stage the anisotropi Hertz theory is resaled with respet to the 2D�xed point. During this �rst stage the anisotropy parameter � is a relevant quantity in theRG sense: it will grow. At a ertain RG sale it will have reahed the isotropi 3D limit � = 1and the RG ow stops. In the seond stage the resulting e�etive isotropi 3D Hertz theoryis treated within the standard approah of Chapter 3. In Setion 4.2 we use the methodof dimensional redution put forward by S. Sahdev [33, 2℄, whih will allow us to omputethe rossover funtions for the orrelation length as a funtion of temperature, anisotropyparameter � and ontrol parameter r. Finally, in Setion 4.3 we apply the large N methodwhih provides reliable information about the funtional dependene of the N�eel temperatureon � and r.4.1 Millis' RG analysisIn this setion we will modify the RG method of Setion 2.2 to take into aount the anisotropyin momentum spae of the propagator (4.3). The idea is to use a two-step RG proess. Firstthe theory is saled towards the �xed point in spae dimension d = 2. Under this saling theanisotropy parameter � will grow and the model will ow toward an isotropi Hertz theory.The anisotropy parameter is therefore a relevant operator during the �rst stage. The RGequations whih will govern this ow will be derived in the following setions. At some salehowever the isotropi limit � = 1 will be reahed and the theory an be treated with the usualisotropi RG equations of Chapter 2. In this seond stage the model ows towards the 3D�xed point.Cuto� proedureIn order to derive the RG equations we have to speify the uto� proedure we are going toapply. We will hoose an anisotropi uto� proedure whih interpolates between the puretwo-dimensional and the pure three-dimensional ase. For the perpendiular omponent ofthe momentum we take � as a uto�: �� � k? � �. For the radial part of the parallelomponent we hoose the bound: 0 � kq �q�2 � �k2?. The momentum-spae volume thenbeomes 1�3 Z d3k = 1�3 Z ��� dk? Z p�2��k2?0 dkq 2�kq = 2� �1� �3� (4.9)60
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Chapter 4. Anisotropi Hertz Theorytwo-dimensional. The modes with suÆiently small momenta, however, annot resolve thespatial distanes between the planes and therefore live in three-dimensional spae, see Fig. 4.2.4.1.1 Flow to the isotropi limitRG equationsDuring the ow towards the isotropi limit the two-dimensional utuations are integratedout step by step leading to a renormalization of the oupling onstants. The RG equationsare derived in the spirit of Millis' original treatment, desribed in Chapter 2. In partiular,we will always measure the free energy and the quarti oupling in two (!) dimensionalunits F = F��30=(T0V �), u = g��30=(T0V �) and temperature T = T=T0, where V is thethree dimensional volume. Using the same onventions the RG equations for the ow to theisotropi limit read� F(b)� log b = (d+ z)F(b) � 12 N a0(Æ(b);T (b); �(b))� �(b)� log b = 2 �(b)� T (b)� log b = z T (b) (4.11)� Æ(b)� log b = 2 Æ(b) + 4 (N + 2)u(b) a2(Æ(b);T (b); �(b))� u(b)� log b = (4� d� z)u(b) � 4 (N + 8)u2(b) a4(Æ(b);T (b); �(b))where d = z = 2 is implied. The four RG equations are now supplemented by an additionalone for the anisotropy parameter �, whih has the saling dimension 2 and is therefore arelevant quantity. The funtions an are given bya0(Æ; T; �) = K2�2 Z �0 d�� oth �2T artan �Æ +�2+�� Z ��� dk?2� Z p�2��k2?0 kqdkq2� 2�� oth �2T artan �Æ + k2q + � k2?a2(Æ; T; �) = � ��Æ a0(Æ; T; �) (4.12)a4(Æ; T; �) = � ��Æ a2(Æ; T; �)and Kd is de�ned in (2.45). The leading orretion at �nite temperatures stems from theontribution due to the renormalization of momentuma0(Æ; T; �) � a0(Æ; 0; �) = K2�2 Z 10 d�� �oth �2T � 1� artan �Æ +�2 +O �e��=T � : (4.13)4.1.2 Crossover parametersThe solution of the RG equation for the anisotropy parameter is �(b) = �b2. The sale b�where the theory reahes the isotropi limit, �(b�) = 1, an therefore be identi�ed asb� � 1p� : (4.14)62



4.1. Millis' RG analysisIn this setion we are onerned with the values the parameters attain at this rossover sale.These resaled parameters then at as the initial or e�etive parameters for the isotropi3D ow. The derivation of the rossover values follows along the lines of the alulationspresented in hapter 2 and the presentation will therefore be kept onise.Quarti ouplingDuring the ow to the isotropi limit the theory is at its upper ritial dimension: the quartioupling is marginal. The RG equation for the quarti oupling u an be rewritten as anintegral u(b) = u1 + 4(N + 8)u g(b) (4.15)g(b) = Z log b0 dx a4(R(ex)e2x;T ezx; �e2x) : (4.16)In the viinity of the quantum ritial point the quarti oupling is given byu(b) � u1 + 4(N + 8)ua4 log b = 14(N + 8) a4 �log b e 14(N+8) a4 u��1 ; (4.17)wherea4 � a4(0; 0; �) = K2p�p32�p��2  2 artan 1 +r2 ��2� !� 2 artan 1�r2 ��2� !+ log � + ��2 +p2���2� + ��2 �p2���2! = K2�  1 +O���2� �2! :At the rossover sale b� = 1=p� the quarti oupling takes the valueu� � u(b�) = 14(N + 8) a4 �log ��1=2 e 14(N+8) a4 u��1 : (4.18)E�etive massAs in Setion 2.2.3 we separate the trivial saling dimension of the running mass, Æ(b) =R(b) b2. The result for the zero-temperature running mass, �(b), follows the derivation of(3.20), �(b) ' r��log �b2 e 24(N+8) a4 u��N+2N+8 : (4.19)The ontrol parameter r� of the primary, two-dimensional �xed point readsr� � 1(2(N + 8)a4u)N+2N+8  Æ0 + 4 (N + 2) a2(0; 0)Z � logp�0 dx e�2x u(ex)! : (4.20)63



Chapter 4. Anisotropi Hertz TheoryThe temperature orretion RT (b) (2.56) to the running mass, R(b) = �(b) + RT (b), at therossover sale b� = 1=p� is given byRT (b�) = 4 (N + 2)K2T (4.21)� log T 1=2=(p��)Zlog T 1=2=� dx e2x u(�T � 12 ex) 1Z0 dv� 4 v (oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)2 :The temperature orretion depends on two parameters. In the quantum ritial regime themagnitude of the parameter T =(��2) appearing in the upper limit of the x-integral determineswhether the ontribution from the RG trajetory towards the isotropi limit is signi�ant.Similarly, the Fermi liquid regime is divided into two sub-regimes by the parameter r�=(��2).In the 3D regime the ontributions from the 2D ow an be negleted to leading order. Theinteresting ase here is the 2D regime whih we will onsider in the following.Temperature orretion in the quantum ritial 2D regime: T � ��2 and � � TAs in the ase of the 2D isotropi theory a logarithmi divergene is expeted in the 2D regimefrom saling into the lassial region. In the isotropi ase this divergene was ut o� by therunning mass in the denominator of the integrand of the temperature orretion (3.24). Inthe anisotropi ase the divergene for the e�etive mass at the rossover sale is either uto� by the ombination R(:)=T in the denominator or by the upper limit of the x-integral in(4.21). The result will therefore depend on the ombination R�=(��2).We will proeed as in the ase of the isotropi theory in d = 2. After integrating by partswith respet to the x-integral expression (4.21) beomesRT (b�) = 4 (N + 2)K2T (4.22)�8>><>>:264xu(�T � 12 ex) 1Z0 dv� 4 e2xv (oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)2375x=log T 1=2=(p��)x=log T 1=2=�� log T 1=2=(p��)Zlog T 1=2=� dxx ddx 264u(�T � 12 ex) 1Z0 dv� 4 e2xv (oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)23759>=>; :First let us onsider the surfae term,264xu(�T � 12 ex) 1Z0 dv� 4 e2xv (oth v � 1)�R(�T � 12 ex)T �1e2x + 1�2 + (2 e2xv)2375x=log T 1=2=(p��)x=log T 1=2=�= log T 1=2p�� u(��1=2) 1Z0 dv� 4 T��2 v (oth v � 1)(R�=(��2) + 1)2 + �2 T��2 v�2 +O�u T�2 log T�2� (4.23)= log T 1=2p�� u(��1=2)� 11 +R�=(��2) +O���2T log ��2T ��+O�u T�2 log T�2�64



4.1. Millis' RG analysisIn the last line we extrated the leading ontribution in the 2D regime T � ��2. It stemsfrom small arguments of the hyperboli funtion, i.e. from saling into the lassial regime.The integral of (4.22) an be treated along the lines of the derivation of the orrelationlength at the upper ritial dimension in the isotropi theory of Setion 3.2.2. The originof the leading ontribution lies in the utuations whih lead to the logarithmi Mermin{Wagner divergenes (3.1) and whih ome from small arguments of the hyperboli funtion.Expanding the hyperboli funtion the integral of (4.22) beomes in leading order [f. (3.25)℄,log T 1=2=(p��)Zlog T 1=2=� dx 2x u(ex�T � 12 )R(ex�T � 12 )T �1e2x�1 +R(ex�T � 12 )T �1e2x�2 : (4.24)This an be evaluated with a saddle point approximation. The integrand onsists of a funtionstrongly peaked at xmax = log T 1=2=R�1=2 and a slowly varying part. The leading behavior ofthe integral then depends on whether the position of this peak is loated within the integrationregion or not.Sub-regime R� � ��2: In this sub-regime the peak lies in the integration region and theintegral an be approximated by the saddle point ontribution,xmax u(exmax�T � 12 )log T 1=2=(p��)Zlog T 1=2=� dx 2R(exmax�T � 12 )T �1 e2x�1 +R(exmax�T � 12 )T �1e2x�2= xmax u(exmax�T � 12 )�1 +O���2R� ��The surfae term is negligible in the subregion R� � ��2. Using the expression (4.17) for therunning quarti oupling onstant the e�etive mass at the rossover sale beomes in leadingorder [f. (3.27)℄ R� = �+ � N + 2N + 8 T log TR�log ��2R� (4.25)where we have introdued the \renormalized" uto��� � � e 14(N+8) a4 u : (4.26)Sub-regime R� � ��2: When the peak is beyond the integration region the integral is sub-leading and the ontribution from the surfae term dominates. In leading order we obtain,R� = �+ � N + 2N + 8 T log T��2log �e 24(N+8) a4 u =�� : (4.27)Temperature orretion in the 2D Fermi liquid regime: �� ��2 and �� TFollowing the derivation of (3.31) we obtain in leading order for the temperature orretionR� = �+ �26 N + 2N + 8 T 2� log ����� 12� ; (4.28)65



Chapter 4. Anisotropi Hertz Theory4.1.3 Flow towards the 3D �xed pointAfter the theory has reahed the isotropi limit at the sale b� = 1=p� the ow is governed bya new set of RG equations: the RG equations of the 3D isotropi Hertz model (2.40-2.43) for adynamial exponent z = 2. However, sine we have hosen units of measurements with respetto the two-dimensional theory the funtion fn of Eqs. (2.44) should be multiplied by �=�, sothat e�etively the surfae of the three dimensional momentum sphere K3 appearing in thefn funtions (2.44) gets replaed by K3�=� = K2=�. Furthermore, the initial onditions forthe 3D ow are given by the 2D running parameters at the rossover sale b� = 1=p�,F(b�) = F�Æ(b�) = Æ� = R�b�2 (4.29)u(b�) = u� ;Solving the new RG equation for example for the quarti oupling (2.43) we obtainu(b) = u�b�b�1 for b > b� : (4.30)i.e. the quarti oupling dereases for sales larger than b�. The quarti oupling is irrelevantwith respet to the three-dimensional �xed point.4.1.4 Correlation lengthFollowing the derivation of (3.4) the orrelation length is given by the expression��2 = �+RT (b�) + 4 (N + 2)K2 u� T 32p��2 (4.31)� 1Zlog T 1=2=(p��) dx 1Z0 dv� 4 v (oth v � 1) ex�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2xv)2 :The zero temperature gap � is to be taken at the sale set by the orrelation length b = ��(ompare with Setion 3.2),
� ' 8>>>>>><>>>>>>:

r��log ��2��2�N+2N+8 if ��2 � ��20� r��log ��2��2 �N+2N+8 + N+2N+8 �2 f2(0;0)3�K2 �log ��p��2 1A 1� N+2N+8 1� 1log ��p��2 ! if ��2 � ��2(4.32)Note that f2(0; 0) is non-universal and depends on the ut-o�.In the following we list the results for the di�erent regimes of Fig. 4.3.66



4.1. Millis' RG analysisQuantum ritial 2D regime: T � ��2 and �� TUp to orretions of order O(T =(��2))�3=2 the orrelation length is given by the e�etivemass R�. Using the results obtained in Setion 4.1.2 we get in leading order��2 = �+ � N + 2N + 8 T 8>>>><>>>>: log T =��2log ��2=��2 for ��2 � ��2log T =(��2)log ��2=(��2) for ��2 � ��2 : (4.33)where the \renormalized" uto� �� was de�ned in (4.26). Solving this impliit equationiteratively as in the derivation of (3.28) and disarding (logarithmi) orretions we obtainthree di�erent sub-regimes denoted as I, II and III in Fig. 4.3
��2 = 8>>>>>>>>><>>>>>>>>>:

� for I: ��2 � � N + 2N + 8 T log log ���2=T �log ���2=T � � �� N + 2N + 8 T log log ���2=T �log ���2=T � for II: j�j; ��2 � � N + 2N + 8 T log log ���2=T �log ���2=T �� N + 2N + 8 T log �T =(��2)�log ���2=(��2)� for III: j�j � � N + 2N + 8 T log log ���2=T �log ���2=T � � ��2(4.34)Upon approahing the phase boundary in the quantum ritial 2D regime the temperaturedependene of the orrelation length involves some ompliated logarithmi orretions, whihan be traed bak to the fat that (a) the e�etive zero-temperature theory is at its upperritial dimension d+z = 4 and (b) the e�etive �nite temperature theory is at its lower ritialdimension d = 2 leading to Mermin{Wagner divergenes (3.1). When the rossover betweenregions II and III is reahed for ��2 = ��2 the utuations start to notie the small ouplingin the third dimension, ultimately allowing a lassial �nite-temperature phase transitionwhih would be prohibited in 2D. Aordingly, the logarithmi temperature orretions aremodi�ed upon entering region III.Quantum ritial 3D regime: T � ��2 and �� TNow the ow towards the isotropi limit is negligible and the orrelation length is given by(3.5), ��2 = �+ 4(N + 2)K2� �32� � �32�p2 u� T 3=2p��2 : (4.35)with u� given by (4.18). With the limiting expression (4.17) for the oeÆient a4 this formulasimpli�es to ��2 = �+p2� ��32� � �32� N + 2N + 8 T 3=2p��2 log ���2=(��2)� : (4.36)Depending on their relative values either the ontrol parameter r via � or the temperaturedominates the orrelation length, indiated by the shaded part of regions I and region IVrespetively in Fig. 4.3. 67
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4.1. Millis' RG analysisSetting the orrelation length in expressions (4.33) and (4.36) to in�nity we obtainr��2 ' 8>>>>>><>>>>>>: �� N + 2N + 8 T��2 log �T=(��2)��log ��2��2�1�N+2N+8 for ��2 � T��3=2 � (3=2)p2 N + 2N + 8 1�log ��2��2�1�N+2N+8 � T��2�3=2 for T � ��2 : (4.39)The orretions to the ontrol parameter from the saling towards the seondary, 3D �xedpoint are subleading and have been negleted, r ' r�, see Eq. (4.32). The phase boundaryin the 2D regime, ��2 � T, depends on temperature as T log T=(��2), i.e. the linear de-pendene of the ritial temperature on the ontrol parameter has logarithmi orretions.This implies that one annot unambiguously extrapolate the phase boundary from high tem-peratures. The loation of the extrapolated quantum ritial point depends sensitively onthe range of ritial temperatures used in the extrapolation proess; this is indiated by thethin lines in Fig. 4.5. In partiular, this prevents us from using the extrapolated QCP ofCeCu6�xAux (see Fig. 4.1) to draw any onlusions about the value of the anisotropy param-eter ��2.The phase boundary is logarithmially suppressed in omparison with the rossover linebetween the quantum ritial to the Fermi liquid regime, � � T . The logarithmi suppressionis rooted in the Mermin{Wagner divergene (3.1) whih prohibits a phase transition for atruely two dimensional system (with N > 2). The asymmetry between the slopes of the N�eeltemperature and the quantum ritial-Fermi liquid rossover line is therefore a qualitativemeasure of the anisotropy present in the material.4.1.6 Thermal expansionIt is reasonable to assume that the oupling between the 2D dimensional planes is a�etedwhen pressure is applied, whih means that the anisotropy parameter � is generally dependenton pressure. This leads to an additional ontribution to the thermal expansion,�� = � 1V dSd� ���p ; (4.40)where the derivative (��=�p) is approximately onstant for weak pressure dependene. Thisis a novel e�et not enountered in the isotropi Hertz model.Solving the RG equations we obtain for the interesting part of the entropy [f. (2.63)℄SQCP = N2 K2 T log T 1=2=(p��)Zlog T 1=2=� dx Z 10 dv� 2v e�2xsinh2 v artan 2 e2x vR(ex�T � 12 )T �1e2x + 1!+ N2 K2 T 32p��2 1Zlog T 1=2=(p��) dx Z 10 dv� 2v e�3xsinh2 v artan 2 e2x vR(ex�T � 12 )T �1e2x + 1! : (4.41)The �rst term is due to the saling proess towards the isotropi limit and it will dominatein the 2D regimes. The seond term results from the RG ow of the e�etive 3D isotropi69



Chapter 4. Anisotropi Hertz Theorymodel and therefore dominates in the 3D regimes. From the isotropi model we are alreadyfamiliar with the ontribution �QCP, whih measures the pressure dependene of the ontrolparameter r [f. (3.44)℄�QCP = N2 K2log T 1=2=(p��)Zlog T 1=2=� dx �R(ex�T � 12 )�r Z 10 dv� 4v2 e2 x sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2+N2 K2 pTp��2 1Zlog T 1=2=(p��) dx �R(ex�T � 12 )�r Z 10 dv� 4v2 ex sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2 :(4.42)In addition, we now have to onsider the derivative of the entropy (4.41) with respet to �.There is an expliit dependene of the entropy SQCP on the anisotropy parameter appearingin the limits of the x-integral. Moreover, there is an impliit � dependene hidden in therunning mass R(:), whose RG trajetory itself depends on the hoie of �. However, theontribution due to the impliit dependene is always sub-leading, sine it is at most of orderd��2=d� � O(u), and it an be negleted. The new ontribution to the thermal expansion inthe anisotropi Hertz model therefore reads�� = ��SQCP�(��2)= N2 K22 � T��2�3=2 1Zlog T 1=2=(p��) dx Z 10 dv� 2v e�3xsinh2 v artan 2 e2x vR(ex�T � 12 )T �1e2x + 1! :(4.43)where �� is measured in units of (�(��2)=�p)�=(��30). Interestingly the ontributions of thederivative with respet to the arguments in the limits of integral in expression (4.41) for theentropy anel eah other.The behavior of the thermal expansion an be lassi�ed aording to the four regimesalready enountered above for the orrelation length. The analysis of expression (4.42) loselyfollows the derivation of Setion 3.3.2, exept in the quantum ritial 2D regime whih willbe presented in some detail.Quantum ritial 2D regime: T � ��2 and �� TIn the quantum ritial 2D regime we an neglet the sub-leading seond term in the expressionfor the thermal expansion �QCP (4.42). The following analysis will resemble that of the70



4.1. Millis' RG analysisorrelation length in this regime. Following Setion 3.3.2 we perform an integration by parts�QCP = N2 K2 (4.44)�8>><>>:264x�R(ex�T � 12 )�r Z 10 dv� 4v2 e2x sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2375log T 1=2=(p��)log T 1=2=�� log T 1=2=(p��)Zlog T 1=2=� dxx ddx 264�R(ex�T � 12 )�r Z 10 dv� 4v2 e2 x sinh�2 v�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)23759>=>; :The lower limit of the surfae term yields a negligible non-universal ontribution of orderO(T =�2 log T =�2). After substituting the e�etive mass R� = R(1=p�) by the orrelationlength, whih is permissible in the 2D regime, the upper limit giveslog T 1=2p��! ���2�r Z 10 dv� 4v2 T =(��2) sinh�2 v(��2=(��2) + 1)2 + (2T =(��2) v)2= log T 1=2p��! ���2�r � 11 + ��2=(��2) +O���2T log ��2T �� : (4.45)The leading ontribution of the integral whih remains after integrating by parts an beextrated in a similar manner to that for the thermal expansion in Setion 3.3.2 in 2D. Thehyperboli funtion is expanded to leading order and the v-integral is performed to yieldlog T 1=2=(p��)Zlog T 1=z=� dxx ddx �R(ex�T � 1z )�r 1R(ex�T � 1z )T � 2z e2x + 1 : (4.46)This expression is evaluated with a saddle point approximation. The maximum of the peakedfuntion is loated at xmax = log �T 1=2. As for the orrelation length the behavior dependson whether this maximum is loated within the integration region or not.Sub-regime ��2 � ��2: For this sub-regime the maximum is loated within the integrationregion and the saddle point gives the leading ontribution. Furthermore, the surfae term issub-leading. The thermal expansion is given to leading order by�QCP = N8� ���2�r log T��2 : (4.47)Sub-regime ��2 � ��2: Now the saddle point is beyond the integration region and theleading ontribution to the thermal expansion results from the surfae term,�QCP = N8� ���2�r log T��2 : (4.48)71



Chapter 4. Anisotropi Hertz TheoryUsing the formulae for the orrelation length of Setion 4.1.4 in the quantum ritial2D regime and its iterative solution (ompare Setion 3.3.2) the leading behavior an besummarized as
�QCP � N8�

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
log T��2�log ��2��2�N+2N+8 for III: ��2 � ��2log log ��2T�log ��2T �N+2N+8 for II: ��2 � ��2 and �� T log log ��2Tlog ��2Tlog Tr�log ��2r �N+2N+8 for I: ��2 � ��2 and �� T log log ��2Tlog ��2T : (4.49)

For the anisotropi ontribution �� we obtain the leading ontribution from the salinginto the lassial regime, i.e. for small arguments of the hyberboli funtion,�� = N2 K22 � T��2�3=2 1Zlog T 1=2=(p��) dx e�3x log 2 e2xR(ex�T � 12 )T �1e2x + 1 +O(1)! (4.50)
� N2 K26 log T��2 + ��2 � N2 K26 8>>>><>>>>: log T��2 for III: ��2 � ��2log log ��2T for II: ��2 � ��2 and �� T log log ��2Tlog ��2Tlog Tr for I: ��2 � ��2 and �� T log log ��2Tlog ��2TThe derivation of the leading behavior in the other regimes follows Setion 3.3.2 and wesimply present the results below.Quantum ritial 3D regime: T � ��2 and �� T�QCP = p2� 3 � �32�N32� �log ��2��2��N+2N+8 pTp��2 and �� = N2 �K23 T��2 (4.51)2D Fermi liquid regime: �� ��2 and �� T�QCP ' N12 Tr and �� = N2 �K29 Tr (4.52)3D Fermi liquid regime: �� ��2 and �� T�QCP ' N�24 �log ��2��2�� N+22(N+8) Tp��2pr and �� = N2 �K23 T��2 (4.53)As antiipated in the introdution the additional ontribution �� due to the anisotropyparameter is as important as �QCP in the 2D regimes. In the 3D regimes, on the other hand,it gives only a sub-leading ontribution. 72



4.1. Millis' RG analysis4.1.7 Spei� heatThe leading ontributions of the spei� heat in the 2D and 3D regimes onform with theisotropi theory with the orresponding spae dimensions. Following the derivation of (3.34)for the spei� heat we getQCP = N2 K2 log T 1=2=(p��)Zlog T 1=2=� dxZ 10 dv� � 2 vsinhv�2 �R(ex�T � 12 )T �1e2x + 1��R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2+N2 K2 pTp��2 1Zlog T 1=2=(p��) dxZ 10 dv� � 2 vsinhv�2 �R(ex�T � 12 )T �1e2x + 1� e�x�R(ex�T � 12 )T �1e2x + 1�2 + (2 e2x v)2 :(4.54)The leading ontributions are given belowQuantum ritial 2D regime: T � ��2 and �� TQCP = N12 log �2T (4.55)Quantum ritial 3D regime: T � ��2 and �� TQCP = N12 log 1� + N6 � p2� 15 � �52�N64� pTp��2 (4.56)2D Fermi liquid regime: �� ��2 and �� TQCP = N6 log ��1=2 � N6 log �r1=2 (4.57)3D Fermi liquid regime: �� ��2 and �� TQCP = N12 log 1� + N6 � N�12 prp��2 (4.58)In the 3D regimes the ritial ontribution is sub-leading. The bakground is universal in thesense that it depends only on the anisotropy parameter �.4.1.8 E�etive ritial exponentsThe saling analysis for quantum ritial points of Chapter 1 predited ritial exponents forthe spei� heat and thermal expansion. These exponents depend on the saling dimension,�, of the free energy (1.15). When the so-alled hypersaling hypothesis is obeyed this salingdimension is simply given by the dimensionality of the zero-temperature theory, i.e. � = d+z.In the anisotropi Hertz model where we observe a dimensional rossover between two-and three-dimensional behavior hypersaling is trivially violated sine the e�etive spatialdimensionality varies between d = 2 and d = 3.. Aordingly, there exist no well-de�nedritial exponents haraterizing the whole ritial regime. However, we an onsider e�etive73
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Figure 4.6: E�etive ritial exponents for the spei� heat (left panel),  = 0 + T p , andthe two ontributions to the thermal expansion (right panel), �QCP = T p� and �� = T p� . Therossover shown orresponds to the line ��2 = 105 r in the phase diagram of Fig. 4.3.exponents whih in turn lead to the onept of the e�etive dimension de� when applying(e�etive) hypersaling with � = de� + z. In the quantum ritial regime the saling analysisyields for the spei� heat (1.26) and the thermal expansion (1.27) (using y0 = 1, z = 2 and� = 1=2) r � T (de��2)=2 and �r � T (de��2)=2 : (4.59)In Fig. 4.6 the e�etive exponents of spei� heat and thermal expansion are plotted, asalulated from the Gaussian part of the anisotropi Hertz model. The quarti ouplingwill only indue logarithmi orretions to the thermal expansion in the quantum ritial2D regime II of Fig. 4.3, see (4.49) and (4.50); for an analysis of the e�etive exponentsthese orretions will be negleted. Three di�erent exponents p , p� and p� are shown,orresponding to the ritial part of the spei� heat QCP and the two ontributions to thethermal expansion �QCP and ��, respetively. They were determined with the formulap = dd log T log� df(T )d log T � (4.60)where f(T ) represents the quantity of interest. The formula is onstruted in suh a way thatit automatially eliminates a onstant bakground ontribution. For example, the spei�heat oeÆient for a Fermi liquid at low temperatures is given by  = 0+AT 2, whih yieldsa temperature exponent of p = 2.For high temperature both the spei� heat and the thermal expansion depend onlylogarithmially on temperature, leading to vanishing e�etive exponents. Upon entering thequantum ritial 3D regime the exponents of QCP and �QCP inrease as expeted to 1=2.The exponent of �� however grows to 1 and is therefore only sub-leading. At even lowertemperatures the quantities reah their Fermi liquid values.74



4.2. Dimensional redution analysis4.2 Dimensional redution analysisIn this setion we apply a method proposed by S. Sahdev [33, 2℄ to the anisotropi Hertzmodel. It is based on onepts originally developed to desribe ritial phenomena in �nite-sizesystems, and an be naturally transfered to the theory of quantum ritiality. The quantumphase transition ours at zero temperature and its ritial properties are haraterized by ane�etive dimensionality d + z. When the temperature is �nite, however, the dynamis alongthe imaginary-time dimension is restrited by the inverse temperature � = 1=T . Whereas theritial utuations an still extend to in�nity in d spatial dimensions they are now limitedin the other z dimensions attributed to imaginary time. This means that we an think ofquantum ritiality at �nite temperatures as the ritial behavior in a system whih is in�nitein d dimensions and �nite in z dimensions.This method o�ers the possibility of deriving rossover funtions in losed form. It istherefore espeially suitable for the investigation of the anisotropi Hertz model, in whihthe �nite-temperature rossover is omplemented by the dimensional rossover triggered bythe anisotropy parameter �. The method onsists of two steps. First, applying a standardrenormalization group the Hertz theory is saled towards the zero-temperature �xed point.An e�etive theory is then derived whih desribes the �nite temperature properties.4.2.1 Flow to the zero-temperature �xed pointIn order to derive the RG equations governing the zero-temperature ow we apply the fol-lowing uto� proedure. We introdue a single uto� � for the integral over Matsubarafrequenies, whih are dense at zero temperature, and the three momentum integrals,Z � � � �� �2Z��2 d!2� p�2�!Z�p�2�! dk?2� p�2��k2?�!Z0 dkq(2�)2 2�kq 1Æ + k2q + � k2? + j!j= 14�2� �Z0 dk? �2Z�k2? dy �2Zy dx 1Æ + x : (4.61)The suseptibility � is given by (4.3) with the bare mass Æ0 replaed with the running massÆ. Moreover, we assume that the theory has been resaled appropriately to eliminate thesales �0 and T0. As in the Millis' RG treatment of the last setion, the theory is initiallyresaled with respet to the d = 2 �xed point. Under this saling the anisotropy parameter� grows with the saling dimension 2, �(b) = � b2. The RG ow is governed by the standardRG equations of �4 theory [18℄ whih for a �nite uto� renormalization �! �=b readÆ0 = b2 Æ + 4(N + 2)uZ ��=b �! (4.62)u0 = b4�d�z  u� 4(N + 8)u2 Z ��=b �2! ; (4.63)75



Chapter 4. Anisotropi Hertz Theorywhere d = z = 2. The primed values on the right hand side are the renormalized quantities.In the limit of an in�nitesimal sale transformation, log b� 1, these equations simplify to� Æ(b)� log b = 2 Æ(b) + 4(N + 2) 12�2 u(b) �4Æ(b) + �2 �1� �(b)3 � (4.64)� u(b)� log b = �4(N + 8) 12�2 u2(b) �1� �(b)3 � : (4.65)The running quarti oupling is readily obtainedu(b) = u1 + 4 (N + 8) 12�2 u (ln b+ 16� (1� b2)) � 4�24 (N + 8) 1log �b2e 4�24 (N+8)u� : (4.66)At the upper ritial dimension the limiting behavior of the running mass �(b) = Æ(b)b�2 isgiven by the di�erential equation��(b)� log b � 2(N + 2)�2 u(b) �b�2�2 ��(b)��1� �(b)3 � (4.67)whih has the solution [f. (4.19)℄�(b) � r log "b2 e �2(N+8) u#!N+2N+8 ; (4.68)where we introdued the ontrol parameter r.We will now onsider now the theory at a ertain sale b hosen in suh a way that thequarti oupling onstant u(b) an be treated perturbatively. To do so either the sale mustbe suÆiently large so that the running oupling onstant is suÆiently small, or the theorymust have reahed its isotropi limit, i.e. �(b) = 1 for b = b� � 1=p�. At the isotropi limitthe zero-temperature Hertz theory is above its upper ritial dimension, d+ z > 4 for d = 3and z = 2, and is therefore well desribed by mean �eld theory. The essene of Sahdev'smethod is that in the viinity of the quantum ritial point the �nite temperature propertiesan also be derived by treating the quarti oupling as a perturbation.4.2.2 E�etive theory for the zero Matsubara modeAt �nite temperatures the ritial utuations are restrited in imaginary time but an stilldevelop in the three spatial dimensions. In the language of Matsubara and momentum spaethis means that the available momenta are still ontinuous but the Matsubara frequeniesare gapped. The ritial �nite-temperature properties will be determined by the gapless, zeroMatsubara mode. In the following an e�etive model for this zero Matsubara mode is derivedby perturbatively taking into aount the inuene of the gapped modes. It has been pointedout by S. Sahdev [33, 2℄ that all ultraviolet divergenes, i.e. all uto� dependenes, of thezero temperature theory an be absorbed by appropriate ounterterms (see also e.g. Ref. [25℄,Chapter 10.2), resulting in a universal T dependene of the orrelation length.76



4.2. Dimensional redution analysisWe will start from the anisotropi Hertz theory whose parameters have been saled a-ording to the zero-temperature RG equations above,S[�℄ = 12T (b)X!n Z d3k(2�)3�T (i!n;k) ��(b) b2 + k2q + �(b) k2? + j!nj� �(�i!n;�k)+u(b) Z 1=T (b)0 d� Z dR ��T (�;R)�(�;R)�2 : (4.69)The sale b is understood to be �xed and smaller than the rossover sale b� = 1=p�. It isimportant to note that under saling the temperature T has also grown with the dynamialexponent z, T (b) = T bz. The e�etive �nite-temperature ation for the zero Matsubaramodes ~'(k) = (T (b))1=2 �(0;k) reads (ompare also the disussion of Setion 2.2.2)Se� [~'℄ = 12 Z d3k(2�)3 ~'T (k) �R(b) + k2q + �(b) k2?� ~'(�k) (4.70)+U(b)T (b) Z 4Yi=1 d3ki(2�)3 Æ �P4i=1 ki� �~'T (k1)~'(k2)� �~'T (k3)~'(k4)� :The e�etive parameters U(b) and R(b) result from integrating out the gapped Matsubaramodes. To lowest order the e�etive quarti oupling U(b) is just given by the resaledoupling u(b), U(b) = u(b) +O(u2(b)) : (4.71)The e�etive mass R(b), however, is modi�ed in �rst order in u(b) by the gapped modes,R(b) = �(b)b2 + 4(N + 2)u(b)Z d3k(2�)3 8<:T (b) X!n 6=0 1�(b)b2 + k2q + �(b) k2? + j!nj�Z d!2� 1�(b)b2 + k2q + �(b) k2? + j!j�+O(u2(b)) : (4.72)The last term is an appropriate ounterterm hosen in suh a way that for zero temperaturethe running mass redues to R(b) = �(b)b2.4.2.3 Correlation lengthWithin the e�etive theory (4.70) we an again apply perturbation theory in order to evaluatethe orrelation length �. To lowest order it is given by��2b2 � ��2(b) = R(b) + 4(N + 2)U(b)T (b) Z d3k(2�)3 1��2(b) + k2q + �(b) k2? : (4.73)where the fator b2 again aounts for the trivial saling dimension. Using expression (4.72)we an express the orrelation length in terms of the zero temperature mass gap �(b),��2(b) = �(b)b2 + 4(N + 2)u(b)Z d3k(2�)3 8<:X!n 6=0 T (b)�(b)b2 + k2q + �(b) k2? + j!nj (4.74)�Z d!2� 1�(b)b2 + k2q + �(b) k2? + j!j + T (b)��2(b) + k2q + �(b) k2?� :77



Chapter 4. Anisotropi Hertz TheoryFollowing Refs. [33, 2℄ we separate this expression into three terms��2(b) = �(b)b2 + 4(N + 2)u(b) (R1(b) +R2(b) +R3(b)) ; (4.75)whereR1(b) = Z d3k(2�)3  X!n T (b)�(b)b2 + k2q + �(b) k2? + j!nj � Z d!2� 1�(b)b2 + k2q + �(b) k2? + j!j!R2(b) = �Z d3k(2�)3 � T (b)�(b)b2 + k2q + �(b) k2? � T (b)k2q + �(b) k2?� (4.76)R3(b) = Z d3k(2�)3 � T (b)��2(b) + k2q + �(b) k2? � T (b)k2q + �(b) k2?� :To evaluate these we have to speify a uto� proedure for the remaining momentum integrals.This seems to ontradit the laim of S. Sahdev [33, 2℄ that we should obtain a universaltemperature dependene for the orrelation length. However, as we will see, the uto� �only enters in ombination with the anisotropy parameter, ��2, to give a saling parameterof dimension 2 whih tunes the dimensional rossover. We will apply the same uto� shemeas outlined in Setion 4.1.1. After onverting the Masubara sum into an integral (usingT (b)=(�(b)b2) = T =�(b) and T (b)=�(b) = T =�) we get for R1(b)R1(b) = Z � d3k(2�)3 1Z0 dz� �oth zT (b)2 � 1� z��(b)b2 + k2q + �(b) k2?�2 + z2= �2�2T (b) 1Z0 dkq 12 log T =(��2k2q )Z12 log T (b)=�2 dxZ 10 dv� e2x 4v (oth v � 1)(�(b)T �1e2x + 1)2 + (2ve2x)2 (4.77)The lower limit of the x-integral an be extended to minus in�nity in the universal limit�!1. Furthermore,R2(b) = �2�2T (b)  s�(b)��2 artans ��2�(b) + 12 log�1 + �(b)��2 �! (4.78)and similarly for R3(b). Now it is apparent that for z = 2 the three funtions Rn have thesame saling dimension, 2. The trivial saling fators therefore drop out in the expression(4.75) and only the sale dependene of the running quarti oupling onstant u(b) and themass gap �(b) remains. The reason is that the zero-temperature theory is at the upperritial dimension where logarithmi orretions our. These are reeted in the remainingsale dependene of the zero-temperature parameters. If the anisotropy parameter � is thesmallest sale in the problem, the sale b of u(b) and �(b) is set by the orrelation length �.However, for ��2 < ��2 the zero-temperature parameters an be taken at b = 1=p�.We �nally obtain for the orrelation length the quasi-saling form��2��2 = �(b)��2 + �N + 2N + 8 T��2 log�1 "b e �22 (N+8)u#	� T��2 ; �(b)��2 ; ��2��2� (4.79)78



4.2. Dimensional redution analysiswhere we have introdued the saling funtion,	 (a; b; ) � pb artan 1pb �p artan 1p + 12 log�1 + b1 + �+�(a; b) (4.80)�(a; b) � 1Z0 dkq 12 log(a k�2q )Z�1 dx 1Z0 dv� e2x 4v (oth v � 1)(ba�1e2x + 1)2 + (2ve2x)2 : (4.81)This result should be ompared to (4.21) and (4.31) derived within the framework of theMillis RG.In the following we will analyze the saling funtion 	 and determine its behavior indi�erent regimes. It will be onvenient to perform an integration by parts with respet to kqin the de�nition of �,� (a; b) = (4.82)12 log aZ�1 dx 1Z0 dv� e2x 4v (oth v � 1)(ba�1e2x + 1)2 + (2ve2x)2 +pa 1Z12 log a dx 1Z0 dv� ex 4v (oth v � 1)(ba�1e2x + 1)2 + (2ve2x)2 :The �rst integral is due to the boundary ontribution and it will dominate for large a whereasthe seond integral dominates for small a. The derivation of the leading behavior loselyfollows the treatment of the orrelation length of Setion 4.1.4 and gives	 (a; b; ) = 12 � �pb if b� 1log b if b� 1 �+ 12 � �p if � 1log  if � 1 �+�(a; b) (4.83)
�(a; b) = 8>>>>>>>>><>>>>>>>>>:

12 log ab if a� b; a� 1; b� 112 log a if a� b; a� 1; b� 1�( 32 ) �( 32)p2 pa if a� b; a� 1�6 ab if a� b; a� 1�212 apb if a� b; a� 1 : (4.84)
This results in the same rossover lines and the same leading behaviors for the orrelationlength as obtained within the Millis RG treatment in Setion 4.1.4. However, it is interestingto note that the logarithmi Mermin{Wagner divergene (3.1) enters in the form of the one{loop orretion (4.73) to the e�etive theory. It is enoded in the logarithmi dependene ofthe saling funtion on the ombination ��2=(��2). Upon approahing the phase boundarythe divergene is uto� by the anisotropy parameter ��2, whih in turn leads to the twosub-regions in the quantum ritial 2D-regime already found in Setion 4.1.4.4.2.4 Phase boundaryThe perturbative analysis of the e�etive theory for the zero Matsubara mode (4.70) su�ersfrom the same drawbaks as the Millis RG analysis as far as the estimate of the phase boundary79



Chapter 4. Anisotropi Hertz Theoryis onerned. The perturbative one-loop treatment will break down at the Ginzburg riterionbefore the ritial temperature is reahed. As before, we will nevertheless use the aboveresults to obtain an estimate for the N�eel temperature T(r).The estimate of the phase boundary T(r) depends ruially on the order of limits takenin the anisotropi Hertz model. Whereas we �nd a �nite temperature solution for the phaseboundary for a �nite anisotropy parameter �, this solution vanishes for � = 0 due to thepresene of a Mermin{Wagner divergene (3.1). In the 2D limit, � = 0, we �nd that theorrelation length is impliitly given in the limit ��2 ! 0 by� = 0 : ��2 = �(b) + �2 N + 2N + 8 log�1 "b e �22 (N+8)u# T log� T��2� (4.85)whih possesses no solution with a diverging orrelation length. This ontrasts with thesituation with a �nite value for �: onsider the limit ��2 ! 0 in (4.79) for �nite � > 0,�(1=p�)��2 = ��N + 2N + 8 T��2 log�1 " 1p� e �22 (N+8)u#	� T��2 ; �(1=p�)��2 ; 0� : (4.86)The expression an be simpli�ed for high and low ritial temperatures T.2D regime: T � ��2In the 2D regime the phase boundary is loated in the region of the phase diagram where�(1=p�) � ��2 and T � ��2. Using the appropriate limiting behavior of the salingfuntion 	 we get r��2 = ��N + 2N + 8 T��2 log � T��2��log ��2��2�1�N+2N+8 : (4.87)3D regime: T � ��2r��2 = ��3=2� �32�p2 N + 2N + 8 1�log ��2��2�1�N+2N+8 � T��2�3=2 (4.88)This is in agreement with the estimate obtained in Setion 4.1.5.4.3 Large N analysisThe third method with whih we shall takle the anisotropi Hertz model is large N analysis(see e.g. Ref. [36℄). It is a systemati expansion in 1=N where N is the number of omponentsof the �eld �. The Millis RG treatment as well as the analysis of Sahdev's e�etive theoryhave the drawbak that they break down when the Ginzburg riterion is ful�lled. As aonsequene the lassial region, whih always overs the phase boundary (f. Fig. 3.1), annotbe addressed within these two approahes. The large N analysis on the other hand yieldsreliable information about the lassial regime, sine it only relies on 1=N as a small parameter.In partiular, it will on�rm the funtional dependene of the ritial temperature on theontrol parameter r obtained with the former methods.80



4.3. Large N analysisWe will briey sketh the derivation of the equations whih will beome exat in the limitN ! 1. We introdue a Hubbard{Stratonovih �eld � deoupling the quarti term in theHertz ation (2.23), Z = Z D�D� e�S[�;�℄ (4.89)where S is now given byS[�; �℄ = 12 1� X!n;k �Æ0 + �+ k2q + � k2? + j!nj��(i!n;k)�(�i!n;�k)� �16�u �2 : (4.90)We have again used the two-dimensional quarti oupling u, giving rise to the additionalfator of �=� (ompare the disussion preeding (4.7)). Integrating out the � �elds yields anation solely dependent on �:S[�℄ = � �16�u �2 + N2 tr log �Æ0 + �+ k2q + � k2? + j!nj� : (4.91)Again we assume that the theory has been appropriately resaled to absorb the parameters�0 and T0. Applying a saddle point approximation to the remaining funtional integral over� leads to the ondition � = 4N� u� tr 1Æ0 + �+ k2q + � k2? + j!nj : (4.92)The saddle point approximation an be justi�ed in the limit of a large number of omponentsN while treating the quarti oupling u as of order 1=N .By alulating the suseptibility we an identify Æ0+� with ��2, where � is the orrelationlength, ��1(k; i!n) = Æ0 + �+ k2q + � k2? + j!nj : (4.93)4.3.1 Zero-temperature mass gapAt zero temperature the saddle point ondition beomes� = Æ0 + 4N�u� Z d3k(2�)3 Z d!2� 1� + k2q + � k2? + j!j : (4.94)We an identify the position of the quantum ritial point with the ondition that the massgap � vanishes at the quantum phase transition,Æ = �4N�u� Z d3k(2�)3 Z d!2� 1k2q + � k2? + j!j : (4.95)Introduing the ontrol parameter r � Æ0 � ÆNu=�2 (4.96)that measures the distane to the quantum ritial point we obtain for the mass gap� = Nu�2 r + 4N�u� Z d3k(2�)3 Z d!2� � 1� + k2q + � k2? + j!j � 1k2q + � k2? + j!j� : (4.97)81



Chapter 4. Anisotropi Hertz TheoryWith the help of the saling funtion�� ���2� � 2�3�� Z d3k(2�)3 Z d!2� � 1k2q + � k2? + j!j � 1� + k2q + � k2? + j!j�� log 1p��2= 23  1 +s ���2 artanr��2� !� 12 �1 + ��23� � log�1 + ���2� ; (4.98)where we applied the uto� sheme of Setion 4.1.1, this an be rewritten asNu�2 r = �(1 + 4Nu2�2  log 1p��2 + �� ���2�!) : (4.99)The funtion � has the limiting behavior�(x) = 8>><>>: 12 log 1x + 43 +O�1x log 1x� for x� 112 + �3px+O (x) for x� 1 : (4.100)In the 3D regime, �� ��2, the relation (4.99) simpli�es tor = � log0�e e �2Nu��2 1A for �� ��2 ; (4.101)whih means that the mass gap is simply proportional to the ontrol parameter r. In the 2Dregime, �� ��2, we obtainr = � log0�e8=3e �2Nu� 1A for �� ��2 : (4.102)As expeted, at the upper ritial dimension, d + z = 4, the orrelation length exponent �deviates from its Landau value � = 1=2 by logarithmi orretions, � � r= log 1r .4.3.2 Correlation lengthThe orrelation length as a funtion of ontrol parameter r and temperature T is given by��2 = Nu�2 r + 4N�u� Z d3k(2�)3 (T X!n 1��2 + k2q + � k2? + j!nj � Z d!2� 1k2q + � k2? + j!j) :(4.103)Rearranging terms and applying the uto� sheme of Setion 4.1.1 this an be rewritten as��2(1 + 4Nu2�2  log 1p��2 + �� ��2��2�!) = Nu�2 r + 4Nu2� T �� T��2 ; ��2��2� ; (4.104)where the saling funtion � is de�ned in (4.81).82



4.4. Disussion4.3.3 Phase boundarySetting ��2 = 0 in expression (4.104) yields for the ritial temperature Tr = �2�T�� T��2 ; 0� : (4.105)In the following we will use the limiting behavior (4.84) of the saling funtion � to distinguishagain between the 2D and the 3D regime.2D regime: T � ��2In the 2D regime we an approximate �(x; 0) � logpx and obtainr = ��T log T��2 : (4.106)3D regime: T � ��2In the 3D regime, �(x; 0) � � �32� � �32�px=2, we getr = ��3=2 � (3=2)p2 T 3=2p��2 : (4.107)This again on�rms the result (4.39) obtained in the framework of the Millis RG.4.4 DisussionWe have investigated the anisotropi Hertz model (4.4) with a speial emphasis on the di-mensional rossover. We applied three di�erent methods | the Millis RG, the method ofdimensional redution and the large N method | in order to determine the rossover lines.In omparison with the solution of the isotropi Hertz theory presented in Chapter 3we found three new rossover lines assoiated with the dimensional rossover, see Fig. 4.3.These are determined by omparing the squared inverse orrelation length ��2, the tempera-ture T and the ontrol parameter r with the squared inverse strethed lattie onstant ��2,see Fig. 4.2. The parameter ��2 determines the extent of the 3D poket around the quan-tum ritial point where the three-dimensional spin utuations dominate. Furthermore, therossover line ��2 � ��2 signi�es that lose to the lassial �nite temperature transition thethree-dimensional harater of the theory dominates. It is assoiated with the uto� of thelogarithmi Mermin{Wagner divergene (3.1) present in two spae dimension. As a onse-quene, the N�eel temperature (4.39) is logarithmially suppressed by a fator log T=(��2) andvanishes in the limit ��2 ! 0, in agreement with the Mermin{Wagner theorem (for N > 2).The logarithmi suppression of the N�eel temperature an be estimated by omparing with thequantum ritial{Fermi liquid rossover line, and the di�erene between their slopes yields aqualitative estimate of the anisotropy present in the system.Moreover, we have shown that the anisotropy parameter � is a relevant quantity in theRG sense in the regime where the two-dimensional spin utuations dominate, i.e. whenthe RG ow is still towards the primary, 2D �xed point. SuÆiently lose to the quantumritial point, i.e. within the 3D poket (see Fig. 4.3), the RG ow is eventually dominated83
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Figure 4.7: Thermal expansion (left panel) and spei� heat oeÆient (right panel) in thequantum ritial regime r = 0 for di�erent anisotropies ��. The inset in eah graph shows alogarithmi plot of the same urves. The dimensional rossover at a temperature T � ��2 islearly seen as a knee in the temperature dependene of the thermal expansion whereas thereare only small signatures in the spe� heat. In both graphs dimensionless units have beenhosen.by the seondary, 3D �xed point. Within the 3D poket all physial quantities exhibit salingbehavior with the saling variables: anisotropy ��2, temperature T and zero-temperaturegap �. The relevane of the anisotropy parameter � with respet to the primary �xed pointis partiularly important when onsidering the thermal expansion, whih in the 2D regimeis omposed of two equally important ontributions: �QCP (4.42) arising from the pressuresensitivity of the ontrol parameter r, and �� (4.43) stemming from the pressure sensitivityof the anisotropy parameter �. However, within the 3D poket the additional ontribution�� is only sub-leading in omparison to �QCP.We expet that the experimental identi�ation of the dimensional rossover in the om-pound CeCu6�xAux is more easily ahieved by measuring the thermal expansion than thespei� heat. The underlying reason has already been disussed in detail in Chapter 1: thethermal expansion is more singular than the spei� heat whih makes it also easier to detetrossover behavior. In Fig. 4.7 theoretial urves of the thermal expansion and the spe�heat are shown at the ritial value r = 0 for di�erent anisotropies. Whereas there are onlyweak signatures at the dimensional rossover in the spei� heat, a pronouned knee is visiblein the thermal expansion initiating the rossover from a logarithmi divergene to a squareroot suppression as a funtion of temperature, see Setion 4.1.6. It should be noted that thespei� heat oeÆient smoothly rosses over from a logarithmi temperature dependene toa square root dependene at r = 0. In partiular, the slope dereases monotonially at thedimensional rossover and no Shottky-like anomaly is expeted.In outlook we mention that it seems promising to onsider a further quantity likely tobe even more sensitive to the dimensional rossover than the thermal expansion: the elastionstant [39, 40℄ whih an be obtained by measuring sound veloities. Taking only thepressure sensitivity of the ontrol parameter into aount the elasti onstant  is proportionalto the seond derivative of the free energy with respet to the ontrol parameter,  / d2F=dr2,84



4.4. Disussionand it is therefore the quantum ritial ounterpart of the spei� heat at the lassial �nitetemperature transition. The elasti onstant is expeted to be very sensitive to hanges in thesaling behavior, and it is therefore a possible andidate for the detetion of the dimensionalrossover in CeCu6�xAux.
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Appendix A
A.1 Gr�uneisen parameter for gapped systems | QCP of non-interating bosonsIn this setion we modify the expansion (1.24) of the saling funtion 	LT in the low-temperature regime in order to aount for the physis of gapped systems, i.e. systems whoseentropy vanishes exponentially with temperature, S � e��=T where � is an energy gap.For illustration let us onsider the simple ase of non-interating bosons in three dimen-sions. The free energy reads [41℄F = TV Z d3k(2�)3 log�1� e��(�k��)� = �T V�3T g5=2(z) : (A.1)where V is the volume. We introdued the thermal wavelength �T =p2�=(mT ), the fugaityz = e�=T and the funtion ga, ga(z) = 1Xn=1 znna ; (A.2)whih has the onvenient property zg0a(z) = ga�1(z). Moreover, we used a quadrati dispersionfor the bosons �k = k2=(2m). In writing (A.1) we on�ned ourselves to the disordered side,z < 1, where the bosons are not ondensed yet. Bose-Einstein ondensation takes plaewhen the (negative) hemial potential reahes zero. The hemial potential an thereforebe identi�ed with the ontrol parameter of the quantum ritial point. Taking the derivativewith respet to temperature we obtain the entropy,S = V�3T �52g5=2(z)� g3=2(z) log z� : (A.3)Comparing this expression with the saling form of the entropy in the quantum ritial regimeintrodued in (1.23) we an onlude that the ritial exponents are given by (applying hy-persaling � = d+ z and using d = 3),z = 2 and � = 1=2 : (A.4)Furthermore, for the sake of omparison with setion 1.3.3 we introdue the non-universaltemperature sale T0 = 2�=(mV 2=3) and the ontrol parameter r = �=T0 < 0. We an identifythe saling funtions to be 	QCR(x) = 52g5=2 (ex)� x g3=2 (ex) (A.5)	�LT(x) = x3=2	QCR(�1=x) (A.6)86



A.1. Gr�uneisen parameter for gapped systems | QCP of non-interating bosonsSine we restrited ourselves from the beginning to the unondensed phase, � < 0, the salingfuntion 	+LT for positive values of the ontrol parameter is beyond this simple approah. Wean expliitly evaluate the limits for small arguments x! 0,	QCR(x) = 52� �52�+ 32� �32�x+O(x2) (A.7)	�LT(x) = x1=2 e�1=x +O �x3=2e�1=x� : (A.8)The saling funtion in the quantum ritial regime 	QCR is analyti as assumed in (1.24).The Gr�uneisen parameter in the quantum ritial regime an be read o� from (1.28) to be�QCR;r = �2 �(3=2)5 �(5=2) � TT0��1 : (A.9)On the other hand, the saling funtion 	�LT is non-analyti! In partiular, the entropy doesnot deay algebraially as assumed in (1.25) but falls o� exponentially. The exponentialdeay of the entropy represents an Arrhenius fator e�j�j=T desribing the thermal exitationsaross the gap of the exitation spetrum of size �! In general, all gapped systems have anentropy deaying exponentially at low temperatures, and they are therefore not aptured bythe expansion Ansatz (1.24).For gapped system the saling funtion 	LT is rather expeted to behave as	LT(x) = C1 xae�C2=x + : : : for x! 0 (A.10)where C1 and C2 are some positive onstants and a is a positive or negative exponent. Inpartiular, for the non-interating Bose gas we have C1 = C2 = 1 and a = 1=2. Repeatingthe analysis of setion 1.3.3 for the modi�ed expansion (A.10) we obtain for the leadingontribution of the spei� heat and the thermal expansion in the low-temperature regimeT �S�T � C1C2 jrj�(��z)� TT0 jrj��z�a�1 e�C2jrjvzT0=T (A.11)�S�r � �C1C2 �z jrj�(��z) 1r � TT0 jrj��z�a�1 e�C2jrjvzT0=T : (A.12)This yields the universal Gr�uneisen parameter for gapped systems in the low-temperatureregime �r = �zr for jrj (T=T0)� 1�z � 1 : (A.13)Interestingly, one would have obtained this result from expression (1.28) by just taking naivelythe limit of the spei� heat exponent y0 !1.In partiular, for the non-interating Bose gas we have��;r � � (�S=��)T (�S=�T ) = 8>><>>: �2 �(3=2)5 �(5=2) 1T for 0 < ��� T1� for � �� T : (A.14)87



Appendix AA.2 Lindhard funtionIn this setion we evaluate the Lindhard funtion (2.14) and determine its form in the limitof small momentum and frequeny. Let us onsider the Lindhard funtion as a funtion ofthe omplex frequeny variable z,�0(z;k) = � 1�V X
m;q 1(�i
n + �q) (�i
n � z + �q+k) = � 1V Xq f(�q)� f(�q+k)�q � �q+k + z ; (A.15)where f is the Fermi funtion and the Matsubara sum has been evaluated by standard meth-ods. The physial (retarded) response funtion, the dynamial suszeptibility, is given in thelimit as we approah the real frequeny axis from above�0(! + i0+;k) = �00(!;k) + i�000(!;k) : (A.16)The imaginary part �000 desribes the dissipation due to the exitations of virtual eletron{holepairs out of the Fermi sea usually known as Landau damping,�000(!;k) = � Z dq(2�)3 (f(�q)� f(�q+k)) Æ (�q � �q+k + !) : (A.17)The Lindhard funtion an be evaluated expliitely in the free eletron model, i.e. by assuminga simple quadrati dispersion relation �k = k2=(2m�)�� [see setion 5.1 of [26℄℄. A disussionof the low{momentum, low{frequeny properties in the general ase an be found in [42℄. Atsmall frequenies we an expand the seond Fermi funtion and the expression simpli�es atzero temperature to an integral over a surfae region in momentum spae�000(!;k) � � ! Z dq(2�)3 ���f(�q)��q � Æ (�q � �q+k + !) (A.18)= �NF ! Z d
q4� Æ (�q � �q+k + !)�����q=�F :ferromagneti instabilityIf the spin{density wave instability is of a ferromagneti nature, i.e. if the instability oursat k = 0, the above expression an be simpli�ed further. Expanding the energy �q+k insidethe delta funtion for small k and assuming an isotropi Fermi surfae the angular integralan be evaluated and yields for theferromagneti instability: �000(!;k) � �2NF !vFk�(vF2k2 � !2) : (A.19)The frequenies ! > vFk are lying outside the partile{hole ontinuum and the Landaudamping vanishes in this frequeny range. The momentum vFk therefore provides a naturaluto� for Landau damping. The dispersive part, �00, is an even funtion of frequeny andmomentum. Its value at zero frequeny and zero momentum is easily evaluated to give thedensity of states at the Fermi energy NF. The orretions to it will start quadratially infrequeny and momentum. 88



A.3. Linked luster expansionantiferromagneti instabilityIn the ase of an antiferromagneti instability the Lindhard funtion has a maximum at a�nite wavevetor k = Q0. The ritial behaviour is then dominated by the small utuationsÆk = k � Q0 around this value. It turns out that in ontrast to the ferromagneti asethe leading ontribution to the dissipative part does not depend on the momentum. Settingk = Q0 in (A.18) the remaining integral over the momentum surfae is expeted to givea �nite value whih will however depend on the spei� energy{momentum relation. Thatmeans the leading ontribution to the dissipative part reads for anantiferromagneti instability: �000(!;Q0) � ! : (A.20)The dispersive part, �00, will also depend on the spei� band struture. The important ob-servation is that the leading orretions in the momentum utuations Æk starts quadratiallysine �0(k; 0) has a maximum at k = Q0.A.3 Linked luster expansionHere we ite expliitly the ontributions of all diagrams of the linked luster expansion upto seond order in the quarti oupling u in the Hertz' theory (2.23). The orretions to theGaussian part of the free energy are given by the linked luster diagrams,F � FGaussian = � 1� Dexp h�S(4)iEonneted (A.21)where the average has to be taken with respet to the quadrati part S(2) of (2.23). Thefollowing diagrams ontribute,= ��gN2I2 = ��g2NI2= �� g22 8N3JI2 = �� g22 32N2JI2= �� g22 32NJI2 = �� g22 16NK (A.22)= �� g22 8N2K : 89



Appendix AWe introdued the quantitiesI = 1�V X!n;k�0(i!n;k) ; J = � 1�V X!n;k�0(i!n;k)�0(�i!n;�k) ;K =� 1(�V )4 X!nj ;kjj=1;2;3;4V Æ 4Xi=1 ki!�Æ 4Xi=1 !in! (A.23)� �0(i!1n;k1)�0(i!2n;k2)�0(i!3n;k3)�0(i!4n;k4) :where �0 is the Hertz propagator (2.27). This results in the free energy,F = FG + gN(N + 2)I2 + g22! �8N(N + 2)2I2J + 8N(N + 2)K� : (A.24)
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Chapter 5Introdution5.1 Motivation: disorder e�ets in heavy fermionsThe unusual properties of heavy fermion materials [43℄, for example the unonventional,i.e., non-Fermi liquid magneti suseptibility and (weakly divergent) spei� heat are stilllaking a omplete theoretial understanding. In some of these materials disorder seems tobe an essential ingredient of the physis observed and at the origin of the non-Fermi liquidbehavior. The role of disorder in these systems an be multifarious.Many experimental results an be desribed within the rather simple Kondo disordermodel (KDM) [44, 45℄. It assumes that eah magneti moment of the rare-earth ions ouplesindependently to the spins of the ondution eletrons via an exhange interation J . However,the exhange ouplings between the loal moments, e.g. the RKKY interation mediatedindiretly by the ondution eletrons, are negleted. In the simplest version of the KDMthe inuene of disorder is only taken into aount in the form of a spatial variation of theoupling J(R). This exhange interation enters physial quantities only in the form of theKondo temperature TK that depends exponentially on J(R), namely TK � e�1=(2J(R)�) where� is the density of states of the ondution eletrons. Due to this exponential dependene amodest variation of the exhange oupling, J(R), an lead to a broad distribution of Kondotemperatures and, onsequently, to a dramati e�et on the low temperature properties.However, many heavy fermion systems are loated near a magneti instability where thephysis is more ompliated. The ondution eletrons are olletively bound to the rare-earth ions, sreening their loal moments. The binding energy is the Kondo temperature TK.Near the magneti stability this Kondo e�et ompetes with the RKKY interation betweenthe loal moments that is struggling to align them and thus to establish long range order [46℄.Whih mehanism prevails depends on how the assoiated energy sales, TK and TRKKY,ompare with eah other [46℄. (Magneti instabilities in lean metals and the assoiatedquantum phase transitions formed the subjet of the �rst part of this work.) The presene ofdisorder will possibly alter the physial piture ompletely. A general saling argument in thease of \bond-disorder", i.e. statistial variation of the oupling between the loal moments,states that disorder annot be negleted if the orrelation length exponent of the lean system,�, and the spatial dimension d ful�ll the so-alled Harris riterion [2℄:� < 2d : (5.1)Disorder is then a relevant perturbation to the lean theory, ultimately leading eventually92



5.2. Model of a magneti mini-domainto new �xed points. In partiular, the Harris riterion is ful�lled and randomness has tobe taken into aount in two and three dimensions for the Hertz{Millis theory presented inChapter 2 where we have � = 1=2. Beyond the knowledge of its relevane, however, the roleof disorder in quantum ritial systems is only poorly understood [2℄.An e�et whih may result from the presene of disorder is the generation of magneti\droplets", loally on�ned ondensation of the magnetization order parameter surroundedby an otherwise on average unordered medium. Due to disorder utuations of the intera-tions there are small regions in spae where the RKKY interation loally dominates over theKondo e�et leading to the formation of small magneti domains. These magneti dropletswill dominate, for example, the suseptibility, resulting in so-alled \GriÆth{MCoy" singu-larities [2℄.In a series of papers A. H. Castro Neto and B. A. Jones [47, 48, 49℄ onsidered thedynamis of suh a single magneti droplet and gave qualitative arguments proposing thatit should behave as an e�etive spin oupled to an eletron liquid undergoing a \lusterKondo e�et". Properties like the luster Kondo temperature depend on the number ofloal moments of whih the luster is formed. The statistis of luster sizes is reeted ina distribution of luster Kondo temperatures leading to anomalous thermodynami behaviorin the spirit of the KDM. This viewpoint was hallenged by A. J. Millis, D. K. Morr andJ. Shmalian [50, 51℄ suggesting that the dissipative bath of eletrons suppresses the tunnelingbetween the luster on�gurations for larger droplets destroying the luster Kondo e�et. Inanother letter N. Shah and A. J. Millis [52℄ studied an extended magneti nanostruture andfound that the quantum utuations within the luster, whih had been previously ignored,have a dramati e�et on the low temperature behavior. GriÆth{MCoy phases near quantumritial points remain to be a ontentious issue and further work is required to fully understandtheir ompliated nature.5.2 Model of a magneti mini-domainIn the following hapters we would like to ontribute to the understanding of the physis ofmagneti lusters by onsidering the dynamis of the smallest possible magneti droplet: anantiferromagnetially ordered domain whih onsists of just two strongly oupled loalizedspin-12 , HMD = Kij Si(R=2)Sj(�R=2) ; (5.2)loated at positions R=2 and �R=2. In heavy fermion materials the spin-orbit interationsare quite strong due to the heavy masses of the rare-earth ions and spin rotation invariane isdestroyed. We assume that this leads to a preferred easy axis in the material along whih themoments tend to order. We will take this into aount with a strongly anisotropi Ising-likeexhange oupling, (Kij) = diagfK?;K?;Kzg where jK?j � Kz : (5.3)The disorder utuations favor the oupling between the two seleted loal moments givingrise to a tiny magneti droplet. We assume that the oupling between the moments is muhstronger than their oupling to the remaining f-eletron system, so that the latter an benegleted. Furthermore, the gas of magneti droplets is so dilute that the interation betweendroplets is also negligible. The loal physis is therefore governed by the Hamiltonian (5.2)93



Chapter 5. Introdutionin ombination with the interation of the loal moments to the ondution eletron system,to be desribed below.
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In the limit of a large Ising oupling, Kz � K?,the loal moments tend to form what we all in thefollowing an antiferromagneti mini-domain, Fig. 5.2.The four energy levels of the Hamiltonian (5.2) arewell separated into two pairs, see Fig. 5.1. This shouldbe ontrasted with the ase of an SU(2)-symmetrioupling where the eigenstates are given by a singletand a degenerate triplet. For an antiferromagnetioupling Kz > 0 the degenerate ferromagneti on-�gurations have a muh higher energy. If Kz is thelargest energy sale involved the Hilbert spae anbe on�ned to the two lowest-lying levels in the low-temperature limit. Their eigenstates orrespond tothe even and odd ombinations of the two antiferro-magneti on�gurations shown in Fig. 5.2,j+i = 1p2 (j"#i + j#"i) ;j�i = 1p2 (j"#i � j#"i) : (5.4)This e�etive two level system | the mini-domain |may be represented by a pseudospin ~� , where � i, i =1; 2; 3, are the usual Pauli-matries. The small energydi�erene of �K?=2 between the two states j+i andj�i then orresponds to a \pseudo-magneti" Zeemansplitting and the low-temperature Hamiltonian HMDan be expressed as HMD = K?2 �3 : (5.5)When the mini-domain is oupled to the ondution eletrons quantum utuations be-tween the two on�gurations of the mini-domain are indued, whih will eventually lead tonon-trivial dynamis. We model the interation between the mini-domain and the ondution
PSfrag replaements I IIFigure 5.2: Two on�gurations of the antiferromagneti mini-domain. The wiggly linesindiate the strong Ising-oupling Kz between the loalized spins.94



5.3. Overview: two-impurity Kondo modeleletrons by a Kondo oupling of eah spin to the Fermi sea,HK = 2J ij �si(R=2) Sj(R=2) + si(�R=2) Sj(�R=2)� (5.6)= J ijXkq �ei(k�q)R=2 yk��i��q� Sj(R=2) + e�i(k�q)R=2 yk��i��q� Sj(�R=2)� :The oupling J ij is assumed to be the same for both impurity spins, thus preserving paritysymmetry of the Hamiltonian HK . However, it will in general be anisotropi, i.e.,(J ij) = diagfJ?; J?; Jzg : (5.7)The eletrons, k�, are assumed to belong to a featureless band with the kineti part H0 =Pk�(�k� � �)yk�k�. The model Hamiltonian whose analysis will oupy the following hap-ters reads H = H0 +HMD +HK : (5.8)We will be mainly interested in the dynamis of the model in the parameter regime wherethe energy sale Kz responsible for the formation of the mini-domain is predominant. InChapter 6 we derive the orretions to the low-energy Hamiltonian (5.5) by treating theKondo oupling J as a perturbation. Through seond-order proesses, the Kondo ouplingJ will indue transitions between the states (5.4) of the low-temperature Hilbert spae viavirtual exitations of the ferromagneti states, j ""i and j ##i. This will result in an e�etivepseudospin{Kondo Hamiltonian.In Chapter 7 we will restrit the model in the sense that we assume that (a) the perpen-diular oupling between the spins vanishes identially, K? = 0, and (b) the eletroni bathat the respetive impurity sites are not orrelated with eah other. Although these simpli-�ations might appear arti�ial in the ontext of Kondo impurities in heavy fermions it isnot only helps understand the various mehanisms ompeting with eah other but also has anatural realization in double-quantum dot systems. As we will explain the two assumptions(a) and (b) allow for a quantum phase transition: As a funtion of the ouplings Kz, Jz andJ? the mini-domain either freezes in one of its two on�gurations or is sreened in a \lus-ter Kondo e�et". The theory desribing the phase transition is indeed an e�etive Kondomodel. In experimental realizations of the redued mini-domain model in terms of quan-tum dots this transition leads to a universal jump in the ondutane or to a harateristizero-bias anomaly depending on the experimental set-up.5.3 Overview: two-impurity Kondo modelThe Hamiltonian (5.8) is a variant of the two-impurity Kondo model, whih has been studiedalready for over twenty years. In its original formulation | in ontrast to (5.8) | it assumesan SU(2)-symmetri exhange oupling, Kq = K? = K. In the following we will give a shortoverview of its main harateristis.The two-impurity Kondo model was introdued by C. Jayaprakash, H. R. Krishna-murthyand J. W. Wilkins in Ref. [53℄, where they identi�ed the di�erent ground states existing inits parameter spae. There are two di�erent energy sales to be ompared: the ouplingK and the single-impurity Kondo temperature TK . If the oupling is small, jKj � TK ,eah impurity is separately sreened by the ondution eletrons and the oupling K plays a95



Chapter 5. Introdutionminor role. For large antiferromagneti oupling, K � TK , the two impurities form a singletand are deoupled from the low-energy dynamis of the ondution eletrons. Finally, forlarge ferromagneti oupling, �K � TK , the model maps onto a two-hannel spin-1 KondoHamiltonian. A generi hannel anisotropy leads to the so-alled two-stage Kondo e�et:upon lowering the temperature the stronger oupled hannel sreens half a unit of the spin-1impurity. At even lower temperatures the remaining spin-12 is quenhed by the other hannelleaving a loal Fermi liquid. This early piture was subsequently on�rmed by numerialrenormalization group alulations (NRG) [54, 55℄ and Monte Carlo studies [56℄.Generially, there is a smooth rossover between the di�erent regimes, e.g. the susepti-bility shows a smooth transition from the Kondo regime, jKj � TK , to the strong ouplingregime, jKj � TK . That means that there is no quantum phase transition separating theregimes in the generi ase. However, the situation hanges drastially in the presene of a er-tain type of partile{hole symmetry. This an be rationalized by a phase-shift argument givenin Ref. [57℄. When the ouplingK is varied the phase shift is expeted to hange ontinuouslyfrom the unitary-limit value �=2 in the Kondo phase to zero in the strong oupling phase.However, in the presene of partile{hole symmetry this annot happen sine a well-de�nedzero-energy phase-shift an only be 0 or �=2. As a onsequene, there must be a point in thephase diagram whih does not belong to either phase, but orresponds to some kind of phasetransition. In the ase of a �rst order transition the phase shift would jump from one value tothe other. However, NRG alulations [58, 59℄ indiated that the transition is ontinuous. Aonformal-�eld theory approah by I. A�ek et al. [59℄ and a Abelian bosonization analysisby J. Gan [60, 61, 62℄ identi�ed the ritial theory to be indeed of non-Fermi liquid type andtherefore not haraterizable in terms of a well-de�ned phase shift. The ritial theory wasshown to be a two-hannel Kondo model [63℄: only a single Majorana fermion ouples to theimpurity spins, whih is ensured by a hidden SO(7) symmetry [59, 60, 61, 62℄.
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Chapter 6Magneti Mini-Domain in a MetalIn this hapter we analyze the mini-domain model (5.8) in the limit of strong oupling wherethe energy sale Kz that holds the mini-domain together is muh larger than any other saleinvolved in the problem. To zeroth order in the Kondo ouplings, Jz and J?, the e�etiveHamiltonian is just given by HMD, de�ned in equation (5.5). It was obtained by trunatingthe Hilbert spae taking into aount only the low-lying antiferromagneti states, j #"i andj "#i, whih an be desribed by an e�etive pseudospin, see Fig. 5.1. In this hapter weonsider the modi�ations of the e�etive low-energy Hamiltonian due to the ouplings of theloal moments to the eletrons. We will �nd that the ondution eletrons indue transitionbetween the two antiferromagneti on�gurations. Taking these pseudospin ips into aountthe e�etive Hamiltonian has the form of an e�etive Kondo Hamiltonian in a pseudo-magneti�eld. Moreover, we will show that it is of a two-hannel type.
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Figure 6.1: Spei� heat of CeCu6�xAux fromRef. [37℄, see main text.

In Fig. 6.1 the spei� heat ofCeCu6�xAux is shown. This heavyfermion ompound orders antiferromag-netially for doping levels larger thanthe ritial value of x = 0:1. The log-arithmi divergene of the spei� heatoeÆient diretly at the ritial dop-ing an be understood in the frameworkof the the Hertz{Millis theory presentedin Chapter 2 under the assumption thatthe spin utuations are dominantly twodimensional [7℄. However, even for adoping level of �fteen and twenty per-ent of gold, i.e. far away from the zerotemperature magneti instability x =0:1, the spei� heat oeÆient does notsaturate at lowest temperatures as it isexpeted of a Fermi liquid. Instead, thepeuliar inrease persists whih suggeststhat the system still possesses a substan-tial amount of residual entropy.The residual entropy may be explained by the presene of almost degenerate two-level97



Chapter 6. Magneti Mini-Domain in a Metalsystems like the mini-domain that is the subjet of this hapter. Moreover, the harater-isti feature of the e�etive two-hannel Kondo model, whih governs the dynamis of thestrongly oupled mini-domain, are non-Fermi liquid signatures, for example, a logarithmiallydiverging spei� heat oeÆient [64, 12, 63℄. One might speulate that the similar signa-tures observed in CeCu6�xAux are due to the formation of a dilute gas of small magnetimini-domains, eah generially undergoing two-hannel Kondo type physis. However, as wewill explain in detail in the following setions, the e�etive Hamiltonian always inludes apseudo-magneti �eld. Pronouned non-Fermi liquid behavior is only expeted if this �eldis suÆiently small ompared to the e�etive Kondo temperature. Thus whether or not thetwo-hannel Kondo e�et develops depends on the mirosopi details.We will start in Setion 6.1 by analyzing the symmetries of the model (5.8). In Setion 6.2we introdue the pseudospin notation for the ondution eletrons. By applying a Shrie�er{Wol� transformation we will derive the e�etive Hamiltonian in the strong oupling limit,Kz ! 1. Finally, in Setion 6.5 this e�etive Hamiltonian is treated within a poor man'srenormalization group treatment to investigate its low-energy behavior.6.1 Symmetries6.1.1 Conservation of the z-omponent of total spinIt will turn out to be ruial that the z-omponent of spin of the mini-domain is onserved.The restrited low-energy Hilbert spae onsists of the two antiferromagneti states j"#i andj #"i, whih are eigenstates of the operator Sz(R=2) + Sz(�R=2) with eigenvalue zero. Theorresponding pseudospin of the mini-domain thus arries a zero z-omponent of spin. Inpartiular, if the pseudospin is ipped, e.g. from j "#i to j #"i, the spin of the mini-domaindoes not hange. Moreover, sine the Kondo oupling of the eletrons to the mini-domain,(5.6), onserves spin, it follows that an eletron annot transfer spin to the mini-domain inpseudospin-ip proesses. We at one onlude that for symmetry reasons the up- and down-spin eletrons have to ouple separately to the mini-domain at low temperatures leading totwo di�erent hannels. The onservation of the z-omponent of total spin,Sztot = Sz(R=2) + Sz(�R=2) + 12Xk yk��z��k� (6.1)in the model Hamiltonian (5.8) is the underlying reason for the degeneray of these twohannels.At this point we should remark on the physial justi�ation of this symmetry. The modelwas motivated by the physis of heavy fermions whih are haraterized by strong spin-orbitoupling arising from their heavy rare-earth ions. In fat, the strong spin-orbit oupling isthe driving fore whih eventually leads to the pronouned anisotropy of the diret ouplingK between the two impurity spins (5.2). All the spins of our model should therefore rather beregarded as e�etive spins arising, e.g., from the lowest-lying two-level systems of a multipletof the total angular momentum that is split by rystal �elds. In order to have a preservedspin z-omponent, a residual axial symmetry has to be present. The pitures I and II ofthe mini-domain Fig. 5.2 do not take this into aount and are therefore misleading. Oneshould rather think of the mini-domain as onsisting of the on�gurations shown in Fig. 6.2.98



6.1. Symmetries
I II

Figure 6.2: Two on�guration of themini-domain with a axial symmetry.The wiggly lines indiate the strongoupling Kz between the spins.

However, we will ontinue to ignore the subtleties aris-ing from the modi�ations of the band struture dueto spin-orbit sattering and maintain the momentumlabel on the kineti energy of the ondution eletrons,�k�.6.1.2 ParityGenerally, a parity transformation reverses position rand momentum p and leaves the spin s unhanged,r �! �r ;p �! �p ; (6.2)s �! s :In partiular, the spin �eld given by the two loalizedimpurity spins transforms asSi(�R=2) �! Si(�R=2) : (6.3)Under parity the on�guration I shown in Fig. 5.2 or inFig. 6.2 transforms to on�guration II and vie versa,i.e. the eigenstates of the low-energy Hilbert spae (5.4), j+i and j�i, have even and oddparity, respetively. Sine they are eigenstates of the pseudospin operator �3 introdued in(5.5), this pseudospin omponent an be identi�ed as the parity operator P in pseudospin-spae. In partiular, the pseudospin ~� itself transforms as~� �! �3 ~� �3 = 0� ��1��2�3 1A under P . (6.4)We will demand invariane of the model under parity transformation, whih implies that thedispersion relation satis�es �k� = ��k�.6.1.3 Time-reversal symmetryA time-reversal operation T leaves the position r unhanged and reverses momentum p andthe spin s, r �! r ;p �! �p ; (6.5)s �! �s :The spin �eld transforms aordingly asSi(�R=2) �! �Si(�R=2) : (6.6)As in the ase of parity the states j+i and j�i therefore also have a de�nite signature undertime-reversal. The time-reversal operator in pseudospin-spae is given by �3C where C is the99



Chapter 6. Magneti Mini-Domain in a Metalomplex-onjugation operator,~� �! �3 C~� ��3C��1 = 0� ��1�2�3 1A under T . (6.7)We will assume that the model (5.8) is also invariant under time-reversal, leading to therequirement �k� = ��k;��.6.2 Pseudospin notationThe Kondo oupling (5.6) interhanges pseudospin, i.e., parity between the minidomain andthe eletrons. It is therefore onvenient to introdue an expliit pseudospin index for theeletrons. This is easily done with the new operators [54℄	q�+ = q� �1 + sin qRqR ��1=2 Z d
4� os�qR2 � q�	q�� = q� �1� sin qRqR ��1=2 Z d
4� sin�qR2 � q� ; (6.8)whih ful�ll the ommutation relationsf	yq��;	q0�0�0g = Æ(q � q0)Æ��0Æ��0 : (6.9)Only these modes 	q�� are important in the two-impurity Kondo problem (5.6); all othermodes deouple from the impurities. The new operators transform under parity asP 	q�� Py = q� �1� sin qRqR ��1=2 Z d
4� 8<: os�qR2 �sin�qR2 � 9=; �q� = �	q�� : (6.10)The third index therefore represents parity and an be identi�ed as the pseudospin index ofthe eletrons. It will ouple to the pseudospin of the mini-domain in interhanging proesses.The Kondo Hamiltonian (5.6) an now be reformulated in terms of the operators (6.8):HK = 1p2 J ij X�=+;��i�Sj� : (6.11)We have introdued the even/odd ombination of the impurity spins�S+S�� = U� S(R=2)S(�R=2)� ; (6.12)where the transformation is given byU = U�1 = U> = 1p2 � 1 11 �1 � : (6.13)Furthermore, � is de�ned as�i� =Xkq X�=+;�� g k;(��) g q� 	yk;�;(��) �i�� 	q�� ; (6.14)100



6.3. E�etive mini-domain Hamiltonianwhere � = � and the sum over momenta is to be understood as the integralPkq � R10 dk dq.The ouplings g, g k+ = 4�2(2�)3 kr1 + sinkRkR ;g k� = i 4�2(2�)3 kr1� sinkRkR ; (6.15)originate essentially from the normalization of the operators (6.8).6.3 E�etive mini-domain HamiltonianThe form (6.11) for the Kondo Hamiltonians is well suited to deriving the e�etive low-energyHamiltonian. We will apply a Shrie�er{Wol� transformation treating the Kondo ouplingsJz and J? as perturbations. We expand the wave funtion j	i of the mini-domain in thebasis fj ""i; j "#i; j #"i; j ##ig where S(R=2) and S(�R=2) at on the �rst and seond entry,respetively, j	i =  ""j""i +  "#j"#i +  #"j#"i +  ##j##i : (6.16)The stationary Shr�odinger equation an be expressed as1H0BB�  "" "# #" ## 1CCA = E0BB�  "" "# #" ## 1CCA : (6.17)In this representation the diret impurity-spin oupling HMD of the model Hamiltonian Htakes the form HMD = 14 0BB� Kz �Kz 2K?2K? �Kz Kz 1CCA : (6.18)As already indiated in Fig. 5.1 this matrix has the eigenvalues �Kz=4 � K?=2 whih livein the low-energy sub-spae spanned by the states j "#i and j #"i, and the doubly degenerate1In the hosen basis the impurity spins have the matrix representationsSx(R=2) = 12 0BB� 1 11 1 1CCA ; Sx(�R=2) = 12 0BB� 11 11 1CCA ;Sy(R=2) = 12 0BB� �i �ii i 1CCA ; Sy(�R=2) = 12 0BB� �ii �ii 1CCA ;Sz(R=2) = 12 0BB� 1 1 �1 �1 1CCA ; Sz(�R=2) = 12 0BB� 1 �1 1 �1 1CCA :101



Chapter 6. Magneti Mini-Domain in a Metalhigh energy value Kz=4.2 The Kondo Hamiltonian HK (6.11) is given in this basis byHK = 12 0BB� 2Jz�z+ J? ���+ ����� J? ���+ +���� 0J? ��++ ��+�� 2Jz�z� 0 J? ���+ +����J? ��++ +�+�� 0 �2 Jz�z� J? ���+ �����0 J? ��++ +�+�� J? ��++ ��+�� �2 Jz�z+ 1CCA ; (6.19)where the standard notation ��� = �x� � i�y� has been used. The e�etive low-energyHamiltonian is obtained by restriting the Hamiltonian to the sub-spae given by the statesfj"#i; j#"ig,eH = � H22 +H21G11H12 +H24G44H42 H23 +H21G11H13 +H24G44H43H32 +H31G11H12 +H34G44H42 H33 +H31G11H13 +H34G44H43 � ; (6.20)with the Green funtion Gij = (E �Hij)�1 : (6.21)In the restrited Hilbert spae the Shr�odinger equation redues toeH�  "# #" � = E�  "# #" � : (6.22)Equation (6.22) is so far still exat, but at this stage eH depends impliitly through theGreen funtion on the energy E. This impliit energy dependene will now suessively beeliminated by expanding eH in the small parameters K?, Jz and J?. The zeroth and �rstoder ontributions are eH(0) = � H0 �Kz=4 H0 �Kz=4 � ; (6.23)eH(1) = � Jz�z� K?=2K?=2 �Jz�z� � ; (6.24)respetively. For the seond order ontribution one needs the Green funtions to zeroth orderG11 = G+O(J) = G44 (6.25)G = (E �H0 �Kz=4)�1 : (6.26)The seond order term of the e�etive Hamiltonian then readseH(2) = 12J2?� �+L G��L +��RG�+R �+L G��R +��RG�+L�+RG��L +��L G�+R �+RG��R +��L G�+L � ; (6.27)where we introdued ��iR�iL� = U��i+�i�� (6.28)with the transformation U de�ned in (6.13). The four entries of eH(2) an be interpreted asvirtual exitations of the mini-domain to the ferromagneti part of the Hilbert spae. Theo�-diagonal entries thereby indue transitions between the states j"#i and j#"i. The impliit2In the ase of isotropi oupling Kz = K?, whih is not onsidered here, the matrix HMD has the usualthree degenerate levels that form the spin 1 triplet and a single level, the singlet.102



6.3. E�etive mini-domain Hamiltonianenergy dependene of eH(2) still has to be removed. Before doing so, however, we would liketo transform the Hamiltonian eH to the proper pseudospin basis given by fj+i; j�ig,�j+ij�i� = U�j "#ij #"i� (6.29)�H = U eHU =Wn�n ; (6.30)where we introdued the operators Wn by expanding the Hamiltonian in Pauli matries. Thesum goes from n = 0 to 3 and �0 is de�ned as the identity matrix.3 By onstrution theomponents �1, �2 and �3 omprise the pseudospin of the antiferromagneti mini-domain.The non-vanishing omponents of W of zeroth, �rst and seond order are4W (0)0 = H0 �Kz=4 ; (6.31)W (1)1 = Jz�z� ; (6.32)W (1)3 = K?=2 ; (6.33)W (2)0 = 12 � eH(2)11 + eH(2)22 � = 14J2?X� ��+� G��� +��� G�+� � ; (6.34)W (2)1 = 12 � eH(2)11 � eH(2)22 � = 14J2?X� ���+� G���� +��� G�+��� ; (6.35)W (2)2 = � i2 � eH(2)12 � eH(2)21 � = � i4 J2?X� ���+� G���� � ���� G�+��� ; (6.36)W (2)3 = 12 � eH(2)12 + eH(2)21 � = 14J2?X� ���+� G��� + ���� G�+� � : (6.37)The term W (1)3 is the previously mentioned pseudo-magneti �eld stemming from the Hamil-tonian (5.2) that leads to a pseudo-magneti Zeeman splitting. We now eliminate the depen-dene of W (2)n on the energy E by expanding it perturbatively in J . To this end onsider theoperator whih appears in W (2)n�i�G�j�0 = Xkk0qq0X��0 ��0 g k(��) g k0(�0�0) g q�g q0�0 �i�� �j�0�0 (6.38)�	yk�(��)	q��G	yk0�0(�0�0)	q0�0�0 :When we ommute the Green funtionG either to the right or to the left of all the 	 operators,the energy dependene of G an be removed by using the Shr�odinger equation in zerothorder. In order to keep the formulae simple we will make an additional simpli�ation: we willassume that the eletron energies �q� only depend on the absolute value of the momentum,�jqj = �q. The spin dependene has already dropped out sine we have assumed that our3The matries �n are�0 = � 1 00 1 � ; � 1 = � 0 11 0 � ; � 2 = � 0 �ii 0 � ; �3 = � 1 00 �1 � :4The omponents of W an be easily obtained by using the properties of the Pauli matries, Wn =12 trfH�ng. 103



Chapter 6. Magneti Mini-Domain in a Metal
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Chapter 6. Magneti Mini-Domain in a MetalThe approximation we made above in negleting the utuation amounts to onnetingoutgoing eletron lines with inoming ones, see Fig. 6.4. If this is done with lines orrespondingto operators at the same position, i.e. either R=2 or �R=2, it will lead to a diret proesswhih vanishes after summing over all possible orientations of spin. There are three remainingterms whih orrespond to exhange proesses and are shown in Fig. 6.4. They are analogousto the terms obtained in (6.44). From the diagrams it is apparent that the eletrons mediatean e�etive oupling between the two states j"#i and j#"i.Now we would like to proeed in evaluating the operators W (2)n further. It will be helpfulto de�ne G�kq;k0 � 1� fk012 (�k + �q)� �k0 �Kz=2 � fk0�k0 � 12(�k + �q)�Kz=2 : (6.45)Putting the above result for the operator �i�G�j�0 into the expressions for W (2)n we getW (2)0 = J2?Xkq�0�Xk0� � g2k0� G�kq;k01A�g k� g q� : 	yk�� Æ�� 	q�� : (6.46)+ 2J2?Xkq X�� �� g2k� g2q� fk(1� fq)�k � �q �Kz=2 ;W (2)1 = J2?Xkq�0�Xk0� � g2k0� G+kq;k01A�g k� g q;�� : 	yk�� �3�� 	q�;�� : ; (6.47)W (2)2 = i J2?Xkq�0�Xk0� g2k0� G�kq;k01A g k� g q;�� : 	yk�� �3�� 	q�;�� : ; (6.48)W (2)3 = J2?Xkq�0�Xk0� g2k0� G�kq;k01A g k� g q� : 	yk�� Æ�� 	q�� : (6.49)+ 2J2?Xkq X�� g2k� g2q� fk(1� fq)�k � �q �Kz=2 :As antiipated in the introdution the above operators onserve the spin of the eletrons sinethe above expressions are diagonal with respet to the eletron spin. That means that thespin-up and -down eletrons ouple separately to the pseudospin of the mini-domain leadingto two hannels. Introduing generalized Pauli-matries �m, m = 0; : : : ; 3, for the parity indexof the eletron operators, f. footnote on page 103, the e�etive Hamiltonian up to seondorder an be written as�H = H0 +Xkq J imn(k; q) : 	yk�� �i�� �m��	q�� : �n2 + (K? + h?) �32 (6.50)where we have disarded the onstant �Kz=4 and the onstant ontribution from W (2)0 .As already mentioned the sum over momenta is to be understood as the integral Pkq �R10 dk dq. The �rst term is the usual diagonal part of the eletrons, the seond term ontainsa pseudospin{Kondo oupling and the third term is a pseudospin{Zeeman splitting. The106



6.3. E�etive mini-domain Hamiltoniannon-vanishing entries of the oupling matrix J are� J 000(k; q) J 003(k; q)J 030(k; q) J 033(k; q) � = J2?Xk0��G�kq;k0 g2k0� g k� g q�� �� 1� � � ;� J 311(k; q) J 312(k; q)J 321(k; q) J 322(k; q) � = �JzX� g k� g q;��� � 0i 0 � (6.51)+ J2?Xk0�� g2k0� g k� g q;�� ��G+kq;k0 iG�kq;k0i �G+kq;k0 ��G�kq;k0 ! :In the notation of generalized Pauli matries, the omponent J 000(k; q) orresponds to apotential sattering term. The omponent J 003(k; q) desribes the utuations around thepseudo-magneti �eld generated by the eletrons and ats on the pseudospin. The ompo-nent J 030(k; q), on the other hand, is the pseudo-magneti �eld generated by the mini-domainand ating on the eletrons. All the other omponents omprise the atual pseudospin Kondooupling matrix.The omponents in the 1-2{pseudospin spae given by the seond matrix of (6.51) oupleto the �3-part of the ondution eletron spin, so the spin-up and the spin-down hannelhave a relative minus sign in these omponents. However, this relative minus sign an beeliminated by a rotation by � of the spin-down omponents of the eletrons around the z-axisof the pseudospin. This rotation is given by the unitary operatorD = expf i �2Xk 	yk#� �3��	k#�g : (6.52)As is shown in Appendix B.1, this rotation applied to the e�etive Hamiltonian (6.50), H =D �HDy, yieldsH = H0 +Xkq X�=";#Jmn(k; q) : 	yk�� �m��	q�� : �n2 + (K? + h?) �32 (6.53)The oupling matrix is given by Jmn(k; q) = J 0mn(k; q)+J 3mn(k; q). The restritions imposedby symmetry on the oupling matrix Jmn(k; q) are analyzed in Appendix B.2.The pseudo-magneti �eld h? generated in seond order is the RKKY interation [65℄between the two impurity spins mediated by the eletronsh? = 4J2?Xkq X�� g2k� g2q� fk(1� fq)�k � �q �Kz=2 (6.54)= 4J2? Z d3k(2�)3 d3q(2�)3 fk(1� fq)�k � �q �Kz=2 os (kR) os (qR) :In the seond line we introdued again the three-dimensional integrals. In ontrast to theusual disussion of the RKKY interation an additional energy di�erene of Kz=2 appears inthe denominator. This is due to the fat that the seond order proess underlying h? involvesvirtual exitations to the ferromagneti states whih have an energy Kz=2 higher than theantiferromagneti ones of the restrited Hilbert spae. Usually, one onsiders the RKKY107



Chapter 6. Magneti Mini-Domain in a Metalinteration in the omplete Hilbert spae of the two impurity spins and it has the form of theHamiltonian (5.2) but with K replaed by the RKKY oupling. The pseudo-magneti �eldh? and the transverse oupling K? appear therefore in the e�etive Hamiltonian on an equalfooting. In the restrited Hilbert spae, however, only the x- and y-, i.e., the perpendiularomponents of the diret K-oupling and of the generated RKKY interation a�et the low-energy states of the mini-domain. The z-omponent of the generated RKKY-interation justyields the onstant energy shift W (2)0 that we disarded.6.4 Parameters of the e�etive HamiltonianIn the following the e�etive parameters are evaluated in the limits when the mirosopiparameter kFR is either muh smaller or larger than one. In these limits the Kondo ouplingJ and the pseudo-magneti �eld h? an be obtained without knowing the exat dispersionrelation, �q, of the ondution eletrons. In the following we set temperature T = 0.6.4.1 Pseudo-magneti �eldWe give here the results for the limits small and large kFR at temperature T = 0. The detailsof the alulations are found in Appendix B.3.� kFR� 1 h? � �4(J?�)2 min�D; D2K?� (6.55)where D is a band ut-o� and � the density of states per spin at the Fermi energy.� kFR� 1h? � (J?�)2 2vFkF(kFR)3 8><>: 2 os2 (kFR)� +O(��3) for �� 1�2 os (2kFR) + 2� log� os2 (kFR) +O(�) for �� 1(6.56)where � = RKz=(2vF), vF =d�(kF)=dk is the Fermi veloity and � = k2F=(2�2vF).The result for large kFR depends on an additional parameter �, whih is given by the ratioof two energy sales. The energy Kz=2 is the separation between the antiferromagneti andthe ferromagneti states, f. Fig. 5.1, and thus originates from the diret interation (5.2)between the two impurity spins forming the mini-domain. The other energy sale vF=Rorresponds to the inverse time the eletrons need to travel ballistially from one impurity toanother. So there exist two forms of ommuniations between the impurities, one is given bythe diret interation and the other is mediated by the ondution eletrons. These two formsof ommuniations ompete with eah other. The eletroni way of ommuniation is moreeÆient if the time R=vF is shorter than the time given by 2=Kz , i.e. if � is smaller than one.In this ase h? exhibits the known os(2kFR) osillations of the RKKY-interation. However,if � is larger than one the diret interation dominates over the eletrons and the os(2kFR)osillations hange into os2(kFR) osillations.108



6.4. Parameters of the e�etive HamiltonianBesides the pseudo-magneti �eld that splits the pseudospin levels of the mini-domain,there exist the pseudo-magneti �eld J30(k; q) that ats on the pseudospin of the eletrons.The latter will renormalize the former and we obtain a orretion that an be estimated ash? �! h? + J 033 h? � = h? +O(J?�)4; (6.57)where � is the suseptibility of the eletrons. The renormalization is of higher order in theoupling J? and will be negleted in the following. The axial symmetry present in our modelforbids that di�erent omponents of the pseudo-magneti �eld in the x- and y-diretion willbe generated.6.4.2 Pseudospin Kondo ouplingIn this setion we simplify the expressions for the oupling matrix J (6.51). In the RG sensethe momentum dependene of J (k; q) is irrelevant and we will heneforth set the momentaequal to the Fermi momentum. We ite here only the leading order ontributions in the limitskFR small and large. The details an be found in the Appendix B.3.� kFR� 1� J00 J03J30 J33 � =� 2vF(J?�)20� A A+O (kFR)2A�1 +O (kFR)2� A+O (kFR)2 1A� J11 J12J21 J22 � =vF(Jz�)kFRp3 � 0 01 +O (kFR)2 0 � (6.58)+ 2vF(J?�)2 kFRp3 0� 0 A+O (kFR)2S �1 +O (kFR)2� 0 1Awhere vF is the Fermi veloity and � = k2F=(2�2vF) is the density of states per spinat the Fermi energy. The oeÆients A and S depend on the band ut-o� D and arede�ned in (B.37) and (B.36), respetively. The oeÆient A is partile{hole asymmetriand S is partile{hole symmetri.� kFR� 1� J00 J03J30 J33 � � �2vF (J?�)2 0BB� A sin(kFR) os(kFR)(kFR)2 F(�)A sin(kFR)kFR os(kFR)kFR F(�) 1CCA (6.59)� J11 J12J21 J22 � � vF (Jz�) � 0 01 0 �+ 2vF (J?�)2 0� 0 os(kFR)kFR F(�)S 0 1Awhere � = RKz=(2vF) and the funtion F is de�ned in (B.31).109



Chapter 6. Magneti Mini-Domain in a MetalIn the ase of a partile{hole symmetri model the potential sattering terms J00 and J30vanish identially irrespetive of the value kFR. This is analogous to the usual Andersonmodel in the loal moment regime; in addition to the Kondo ouplings the Shrie�er{Wol�transformation generally yields a potential sattering term whih, however, vanishes in thease of partile{hole symmetry [66℄.6.5 Poor man's saling analysisWe have seen in the last setion that the e�etive low-energy Hamiltonian is given by thetwo-hannel pseudospin Kondo model with a pseudo-magneti Zeeman splitting. The two-hannel Kondo model in zero (pseudo-)magneti �eld exhibits non-Fermi liquid physis belowthe harateristi temperature sale TK , whih is the Kondo temperature [12, 64℄. However,the non-Fermi liquid features an be destroyed by either a (pseudo-)magneti �eld, that atson the e�etive impurity, or a hannel anisotropy. These two types of operators are relevantwith respet to the two-hannel non-Fermi liquid �xed point and drive the systems towardsa stable Fermi liquid at low temperatures [67℄. The hannel isotropy in our ase is seureddue to the onservation of total spin (6.1). The total pseudo-magneti �eld K? + h? onthe other hand will destroy the non-Fermi signatures. It has been shown [68, 12℄ that thetemperature sale assoiated with the run-away ow from the non-Fermi liquid �xed pointis given by TFL = (KT + hT )2=TK . In order for a pronouned non-Fermi liquid regime toexist this temperature sale must be muh smaller than the Kondo temperature TK , seeFig. 6.5. Sine we have introdued the oupling onstant K? as a bare parameter of ourmodel we adopt the point of view that it an be used to tune the e�etive pseudo-magneti�eld to zero, K? + h? = 0. The oupling K? thus plays the role of a ontrol parameter thatdetermines the temperature width of the logp2 plateau of the entropy in Fig. 6.5, whihis the harateristi signature of the two-hannel Kondo �xed point. Besides, the questionremains whether the mirosopi parameters allow for a sizeable Kondo temperature or not.The Kondo temperature an be obtained via the poor man's saling treatment [69, 66℄.As usual, its saling equations desribe the ow of the e�etive oupling onstants while theband ut-o� D is redued. The saling equations are�Jmn� logD = �� "klm "pjnJkpJlj ; (6.60)where all indies now run from 1 to 3. We have introdued � = 1=vF and "pjn is the totallyantisymmetri tensor with the normalization "123 = 1. All the other parameters, e.g. thepotential sattering term J00 or the pseudo-magneti �eld, are sale invariant in lowest order.Taking into aount only the non-vanishing entries these equations redue to�J12� logD = 2 � J21 J33 (6.61)�J21� logD = 2 � J12 J33 (6.62)�J33� logD = 2 � J12 J21 : (6.63)All omponents grow in absolute value towards strong oupling upon lowering the uto� D ifthe ondition signfJ12J21J33g = �1 is ful�lled. Dividing equation (6.61) by equation (6.62)110



6.5. Poor man's saling analysis
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6.6. Disussion6.5.2 Limit kFR� 1In the opposite limit kFR� 1 the estimates (6.59) yield the hierarhyjJ21j � jJ33j = jJ12j for kFR� 1 : (6.71)Again we have the relationship signfJ33J12g = �1 leading to the ondition J21 > 0, i.e. Jz� >0, for a ow to strong oupling. Integrating the saling equation and expanding in the smallouplings gives the Kondo temperatureTK � D ���� J122J21 ���� 12� J21 = D ����(J?�)2Jz� os(kFR)kFR F(�)���� 12 Jz� : (6.72)where � = RKz=(2vF) and the funtion F is de�ned in (B.31).6.6 DisussionIn this hapter we have onsidered a simple model of a magneti droplet onsisting of twoloal moments (5.8). We have shown that for strong Ising-like oupling of the two loalmoments the e�etive theory is given by a two-hannel Kondo Hamiltonian with a Zeemansplitting (6.53). The degeneray of the two hannels is ensured by the assumption that anaxial symmetry of the droplet is present, see Fig. 6.2. We estimated the ouplings of thee�etive Kondo model in terms of the parameters of the high energy theory, negleting thee�et of spin{orbit oupling on the band struture of the ondution eletrons; we expetthat its inlusion will not qualitatively alter the results. We found that the development ofnon-Fermi liquid physis in the e�etive model requires �ne-tuning in order to eliminate theZeeman splitting, whih would otherwise drive the system to a stable Fermi liquid phase. Wedetermined the Kondo temperature of the e�etive model in di�erent parameter regimes withthe help of a poor man's saling analysis. We found that for small separation of the loalmoments, kFR � 1, the Kondo temperature is suppressed whereas in the other limit it issizable.We an onlude that the senario of a dilute gas of magneti droplets, eah indepen-dently exhibiting a two-hannel Kondo e�et is not expeted to be generi in heavy fermionompounds beause it requires �ne-tuning. It therefore remains speulative that the observednon-Fermi liquid behavior of these materials an be attributed to the dynamis of magnetidroplets.
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Chapter 7Mini-Domains in Quantum DotsIn this hapter we onsider a speial ase of the mini-domain model (5.8). We assume (a) thatthe transverse diret oupling K? vanishes identially and (b) that the ondution eletronsat the respetive impurity sites are unorrelated, i.e. the ondution eletrons at eah impuritysite belong to two independent baths. To be de�nite the Hamiltonian that is onsidered inthis hapter reads H = KzSzLSzR + Xj=L;RHKj ; (7.1)where the index L and R labels the left and right impurities and eletron baths. HKj desribesthe oupling of the jth bath to the jth impurity via an anisotropi Kondo Hamiltonian,HKj = H0[k�j ℄ +Xn�� JnSnj y�j�n���j : (7.2)The eletron operators of eah bath are �j =Pk k�j and the kineti part of the Hamiltonianis H0[k�j ℄ =Pk�(�k � �)yk�jk�j . The Kondo oupling is assumed to be the same for eahimpurity and has the anisotropi form (Jn) = (J?; J?; Jz). A shemati representation of themodel is shown in Fig. 7.1.Whereas we on�ned ourselves in Chapter 6 to the strong oupling limit only, Kz � jJnj,the two assumptions (a) and (b) simplify the model dramatially so that we will be ableto analyze its properties in the whole parameter spae. We will show that the physis inthe strong oupling limit, Kz � jJnj, is qualitatively di�erent. Due to the absene of atransverse diret oupling, K?, the two antiferromagneti on�gurations of the mini-domainare degenerate (ompare Fig. 5.1). This results in a strong-oupling phase haraterized byPSfrag replaements KzJ Jbath L bath R
Figure 7.1: Shemati representation of the mini-domain model Hamiltonian (7.1).114



7.1. Strong oupling analysisa non-zero residual entropy of log 2. This is in ontrast to the strong-oupling phase ofthe general model (5.8) desribed by an e�etive two-hannel Kondo model with a \pseudo-magneti" �eld (6.53) derived in Chapter 6. Here, due to the generi hannel anisotropythe strong oupling phase is haraterized by a loal Fermi-liquid �xed point with vanishingresidual entropy. The degeneray of the ground state of the mini-domain leading to theresidual entropy log 2 is also the underlying reason why the model (7.1) shows a quantumphase transition usually absent in the generi two-impurity Kondo model (without partile{hole symmetry; ompare Setion 5.3). That a phase transition has to exist in parameterspae an be understood by omparing with the weak oupling limit, Kz = 0: The twoimpurities are deoupled and will be separately sreened by their respetive eletron baths.Eah impurity spin then forms a omposite singlet with the eletroni spins, resulting in aloal Fermi liquid with a residual entropy of log 1. The ground states in the weak and strongoupling limits thus di�er in their residual entropy and therefore have to be separated by aphase transition.The existene of the phase transition in the mini-domain model (7.1) was �rst realizedby N. Andrei, G. T. Zim�anyi and G. Sh�on [9℄. They onsidered the same Hamiltonian as amodel of two oupled quantum dots. It was onjetured that the quantum phase transition isontinuous in nature and qualitative arguments were given for how the ondutane throughthe double dot system should behave at low temperatures. We were able to solve this issue.It will be shown in the following setions that the quantum phase transition belongs to theKosterlitz{Thouless universality lass [70℄. The ondutane at the phase transition has apeuliar zero-bias anomaly and we will determine its harateristi exponent.This hapter is organized as follows. We will start in Setion 7.1 with an analysis of themodel in the limit of strong Ising oupling, Kz. We will determine the saling dimensionof the least irrelevant operator and derive a riterion for where the strong oupling phaseshould beome unstable. In Setion 7.2 this riterion is borne out by a suitable mapping ofthe mini-domain model (7.1) to a ertain generalized Anderson model whih we then analyze.With the help of a Shrie�er{Wol� transformation we show that the e�etive theory nearthe phase transition is a Kondo model with the two antiferromagneti on�gurations of themini-domain, see Fig. 5.2, playing the role of the pseudospin. As a onsequene, the phasetransition between the strong oupling phase and the Kondo-sreened phase belongs to theKosterlitz{Thouless universality lass as explained in detail in Setion 7.3. In Setion 7.4 theresults are ompared with numerial renormalization group (NRG) alulations by M. Vojtaand T. Prushke and physially interpreted. The robustness of our results is disussed inSetion 7.5. Finally, in Setion 7.6 we present preditions for two experiments desribed bythe mini-domain model where the quantum phase transition shows itself either in a universaljump in the ondutane or in a harateristi zero-bias anomaly.The work of this hapter is published in Ref. [11℄.7.1 Strong oupling analysisIn the strong oupling limit, Kz � jJnj, the two impurity spins form an antiferromagnetimini-domain with the on�gurations j"#i and j#"i, see Fig. 5.2. In zeroth order in the Kondooupling, Jn, these two on�gurations form a degenerate doublet, see Fig. 5.1, sine aordingto assumption (a) the transverse oupling is identially zero, K? = 0. This degeneratedoublet will eventually lead to a residual entropy of log 2 in the strong oupling phase. As in115



Chapter 7. Mini-Domains in Quantum DotsChapter 6 we would like to derive an e�etive Hamiltonian by performing a Shrie�er{Wol�transformation that takes into aount the utuation indued by the Kondo oupling Jn.Due to the fat that the impurities ouple to di�erent eletron baths the e�etive Hamiltonianis easily derived and has the formH =H0 +Hip where H0 = Xj=L;R24H0[k�j ℄ +X�� JzSzj y�j�z���j35 : (7.3)The z-omponent of the Kondo oupling leaves the low-energy Hilbert spae of the mini-domain invariant. It represents a sattering potential for the ondution eletrons of size Jz,the sign of whih depends however on the on�guration of the mini-domain. The leading termof the indued mini-domain ips in a perturbative expansion in J? is of order O(J2?=Kz),Hip = 4J2?Kz �S+LS�Ry#L"Ly"R#R + h::� : (7.4)A proess desribed by Hip has already been depited in Fig. 6.3. However, in ontrastto the disussion following Fig. 6.3 in Chapter 6 the eletron operators in (7.4) annot beontrated sine they belong to di�erent Fermi seas. This is a onsequene of assumption(b), that the eletrons oupled to the respetive impurities belong to di�erent baths andare therefore unorrelated. In partiular, no RKKY interation is generated. That meansthat the doublet forming the mini-domain remains degenerate and will not be split by agenerated \pseudo-magneti" �eld as in Chapter 6. In this sense the doublet represents aperfet pseudospin.What is the ground state of the strong oupling Hamiltonian (7.3)? The part Hip is theonly term in (7.3) whih ouples the di�erent on�gurations of the pseudospin, j"#i and j#"i.In its absene the mini-domain is \frozen" in either of these on�gurations and the groundstate therefore has a residual entropy of log 2. The ip term Hip omprises four eletronoperators and at �rst sight it seems to be irrelevant in the RG sense1. Sine eah eletronoperator arries a saling dimension of 1=2, its bare saling dimension is dim[Hip℄bare =2 and the log 2 �xed point seems to be stable. However, this onlusion is only valid forsmall oupling Jz as we will explain in the following. Due to the presene of the spin-ipoperators in (7.4) the term Hip aquires an anomalous dimension. When the pseudospin ofthe mini-domain is ipped one by Hip the ondution eletrons experiene an instantaneoussign hange in the sattering potential Jz . This whirls up both Fermi seas, leaving a foamof an in�nite number of exited partile{hole pairs. It takes an unusually long time untilthe seas have almed down again. This phenomenon is known as Anderson's orthogonalityatastrophe [71, 72℄. In the presene of a sharp Fermi edge the unusual long-time responseresults in a so-alled x-ray edge singularity whih manifests itself in an anomalous salingdimension of the ip operator Hip.In the following we will determine this saling dimension using Hop�eld's rule of thumb [73℄.To adjust the Fermi sea to a new ground state after the mini-domain has ipped one, a er-tain amount of spin �n has to ow to in�nity away from the impurity sites. Hop�eld notied1We will use the onvention that the saling dimension of an operator O derives from its orrelation funtionin the following way: hO(t)O(0)i � t�2dim[O℄ :For example the saling dimension of the kineti Hamiltonian H0[k�j ℄ is 1. Contributions to the Hamiltonianwith a saling dimension 1 are dubbed marginal, whereas ontributions with saling dimensions smaller orlarger than 1 are alled relevant or irrelevant, respetively.116



7.2. Bosonization: generalized Anderson modelthat the olletive response of a Fermi sea depends only on �n in the long-time limit: theorresponding orrelation funtion deays as t�(�n)2 . In our problem, we will have to onsiderfour di�erent Fermi seas (j = L;R, � ="; #) eah ontributing independently. A single mini-domain ip ours when the ip operator Hip ats one on the Fermi seas. In the absene ofany further ips the long-time limit of the orrelation funtion is given aording to Hop�eld'srule by hHip(t)Hip(0)iH0 � t� Pj=L;R;�=";# (�n�;j)2 : (7.5)The index on the orrelator indiates that it is to be alulated with respet to the HamiltonianH0. The transfered spins are easily obtained by the use of the Friedel sum rule [66℄. Considerthe mini-domain ip proess shown in Fig. 6.3, whih involves the operator S+LS�Ry#L"Ly"R#R.Let us start with the Fermi sea of the spin up eletrons in the right-hand bath. The reationoperator y"R adds one spin up. Moreover, due to the spin ip operator S�R the satteringpotential seen by these eletrons hanges suddenly from +Jz to �Jz aompanied by a hangein the assoiated phase shift from ÆJz to �ÆJz . Aording to Friedel's sum rule the hangein the phase shifts leads to a transfer of spin �2ÆJz=�. Altogether, the Fermi sea of the upeletrons in the right bath have to rearrange a spin of magnitude �n";R = 1�2ÆJz=�. Similararguments yield for the other Fermi seas �n#R = ��n#L = �n"L = ��n"R. The salingdimension of the ip operator Hip with respet to the \frozen mini-domain" phase of residualentropy log 2 represented by H0 an thus be read o� to bedim [Hip℄ = 12 Xj=L;R;�=";#(�n�;j)2 = 2�1� 2ÆJz� �2 : (7.6)This result is veri�ed in Appendix B.4 with the bosonization tehnique following K. D. Shotteand U. Shotte [74℄. Indeed, in the absene of the satterer, ÆJz = 0, the saling dimension is2 as naively guessed in the beginning. For small phase shifts, i.e. small Jz, the \frozen mini-domain" �xed point is stable with respet to the ip term Hip sine it is irrelevant. However,mini-domain ips are relevant if the phase shift is larger than a ritial value ÆJz > ÆT ,ÆT = �2 �1� 1p2� : (7.7)Beyond this ritial value utuations of the mini-domain grow towards low energies givingrise to a new phase. The \frozen" mini-domain �xed point and the assoiated log 2 entropyphase beomes unstable.It turns out that the speial value of the phase shift, ÆT , is well known as the Toulousepoint of the single-impurity anisotropi Kondo model [66℄. In the next setion we will exploitthe speial properties of the Toulouse point whih enables us to identify the quantum phasetransition taking plae at ÆT .7.2 Bosonization: generalized Anderson modelAt the Toulouse point the single-impurity anisotropi Kondo model is exatly solvable inlosed form. This beomes espeially apparent in the framework of bosonization [75℄. Inthis setion we will bosonize the mini-domain Hamiltonian (7.1). After performing a unitary117



Chapter 7. Mini-Domains in Quantum Dotstransformation and subsequent refermionization we will show that the model takes the form ofa generalized Anderson model. We will repeat the strong oupling analysis whih is espeiallyrevealing in this new formulation sine at the Toulouse point the generalized Anderson modelsimpli�es to the usual single-impurity Anderson model [66℄ as was notied before by S. Kehreinand M. Vojta [10℄.In bosonizing the mini-domain Hamiltonian we losely follow Ref. [68℄. We stik mostlyto the onventions outlined in the introdutory tutorial on bosonization by J. von Delftand H. Sh�oller [76℄; the sole exeption will be a di�erent normalization of the eletron Greenfuntion from that in Ref. [76℄ whih an be aounted for by replaing all fermioni operatorsby von Delft, Sh�oller !p2� , suh that fyn(x); n0(x0)g = Ænn0Æ(x� x0).The Kondo interation (7.2) is loal in spae. It therefore involves only the s-wave ele-trons; the other eletrons are deoupled from the impurity spins. The s-wave eletrons forman e�etive one-dimensional system that is amenable to the bosonization tehnique. For thispurpose they are desribed by one-dimensional so-alled hiral �elds,�j(x) =Xk e�ikxk�j ; x 2 (�1;1) ; (7.8)where k � p� pF is the radial momentum relative to the Fermi momentum. The x > 0 andx < 0 portions of the hiral �eld are assoiated with the inoming and outgoing satteringstates, respetively. We will also need the density of states per spin of inoming or outgoingeletrons, i.e. of an eletron living on a half-line, � = 1=(2�vF). The entral ingredient in thefollowing treatment is the bosonization identity�j(x) = 1p2�aF�j e�i��j(x) ; (7.9)where a is a short distane uto�, F�j is an antiommuting Klein fator, fF y�j ; F�0j0g =2Æ��0Æjj0, and ��j is the orresponding bosoni �eld whih obeys the ommutation relation[��j(x); �x0��0j0(x0)℄ = 2�iÆ(x � x0)Æjj0Æ��0 : (7.10)Transforming to bosoni harge and spin �elds �s=;j = 1p2 (�"j � �#j) ; the bosonized versionof the Hamiltonian HKj (7.2) is given by [75, 68℄HKj = H0[�j℄ +H0[�sj℄ + Jzp2�Szj �x�sj(0) + J?2�a �e�ip2�sj(0)S+j F y#jF"j + h::� : (7.11)Assuming a linear dispersion �k = vFk the kineti parts areH0[�℄ = vF Z dx2� 12 : (�x�(x))2 : : (7.12)The bosonization treatment shows expliitly that the harge degrees of freedom representedby the �eld �j deouple from the spin dynamis in the Kondo model. The harge �eld �jwill be omitted in the following. Applying a general Emery{Kivelson transformation [63℄ withthe \boundary ondition hanging operator" [74, 77℄U = exp24i Xj=R;LSzj�sj(0)35 ; (7.13)118



7.2. Bosonization: generalized Anderson modelparametrized by , the Hamiltonian HKj transforms into ~HKj = UHKj U y with~HKj = H0[�sj ℄+� Jzp2� � vF�Szj �x�sj(0)+ J?2�a �e�i(p2�)�sj(0)S+j F y#jF"j + h::� : (7.14)The important thing to note is that the Ising oupling of the mini-domain, KzSzLSzR, isinvariant under this transformation.For the speial value  = p2� 1 the exponentials appearing in expression (7.14) have thesame form as in the bosonization identity (7.9). For this speial value the Kondo Hamiltonianan be refermionized upon introduing a new pseudo-fermion �eld 	j representing solitonispin exitations of the original ondution eletrons. (There exists another interesting value = p2 where the model ollapses to two oupled spin-boson models, see Appendix B.5.) Wewill further represent the spin operators Snj in terms of fermion operators dj , e.g. Szj = dyjdj� 12 .For details, in partiular how to ensure proper antiommutation relations among the fermions,see, e.g., Appendix D of Ref. [68℄. The refermionized mini-domain Hamiltonian (7.1) takesthe form of a generalized Anderson model,HGA = Kz �dyRdR � 12��dyLdL � 12�+Pj=R;L hH0[	j ℄ + V �dyj	j(0) + h::�+W �dyjdj � 12� : 	yj(0)	j(0) :i ; (7.15)where the olons indiate normal ordering. The new oupling onstants V and W are de�nedin terms of the Kondo ouplings,V = J?p2�a and W� = p2Jz�� (p2� 1) : (7.16)As promised above, the speial properties of the Toulouse point emerge here naturally. Atthe Toulouse point the oupling W vanishes, whih implies Jz� = 1 � 1=p2 as explained indetail in the following setion.7.2.1 Phase shift relationshipBefore making the onnetion with the strong oupling analysis of Setion 7.1 we have tospend some time on the subtleties of how the results depend on the applied uto� sheme.Generally, the uto� sheme strongly inuenes the meaning of the oupling onstants ofthe Hamiltonian. In the original formulation of the mini-domain model (7.1) the Kondointeration was point-like and the ondution eletrons belonged to a band with a �nitewidth, i.e. uto�, D. On the other hand, the bosonization proedure relies on extending theband to in�nity: the sum over radial momenta k in (7.8) extends from minus to plus in�nity.The uto� was reintrodued with the short distane uto� a in the bosonization identity (7.9).This e�etively orresponds to a Kondo interation with a �nite range in spae. A thoroughdisussion of this issue an be found in Appendix A of Ref. [68℄.The appliation of di�erent uto� proedures in the two formulations implies that one hasto be very areful in identifying the ouplings of the generalized Anderson model, W and V ,with the Kondo ouplings, Jz and J?, in the original formulation (7.1). The identi�ation(7.16) is only valid within the bosonization uto� sheme. A way out of this dilemma isprovided by the alulation of ertain physial observables whih are independent of the119



Chapter 7. Mini-Domains in Quantum Dotsuto� sheme applied, i.e. whih desribe measurable low-energy properties of the model.One suh quantity is the phase shift. After the phase shift is alulated within the di�erentuto� shemes the identi�ation of the oupling onstants an be made by omparing theresults. The phase shift of the original mini-domain model (7.1) as well as of the generalizedAnderson model (7.15) an be easily alulated for J? = 0 and V = 0. For a�nite band uto� sheme ÆJz = artan (�Jz=2) Im g(0)1� (�Jz=2) Re g(0) = artan ��Jz�F2 �ÆW = artan (�W=2) Im g	(0)1� (�W=2)Re g	(0) = artan ��W�SF2 �(7.17)the phase shifts assoiated with the interations Jz and W are given in terms of the Greenfuntion of the ondution eletrons, , and the solitoni fermions, 	, respetively. The lastequality is only valid in the ase of partile{hole symmetry when the loal Green funtion,g(!) = Pk(! � �k + i0+)�1, in eah ase redue to g(0) = �i��F and g	(0) = �i��SF,respetively, where �F and �SF are the density of states of the respetive fermions. On theother hand, the phase shifts read within thebosonization uto� sheme ÆJz = �Jz�2ÆW = �W�2 : (7.18)Loosely speaking, the Born approximation of the phase shifts in the �nite band uto� sheme,i.e. the expansion of expression (7.17) to �rst order in the oupling onstants, yields theexat result in the bosonization uto� sheme provided the respetive densities of states areidenti�ed with eah other.Now we are in a position to establish a universal relationship between the mini-domainHamiltonian (7.1) to the generalized Anderson model (7.15) in the limit V; J? ! 0. Replaingthe oupling onstants in (7.16) by the phase shifts (7.18) derived within the bosonizationuto� sheme we obtain2ÆW� = p2�2ÆJz� ��1� 1p2�� = p2�2ÆJz� � 2ÆT� � for V = J? = 0 : (7.19)In the strong oupling analysis of Setion 7.1 we found that the mini-domain starts to utuatewhen the phase shift ÆJz exeeds a ritial value ÆT (7.7) identi�ed as the Toulouse point. Wean easily verify that the assoiated ritial value for the phase shift ÆW is zero. We summarizethat exatly at the Toulouse point, where the quantum phase transition is supposed to happen,the oupling W in the generalized Anderson model (7.15) vanishes.7.2.2 On the Toulouse lineAs S. Kehrein and M. Vojta [10℄ have pointed out, forW = 0 the generalized Anderson modelsimpli�es to the onventional (partile{hole symmetri) single-impurity Anderson model. TheIsing interation Kz plays the role of the loal Coulomb repulsion and V is the hybridizationbetween the solitoni fermions, 	, and the pseudo-fermions, d, on the e�etive Andersonimpurity. The bath index, j, an be identi�ed with a pseudospin, R �* and L �+,HA = Kz �dy*d* � 12��dy+d+ � 12�+ X�=*;+ hH0[	�℄ + V �dy�	�(0) + h::�i : (7.20)120



7.2. Bosonization: generalized Anderson model
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Figure 7.2: Correspondene between the on�gurations of the impurity spins forming themini-domain and the e�etive single impurity desribed by the Anderson model. The anti-ferromagneti on�gurations of the mini-domain, (ii) and (iii), an be attributed to a singlyoupied Anderson impurity with a well-de�ned pseudospin of either * or +.The pseudospin is indeed exatly the one already introdued in Chapter 6. In Fig. 7.2the orrespondene between the on�gurations of the original two impurity spins and thee�etive single Anderson impurity is illustrated. The antiferromagneti mini-domain, (ii) and(iii) of Fig. 7.2, forms in the strong oupling limit Kz � �SFV 2, where �SF is the density ofstates of the solitoni fermions. In the language of the Anderson model this is the so-alledloal moment regime where the Anderson impurity is singly oupied and has a de�nitepseudospin of either * or +. The pseudospin is thus in one-to-one orrespondene with thetwo antiferromagneti on�gurations of the mini-domain already depited in Fig. 5.2.When the oupling Kz is redued the pseudoharge utuations of the Anderson model,i.e. the exitations of the doubly oupied state(i) and the empty state (iv), grow in impor-tane. The Anderson impurity annot be assoiated with a well-de�ned pseudospin any more;it is said to enter a mixed valene regime. The transition from the loal moment to the mixedvalene regime is known to be a rossover: the Anderson model does not exhibit a quantumphase transition! The phase transition in the generalized Anderson model is thus to be foundnot along the Toulouse line, W = 0, but rather perpendiular to it, i.e. by onsidering itsbehavior in the presene of a �nite oupling W .Let us onsider the Anderson model (7.20) in its loal moment regime, Kz � �SFV 2, and121



Chapter 7. Mini-Domains in Quantum Dotsinvestigate how a small oupling W a�ets its behavior. After applying a Shrie�er{Wol�transformation, whih treats the hybridization V perturbatively, the Anderson model reduesin the loal moment regime to an e�etive isotropi Kondo model [66℄,HA = X�=*;+H0[	�℄ + 4V 2Kz X�;�=*;+ ~S	y�(0)~���	�(0) (7.21)where the pseudospin of the Anderson impurity is represented by the spin-12 operator ~S =12P�;�=*;+ dy�~���d� and the oupling onstant is 4V 2=Kz . Note that no potential satterer isgenerated sine the Anderson model (7.20) is partile{hole symmetri. Equation (7.21) is initself an important result. It states expliitly that the two antiferromagneti on�gurations,i.e. the pseudospin of the mini-domain are governed by a Kondo Hamiltonian in the strongoupling regime, Kz � �SFV 2, at least on the Toulouse line W = 0. Let us perturb thise�etive Kondo model by swithing on a small ouplingW . The orresponding interation in(7.15) an be separated into two parts,W X�=*;+�dy�d� � 12� : 	y�(0)	�(0) : (7.22)= WX�;� Sz 	y�(0)�z��	�(0) + W2 �dy*d* + dy+d+ � 1��: 	y*(0)	*(0) : + : 	y+(0)	+(0) :� :The �rst part desribes the pseudospin utuations and ats only on the low-energy Hilbertspae of the Anderson impurity, i.e. states (ii) and (iii) in Fig. 7.2. The seond part representsthe pseudoharge utuations and a�ets the high-energy states, (i) and (iv). In the loalmoment regime the harge utuations are frozen out and a small oupling W modi�es thestrong oupling Kondo Hamiltonian (7.21) only with the ontribution involving the pseudospindegree of freedom, ÆH =WX�;� Sz 	y�(0)�z��	�(0) : (7.23)A small interation W thus shifts the z-omponent of the Kondo oupling in the strongoupling Hamiltonian (7.21) leading to an e�etive anisotropi Kondo model, HA+ ÆH, withoupling onstants (ompare with (7.2)),Jz =W + 4V 2Kz and J? = 4V 2Kz : (7.24)Before analyzing this e�etive Kondo model we would, however, like to extend the strongoupling analysis away from the Toulouse line.7.2.3 Strong oupling analysisIn the last setion we onsidered the strong oupling limit, Kz � �SFV 2, of the generalizedAnderson model (7.15) on the Toulouse line W = 0 whih after a Shrie�er{Wol� trans-formation lead to an e�etive Kondo model. Afterwards we perturbed this e�etive Kondomodel with the small interation W . In doing so we negleted the e�et of the interation Won the Shrie�er{Wol� transformation itself. In the present setion we would like to remedythis shortoming by performing a Shrie�er{Wol� transformation of the generalized Anderson122



7.2. Bosonization: generalized Anderson modelmodel (7.15) in the presene of a �nite interation W . We will show that the resulting e�e-tive theory is still desribed by a Kondo Hamiltonian but with power-law renormalizationsof the e�etive Kondo ouplings. These renormalizations arise from a x-ray edge singularityassoiated with the virtual exited high-energy states. As long as the Anderson impurityis �xed in a ertain on�guration the interation W just ats as a potential satterer. If,however, a pseudo-fermion hops onto or o� the impurity this potential satterer hanges itssign instantly, leading to a long-time response of the assoiated (solitoni) Fermi seas in asimilar manner to that disussed in Setion 7.1.In order to derive the e�etive Hamiltonian of the generalized Anderson model in thestrong oupling limit the usual Shrie�er{Wol� transformation has to be modi�ed. Insteadof working in frequeny spae we will prefer the time domain in whih the physis is eas-ier to understand. The following alulation was strongly inspired by a re-derivation of theAnderson{Yuval{Hamann saling equations [78℄ of the anisotropi Kondo model in the frame-work of bosonization, whih is presented in Appendix B.6.Consider the generalized Anderson model (7.15) in its bosonized version. The interationW an be formally eliminated by applying the Emery{Kivelson transformation (7.13) with� =W�, U�HGAU y� = Kz �dyRdR � 12��dyLdL � 12�+ X�=*;+H0[��℄ +Hint : (7.25)Now W enters only the hybridization termHint = Vp2�a X�=*;+�dy�e�i(1�W�)��(0)F� + h::� : (7.26)In the strong oupling regime, Kz � �SFV 2, the Anderson impurity is only singly oupied.The low-energy Hilbert spae onsists of the two states j*i and j+i whih have an assoiatedloal moment, i.e. pseudospin, and are separated from the doubly oupied and empty state byan energy Kz=2. The hybridization V will indue virtual exitations to the high energy stateswhose dynamis will lead to the e�etive low-energy Hamiltonian. In order to derive it weonsider the S-matrix projeted onto the low-energy Hilbert spae perturbatively expandedin the hybridization V ,P T e�i 1R�1 d�Hint(t)P = 1Xn=0 1Z�1 dt2n : : : dt1t2n>���>t1 P iHint(t2n) : : : iHint(t1)P : (7.27)where T is the time-ordering operator. The projetion operator is given by P =P�=*;+ j�ih�j.Sine the interation Hamiltonian Hint ommuniates between the high- and low-energy se-tors only even powers of Hint survive after projetion. The produts of 2n Hint operatorsan be divided into n virtual exitations eah onsisting of a onseutive appliation of twointeration Hamiltonians Hint. Eah of these will leave the low-energy subspae invariant. Ifthe hybridization V is small the virtual exitations are rare and well separated in time, seeFig. 7.3. They will eventually omprise the e�etive low-energy Hamiltonian. Consider one123
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7.3. E�etive Kondo model: utuating mini-domainAfter introduing the pseudospin �eld � = 1p2P�=*;+ ���, we obtain in leading order forlarge Kz Hint = 4V 2Kzp2� (1�W�) � �2� (1�W�)2� �aKz2 �(1�W�)2�1Sz �x�(0)+ 4V 2Kz2�a �S+e�ip2(1�W�)�(0)F y+F* + h::� : (7.31)Before identifying the oupling onstants of the e�etive low-energy Hamiltonian we have toaddress a subtle point. In integrating out the virtual exitations on the time-sale of order1=Kz we e�etively redued the short distane uto� from a to aK , where the new uto� isof order aK � 1=Kz . This has to be aounted for in the impliit uto� dependene of thevertex operators appearing in the pseudospin-ip term in (7.31). This is similar to the originof renormalization of the perpendiular Kondo oupling in the Anderson{Yuval{Hamann RGas outlined in Appendix B.6. The impliit uto� dependene of the vertex operator beomesapparent after normal ordering,ei�� = �2�aL ��22 : ei�� : = � aaK��22 �2�aKL ��22 : ei�� : = � aaK��22 ei���; (7.32)where �� denotes the �eld de�ned with respet to the new uto� aK . This e�etively leads tothe substitution 4V 2Kz2�a ! 4V 2Kz2�aK � aaK�(1�W�)2�1 (7.33)in the seond term of (7.31). In a �nal step we undo the Emery-Kivelson transformationleading to an e�etive Kondo model in its bosonized form.7.3 E�etive Kondo model: utuating mini-domainThe low-energy degrees of freedom of the generalized Anderson model (7.15) in the limit ofstrong oupling, Kz � �SFV 2, are desribed by an e�etive Kondo model (ompare (7.11)),HGA = H0[ ��℄ + Jzp2�Sz�x ��(0) + J?2�aK �e�ip2��(0)S+F y+F* + h::� ; (7.34)where the pseudoharge �eld, � = 1p2P�=*;+ ��, has been omitted sine it deouples fromthe pseudospin. The Kondo ouplings are given in terms of the hybridization V , Ising ouplingKz, interation W and the short distane uto� a:Jz =W + 4V 2Kz Cz(W )�aKz2 �(1�W�)2�1J? = 4V 2Kz C?(W )�aKz2 �(1�W�)2�1 (7.35)where Cz(W ) � (1 � W�)�[2 � (1 � W�)2℄ and we have further introdued the funtionC?(W ) � (2=(aKKz))(1�W�)2�1. The arguments given in Setion 7.2.3 suggest that C? is a125
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7.3. E�etive Kondo model: utuating mini-domainquantum phase transition that happens at Jz = �jJ?j is governed by the saling equations(7.37) whih are harateristi of the so-alled Kosterlitz{Thouless universality lass [70, 79℄.7.3.1 Phase boundaryThe riterion Jz = �jJ?j yields for the ritial oupling Krz separating the frozen andutuating mini-domain phasesW = �4 21�(1�W�)2 (Cz(W ) + C?(W )) V 2a(1�W�)2�1Krz 2�(1�W�)2 ; (7.38)or equivalentlyKrz (�W )(2�(1�W�)2)�1 = (7.39)h4 21�(1�W�)2 (Cz(W ) + C?(W ))i(2�(1�W�)2)�1 �V 2a(1�W�)2�1�(2�(1�W�)2)�1:In the viinity of the Toulouse point we an expand in the small oupling W and we obtainW = � 8Krz �V 2a(1�W�)2�1�(2�(1�W�)2)�1 : (7.40)It is apparent that the ritial ouplingKrz > 0 depends ruially on how the phase transitionis approahed in the parameter spae spanned by W and V ,Krz � 8<: �8W�1V 2 �!1 for W ! 0��8W�1 �V 2a(1�W�)2�1�(2�(1�W�)2)�1 �! 0 for V ! 0 : (7.41)In the limit W ! 0� for a �nite hybridization V the ritial oupling diverges. This orderof limits orresponds to the regime aessible by the simple strong oupling analysis on theToulouse line of Setion 7.2.2. The reverse order of limits, however, is exlusively the realmof the onsiderations of Setion 7.2.3, sine here the ritial Ising oupling vanishes (whilemaintaining Kz � �V 2) and the interation W < 0 has to be onsidered as a large sale inthe strong oupling limit. In this region of parameter spae the x-ray edge like power-lawrenormalizations indued by the interation W are an important result of the physis takingplae.The power-law renormalizations of the e�etive Kondo ouplings (7.35) are aompaniedby an expliit dependene on the short distane uto� a. Indeed this expliit uto� dependeneis neessary in order to reover universality as we will explain in the following. The e�etiveKondo model (7.34) was derived in suh a way that in the end it had its own short distaneuto� aK . In partiular, this was ahieved by aounting for the impliit uto� dependene ofthe vertex operator (7.32). As a onsequene, the e�etive ouplings J? and Jz are supposedto be invariant upon a resaling of the old uto� a of the underlying generalized Andersonmodel. Whereas the Ising interation Kz has a zero saling dimension (and the salingdimension of W an be negleted to lowest order in J?), the hybridization V is not invariantupon resaling a. However, the ombination V 2a(1�W�)2�1 is! This an be shown within theAnderson{Yuval{Hamann RG approah to the Kondo model [78℄ (see Appendix B.6). Thesaling dimension of the hybridization V results from the saling dimension of the original127



Chapter 7. Mini-Domains in Quantum Dotsperpendiular interation J? of the Kondo Hamiltonian (7.2) that oupled the single spinsof the mini-domain to their baths. The RG equation for the perpendiular oupling (derivedwithin the bosonization uto� sheme) reads (B.72)d log J?d log a = 1� (1� Jz�)2 : (7.42)Using the relationships (7.16) between the Kondo ouplings and the interations W and Vthis translates into d log V 2d log a = 1� (1�W�)2 ; (7.43)whih on�rms that the ombination V 2a(1�W�)2�1 is sale invariant. Its sale invarianeensures that it an be expressed in terms of universal quantities. Indeed it is diretly relatedto the Kondo temperature TK of a single Kondo Hamiltonian (7.2). If the UV uto� 1=ais resaled to this harateristi temperature sale the non-perturbative harater of Kondophysis beomes apparent: the perpendiular Kondo oupling, J? = Vp2�a, has resaled toa value of order one,�V 2a(1�W�)2�1�(2�(1�W�)2)�1 � a�1J (1�(1�W�)2=2)�1? � TK : (7.44)The ombination V 2a(1�W�)2�1 in the e�etive ouplings (7.35) an therefore be replaedby the Kondo temperature and, onsequently, the dependene on the uto� a of the high-energy theory be removed. The sale invariane thus eventually ensures the universality ofthe e�etive Kondo theory desribing the utuating mini-domain.The ombination on the left-hand side of (7.44) is just the one appearing in the expressionfor the ritial oupling (7.40). The important point to note is that it is proportional tothe Kondo temperature TK , irrespetive of the relative values of the small interations Wand V . In the following we would like to �x the prefator in expression (7.44). To this endthe de�nition of the Kondo temperature has to be spei�ed. We will identify the Kondotemperature using the value the impurity spei� heat oeÆient attains in the limit of lowtemperature,  = limT!0Cimp=T , TK � w�23 �1 (7.45)where w = 0:41071::: is the Wilson number [66℄. The spei� heat oeÆient an easily bealulated on the Toulouse line, i.e. for W = 0,  = 1=(3�SFV 2), where �SF is the density ofstates of the solitoni fermions. This yields the universal asymptoti behavior of the phaseboundary near the Toulouse point,�SFWr = � 8w�2 TKKrz � �1:974 TKKrz : (7.46)In general, universality is expeted in the so-alled saling limit when all harateristi energysales are muh smaller than the energy uto� sale. For example, in our problem the salinglimit an be reahed by sending the short distane uto� a to zero while holding both theKondo temperature TK and the Ising oupling Kz �xed. From equation (7.44) it follows thatin the saling limit the perpendiular Kondo oupling vanishes, J? ! 0. This then means128



7.3. E�etive Kondo model: utuating mini-domainthat the ritial ratio TK=Krz just depends on Jz . Using the relationship (7.17) and (7.19)we obtain in thesaling limit: TKKrz = �w�2p2 sin2 � �2p2�8 �F (Jrz � Jz) � 0:575�F (Jrz � Jz) :(7.47)The ritial oupling Jrz is given by �FJrz = 2=� tan ÆT � 0:315.7.3.2 Charateristi energy sales near the transitionClose to the quantum phase transition on both sides of the phase boundary there exists aharateristi energy sale. Far away from the Toulouse point, the distane to the phasetransition is measured by the RG invariantC � (J?�)2 � (Jz�)2 : (7.48)The RG invariant C vanishes on the separatrix, i.e. at the phase transition. Consider theresaled oupling Jz(T ) after saling the uto� of the e�etive Kondo model Kz to the tem-perature T , log TKz = �12 Jz(T )�ZJz� d(J 0z�)C + (J 0z�)2 : (7.49)In the utuating mini-domain phase the oupling between the pseudospin of solitoni spinexitations and the pseudospin of the mini-domain grows under renormalization and a energysale T � is dynamially generated, the olletive Kondo temperature of the e�etive low-energytheory (7.34). It an be estimated by sending the resaled oupling to in�nity Jz(T )!1,T � � Kz e 12jJz�j e� �2pC � e� �2pC : (7.50)We have used the fat that lose to the phase transition the bare oupling Jz is neessarilynegative. In the frozen mini-domain phase on the other hand, where C < 0, the ouplingsow to zero. Nevertheless, we an distinguish an energy sale assoiated here with the hangeof the saling behavior of, for example, the perpendiular oupling J?(T ),log TKz = J?(T )�ZJ?� d(J 0?�)2J 0?�p(J 0?�)2 + jCj = 8>>><>>>: 12pjCj log J?(T )J? for jJ?�j �pjCj12jJ?�j � 12jJ?(T )�j for jJ?(T )�j �pjCj ;(7.51)i.e. it sales either algebraially or exponentially with temperature. The rossover temperatureTross where jJ?(T )�j 'pjCj an be determined to beTross � Kz e 12jJ?�j e� log(1+p2)2pjCj : (7.52)When the phase transition is approahed, for example by varying the Ising oupling Kz, C /jKz �Krz j ! 0, the rossover temperature Tross as well as the olletive Kondo temperatureT � vanish exponentially. 129



Chapter 7. Mini-Domains in Quantum Dots7.4 Phase diagram: omparison with NRGThe treatment of the preeding setion allowed us to determine the phase boundary (7.47)in the viinity of the Toulouse point. We established that here the quantum phase transitionbelongs to the Kosterlitz{Thouless universality lass. The Toulouse point orresponds to theextreme anisotropi limit of single-impurity Kondo ouplings, J? � Jz , and the questionremains how the phase transition hanges away from the Toulouse point. Continuity suggeststhat it evolves ontinuously towards the isotropi point of Kondo ouplings J? � Jz. But onean a priori not exlude that another �xed point might intervene in between. The questionsan be answered with the help of the numerial renormalization group (NRG) [66℄. An NRGstudy of the generalized Anderson model (7.15) was performed by M. Vojta and T. Prushke,and it is explained in detail in Ref. [11℄. In the present setion we will outline the mainresults. This will omplement the piture of the phase diagram.For an NRG treatment the generalized Anderson model (7.15) has ertain advantagesover the original two-impurity model (7.1). The two bands of spinful fermions of the two-impurity model are omputationally demanding. The generalized Anderson model on theother hand already takes into aount the fat that the respetive harge setors of the twofermioni bands deouple from the impurities, and therefore features only a single band of(pseudo-)spinful fermions allowing for high-auray numerial simulations down to lowestenergy sales and temperatures. Aording to the relationship (7.19) between the phase shiftsof the two formulations of the mini-domain model and the expression (7.17) the followingrange of values for Jz an be overed by varying the interation W (for small J? and V ,respetively)�SFW 7�! �FJz = 2� tan � 1p2 artan��2 �SFW�+ ÆT � ;(�1;1) �! � 2� tan��2 (1�p2)� ; 2� tan �2� = [�0:485;1) : (7.53)Importantly, this inludes the isotropi point Jz � J? � 1. In partiular, a vanishing Kondooupling, Jz = 0, maps onto W�SF = (2=�) tan[�(1�p2)=2℄ � �0:485. The Toulouse point,W = 0, orresponds to the Kondo oupling �FJz = 2=� tan ÆT � 0:315.7.4.1 NRG ow and entropyIn the left panel of Fig. 7.5 NRG ow diagrams are shown displaying the energies of a fewlow-lying many-body eigenstates as funtion of the number of NRG steps N . The data inthe upper graph a) learly shows that for small values of Kz the same �xed point is reahedfor various V and W | this �xed point an be identi�ed with the Fermi-liquid phase with aresidual entropy S0 = 0. In partiular, it is also reahed for Kz = 0, the limit where the twoimpurity spins are separately Kondo sreened by their respetive fermioni baths. This provesthat the Fermi-liquid of two separately Kondo-sreened impurities is adiabatially onnetedto the \utuating mini-domain" regime whih an be haraterized by pseudospin sreeningbelow the olletive Kondo temperature T � (7.50). In the lower graph b) ow diagrams forlarger values of Kz are shown. The �xed points reahed at low energies are very similar fordi�erent parameter sets, but not idential. This is onsistent with the notion of a line of �xedpoints expeted from the Kosterlitz{Thouless RG ow of Fig. 7.4. Further evidene that thequantum phase transition belongs to the Kosterlitz{Thouless universality lass is provided130
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Chapter 7. Mini-Domains in Quantum Dotsby the fat that no additional �xed point is observed for Kz � Krz , whih ould possiblyorrespond to an (unstable) ritial �xed point.In the right panel of Fig. 7.5 the impurity entropy S(T ) is plotted as a funtion of temper-ature. At high temperatures the two single impurities oupy a total of four states, resultingin an entropy of log 4. Upon lowering the temperature this high temperature value getsquenhed. However, this quenhing proess depends ruially on the values of the Ising ou-pling Kz and the Kondo temperature TK of a single impurity. In the parameter regimeKz � TK the individual Kondo sreening of the two impurity spins by their respetive ele-tron bath is so overwhelming that the log 4 entropy is redued in a single step to zero,resulting in two loal Fermi liquids. In the other regime Kz � TK the energy sale givenby the Ising interation is deteted, leading to a quenhing of only half the high energy en-tropy to log 2 at a temperature T � Kz. This orresponds to a redution of the Hilbertspae to the low-energy states depited in Fig. 5.2, giving rise to an e�etive pseudospin: themini-domain is born. Below a temperature T < Kz the physis is hene dominated by theutuating mini-domain. Its fate depends on the Kondo oupling Jz, or equivalently on theinteration W , giving rise to a ritial value for the Ising interation Krz . Above the ritialvalue Kz > Krz the utuations of the mini-domain are frozen out leaving a non-zero residualentropy of log 2: this is the frozen mini-domain phase. For ouplings TK < Kz < Krz onthe other hand the remaining log 2 entropy gets quenhed at a temperature of the order of aolletive energy sale T � (7.50) attributed to the e�etive low-energy theory desribing themini-domain physis. For suÆiently large ouplings Jz and W the utuating mini-domainis always sreened, giving a vanishing residual entropy as shown in graph ) in the right panelof Fig. 7.5.7.4.2 Phase diagram
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In Setion 7.3 we were able to determine thenature of the quantum phase transition andthe dependene of the phase boundary (7.47)in the viinity of the Toulouse point. TheNRG study showed that this phase transitionalso extends to the isotropi limit of Kondoouplings, Jz � J?, and that it is governedthroughout by the Kosterlitz{Thouless uni-versality lass. In partiular, there is no �xedpoint of a di�erent nature interfering. Withthis result from the NRG the following pi-ture of a phase diagram emerges (Fig. 7.6).In the regime Kz � TK eah impu-rity is separately Kondo-sreened by its re-spetive eletroni bath and mini-domainphysis does not play any role. This is theregime where the high-energy entropy log 4 isquenhed in a single step to zero, f. Fig. 7.5.Only below the dashed line in Fig. 7.6 do we�nd the regime where the low-energy physisis dominated by a well-de�ned mini-domain.132
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Figure 7.8: Dependene of the slope of the phase boundary near the Toulouse point on theNRG disretization parameter � de�ning the logarithmi disretization of the ondution band.The dashed line is a linear �t. Eah data point involves an extrapolation of the numerialresults at �nite negative W to W ! 0�.oupling J?, suh an RG invariant is given by = 2(J?�)2 + "1��1� 2ÆJz� �2#+ 2 ln�1� 2ÆJz� � : (7.54)Idential low-energy behavior is expeted even for di�erent values of interation parametersas long as they an be attributed to the same RG invariant . Near the Toulouse point theontribution of J? to the RG invariant an be negleted and  is unambiguously given byJz, reovering the label of the main panel. For small values of both Jz and J?, however, theexpression for  an be expanded and redues to the poor man's version already enounteredin (7.48),  � 2 C = 2(J?�)2 � 2(Jz�)2 : (7.55)The limit of isotropi Kondo ouplings, J? = Jz, orresponds therefore to a vanishing RGinvariant,  = 0, and the ontribution of J? annot be negleted any more. In partiular, thismeans that near the limit of isotropi Kondo oupling the RG invariant is the proper labelfor the horizontal axis of the phase diagram.It turned out that some NRG results show a relatively strong dependene on the NRGdisretization parameter � [11℄. Fig. 7.7 shows the phase diagram for � = 2; results forother � values are similar, but the ritial ratio TK=Krz was found to di�er by 50% or more.Therefore, an extrapolation to �! 1 was performed for a few important quantities. A sampleextrapolation is shown in Fig. 7.8 for the slope of the phase boundary near the Toulouse point,whih was determined analytially in Setion 7.3. The extrapolated value of KzW=V 11�� � 8,with 2� = (1� 2ÆW =�)2, is onsistent with the exat result (7.40).The maximum value of the ratio TK=Krz of the phase boundary shown in Fig. 7.7 our-ring near Jz = 0 was also analyzed for di�erent disretization parameters and was found toextrapolate to (TK=Krz )max = 0:1� 0:03.Alternatively, one an draw a quantum phase diagram in the plane where the tem-perature T is plotted versus Ising oupling Kz for a �xed Kondo temperature TK , see134



7.5. Symmetries and perturbationsFig. 7.9. For T = 0 there is a quantum phase transition at the ritial oupling Kz = Krzfrom a Fermi liquid with residual entropy S0 = 0 to the \frozen mini-domain" phase withS0 = log 2. At T > 0 only smooth rossovers our, indiated by the dashed and dot-ted lines. At the dashed lines, the entropy S hanges by log 2. For small Kz there isa single rossover at the single-impurity Kondo temperature TK where the log 4 entropyis quenhed in a single step to zero. This rossover splits into two when Kz approahesvalues of order TK | then the two-stage quenhing of the entropy desribed above is ob-served. In this regime the upper rossover temperature, T0, is assoiated with the for-mation of the magneti mini-domain where relative utuations of the two impurity spinsare frozen out. The lower rossover temperature is the olletive energy sale T � belowwhih the pseudospin of the mini-domain is sreened. Generally, for a Kosterlitz{Thouless
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Figure 7.9: Quantum phase diagram in the Kz{Tplane.

transition this energy sale van-ishes exponentially upon approah-ing the phase transition,T � � T0 e�A=pjKrz �Kzj (7.56)where A is a funtion of TK . ForKz � Krz another rossover hap-pens at a temperature sale Tross(7.52), whih however has muhweaker signatures. Here the har-ater of the leading orretions tothe entropy and other quantitieshanges. For a more detailed dis-ussion of these orretions we re-fer the reader to Setion 7.6. Thisrossover sale Tross also vanishesexponentially near the ritial ou-plingKrz . For largeKz the entropyhange from log 4 to log 2 oursaround T � Kz, and therefore T0approahes Kz in this limit.7.5 Symmetries and perturbationsTo what extent do the results presented in the previous setions depend on the details ofthe models under onsideration? To answer this question we will investigate whether andhow (small) perturbations of (7.1) qualitatively hange the physis. Fermi-liquid phases withvanishing residual entropy are stable against small perturbations, but this is not neessarilythe ase for our \frozen mini-domain" haraterized by a residual entropy of log 2. Theexistene of this log 2 phase is a fundamental feature of the mini-domain model (7.1), givingrise to a quantum phase transition. Indeed the general mini-domain model (5.8) was suitablyredued in this hapter with the two assumptions mentioned in the introdution| (a)K? = 0and (b) unorrelated eletroni baths | in order to ahieve exatly this stability. In thefollowing we will disuss the neessary onditions for these assumptions to hold.135



Chapter 7. Mini-Domains in Quantum DotsLet us start by onsidering the e�et of a magneti �eld in the z-diretion ating on theimpurity spins. A staggered magneti �eld, hs(SzL�SzR), will diretly destroy the degenerayof the two antiferromagneti on�gurations, j "#i and j #"i. A homogeneous magneti �eldh(SzL + SzR), on the other hand, will not destroy the log 2 phase. It is interesting how theseterms modify the generalized Anderson model (7.15). The magneti �eld h results in a termhP�=*;+ dy�d� whih breaks partile{hole symmetry in the generalized Anderson model andtherefore modi�es only the position of the phase boundary. However, the staggered magneti�eld hs leads to a term hsP�=*;+ �dy�d� whih orresponds to a (pseudo-)magneti �eldating on the pseudospin of the Anderson model. Only the staggered magneti �eld is arelevant perturbation destroying the log 2 phase.Apart from these magneti �elds in the z-diretion there are other relevant terms whihlift the two-fold degeneray and whih have the forms:S+j j = L;R; (7.57)S+LS�R ; (7.58)S+LS�R	yi�	j� i; j = L;R; (7.59)S+LS�R	yi����	j� i; j = L;R (7.60)and their hermitian onjugates. It turns out that all these operators are forbidden if weimpose the following two symmetry onditions: the model should be invariant under the twoseparate spin rotations of eah impurity and its eletroni bath about an angle of �, i.e., underthe transformation Uj = ei�Izj (7.61)with j = L;R. Izj is the z-omponent of total spin of sub-system j, Izj = Szj+Pk yk�j 12�z��k�j .In the presene of these �-rotation symmetries, Uj, the terms (7.57) { (7.60) are absent andthe frozen mini-domain phase survives. The quantum phase transition from the frozen mini-domain with residual entropy log 2 to the phase of Kondo sreened impurities therefore justrelies on the symmetries UL and UR (in the absene of a staggered magneti �eld).The model (7.1) onsidered here possesses by onstrution symmetries beyond Uj . Theyare not neessary for the stability of the log 2 phase. For example, the two baths are assumedto have the same Kondo oupling Jn. This parity symmetry an be relaxed without destroy-ing the frozen mini-domain phase. Furthermore, the z-omponent of spin of eah system,Izj , is onserved in our model sine we hose Jx = Jy = J?. This symmetry an also beperturbed without lifting the two-fold degeneray. Moreover, the frozen mini-domain phaseis stable against breaking of the partile-hole symmetry whih we impliitly assumed in thebosonization treatment when we linearized the dispersion relation of the ondution eletrons.In all these situations, we therefore expet that all of the qualitative results, i.e., the strutureof the phase diagram and the nature of the quantum phase transition, are una�eted.However, any perturbation whih breaks either UL or UR (or both) will generially generateone of the relevant ouplings (7.57{7.60) whih all destroy the log 2 phase. In the followingwe briey disuss two suh ases whih are likely to our in experimental realizations.Let us relax assumption (a), i.e. onsider a situation where a small spin-ip oupling (7.58)is added on top of the large Ising interation of the spins,ÆH?LR = K? �SxLSxR + SyLSyR� : (7.62)136



7.6. Experimental impliations: transportIn realizations of our model based on spins and strongly anisotropi spin-orbit interations |as we originally had in mind, see Setion 5.1 | suh a term will always be present. A smallK? will immediately lead to a tunneling between the two pseudospin on�gurations of themini-domain: their degeneray is lifted, the two spins form a singlet and the log 2 residualentropy is quenhed ompletely.Two-impurity Kondo models with K? = Kz have been widely studied | see the shortreview in Setion 5.3. As argued in Refs. [57, 59℄ the resulting phase diagram depends on thepresene or absene of partile{hole symmetry (whih, however, does not modify the phasediagram forK? = 0 as pointed out above). In the absene of partile{hole symmetry the phasetransition at K? = 0 is replaed by a smooth rossover. However, in the presene of partile{hole symmetry, the sattering phase shifts of the eletrons an only take the values 0 or �=2.As the Kondo-sreened phase and the inter-impurity singlet phase have di�erent phase shifts,there has to be a phase transition in between. This transition is not of Kosterlitz{Thoulesstype, but is haraterized [59, 60, 61, 62℄ by a ritial �xed point assoiated with a residualentropy of logp2. Nevertheless, this transition will merge with ours in the limit K? ! 0, asan in�nitesimal K? does not a�et the Kondo-sreened phase but leads immediately to theformation of an inter-impurity singlet in the frozen mini-domain phase.Now let us dispense with assumption (b), whih means allowing for a oupling betweenthe two Fermi seas, e.g., by tunneling between the two leadsÆHtunnelingLR = Xk;k0;��tkk0 : yk�Lk0�R : + h::� : (7.63)While this term is not relevant by power ounting, it will indue an RKKY interation betweenthe spins and therefore generate the relevant oupling (7.59) and (7.58) or (7.62). As suh aterm also breaks partile{hole symmetry, the quantum phase transition will be replaed by asmooth rossover.7.6 Experimental impliations: transportIn this setion we disuss how the phase diagram and, more importantly, the orrespond-ing quantum phase transition an be revealed in transport experiments. What is the mostharateristi signature of the Kosterlitz{Thouless quantum phase transition whih we foundhappens in the mini-domain model (7.1)?The most famous example of a Kosterlitz{Thouless transition is probably the vortexbinding{unbinding transition in superuid 4He �lms [79℄. This transition is governed bythe same RG ow, see Fig. 7.10. When a path is taken in parameter spae similar to theone shown by the dashed line in Fig. 7.10 a vortex binding{unbinding transition takes plae.Starting on the left hand side the RG ow is towards a line of �xed points orrespondingto a superuid with a ertain value of the superuid density �s=T depending on the initialonditions. Diretly at the phase transition indiated by the blak dot the parameter owis towards a ritial, universal value [13℄ of the superuid density �rs =T before it vanishesbeoming a normal uid. The vortex binding{unbinding transition is therefore haraterizedby a universal jump of the superuid density at the phase transition from �rs =T to zero. Thisis impressively on�rmed by experiments as shown in the left panel of Fig. 7.10.Interestingly, the analogue of the superuid density in the mini-domain model is the sat-tering phase shift Æ of the ondution eletrons, and the arguments for a universal jump in137



Chapter 7. Mini-Domains in Quantum Dots
PSfrag replaementse�E=TT=�sT=�rs ��

��
��
��

superfluid

normal
fluidPSfrag replaements

e�E=T
T=�sT=�rsFigure 7.10: Left panel: Jump disontinuities in the superuid density versus ritial tem-perature for over 70 di�erent experiments on 4He �lms for di�erent substrates and �lm thik-ness [80℄. Right panel: Kosterlitz{Thouless ow governing the vortex binding{unbinding tran-sition in 4He �lms. E is the ore energy of a vortex. The dashed line represents a possiblepath in parameter spae; the quantum phase transition ours at the blak dot. At the transi-tion the superuid density jumps from the ritial value �rs =T = 3:491 � 10�9 g m�2 K�1to zero giving rise to the universal slope in the graph of the left panel.the superuid density arry over to a universal jump in Æ. Let us reall the analysis of thee�etive low-energy theory in Setion 7.3, espeially its RG ow diagram Fig. 7.4. In the\frozen mini-domain" phase the system ows towards a line of �xed points and the �xedpoint value of the Kondo oupling Jz and the assoiated phase shift Æ inrease ontinuouslyupon approahing the phase boundary. Diretly at the phase transition the �xed point valueof the phase shift aquires the Toulouse value ÆT = �=2(1 � 1=p2). After rossing the phaseboundary, however, the physis is ontrolled by a single strong oupling �xed point whihorresponds to the unitary limit Æ = �=2. At the Kosterlitz{Thouless quantum phase tran-sition the phase shift therefore undergoes the universal jump from ÆT to �=2! The analysispresented in Setion 7.3 was on�ned to the viinity of the Toulouse point. However, univer-sality demands that the phase shift, whih is a measurable low-energy property of the model,jumps by the same value along the whole phase boundary of the phase diagram, Fig. 7.6,given that no further �xed point is intervening. That the latter does not happen was shownby the NRG alulations.We shall show in the following that depending on the type of experiment the universal jumpof the phase shift results in either a universal frational ritial ondutane or a harateristizero-bias anomaly.7.6.1 Universal ondutane of Ising-oupled quantum dotsConsider �rst the experimental set-up skethed in the left panel of Fig. 7.11 where the on-dutane through the left dot is measured. The linear ondutane an be obtained from theKubo formula [81℄, G = lim!!0 e2~ 1! 1Z0 dt ei!th[j(t); j(0)℄i ; (7.64)138
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Chapter 7. Mini-Domains in Quantum DotsIn the right panel of Fig. 7.11 the zero-temperature ondutane lose to the phase tran-sition is shown. At any �nite temperatures, the jump in the ondutane is strongly smearedas skethed shematially in the �gure. There are di�erent rossover sales whih we havealready disussed in the ontext of the temperature dependene of the entropy, see Fig. 7.9.The T -dependene at lowest temperature is determined by the dimension of the leading ir-relevant operators. In the Kondo-sreened phase, Æ � ÆT , the leading orretions for T ! 0to the Kondo ondutane G0 are Fermi-liquid like and of order (T=T �)2 for T � T �. HereT � is the solitoni Kondo temperature (7.50) and is exponentially small lose to the quantumphase transition. However, at a temperature of order T �,T � T � ' A exp24� BqTKKz � TKKrz 35 ) TKKz � TKKrz � B2log2A=T ; (7.67)logarithmi temperature orretions take over. (The quantities A and B depend on the Isingoupling Kz and on the single impurity Kondo temperature TK .) Aording to the poorman's saling equations (7.37) the strong oupling limit, J � � 1, is only reahed when theenergy uto� has resaled to a value of the order of T �. If, however, the RG ow is stoppedat a temperature T > T �. Then the e�etive ouplings are rather of orderJ (T )� � 1log T=T � : (7.68)This leads to a orretion of the phase shift Æ and, as onsequene, a temperature orretionto the ondutane of order 1logT=T � . The same holds true in the frozen mini-domain phasenear the transition where the orretion is of order 1log T=Tross with the rossover temperatureTross de�ned in (7.52). On the other hand, deep in the frozen mini-domain phase the urrentoperator j an be alulated perturbatively in the single-impurity Kondo ouplings. Theleading ontribution stems from the olletive mini-domain ip and is of order j � O(J2?) andtherefore arries the same saling dimension as the domain ip operator Hipe� (7.4). Puttingthis into the Kubo formula we obtain the saling dimension of the assoiated ondutanedim[G℄ = 2 dim[j℄�2 = 2dim[Hipe� ℄�2. Hene, the temperature orretion deep in the frozenmini-domain phase is given byG(T ) / T 2dim[Hipe� ℄�2 = T 8( 2Æ� � 2ÆT� )2�8( 2Æ� � 2ÆT� ) : (7.69)In the set-up onsidered here, Fig. 7.11, the mini-domain onsists of real spins and aperpendiular diret oupling, K?, will always be present in ontrast to the assumptionson whih the mini-domain model (7.1) is based. All the above onsiderations are thereforeonly valid for temperatures large enough that the splitting of the antiferromagneti doublet,Fig. 5.1, is not yet resolved. This might appear too aademi. Nevertheless, the Kosterlitz{Thouless phase transition gives rise to a remarkable universal frational ondutane in thisexperiment and this may serve as an illustration that a quantum phase transition might be apossible mehanism for the generation of non-integer ondutane features in nanostrutures,suh as the infamous 0.7 ondutane anomaly [82℄ observed in quantum point ontats.7.6.2 Zero-bias anomaly of apaitively oupled quantum dotsThe model is probably most easily experimentally realized in a system of two apaitivelyoupled quantum dots. The eletron{eletron interation has a dramati e�et on small140
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Chapter 7. Mini-Domains in Quantum Dots�i, whih also partiipate in the single-impurity Kondo e�et (7.2). For this to be the asethe distane between the ontats has to be suÆiently small, as indiated in Fig. 7.12.We alulate the ondutane in perturbation theory in the inter-dot tunneling �. We�rst onsider the \frozen mini-domain" phase. Following the arguments given in Setion 7.1,the dimension of the tunneling term (or equivalently of the urrent operator) with respet tothe \frozen mini-domain" �xed point is given bydim[Htun℄ = �2Æ� �2 +�1� 2Æ� �2 : (7.71)This is smaller than 1, i.e. it is a relevant perturbation to the mini-domain Hamiltonian.At this stage it is essential that the eletrons involved in tunneling also partiipate in thesingle-impurity Kondo e�et. If this were not the ase the saling dimension would rather bedim[Htun℄ = 2(2Æ� )2+1 missing the omposite harater between impurity spin and ondutioneletrons rendering the tunneling perturbation irrelevant.Similar arguments to those in the previous setion yield for the ondutaneG(T ) � �2 T 2 dim[Htun℄�2 = �2 T�4 2Æ� (1� 2Æ� ) : (7.72)This divergene of the ondutane arises beause the tunneling is a relevant perturbationwhih will �nally destroy the \frozen mini-domain" phase and quenh its residual entropylog 2 below some small energy sale. Eq. (7.72) is therefore only valid for suÆiently small �,when this energy sale is smaller than the temperature T . Furthermore, a �nite domain-iprate indued by (7.4) is required to obtain a �nite urrent. Above we impliitly assumed that� is so small that it determines the bottlenek for harge transport.At �nite voltage V � T , T in (7.72) an be replaed by V and we expet a zero-biasanomaly haraterized by a pronouned peak in the ondutane:G(V ) � jV j�4 2Æ� (1� 2Æ� ) : (7.73)As the quantum phase transition is approahed, the divergene inreases and at the Kosterlitz{Thouless transition it takes the universal formGr(T ) � T�2(p2�1) � T�0:83 ; (7.74)Gr(V ) � jV j�2(p2�1) � jV j�0:83 (7.75)up to logarithmi orretions.In the Kondo-sreened Fermi liquid phase, the saling dimension of the tunneling Hamil-tonian (7.70) will be marginal, leading to a onstant ontribution to the ondutane belowthe harateristi temperature sale T �G(V ) � G(T ) � onst: (7.76)In Fig. 7.12 we show shematially the nonlinear ondutane as a funtion of voltage, V , inthe viinity of the quantum phase transition.In ontrast to (7.72) and (7.76), N. Andrei et al. [9℄ obtained an exponentially smallondutane in the \frozen mini-domain" phase and G � T 4 in the Fermi liquid phase, whihwe believe are inorret. 142



7.7. Disussion7.7 DisussionWe have onsidered the model (7.1) of two loal moments oupled by an Ising interation Kz,where eah loal moment is in addition oupled to its own fermioni bath via a Kondo inter-ation with the assoiated energy sale TK . This model exhibits a quantum phase transition.We have derived the e�etive theory near the phase transition, whih turned out to bean e�etive Kondo model. As a onsequene, we were able to onlude that the quantumphase transition belongs to the Kosterlitz{Thouless universality lass. In deriving the e�etivemodel we made use of a speial point in parameter spae known as the Toulouse point whihturned out to be part of the phase boundary. We applied a Shrie�er{Wol� transformationin the time domain to apture power-law renormalizations of the e�etive Kondo ouplingsarising from an orthogonality atastrophe in the high-energy setor. This was neessary inorder to obtain a universal e�etive Kondo theory independent of the uto� struture of theoriginal high-energy theory (7.1). The Kondo pseudospin degree of freedom was shown toorrespond to the degenerate on�gurations of a magneti mini-domain. Interestingly, thefermioni degrees of freedom of the e�etive Kondo model are solitoni spin exitations of theondution eletrons.The following physial piture of the quantum phase transition emerged. For energieslarger than the Ising interation Kz the two loal moments utuate independently. At anenergy sale of order ofKz a well-de�ned mini-domain forms. Consequently, for lower energiesthe two loal moments utuate in a orrelated fashion. This dynamis is desribed by theabove mentioned e�etive Kondo model. The quantum phase transition is now assoiatedwith the fate of this utuating mini-domain. The ontrol parameter is the ratio of theIsing interation Kz and the Kondo temperature TK of a single impurity. For TK � Kzthe utuations freeze out at lowest energies and the mini-domain is loked in one of thetwo degenerate on�gurations, giving rise to a residual entropy of log 2. For TK � Kz,however, the mini-domain undergoes a luster Kondo e�et, being sreened by olletive spinexitations of the two ondution Fermi seas.Due to the solitoni nature of the fermioni degrees of freedom involved in the olletiveKondo e�et the phase shift of the ondution eletrons jumps at the phase transition from�=2(1� 1=p2) to �=2. This universal jump in the phase shift is the analogue of the universaljump in the superuid densities at the vortex binding{unbinding transition in superuid 4He�lms. The universal jump in the phase shift would give rise to harateristi signatures intransport experiments, suh as a universal jump in the ondutane or a harateristi zero-bias anomaly.
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Appendix B
B.1 Unitary transformation: absorption of a minus signIn this appendix it will be shown expliitly that the Hamiltonian (6.50) an be transformedto (6.53) by the unitary transformationD � eA = expf i �2Xk0 	yk0�0�0 12(1� �3�0�0)�3�0�0 	k0�0�0g : (B.1)The diagonal part H0 and the pseudospin-Zeeman splitting in (6.50) remain invariant underthe rotation D. Only the term ontaining the pseudospin-Kondo oupling will be a�eted byD. Due to the struture of the oupling matrix J imn(k; q), f. (6.51), the pseudospin-Kondooupling onsists only of the following operators	yk�� �m��	q�� where m = 0 or 3 ; (B.2)	yk�� �3�� �m��	q�� where m = 1 or 2 ; (B.3)where a summation over the spin and pseudospin indies is implied, however not over themomenta. To evaluate the transformation of these operators we will use the Baker-Haussdor�formula whih reads DBDy = eAB e�A = 1Xn=0 1n! [A;B℄n ; (B.4)where [A;B℄n+1 = [A; [A;B℄n℄ and [A;B℄0 = B. The operator B is one of the two operators,(B.2) or (B.3). First we alulate the required ommutators.1. B = 	yk�� �m��	q��In this ase the ommutator of A and B vanishes for m = 0 or 3,[A;B℄ = [A;	yk�� �m��	q��℄ = 0 if m = 0 or 3 ; (B.5)so that B remains invariant under D.2. B = 	yk�� �3�� �m��	q��The index m is understood to be either 1 or 2. In this ase the ommutators read[A;B℄1 = �� 	yk�� 12(1� �3��)�m3l�l��	q�� (B.6)[A;B℄2 = �2 	yk�� 12(1� �3��)�m��	q�� (B.7)[A;B℄n+2 = ��2 [A;B℄n (B.8)144



B.2. Symmetries of the e�etive mini-domain HamiltonianInserted into the Baker{Hausdor� formula this givesDBDy = B + 1Xn=1 1(2n)! [A;B℄2n + 1Xn=0 1(2n+ 1)! [A;B℄2n+1 (B.9)= B + 1Xn=1 1(2n)! (��2)n�1 [A;B℄2 + 1Xn=0 1(2n+ 1)! (��2)n [A;B℄1 (B.10)= B + 2��2 [A;B℄2 = 	yk�� �m��	q�� (B.11)With the transformation D we an therefore eliminate the oupling to the �3 omponent.Consequently, the relative minus sign between the spin-up and spin-down omponents isremoved and we end up with the e�etive Hamiltonian (6.53).B.2 Symmetries of the e�etive mini-domain HamiltonianWe would like to onsider whih kind of onstraints on the parameters of the e�etive Hamil-tonian (6.53) are posed by symmetries. However, in order to avoid a disussion of the sym-metry properties of the rotation operator D, (6.52), whih was applied to obtain the e�etiveHamiltonian, we will rather onsider the preliminary e�etive Hamiltonian (6.50)�H = H0 +Xkq J imn(k; q) : 	yk�� �i�� �m��	q�� : �n2 + (K? + h?) �32 : (B.12)As explained in the text the symmetry properties of the oupling matrix of the e�etiveHamiltonian Jmn(k; q) follow straightforwardly from the those of J imn(k; q).1. HermitiityFrom the ondition that the Hamiltonian must be hermitian it follows that(J imn)�(k; q) = J imn(q; k) : (B.13)In partiular, if one neglets the momentum dependene the oupling matrix will bereal.2. Conservation of the z-omponent of the total spinThe basis of our model was the assumption that the z-omponent of the total spin,Sz(R=2) + Sz(�R=2) + 12Pk� yk� �z�� k� , is onserved. The pseudospin of the mini-domain � ommutes with Sz(R=2) + Sz(�R=2) by onstrution, so the onservation ofthe z-omponent of spin redues to the ondition[ �H;Xk� yk� �z�� k� ℄ = 0 ; (B.14)from whih one derives the ondition on the ouplingJ imn(k; q) = 0 for i = 1; 2 : (B.15)145



Appendix B3. ParityAording to (6.4) the pseudospin �n, n = 0; 1; 2; 3, transforms under parity as�n �! (1� 2Æn1)(1� 2Æn2)�n ; (B.16)where in this ase no summation over the index n is implied. The eletron operatorstransform under parity as (6.10) 	q�� �! �	q�� : (B.17)Invariane under parity yield the following ondition on the ouplingJ imn(k; q) = (1� 2Æn1)(1� 2Æn2)(1� 2Æm1)(1 � 2Æm2)J imn(k; q) : (B.18)4. Time-reversal symmetryUsing the transformation properties of the pseudospin (6.7) and of the eletron operatorsunder time-reversal, 	q�� �! i��2��	q�� ; (B.19)we obtain the ondition on the oupling(J imn)�(k; q) = (1� 2Æn1)(1� 2Æm1)(2Æi0 � 1)J imn(k; q) : (B.20)The oupling matrix at the Fermi momentum, J imn � J imn(kF; kF), plays a speial role inthe analysis of the e�etive Hamiltonian sine the deviations from it are irrelevant in theRG sense. From the requirement of hermitiity it follows that the oupling J imn will bereal. Moreover, spin onservation, parity and time-reversal symmetry demand that only theoeÆients J 011;J 000;J 003;J 030;J 033 and J 312;J 321 are non-vanishing. As outlined in Setion 6.4all these ouplings exept J 011 are generated in the Shrie�er-Wol� transformation.B.3 E�etive parameters of the mini-domain HamiltonianB.3.1 Pseudomagneti �eldFor T = 0 the pseudomagneti �eld (6.54) readsh? = 1�4 J2?R2 kFZ0 dk 1ZkF dq k q�k � �q �Kz=2 sin (kR) sin (qR) : (B.21)We will start by onsidering the ase kFR � 1. To obtain the leading order in this limit weneglet the osillatory part altogether. Furthermore, we introdue the density of states perspin �(�� �F) = 4�k2(2�)3 dkd(�� �F) : (B.22)and assume the density of states to be onstant�(!) = ��(D2 � !2) ; (B.23)146



B.3. E�etive parameters of the mini-domain Hamiltonian
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Figure B.1: Stationary-phase integration ontours. C1 is used for the integral I1 and C2for the integral I2.where D is the ut-o� of the band. We obtain the following estimate for the pseudomagneti�eld h? � 4J2? 0Z��F d!1 1Z0 d!2 �(!1)�(!2)!1 � !2 �Kz=2� 4(J?�)2 0Z�D d!1 DZ0 d!2 1!1 � !2 �Kz=2= �4(J?�)2�Kz log� Kz=2Kz=2 +D�+ (Kz + 4D) log�Kz + 4DKz + 2D��� �8(J?�)2( D log 2 if D � KzD2Kz if D � Kz� �8(J?�)2 min�D; D2Kz� if kFR� 1 : (B.24)The derivation in the limit kFR� 1 is more elaborate. We will use the method of steepestdesent [85℄, for whih we �rst have to deform the integration ontours of the integrals in(B.21) to stationary phase ontours. As a �rst step onsider the integralI1 = 1ZkF dq q�k � �q �Kz=2 sin (qR) = 12 i 1ZkF dq q�k � �q �Kz=2 �eiqR � e�iqR� (B.25)The stationary-phase integration ontour we use for this integral is shown in Fig. B.1. Theontour C1 is needed for the �rst term of I1 with the positive imaginary part in the exponent.For the seond term with the negative imaginary part in the exponent we use the ontourC1 reeted in the real axis. These ontours together with the real axis do not enlose anysingularity. Furthermore, the part over the quarter irle vanishes at in�nity in eah ase andthe integral I1 beomesI1 = kF2 1Z0 dt e�kFRt� kF(1 + it)�k � �kF(1+it) �Kz=2eikFR + kF(1� it)�k � �kF(1�it) �Kz=2e�ikFR� : (B.26)147



Appendix BWe proeed analogously with the seond integral. ConsiderI2 = kFZ0 dk k�k � �q �Kz=2 sin (kR) = 12 i kFZ0 dk k�k � �q �Kz=2 �eikR � e�ikR� : (B.27)We deform the integration along the ontour C2 shown in Fig. B.1, and again for the negativeimaginary exponent we use the ontour reeted in the real axis. These ontours do notsurround any singularity, and the integral over the horizontal part vanishes at in�nity. Weare left withI2 = kF2 1Z0 du e�kFRu�� ikFu�kFiu � �q �Kz=2 � kF(1 + iu)�kF(1+iu) � �q �Kz=2eikFR� (B.28)� � ikFu��kFiu � �q �Kz=2 + kF(1� iu)�kF(1�iu) � �q �Kz=2e�ikFR�� :The eletron energy, �k, is an even funtion of k whih is ensured by the symmetries of ourmodel, time-reversal invariane and parity symmetry, so the �rst and third term anel eahother.Combining the results of both integrals we an rewrite the expression for the pseudomag-neti �eld (B.21). We obtainh? = � 12�4 J2? k4FR2 Re8<: 1Z0 dudt e�kFR(u+t) (B.29)� � (1 + iu)(1 + it)�kF(1+iu) � �kF(1+it) �Kz=2 e�i2kFR + (1 + iu)(1 � it)�kF(1+iu) � �kF(1�it) �Kz=2��So far we have not made use of any approximations. However, we have put the expressionfor h? into a form suitable for the appliation of the method of steepest desent in the limitkFR� 1. This will be done in the following. The exponential fator with the large kFR in theexponent ensures that the term in the square brakets ontributes only for small (u+t). Sineboth integration variables, u and t, are positive it follows that the ontribution is appreiableonly if both u and t are small. So in order to obtain the leading ontribution in (kFR)�1 weexpand the term in the square braket in u and t simultaneously. It readsh? � � 12�4 J2? k4FR2 Re8<: 1Z0 du dt e�kFR(u+t)� � 1vFkFi(u� t)�Kz=2 e�i2kFR + 1vFkFi(u+ t)�Kz=2��= 12�4 J2? k2FvFR3 Re8<: 1Z0 du dt e�(u+t) 1Z0 d� e�RKz2vF � �ei(2kFR+(u�t)�) + ei(u+t)��9=;= (J?�)2 2vFkF(kFR)3 �os (2kFR)� � ����F(�) ������ = RKz2vF ; (B.30)148



B.3. E�etive parameters of the mini-domain Hamiltonianwhere we have introdued the Fermi veloity vF = d�(kF)=dk and the density of states perspin at the Fermi energy � = k2F=(2�2vF). Furthermore, the funtion F is de�ned asF(�) = 1Z0 d� e��� 11 + �2 : (B.31)Due to the energy Kz=2 in the denominator, whih is the energy di�erene between theantiferromagneti and the ferromagneti states, the result is dependent on the parameter� = RKz=(2vF). For small and large � the funtion F is approximatelyF(�) = 8><>: 1� � 2�3 +O( 1�5 )�2 + ( � 1)� + � log�+O(�2) (B.32)where  = 0:5772 : : : is the Euler onstant. So we obtain �nally for h? the leading ontributionin (kFR)�1 for small and large � = RKz=(2vF),h? � (J?�)2 2vFkF(kFR)3 8><>: 2 os2 (kFR)� +O(��3)(�2 � �) os (2kFR) + 2�( + log�) os2 (kFR) +O(�2) (B.33)It is interesting to note that the limit � � 1 reovers the usual expression for the RKKYinteration. For large � the os(2kFR) osillation hange into os2(kFR) osillations.B.3.2 Pseudospin Kondo ouplingSetting the momenta of the oupling matrix J (k; q) (6.51) equal to the Fermi momentumyields for the �nite omponents� J00 J03J30 J33 � = 4(2�)4J2? k2FXk k2 G�kFkF;k0BB� 1 sin (kFR)kFR sin (kR)kRsin (kFR)kFR sin (kR)kR 1CCA (B.34)� J11 J12J21 J22 � = 12�2Jz k2Fs1��sin (kFR)kFR �2� 0 01 0 � (B.35)+ 4(2�)4J2? k2Fs1��sin (kFR)kFR �2Xk k20� 0 �sin (kR)kR G�kFkF;k�G+kFkF;k 0 1AIt will be onvenient to introdue the quantities S and A, whih are essentially the integralsover G+kFkF;k and G�kFkF;k respetively. Therefore, S is partile{hole symmetri and A partile{149



Appendix Bhole antisymmetri. At zero temperature we obtain the estimatesS � � 12� 4�(2�)3 1Z0 dkk2 G+kFkF;k = � 12� 1Z��F d! �(!) � 1� f(!)�! �Kz=2 + f(!)! �Kz=2�� 1Z�1 d! �(�!) + �(!)2� f(!)Kz=2� !� DZ�D d! f(!)Kz=2� ! = log�1 + DKz=2� (B.36)and A � � 12� 4�(2�)3 1Z0 dkk2 G�kFkF;k = 1Z��F d! �(!)2� � f(!)! �Kz=2 � 1� f(!)�! �Kz=2�� 1Z�1 d! �(�!)� �(!)2� f(!)Kz=2� !� �0� 0Z�D d! !! �Kz=2 = �0D� �1 + Kz=2D log� Kz=2Kz=2 +D��� 8<: �0D� �1 + Kz2D log �Kz2D �� if D � Kz�0� D2Kz if D � Kz : (B.37)In the line indiated by � we have assumed the density of states per spin to be�(!) = (�+ �0 !)�(D2 � !2) ; (B.38)where � = k2F=(2�2vF) is the density at the Fermi energy. Irrespetive of the value of kFRthe omponents J00 and J30 are always proportional to A and therefore vanish exatly in thease of partile{hole symmetry.To obtain an estimate in the limit of small kFR we again neglet the osillatory terms inthe integrals. For kFR� 1 the leading order ontribution reads� J00 J03J30 J33 � =� 2vF(J?�)20� A A+O (kFR)2A�1 +O (kFR)2� A+O (kFR)2 1A� J11 J12J21 J22 � =vF(Jz�)kFRp3 � 0 01 +O (kFR)2 0 � (B.39)+ 2vF(J?�)2 kFRp3 0� 0 A+O (kFR)2S �1 +O (kFR)2� 0 1A :In the other limit of large kFR we again use the method of steepest desent analogous tothe evaluation of h?. Consider for example the omponent J33. Using the stationary-phase150



B.4. Saling dimension of the leading irrelevant operatorintegration ontours of Fig. B.1 this integral an be rewritten asJ33 = 4(2�)4 J2? k2F 1Z0 dkk2 G�kFkF;k sin (kR)kR (B.40)= 4(2�)4 J2? k5FkFR Re8<: 1Z0 du e�kFRu eikFR� 1 + iu�F � �kF (1+iu) �Kz=2 + 1 + iu�kF (1+iu) � �F �Kz=2�9=; :The leading ontribution in (kFR)�1 is obtained when the term in the brakets is expandedfor small u:J33 � 4(2�)4 J2? k5FkFR Re8<: 1Z0 du e�kFRu eikFR� 1�vFkF iu�Kz=2 + 1vFkF iu�Kz=2�9=;= �2vF (J?�)2 os(kFR)kFR F(�)������ = RKz2vF ; (B.41)where we again used the funtion F de�ned in (B.31) and � = k2F=(2�2vF) is the density ofstates at the Fermi energy. The other oupling omponents an be derived similarly and weget� J00 J03J30 J33 � �� 2vF (J?�)2 0BB� A sin(kFR) os(kFR)(kFR)2 F �RKz2vF �A sin(kFR)kFR os(kFR)kFR F �RKz2vF � 1CCA (B.42)� J11 J12J21 J22 � �vF (Jz�) � 0 01 0 �+ 2vF (J?�)2 0B� 0 os(kFR)kFR F �RKz2vF �S 0 1CA :The omponents of the e�etive Kondo oupling are ordered in the following hierarhyjJ21j > jJ33j = jJ12j if kFR� 1 : (B.43)B.4 Saling dimension of the leading irrelevant operatorIn the strong oupling analysis of the mini-domain model (7.1) in Setion 7.1 the salingdimension of the ip operator Hip (7.4) was determined using Hop�eld's rule of thumb. Inthis appendix the result obtained is veri�ed with the help of the bosonization tehnique alongthe lines of the treatment of the x-ray edge singularity by K. D. Shotte and U. Shotte [74℄.We would like to obtain the saling dimension with respet to the unperturbed Hamilto-nian H0 of (7.3). Let j0L; 0R; �L; �Ri be the ground state of H0 where �L; �R ="; # indiatesthe spin of the left and right impurity and j0ji, with j = L;R, represents the ground stateof the ondution eletrons in the left and right lead, respetively. Sine we assume that thetwo impurities are frozen into the antiferromagneti on�gurations we have �L = ��R. The151



Appendix Borrelator (7.5) whose time dependene determines the sought-after saling dimension thenreads hHip(t)Hip(0)iH0 = X�=";#h0L; 0R; �;��jHip(t)Hip(0)j0L; 0R; �;��i= �4J2?Kz �2 hh0L; 0R; #; " j hS+RS�L y#R"Ry"L#Lit hS+LS�Ry#L"Ly"R#Rit=0 j0L; 0R; #; "i(B.44)+h0L; 0R; "; # j hS+LS�Ry#L"Ly"R#Rit hS+RS�L y#R"Ry"L#Lit=0 j0L; 0R; "; #ii :Sine the left and right sub-systems are not oupled by the Hamiltonian H0 the matrixelements fatorize into produts of matrix elements involving only degrees of freedom of asingle sub-system. Moreover, we assume the left and right sub-systems to be symmetri sothat we an drop the index R=L altogether yielding2�4J2?Kz �2 h0; # j hS�y"#it hS+y#"it=0 j0; #ih0; " j hS+y#"it hS�y"#it=0 j0; "i : (B.45)Realizing that the remaining produt onsists of matrix elements that are time-reversed toeah other we are �nally left withhHip(t)Hip(0)iH0 = 2�4J2?Kz �2M(t)M�(�t) (B.46)where the matrix element is given byM(t) = h0; # jS�(t)y"(t)#(t)S+(0)y#(0)"(0)j0; #i : (B.47)The time-dependene of the operators stems from using the interation representation,O(t) = eiH(1)0 tOe�iH(1)0 t ; (B.48)and the Hamiltonian H(1)0 desribes a single sub-system only, H(1)0 = H0[�℄ + Jzp2�Sz�x�(0).The orrelator (B.47) is easily evaluated within bosonization, ompare setion 7.2. Applyingthe bosonization identity (7.9) it beomesM(t) = 1(2�a)2 h0; # jeiH(1)0 tS�F y" ei�"(0)F# e�i�#(0)e�iH(1)0 tS+F y# ei�#(0)F" e�i�"(0)j0; #i (B.49)The Klein fators anel eah other, F y�F� = 1, and an be omitted. (Their time dependenean be negleted in the limit of large system size.) The essential step will be the appliationof a general Emery{Kivelson transformation (7.13) with  = p2Jz�, where � = 1=(2�vF),whih transforms the bosonized Hamiltonian into a diagonal form,UH(1)0 U y = X�=";#H0[�� ℄ (B.50)where H0[�� ℄ is given by (7.12). Introduing the transformed vauum U j0i = j0̂i and thespin �eld �s = 1p2 (�" � �#) the orrelator redues toM(t) = 1(2�a)2 h0̂jeip2(1�Jz�)�s(t)e�ip2(1�Jz�)�s(0)j0̂i : (B.51)152



B.5. Spin{Boson model representationThe atual attrativeness of the bosonization approah is that the remaining orrelator ofbosoni �elds an be evaluated [76℄,M(t) = 1(2�a)2 (1 + it=a)�2(1�Jz�)2 : (B.52)Correspondingly, the orrelator behaves in the long-time limit ashHip(t)Hip(0)iH0 � 2�4J2?Kz �2 1(2�a)4 (it=a)�4(1�Jz�)2 ; (B.53)implying a saling dimension of the ip operator in agreement with the result of Setion 7.1dim [Hip℄ = 2 (1� Jz�)2 = 2�1� 2ÆJz� �2 : (B.54)In the last step we made use of the relationship between the oupling onstant Jz and thephase shift in the bosonization uto� sheme, ompare (7.18).B.5 Spin{Boson model representationIn the mapping of the mini-domain model (7.1) onto the generalized Anderson model (7.15)in Setion 7.2 we made use of the Emery{Kivelson transformation (7.13) with the value = p2 � 1. In this appendix we are going to show that for another value the mini-domainmodel an be put into the form of two oupled spin{boson models [86℄. For the partiularvalue  = p2 the bosoni �elds deouple from the spin ip operator in expression (7.14).Introduing the Fourier omponents for the derivative of the bosoni spin �elds,�x�sj(x) =Xk>0r2�kL �bkje�ikx + bykjeikx� e�ak=2 ; (B.55)the kineti Hamiltonian (7.12) an be rewritten asH0[�sj℄ = vF Z dx2� 12 : (�x�sj(x))2 :=Xk>0!k bykjbkj � H0[bkj℄ ; (B.56)with !k = vFk. Eah single-impurity Kondo model redues to a so-alled spin{boson modeland the mini-domain model then takes the formHCSB =KzSzLSzR + Xj=L;R H0[bkj ℄ + �Sxj +Xk>0 �k Szj �bykj + bkj�! ; (B.57)where the parameters are given in terms of the Kondo ouplings by� = J?�a and �k =r2�kL � Jzp2� �p2vF� e�ak=2 : (B.58)The properties of the spin{boson model are ompletely parametrized by the spetral funtionJ(!) �Xk>0 �2k Æ(! � !k) = 2�! e�!=! : (B.59)The last equality de�nes the Ohmi form of the spetral funtion haraterized by the strength�, and ! is a uto�. From the mapping it follows that � = (Jz� � 1)2 with � = 1=(2�vF)and ! = vF=a. 153



Appendix BB.6 Anderson{Yuval{Hamann RGIn this setion we rederive in the bosonoziation approah the saling equations of the Kondomodel found by P.W. Anderson, G. Yuval and D.R. Hamann (AYH) [78℄. We �nd that inthe language of bosonization the AYH RG an be reinterpreted as a sequene of in�nitesimalunitary transformations. We will perform the RG on a Hamiltonian level by onsidering theimaginary time S-matrix instead of its average, the partition funtion, as was done by AYH.We start from the bosonized version of the Kondo Hamiltonian (ompare Setion 7.2):HK = H0[�℄ + Jzp2�Sz�x�(0) + J?2�a �S+Fe�ip2�(0) + h..� : (B.60)The Jz term an be absorbed into the saling dimension of the vertex operator appearing inthe spin-ip term by applying the \boundary ondition hanging operator" [74, 77℄U � eiSz�(0) ; (B.61)with  = p2Jz� and the density of states � = 1=(2�vF). The transformed Hamiltonianbeomes UHKU y = H0 +Hint with the interation HamiltonianHint = J?2�a �S+Fe�i��(0) + h..� where � = p2 (1� Jz�) : (B.62)The imaginary time S-matrix isS = T exp ��Z �0 d�Hint(�)� = 1Xn=0 (�1)n �Z0 d�n �nZ0 d�n�1 : : : �2Z0 d�1Hint(�n) : : : Hint(�1) :(B.63)In an RG-step we are going to integrate out short time sales and absorb the generated termsinto a renormalization of the oupling onstants. Formally this is ahieved by separating fromeah time integral an on-shell part�m+1Z0 d�m = �m+1�d�Z0 d�m + �m+1Z�m+1�d� d�m ; (B.64)where d� > 0 is in�nitesimally small. First let us onsider the e�et of the on-shell part ofthe mth integral only. We get: : : �m+3Z0 d�m+2 �m+2Z0 d�m+1 �m+1Z�m+1�d� d�m �mZ0 d�m�1Hint(�m+2)Hint(�m+1)Hint(�m)Hint(�m�1) : : := : : : �m+3Z0 d�m+2 �m+1Z0 d�m�1Hint(�m+2)�0B� �m+2Z�m�1 d�m+1 �m+1Z�m+1�d� d�mHint(�m+1)Hint(�m)1CAHint(�m�1) � � �+O(d�2) :154



B.6. Anderson{Yuval{Hamann RGOn the right-hand side of the equation we replaed the upper limit �m of the (m� 1)th timeintegral by �m+1 induing an error of order d�2. However, this enables us to absorb the mthand (m+1)th spin ips into a renormalized interation between adjaent ips. These are the\lose pairs" of AYH whih e�etively \will hange the mean magnetization slightly". Doingthis for all time integrals the S-matrix an be put into the formS = 1Xn=0 (�1)n ��d�Z0 d�n �n�d�Z0 d�n�1 : : : �2�d�Z0 d�1V (�; �n)Hint(�n)V (�n; �n�1) (B.65)Hint(�n�1)V (�n�1; �n�2) : : : Hint(�2)V (�2; �1)Hint(�1)V (�1; 0) ;where V (�m+1; �m) = 1 + �m+1Z�m d� 0 � 0Z� 0�d� d� 00Hint(� 0)Hint(� 00) +O(d�2) : (B.66)In the following we are going to simplify the expression for V further. Sine the time arguments� 0 and � 00 are separated at most by the small time d� we an apply an operator produtexpansion [76℄ to the integrand. Always negleting ontributions of order d�2 we get (in thelimit of zero temperature)V (�m+1; �m) � 1 +� J?2�a�2 �m+1Z�m d� 0 � 0Z� 0�d� d� 00 �S+Fe�i��(� 0) + h..��S+Fe�i��(� 00) + h..�= 1 +� J?2�a�2 �m+1Z�m d� 0 � 0Z� 0�d� d� 00e�i2Sz��(� 0)ei2Sz��(� 00) (B.67)� 1 + d� � J?2�a�2 �m+1Z�m d� 0 �1� i2Sz�a�� 0�(� 0)� :This is the right moment to pause for a bit and to spend some words on the uto� proedurewe have hosen. We have applied a sharp uto� sheme and separated a �xed time slie d�as the on-shell part of the time integral. We ould equally well have hosen a multipliativerenormalization of the upper limits of all time integrals in the S-matrix, �m ! �medl, with anin�nitesimal dl. This however would have led us to a time slie d� = � 0� � 0e�dl � � 0dl depen-dent on � 0 in the integrand of the expression for V . The renormalization of the interationbetween spin ips V and all resulting saling equations therefore depend on the preise formof the uto� sheme (f. also the appendix of AYH). In partiular, the remaining integral inexpression (B.67) an be most easily performed with the additive on-shell separation hosenhere, V (�m+1; �m) � 1 +� J?2�a�2 d� (�m+1 � �m � i2Sz�a (�(�m+1)� �(�m)))� exp"� J?2�a�2 d� (�m+1 � �m � i2Sz�a (�(�m+1)� �(�m)))#� exp"� J?2�a�2 d� (�m+1 � �m)#Ud�(�m+1)U yd�(�m) (B.68)155



Appendix Bwhere U is the \boundary ondition hanging operator" (B.61) in the interation representa-tion with d� = �d�(J?=(2�a))2 2�a. Putting this result into the expression for the S-matrixwe getS = exp"� J?2�a�2 �d�# (B.69)�Ud� 1Xn=0 (�1)n ��d�Z0 d�n �n�d�Z0 d�n�1 : : : �2�d�Z0 d�1H 0int(�n) : : : H 0int(�1)U yd� ;where we have used U yd�(0) = U yd�(�) = U yd� sine for bosons �(�) = �(0). This expression forthe S-matrix should be ompared to equation (15) of AYH [78℄. The renormalized intera-tion Hamiltonian is given by an in�nitesimal unitary transformation of the bare interationHamiltonian,H 0int = U yd�HintUd� = J?2�a �S+Fe�i�0�(0) + h..� where �0 = �+ d� : (B.70)The displaement of the upper limits of all time integrals by the slie d� leads e�etively to arenormalization of the short distane uto� a! a0 = a+vFd� . Hene, before identifying therenormalized oupling onstants, we have to take into aount the impliit uto� dependeneof the bosoni �eld in the vertex operator of the interation Hamiltonian. This is easily doneif we normal order it sine in this form the uto� dependene beomes expliit,e�i�0�(0) = �2�aL ��02=2 : e�i�0�(0) : : (B.71)Now we have arrived at the �nal stage of this derivation. Comparing the parameters of therenormalized interation Hamiltonian H 0int with the original version Hint we an read o� therenormalizations of the oupling onstants,a �! a0 = a+ vFd�Hint �! H 0intJ?a�1+�2=2 �! J 0?a0�1+�02=2 = J?a�1+�02=2� �! �0 = �+ d� :In its di�erential form the AYH saling equations for the Kondo model therefore readsd log �d log a = �2 (J?�)2 (B.72)d log J?�d log a = 1� �22 (B.73)with � = p2(1 � Jz�). In the limit of small Jz the AYH saling equations redue to thefamous poor man's saling equations of the Kondo modeld(Jz�)d log a = 2 (J?�)2d(J?�)d log a = 2(Jz�)(J?�) : (B.74)
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