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Kurzzusammenfassung

Transporteigenschaften und Nichtgleichgewicht in stark korrelierten Materialien sind für
gewöhnlich schwer zu berechnen. Dies gilt sogar für minimalistische Modelle dieser Systeme
wie das fermionische Hubbard Modell.

Ultrakalte Atome in optischen Gittern ermöglichen eine alternative Realisierung des
Hubbard Modells und haben den Vorteil, frei von zusätzlichen Komplikationen wie Pho-
nonen, Gitterdefekten oder Verunreinigungen zu sein. Auf diese Weise können kalte Atome
als Quantensimulatoren stark korrelierter Materialien fungieren. Wir zeigen jedoch, dass
sich kalte Atome in optischen Gittern als thermisch isolierte Systeme auch sehr anders als
Festkörper verhalten können und eine Fülle neuer dynamischer Effekte aufweisen.

In dieser Doktorarbeit werden mehrere Nichtgleichgewichtsprozesse mit fermionischen
Atomen in optischen Gittern vorgestellt. Als erstes untersuchen wir die Expansion einer an-
fänglich gefangenen atomaren Wolke im untersten Band eines optischen Gitters. Während
nichtwechselwirkende Atome ballistisch expandieren, expandiert die Wolke in Anwesenheit
von Wechselwirkung mit einer drastisch reduzierten Geschwindigkeit. Markanterweise ist
die Expansionsgeschwindigkeit unabhängig vom attraktiven oder repulsiven Charakter der
Wechselwirkung, was eine neue dynamische Symmetrie des Hubbard Modells aufzeigt.

In einem zweiten Projekt diskutieren wir die Möglichkeit der Realisierung negativer ab-
soluter Temperaturen in optischen Gittern. Negative absolute Temperaturen beschreiben
Gleichgewichtszustände mit invertierter Besetzung der Energieniveaus. Hier schlagen wir
einen dynamischen Prozess zur Umsetzung equilibrierter Fermionen bei negativen Tem-
peraturen vor und untersuchen die Zeitskalen der globalen Relaxation ins Gleichgewicht,
die mit der Umverteilung von Energie und Teilchen durch langsame Diffusionsprozesse
verbunden sind.

Wir zeigen, dass Energieerhaltung einen großen Einfluss auf die Dynamik einer wechsel-
wirkenden atomarenWolke in einem optischen Gitter hat, die einem zusätzlichen schwachen
linearen (Gravitations-)Potential ausgesetzt ist. Anstelle “herunterzufallen” diffundiert die
Wolke symmetrisch im Gravitationspotential aufwärts und abwärts. Des Weiteren zeigen
wir analytisch, dass der Radius R mit der Zeit t gemäß R ∼ t1/3 anwächst, was konsistent
mit numerischen Simulationen der Boltzmanngleichung ist.

Abschließend untersuchen wir die Dämpfung von Bloch-Oszillationen durch Wechsel-
wirkung. Für ein homogenes System diskutieren wir die Möglichkeit, die Dynamik des
Teilchenstroms auf eine klassische gedämpfte harmonische Oszillatorgleichung abzubilden,
wodurch wir eine analytische Erklärung für den Übergang von schwach gedämpften zu
überdämpften Bloch-Oszillationen geben. Wir zeigen analytisch, dass die Dynamik einer
stark Bloch-oszillierenden und schwach gedämpften, wechselwirkenden atomaren Wolke
durch eine neuartige “stroboskopische” Diffusionsgleichung beschrieben werden kann. In
dieser Näherung wächst der Wolkenradius R asymptotisch in der Zeit t gemäß R ∼ t1/5

an.

i



ii



Abstract

Transport properties and nonequilibrium dynamics in strongly correlated materials are
typically difficult to calculate. This holds true even for minimalistic model Hamiltonians
of these systems, such as the fermionic Hubbard model.

Ultracold atoms in optical lattices enable an alternative realization of the Hubbard
model and have the advantage of being free of additional complications such as phonons,
lattice defects or impurities. This way, cold atoms can be used as quantum simulators of
strongly interacting materials. Being thermally isolated systems, however, we show that
cold atoms in optical lattices can also behave very differently from solids and can show a
plethora of novel dynamic effects.

In this thesis, several out-of equilibrium processes involving interacting fermionic atoms
in optical lattices are presented. We first analyze the expansion dynamics of an initially
confined atomic cloud in the lowest band of an optical lattice. While non-interacting atoms
expand ballistically, the cloud expands with a dramatically reduced velocity in the presence
of interactions. Most prominently, the expansion velocity is independent of the attractive
or repulsive character of the interactions, highlighting a novel dynamic symmetry of the
Hubbard model.

In a second project, we discuss the possibility of realizing negative absolute temper-
atures in optical lattices. Negative absolute temperatures characterize equilibrium states
with an inverted occupation of energy levels. Here, we propose a dynamical process to re-
alize equilibrated Fermions at negative temperatures and analyze the time scales of global
relaxation to equilibrium, which are associated with a redistribution of energy and particles
by slow diffusive processes.

We show that energy conservation has a major impact on the dynamics of an interacting
cloud in an optical lattice, which is exposed to an additional weak linear (gravitational)
potential. Instead of ‘falling downwards‘, the cloud diffuses symmetrically upwards and
downwards in the gravitational potential. Furthermore, we show analytically that the
radius R grows with the time t according to R ∼ t1/3, consistent with numerical simulations
of the Boltzmann equation.

Finally, we analyze the damping of Bloch oscillations by interactions. For a homoge-
neous system, we discuss the possibility of mapping the dynamics of the particle current to
a classical damped harmonic oscillator equation, thereby giving an analytic explanation for
the transition from weakly damped to over-damped Bloch oscillations. We show that the
dynamics of a strongly Bloch oscillating and weakly interacting atomic cloud can be dis-
cribed in terms of a novel effective “stroboscopic” diffusion equation. In this approximation,
the cloud’s radius R grows asymptotically in time t according to R ∼ t1/5.
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0

General Introduction

“I want to talk about the possibility that there is to be an exact simulation, that the com-
puter will do exactly the same as nature” - with these words, Richard Feynman promoted
his idea of quantum simulation. He suggested to try to build a quantum mechanical ma-
chine - a quantum computer - that would help to simulate and understand all other, more
complicated quantum systems [1]. Since Feynman promoted his idea in the 1980ies, the
construction of such a quantum computer is still not within reach. However, physicists
are currently exploring different options for a physical realization, and ideas range from
quantum dots and novel topological materials to trapped ions and neutral atoms.

Why is it so difficult to simulate a quantum system on a classical, i.e. conventional
computer? Typically, the computational costs for an exact simulation of a quantum system
increase exponentially with the number of involved particles. This applies in particular
e.g. to simulating the dynamics of interacting quantum systems, whose properties can
not be reduced to the properties of individual particles. As nowadays, both classical and
quantum computation fail in many respects, it is highly desirable to explore alternative,
more direct ways of simulating these systems. This is of great interest for modern condensed
matter physics, where many effects such as high temperature superconductivity or quantum
magnetism are collective phenomena and require a large number of particles.

Instead of trying to construct a universal machine that allows to study all other systems,
there is a modern field of research that tries to explore a different path: designing simpler
quantum systems to model specific more complex systems, such as strongly interacting
materials. This is the field of quantum simulation with ultracold atoms. Cold atoms in
optical lattices consist of neutral atoms that are trapped in the light of an interfering laser
beam. The intensity pattern of the laser forms a lattice structure in space, in which the
atoms are confined by an effective electromagnetic interaction. Also interactions between
the atoms can be induced in a controlled way. This artificial system of atoms confined to
a “crystal of light” resembles a crystalline solid, where the ultracold atoms play the role of
the lattice electrons. This way, condensed matter systems can be imitated with ultracold
atoms. The artificial solids can be used to examine many aspects of condensed matter
theory, such as exploring phase diagrams and extracting thermodynamic quantities or - as
done in the context of this thesis - transport properties.

Exploring condensed matter physics indirectly with cold atoms may answer long-
standing questions, such as the question if certain minimalistic models for strongly corre-
lated materials, such as the two-dimensional Hubbard model, suffice to explain the emer-
gence of high temperature superconductivity. Recently, a Mott insulator has been realized
with fermionic ultracold atoms, which mimics the insulating behavior of strongly repulsive
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electrons in certain materials [2, 3]. Among many other examples, also the phenomena of
Anderson localization [4], gauge fields [5], and the analog of vortices in superconductors [6]
have been transfered from the condensed-matter world to the field of cold atoms. But not
only realizing equilibrium phases of condensed matter physics is feasible with cold atoms:
they also have a special potential to address problems far from thermal equilibrium. While
electrons tunnel between the the sites of an atomic lattice within femtoseconds which is
very difficult to resolve, atoms tunnel between the optical lattice sites typically within
milli-seconds, which makes the direct observation of the collective dynamics experimen-
tally possible. This way, old unsolved problems involving non-equilibrium dynamics in
condensed matter systems can be explored in a new way.

There is an overall increasing interest in understanding non-equilibrium quantum sys-
tems for various reasons. Parts of the motivation came from the possibility of studying the
transport through mesoscopic devices such as quantum dots, which are also theoretically
accessible due to their reduced spatial dimensionality. For some of these systems, it has
been recently claimed that they are exactly solvable by the Bethe ansatz [7]. Apart from
that, transport through quantum dots can also be studied in the Kondo regime, which has
been addressed analytically using non-equilibrium versions of the renormalization group
approach [8, 9]. For bulk electronic transport, one has been mostly interested in the lin-
ear response regime in the previous decades, exemplified by calculating the electronic or
thermal conductivity. More recently, new sorts of experiments such as pump and probe
spectroscopy have also changed this focus. In this novel kind of measurement, the elec-
trons are excited locally, and it is even possible to observe the relaxation of those electrons
to equilibrium, which happens on the time scale of femtoseconds. In addition to pump
and probe spectroscopy, far-from-equilibrium electronic transport in strongly correlated
solids plays a role in the context of breaking the Mott insulating state by strong elec-
tric fields [10,11]. Understanding and predicting non-equilibrium transport through those
materials may open the possibility of building novel, promising electronic devices.

Apart from the possibility of simulating non-equilibrium processes with cold atoms,
they are already very interesting systems in their own right, especially in the field of
quantum non-equilibrium dynamics. Ultracold atoms in optical lattices have enriched this
field in many respects. One of the first and most prominent non-equilibrium experiment
with ultracold atoms has been the quench from the Mott insulating state to a superfluid
state for interacting bosonic atoms in optical lattices. It has been observed that the
superfluid order parameter periodically collapses and revives after the quench, until its
dynamics gets washed out by damping and decoherence [12]. This experiment has inspired
much theoretical research on quenches through a quantum phase transition. Especially,
the dynamics of thermalization after a quantum quench are a topic of growing theoretical
interest due to the relevance in the field of ultracold atoms: for many practical purposes,
non-adiabatic manipulations on a trapped cloud of atoms are unavoidable in experiment.
Hence it is important for experimentalists to know when the system has reached a thermal
state, or how slow they have to change magnetic fields or laser intensities in order to avoid
excitations in the gas of atoms. It has been also demonstrated experimentally with cold
atoms that certain integrable systems seem to show no tendency of equilibration at all,
such as one-dimensional tubes of hard-core bosons [13]. Integrability and thermalization
has been since a very active field of theoretical research.

This thesis especially focuses on the out of equilibrium dynamics that is related to
fermionic quantum transport. However, one of the main messages of this thesis is that
instead of showing the analogue effects of condensed matter systems, ultracold atoms

2



0. GENERAL INTRODUCTION

show very different dynamics, parts of the reason being the strict conservation of energy.
Dissipation occurs only due inter-particle scattering processes with momentum transfer
to the lattice, so-called umklapp processes. In condensed matter systems, these umklapp
processes are known to give an important contribution the thermal resistivity in crystals,
but they can also contribute significantly to the electronic conductivity.

The thesis is organized as follows. In chapter 1, we give a brief introduction to the
basics of ultracold atoms and their description in terms of the fermionic Hubbard model.
We also give a more extensive review of transport theory and the Boltzmann equation, with
special emphasis on the variational method of approximating its solution. In chapter 2, we
introduce the numerical and analytic tools that we use to study several non-equilibrium
processes involving driven ultracold fermionic atoms. First, we describe our numerical
variant of solving the Boltzmann equation which is based on a variational estimate of the
conductivity of the Hubbard model. We then derive coupled diffusion equations for the
energy and particle density that are valid at high temperatures. These and other methods
are then practically applied in chapters 3 - 6. In chapter 3, we review a joint theoretical-
experimental project where the expansion of a fermionic cloud in a homogeneous Hubbard
model was studied. Interactions modify the expansion velocity of the cloud strongly, but in
a way independent of the repulsive or attractive character of interactions, revealing a novel
dynamic symmetry of the Hubbard model. In chapter 4 we propose and quantitatively
model the time scales, on which states at negative absolute temperatures, i.e. equilibrium
states with an inverted occupation of energy levels, can be realized in optical lattices.
We also propose a dynamical scheme to realize lower negative temperatures and estimate
the time scales to reach those temperatures. In chapter 5, we study the dynamics of a
finite cloud of atoms in an optical lattice with an additional linear potential, as realized by
gravity. Here, we study the regime of a small potential gradient, such that the cloud is only
weakly driven out of equilibrium. We find that energy conservation affects the dynamics
of the cloud drastically: the cloud expands symmetrically upwards and downwards the
gravitational potential, and the cloud’s radius R grows sub-diffusively in time t according
to R ∼ t1/3. Finally, in chapter 6, we study the damping of Bloch oscillations that emerge
in tilted lattice systems. For a homogeneous system, we show a limit where the system’s
dynamics can be systematically mapped to a classical damped harmonic oscillator equation,
giving an analytical explanation for the transition from weakly damped to over-damped
Bloch oscillations by increasing the interaction strength. We also analyze the situation of
a finite cloud in a tilted optical lattice that we studied in chapter 5, but we now consider
the regime, where Bloch oscillations are only weakly damped and the system is in a state
far from thermodynamic equilibrium. Here, we find that the cloud expands according to
the scaling law R ∼ t1/5 by deriving an effective, “stroboscopic” diffusion equation for the
clouds dynamics on top of its rapid oscillatory movement.
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1

Fundamentals

1.1 Introduction to ultracold atoms

The notion of ultracold atom systems usually refers to a new field of research in atomic
physics, where interactions and coherence between atoms and molecules is in the focus of
research, rather than their individual microscopic properties [14]. Being cooled to unprece-
dently low temperatures, collective quantum states of matter have been realized both with
bosonic and fermionic atoms, which also had an enormous influence on theoretical research
in condensed matter physics.

Cold atoms in optical lattices consist of neutral atoms that are trapped in the light
of an interfering laser beam. The intensity pattern of the laser forms a lattice structure,
in which the atoms are confined by an effective electromagnetic interaction. Interactions
between the atoms can be induced by the use of Feshbach resonances, as will be explained
below. This artificial system of atoms confined to a crystal of light resembles a crystalline
solid, where the ultracold atoms play the role of the lattice electrons.

This introductory chapter reviews some facts and tools that are used to describe cold
atomic systems in optical lattices or realize them in experiment, respectively. Here, we
largely follow the review article by Bloch, Dalibard and Zwerger [14] as well as the book
of Ashcroft and Mermin [15] with experimental inputs from the PhD thesis of Ulrich
Schneider [16].

1.1.1 Scattering

Let us start our introductory chapter by reviewing the basics of scattering among ultracold
atoms, which is a necessary requirement to understand the emergence of strong correlations
in these systems. Collisions of two atoms in the quantum regime do in priori include scat-
tering processes in states at finite relative angular momentum. In order to scatter in these
states, the incoming states need to have enough energy to surmount a centrifugal barrier,
which is given by the quantized angular momentum of the final state. The characteristic
energy of this barrier usually corresponds to a temperature in the milli-Kelvin regime for
the typical atomic masses that are used in experiment [14]. Below that temperature, only
s-wave scattering processes are possible. This temperature regime defines the regime of
ultracold collisions, relevant for our studies.

Throughout this thesis, we will be interested in the physics of fermionic atoms. Due to
Pauli’s exclusion principle, one needs a mixture of fermions which are in different internal
states to allow for ultracold collisions, exemplified by a “spin”-mixture of fermionic atoms
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1.1. INTRODUCTION TO ULTRACOLD ATOMS

in two different hyperfine states, as is studied in this thesis. Alternatively, one can also
use a mixture of bosonic and fermionic atoms to allow for scattering.

The scattering two-body wave function for s-wave collisions does not depend on the
scattering angle, and it can be described by the following ansatz:

Ψ(k, t) ≈ ei kz +
f(k)

r
eikr (1.1)

The first term describes the incoming state, which is assumed to be a plane wave in z-
direction. The outgoing state is rotationally invariant around the scattering center at the
origin and is determined by the momentum-dependend function f(k). In the regime of
ultracold collisions and for very small momenta k, this function assumes the form [14,17]

f(k) ≈ −a
1 + ika

(1.2)

The parameter a that characterizes this function uniquely is called the s-wave scattering
length. For a trapped interacting quantum gas in absence of an optical lattice, the scattering
length is the relevant parameter that characterizes the interaction strength. It yet has also
another important meaning: In most cases, a realistic two-body interaction potential can
be approximated by a contact interaction potential

V (r) =
4π~2 a

m
δ(r) (1.3)

such that the low energy scattering properties are still the same (m is the atomic mass) [14,
16]. Note that the limit a→∞ the scattering function f(k)→ i/k becomes independent of
the scattering length. This limit is called the unitary limit, and it has been largely explored
theoretically and experimentally, as the system shows many universal characteristics; for
a review see Ref. [18].

1.1.2 Feshbach resonances

The use of Feshbach resonances allowed experimentalists to increase the scattering lengths
for attractive and repulsive interactions drastically; hence they have revolutionized the
field of ultracold atoms and have paved the way to exploring strongly correlated systems.
Feshbach resonances have first been proposed in 1958 [19] in the context of nuclear reac-
tions, where they occur when in a scattering process a compound nucleus is formed and
decays. For cold atom systems, Feshbach resonances were first proposed by Tiesinga et al.
in 1993 [20] and were first experimentally realized in 1998 by several groups [21–24]. A
theoretical review can be found in Ref. [25].

In general, Feshbach resonances occur in scattering problems when in a two-body prob-
lem, an open channel involving an unbound state is resonantly coupled to a closed channel,
involving at least one bound state. This situation is depicted in Fig. 1.1. In experiments
with cold atoms, these states are often realized by two different hyperfine states of the
two-particle wave function, which have different magnetic moments. This has the advan-
tage that the energies of these two states can be shifted relative to each other by varying
an external magnetic field. The Feshbach resonance occurs when the bound state’s energy
coincides with the unbound state’s energy. In this case, the scattering length diverges, and
interactions become very strong. Alternatively, Feshbach resonances can also be induced
optically [14].
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Energy

Interatomic distance

bound state

open channel

Figure 1.1: Schematic plot of a two-channel picture for a Feshbach resonance. The system
is characterized by an open channel (black) which has an unbound state, and a closed
channel with a bound state (blue). When the energy of the bound state coincides with
the energy of the scattering state of the open channel, a Feshbach resonance occurs. As
the two states have different magnetic moments, magnetic fields can be used to tune the
resonance.
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Figure 1.2: Rescaled scattering length a as a function of the magnetic fieldB. The Feshbach
resonance B0 has a characteristic width ∆B. In typical experiments, Feshbach resonances
occur at several hundred Gauss.
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1.1. INTRODUCTION TO ULTRACOLD ATOMS

On a phenomenological level, the dependence of the scattering length a on the magnetic
field B as a tuning parameter is given by [14,18]

a(B) = abg

(
1− ∆B

B −B0

)
(1.4)

The parameters ∆B and B0 are the width and the position of the resonance, respectively.
abg is the background scattering length, i.e. the scattering length in absence of the reso-
nance. The corresponding plot is shown in Fig. 1.2. If the bound state’s energy is slightly
below the energy of the open channel, a molecular state exists. This molecular state has
a finite extend in position space and grows larger and larger when approaching the Fes-
hbach resonance. As an eigenstate of the Hamiltonian, it must have no overlap with the
unbounded scattering states, which are also an eigenstates. This is an intuitive explana-
tion of the fact that the effective interactions are repulsive in this case. Conversely, if the
energy of the bound state of the closed channel is above the threshold, no molecular state
exists and the effective interaction is attractive.

1.1.3 Optical potentials

There are different ways of trapping neutral atoms, the most important ones involve either
magnetic or optical traps. In optical traps, neutral atoms are exposed to a spatially varying
laser light intensity pattern. For experiments related to strongly interacting systems, they
have the huge advantage of not involving external magnetic fields, which are already used to
induce the Feshbach resonances. The present section reviews how the interaction between
light and atoms is used for the purpose of creaing an almost conservative potential for the
atoms, following [14,26].

An optical potential is created by a laser that creates stationary intensity pattern of
light in space:

I(r) =
1

2
〈E(r)2〉 (1.5)

Here, the brackets denote a time-average over the square of the time-dependent electric
field E that oscillates at the laser frequency ω. We are considering a two-level atom with an
atomic ground state |g〉 and the first excited state |e〉, which are energetically separated by
the atomic transition frequency ω0. The oscillating electric field induces a polarization p
on the atoms, such that p = αE, involving the atomic polarizability α. It is energetically
favorable for the polarized atoms to align with the electric field. Therefore, the atoms feel
a potential that is proportional to the light intensity distribution in space:

V (r) =
1

2
〈pE〉 = α I(r) (1.6)

This is already the basic mechanism of optical trapping, but let us review the mechanism
in more detail. It can be shown that in the vicinity of the resonance, i.e. for |ω−ω0| � ω0,

α(ω) =
Γ

ω − ω0
(1.7)

where Γ ∝ 〈e|d̂E|g〉 is proportional to the matrix element of the polarization operator d̂E
between the ground state and the first excited state in direction of the electric field [26].
Most importantly, the polarizability α(ω) changes sign at ω = ω0. This means that the
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1. FUNDAMENTALS

detuning parameter ∆ = (ω−ω0) decides about whether the optical potential is attractive
or repulsive. For ∆ < 0, the laser is called red-detuned, and the atoms are attracted to the
intensity maxima. Conversely, for ∆ > 0 the laser is called blue-detuned : here, the atoms
are attracted to the intensity minima of the standing laser wave.

Note that the potential V (r) is strictly speaking not conservative: at long times, atoms
get heated up by absorption and spontaneous re-emission of laser photons. One can also
show [26] that the rate τ−1

heat, at which the atoms heat up, satisfies the proportionality

τ−1
heat ∼

(
Γ

∆

)2

(1.8)

The emergence of heating due to photon absorption is an undesired effect: to realize an
almost ideal conservative potential, we want to make the heating rate τ−1

heat as small as
possible. Luckily, this is always possible, because τ−1

heat ∼ ∆−2 decays faster than the
effective potential V (r) ∼ ∆−1 upon increasing ∆. Therefore, the laser light frequencies
are typically tuned far from resonance by choosing a large |∆|. To conclude, a trapping
potential for neutral atoms can be realized by a spatially varying intensity profile of a
laser. Yet, the potential is not fully conservative and will lead to heating of the atoms by
spontaneous absorption and emmission of photons for long times.

Optical trap

Optical traps are optical potentials that keep the atoms confined in a three-dimensional
region in space. Spacially varying intensity profiles naturally emerge due to the finite width
of the laser beam, which usually has a Gaussian shape in the radial coordinate r vertial to
its propagation,

I(r) = I0 e
−2 r2/w2

0 (1.9)

Depending on whether the laser is red or blue detuned, it creates a confining or anticonfining
optical potential that is approximately harmonic around the intensity maximum. In the
joint theoretical-experimental project on an expanding cloud that will be described later
in this thesis, the optical trap is red-detuned.

Optical lattices

Optical lattices are optical potentials of a special type. They are created by counterprop-
agating beams of laser light of the same frequency and polarization that form a standing
wave. Their intensity distribution forms a static interference pattern, whose period is given
by half the laser wavelength λ/2. In the context of the expanding cloud to be described
later, the optical lattice is blue-detuned.

The simplest version of such an optical lattices is created by two counterpropagating
laser beams, which results in an intensity profile of the form

V (r, z) ≈ V0 e
−2r2/w2

0 sin2(kz) , (1.10)

where z is the longitudinal coordinate along the laser beam and r is the vertical coordinate.
If the laser intensity is chosen sufficiently strong, the atoms are tightly confined in two-
dimensional planes in the direction perpendicular to z. As atoms are also confined in the
vertical direction due to the finite width of the laser beam, this construction yields a series
of two-dimensional “pancakes”. Adding two counterpropagating beams in a perpendicular
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1.1. INTRODUCTION TO ULTRACOLD ATOMS

Figure 1.3: Optical potentials created by standing waves of laser light. In the upper panel,
an array of one-dimensional quantum wires is created by superimposing two perpendicular
standing waves. In the lower panel, a three-dimensional optical lattice is formed by three
perpendicular standing waves. Picture taken from [14] (courtesy of I. Bloch).
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angle to the original beams yields an array of tubes, each of them being one-dimensional.
Here, one wants the orthogonal beams not to interfere. Therefore, one chooses slightly
different frequencies or orthogonal polarizations. This way, quantum wires of ultracold
atoms can be realized. Finally, if counterpropagating beams from all three perpendicular
directions are superimposed, a three-dimensional lattice forms. The last two possibilities
are depicted in Fig. 1.3. By choosing the laser intensities in z-direction stronger than in
the perpendicular directions such that tunnelling in z-direction is completely suppressed,
arrays of two-dimensional lattices can be formed.
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1.2. MODELING COLD ATOMS IN OPTICAL LATTICES

1.2 Modeling cold atoms in optical lattices

1.2.1 Band theory

One of the hallmarks of condensed matter theory is Bloch’s theorem [15] as a general
statement about solutions of the Schrödinger equation in periodic potentials V (r + R) =
V (r) with period R. The eigenstates are labeled by the following quantum numbers: A
discrete index n that takes the band number and internal degrees of freedom such as spin
into account, and a pseudo-momentum k that takes values in the first Brillouin zone. The
eigenfunctions ψn,k(r) of the Schrödinger equation in a periodic potential are called Bloch
functions, which can always be decomposed according to

ψn,k(r) = eikrun,k(r) (1.11)

where the functions un,k satisfy un,k(r + R) = un,k(r). The Fourier-transforms of the
Bloch-functions are the Wannier functions,

wn,R(r) =
1

(2π)d

∫
dk e−ikRψn,k(r) (1.12)

Wannier functions depend only on the relative coordinate (r−R) with respect to the
lattice site R. Importantly, they are also exponentially localized and orthogonal to each
other with respect to the site and band index.

Wannier functions build the link to discrete lattice models. This can be conveniently
shown in second quantization. The annihilation operator ψ̂(r) for a particle at position r
can be expressed by a set of annihilation operators ĉR,n on the lattice sites R using the
Wannier functions:

ψ̂(r) =
∑
R,n

wn,R(r) ĉR,n (1.13)

Consequently, the noninterating Hamiltonian for free motion on a lattice can be expressed
as

Ĥ0 = −
∑

RR′,n

Jn(R−R′) ĉ†R′,nĉR,n (1.14)

Jn(R−R′) =

∫
dr w∗n,R′(r)

(
− 1

2m
∆r + V (r)

)
wn,R(r) (1.15)

The functions Jn(R) are the hopping matrix elements and can be calculated numerically,
using the above formula and the periodic potential V (r). They are the Fourier transforms
of the band energies, which are given by

εn(k) =
∑
R

Jn(R) eikR (1.16)

1.2.2 Tight-binding approximation

Let us concentrate on a d dimensional simple-cubic lattice for simplicity. The deeper the
periodic potential V (r), the larger is the energy gap from the lowest energy band to higher
bands. At low energies and for a sufficiently deep potential, only the lowest Bloch band
n = 1 will play a role. Therefore we ommit the band index n. As we are interested
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1. FUNDAMENTALS

in Fermions, we need to keep track of a spin index σ =↑, ↓ instead. The tight-binding
approximation relies on a further assumption: only the tunneling matrix elements between
nearest-neighbouring sites are non-zero, i.e.

J(R) = J
∑
a

δ(R± a) (1.17)

where the sum runs over the d base vectors a of the lattice. Therefore, we can express the
tight-binding Hamiltonian in position space as

H0 = −J
∑

<ij>,σ

ĉ†i,σ ĉj,σ (1.18)

where the bracket denotes a sum over nearest-neighbour lattice sites. Fourier-transforming
the Hamiltonian (1.15) yields

εk = −2 J
d∑
i=1

cos ki (1.19)

where we set the lattice constant a = 1. The tight-binding Hamiltonian in momentum
representation thus reads

H0 =
1

(2π)d

∑
σ

∫
dk εk ĉ

†
k,σ ĉk,σ (1.20)

1.2.3 Hubbard model

One of the simplest models for interacting Fermions on a lattice is the Hubbard model,
coined by J. Hubbard in 1963 [27]. The Hubbard model can be regarded as an extension of
the tight-binding model to interacting systems: besides the hopping term H0, the model
contains an additional term that takes local contact interactions on the individual lattice
sites into account,

H = −J
∑

<ij>,σ

ĉ†i,σ ĉj,σ + U
∑
i

ni,↑ni,↓ (1.21)

where the operators ni,σ = ĉ†i,σ ĉi,σ count the number of occupied states at site i and spin σ.
Whenever both spin states at a given site are occupied, an interaction energy U is counted.
U can either be negative or positive, favoring either empty and singly occupied sites or
doubly occupied sites, respectively. Therefore, U < 0 models attractive interactions, while
U > 0 models a repulsively interacting system.

The Hubbard model contains short-range interactions and is therefore applicable for
ultracold atoms, which are only exposed to interactions when two atoms are in the same
potential well of the optical lattice. Given the scattering length a and using (1.3), the
on-site interaction U can easily be shown to be

U =
4π~2a

m

∫
drw(r)4 (1.22)

where w is the Wannier function of the lowest band. We will not review the rich physics
and the phase diagram of the Hubbard model in this thesis, as we will be exclusively be
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1.2. MODELING COLD ATOMS IN OPTICAL LATTICES

interested in the model’s metallic or band insulating phases for moderately strong interac-
tions and high temperatures. In current experiments with fermionic atoms, entropies are
still too high to exlore the relevant low-temperature phase diagram. There are many arti-
cles and books on the Hubbard model, among which we want to mention Gebhard’s book
on the Mott transition [28] and Essler’s book on the one-dimensional Hubbard model [29].

Experiments with ultracold atoms are typically prepared in the presence of a harmonic
trapping potential V (r) = V0 r

2, which addresses a different potential energy to each indi-
vidual lattice site. Consequently, the system is describable in terms on an inhomogeneous
Hubbard-model of the form

H = −J
∑

<ij>,σ

ĉ†i,σ ĉj,σ + U
∑
i

ni,↑ni,↓ + V0

∑
i

(ni,↑ + ni,↓)r
2
i (1.23)

The strength of the harmonic confinement is usually expressed in terms of the trapping
frequencies ω, the atomic mass m and the lattice constant a [16]:

V0 =
1

2
mω2 a2 (1.24)

The trap frequency ω is measured in experiments simply by observing the cloud’s oscillatory
movement in the parabolic trapping potential after having the cloud displaced from the
trap center. When the potential is very shallow, it can be regarded as locally contant. In
the local density approximation (LDA), the potential is absorbed by shifting the chemical
potential,

µ −→ µ− V (x) (1.25)

As the system is assumed to be locally translationally invariant, quasi-momentum is kept
as a quantum number in this approximation.
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1.3 Transport theory

1.3.1 Introduction

From a technical point of view, we apply methods from the field of transport in condensed
matter systems to ultracold atoms. The theory of transport in solids, involving Boltzmann
equations, has been very successful for many practical purposes. We will review this
method below and discuss its validity and the necessary modifications to apply it to analyze
non-equilibrium in optical lattices: we will show, how the corresponding kinetic equations
are motivated and how the emergent transport scattering rates are derived. This paragraph
is inspired by the introductory books by Ziman [30] and Ashcroft and Mermin [15].

1.3.2 The semiclassical picture

To start our introduction to transport theory, we are going to derive and justify a semiclas-
sical approach to quantum dynamics, starting from a single-particle picture. For simplicity,
we start from a simple cubic lattice. To begin with, let us consider the analog of a wave
packet for Fermions in a single band,

ψ(r, t) =
1

(2π)d

∫
dk′ g(k− k′) exp(i(k′ r− εk′ t)) (1.26)

where εk is the energy dispersion, and we set the lattice constant a = 1 and also ~ = 1. We
assume that the function g(k− k′) is a narrow distribution of momenta centered around
k of width ∆k � 1, such that its “support“, i.e. its total mass, fits into the Brillouin zone.
Due to the narrowness of g(k− k′), we can Taylor-expand the integrand to first order
around k, writing δk = k− k′:

(k′ r− εk′ t) ≈ (k r− εk t) + δk (r−∇kεk t) (1.27)

which yields

ψ(r, t) ≈ exp(i (k r− εk t))
∫

d δk

(2π)d
g(δk) exp(i (r−∇kεk t) δk) (1.28)

= exp(i(k r− εk t)) g̃ (r−∇kεk t)

where g̃ is the Fourier transform of g, which is a function of width ∆R ≈ 1/∆k � 1,
centered around r in position space and spread over many lattice sites. Note that the
probability density of the wave packet only depends on the argument of g̃, which allows us
to identify

vk = ∇kεk (1.29)

as the constant velocity of the wave packet. If we want to consider the wave packet
as a semiclassical particle, external potentials V (r) have to vary on length scales even
larger than the width of the wave packet. This means that J/F � ∆R where we defined
F = |∇rV |. To conclude, the three involved length scales must satisfy

1� ∆R� J/F (1.30)

Schematically, the three involved length scales are depicted in Fig. 1.4. Combining Eq.
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Figure 1.4: Schematic picture of the conditions required for the validity of semiclassics,
following [15]. A hierarchy of three length scales has to be satisfied: while the extend of
the wave packet ∆R has to be much larger than the lattice constant ∆R � 1, external
potentials V (r) have to vary on even larger length scales, ∇rV/J � 1/∆R such that the
system is locally translationally invariant and momentum is approximately a good quantum
number.

(1.29) with the fact that potential gradients lead to a linear growth of momentum, we can
write down the semiclassical equations of motion for a wave packet in a single band,

ṙ = ∇kεk (1.31)
k̇ = −∇rV

The external potential V is treated classically, but the underlying lattice structure is treated
fully quantum mechanically. In the multi-band case, semiclassical equations of motion
generally neglect inter-band transitions. Note that Berry phases and magnetic fields have
been neglected in the above equations of motion.

1.3.3 Elementary transport theory

Above, we have presented a semiclassical theory of noninteracting wave packets. In the
remainder of this section we will be interested in a phenomenological theory of interacting
particles. The goal of this section will be to explain how to calculate transport properties
such as the mass, heat and momentum conductivity. The easiest theory that allows to
do so is sometimes referred to as elementary transport theory [30], which is based on
the semiclassical picture: lattice-Fermions are treated as semi-classical particles. For the
moment, we will consider a simple model of transport, which relies on the notion of a
relaxation-time. This is the characteristic time τ that measures, how long a particle travels
freely between two scattering-events. The origin of scattering is left unspecified for the
moment. On average, an particle that travels velocity v in a random direction will gain
some additional energy from the force field F of the amount

δE = v ·F τ (1.32)

At this point, let us consider a quadratic dispersion relation, i.e. E = mv2/2, such that

δE =
∂E
∂v

δv = mv δv (1.33)
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which defines an average drift velocity δv. The mass current is defined as J = n δv and is
related to the driving force F via the mass conductivity σ (assuming that J ‖ F),

J = σF (1.34)

This leads to the identification

σ =
nτ

m
(1.35)

The above model is greatly oversimplified, but it already shows important characteristics
of the conductivity: it is proportional to the density of mass carriers and to the relaxation
time. The above formula is sometimes used as a first estimate of the conductivity of a
system when the some notion of a relaxation-time exists, e.g. from the imaginary part
of some self-energy. As a next step, we will derive a more elaborate estimate for the
conductivity, based on the notion of distribution functions.

1.3.4 Introduction to Boltzmann formalism

We will now review the Boltzmann equation approach to quantum dynamics in its full
generality. In a seminal article [31], Ludwig Boltzmann coined the equation to describe
the dynamics of classical gases already in 1872 and thereby laid the foundations for modern
nonequilibrium statistical mechanics.

The Boltzmann approach is based on the semiclassical picture: particles move in phase-
space and scatter among each other or among external obstacles. The method has proven
to be very successful in the prediction of conductivities of metals. However, it also has some
severe limitations, as e.g. it is based on the notion of (quasi-)particles [32]. This assumption
breaks down in many cases, and in particular for strong interactions when symmetry is
broken, or for certain one-dimensional systems [33]. In addition to the conditions for
the validity of semi-classics, it e.g. also relies on second order perturbation theory in
the interaction strength - hence on not too strong interactions - and on a sharply-peaked
spectral function [34].

The goal of the Boltzmann approach is to calculate the non-equilibrium distribution
function fk(r, t): it counts the average number of Fermions in the momentum state k
in the neighborhood of position r at time t. Necessarily, there is some vagueness about
the position r due to the uncertainty principle. Note that in equilibrium, this distribution
function is nothing but the Fermi function, but out of equilibrium the distribution function
is unknown and has to be calculated explicitly. There are three types of processes that may
lead to the change of the distribution function in time: Drift, external fields and scattering.
Drift takes into account that the individual momentum states travel in space according to
their characteristic group velocity vk,

ḟk|drift = −vk∇r fk(r) (1.36)

External fields act as classical forces on the distribution function:

ḟk|field = −F∇k fk(r) (1.37)

Finally, scattering events also lead to a change of the distribution function. At this point,
we want to be general and let the specific origins of scattering unspecified for the moment.
In the semiclassical picture, particles scatter locally in position space and only change their
momenta during the collision event. Therefore, the scattering term is some functional I
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of the distribution function, which is local in position space, but induces a change in the
distribution of momenta:

ḟk|scatt = −I[f ]k (1.38)

We will specify the collision functional below for the case of fermionic inter-particle scatter-
ing. Usually, the collision functional I[f ] involves integrations overall several momentum
coordinates. Adding these contributions, we arrive at the Boltzmann equation,

∂t fk(r) + vk∇r fk(r) + F∇k fk(r) = −I[f ]k (1.39)

Note that up to now we have been very unspecific about the nature of the collision integral.
The simplest approximation is the relaxation-time approximation, reviewed below.

1.3.5 Relaxation-time approximation

The probably simplest variant of the Boltzmann equation is the Boltzmann equation in
relaxation time approximation. Hence, in analogy to elementary transport theory, it is
based on the existence of a relaxation time τ , which measures the typical time between
two subsequent scattering events. It is usually a general property of collisions that they
tend to equilibrate the system. Let us regard τ−1 as the rate, at which the nonequilibrium
distribution function gets effectively driven towards the equilibrium Fermi function f0

k,
such that the Boltzmann equation reads

∂t fk(r) + vk∇r fk(r) + F∇k fk(r) = −τ−1
(
fk − f0

k

)
(1.40)

The relaxation-time approximation allows one to derive explicit formulas for the conduc-
tivities. This is what we want to do next. To this end, let us consider a homogeneous
system in a steady state, i.e. where the distribution function does not change in time. This
implies that ∂t fk(r) = 0, while homogeneity implies ∇r fk(r) = 0. Furthermore, let us
assume that the driving force F is not too strong, such that we are close to equilibrium.
In this case, it is justified to assume that deviations δfk from the equilibrium distribution
function f0

k are small, so that we decompose fk according to

fk = f0
k + δfk (1.41)

Plugging this ansatz into (1.40) yields

δfk ≈ −τ F∇k f
0
k (1.42)

where we used that the momentum-derivative acting on f0
k gives already a non-vanishing

contribution, so that δfk can be neglected on the right hand side. Given this expression,
we can derive a formula for the mass current:

jn =
1

(2π)d

∫
dk vkδfk

= − 1

(2π)d

∫
dk vk

∂εk
∂k
·F
∂f0

k

∂ε
τ

= − 1

(2π)d

∫
dk vkvk ·F

∂f0
k

∂ε
τ

(1.43)

18



1. FUNDAMENTALS
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Figure 1.5: Schematic plot of a typical umklapp process. Two incoming momenta (red
arrows) add up to a total momentum K ′, which lies outside the Brillouin zone (BZ). As all
momenta are equivalent modulo reciprocal lattice vectors G, the two momenta equivalently
add up to K. Therefore, they can scatter into the two momentum states indicated by the
red arrows. As a result, the particles’ center of mass changes its motion due to the umklapp
process.

where we used that only δfk carries a current: f0
k is an even function and vk is an odd

function of momentum; hence the integrated product vanishes. The above formula leads
to the identification of the conductivity as

σ = − 1

(2π)d

∫
dk vkvk

∂f0
k

∂ε
τ (1.44)

Beyond the relaxation-time approximation, the conductivity can not be computed so easily.
In this case, one has to find ways to approximate the complicated collision functional. A
popular way to do so is based on a variational principle, presented below.

1.3.6 Umklapp scattering

Let us specify the scattering mechanism relevant for ultracold interacting fermionic atoms
in optical lattices. To this end, it is important to realize that elastic two-body scattering
processes do not alter the total momentum [30], but only induce relative changes in the
momentum distribution. Very often, the current mode is proportional to the momentum
mode, one exception being graphene [35]. Hence, scattering events that do not influence
the system’s total momentum do not alter the total mass current. As a consequence, an
infinite conductivity emerges for those systems.

Lattice systems, however, break translational symmetry and are a priori not momentum-
conserving: here, the total momentum is only conserved modulo reciprocal lattice vectors
G, i.e. processes of the form

k + k1 −→ k2 + k3 + G (1.45)
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actually do have the potential to render the conductivities finite. These processes are called
umklapp processes (as opposed to N-processes where G = 0) and turn out to be essential
for the discussion in the main part of this thesis.

A sketch of such a process is shown in Fig. 1.5: two momenta add up to a total
momentum that exceeds the borders of the first Brillouin zone, such that it is equivalent
to a different total momentum that lies within the Brillouin zone. This way, it can happen
that both colliding particles reverse their velocities despite of the fact that both of them
were originally traveling in the opposite direction. Thus, umklapp processes are the only
processes that lead to finite conductivities and hence induce diffusive dynamics in the
Hubbard model, as we are going to discuss in the main part of this thesis.

Away from half filling and for low temperatures, umklapp processes get exponentially
suppressed: it becomes less and less likely that two momentum states are occupied such
that they can add up to a total momentum large enough to wind around the Brillouin
zone. However, despite of the fact that ultracold atoms in optical lattices are very cold on
the Kelvin scale, their temperatures are high with respect to the band-width of the optical
lattice: currently, typical temperatures in experiments are of the order of the hopping
amplitude. Therefore, the particles’ momentum distribution function is washed out among
the whole Brillouin zone, and hence there is a large phase space for umklapp scattering
processes - even away from half filling. For this reason, umklapp scattering rates can be
expected to be very large and dominant for fermionic transport in optical lattices.

1.3.7 Full Boltzmann equation

We will now come to the actual Boltzmann equation that describes transport in fermionic
lattice models at not too strong interactions, such as the Hubbard model. In contrast to
the previous discussion that was based on the notion of an effective relaxation time, we will
now motivate the origins of scattering microscopically. To this end, we specify the collision
functional in Eq. (1.39). As stated previously, the collision term usually involves a high-
dimensional integral in momentum space. This integral has to be evaluated at every point
of the 2×d - dimensional phase space and for each time step, which makes the Boltzmann
equation an integro-differential equation. Consequently, simulations of the full equation
are numerically very demanding. The ultimate goal for the remainder of this section will
be to calculate the conductivity beyond the relaxation-time approximation.

All scattering processes depend on the single-particle transition rates. Let therefore

Z̃k2k3
kk1

= Prob [(k,k1)→ (k2,k3)] (1.46)

denote the probability that a certain scattering event takes place, involving two incoming
and two outcoming momenta. The corresponding scattering processes have to conserve
energy and momentum modulo reciprocal lattice vectors G. Therefore, we define the
microscopic transition rates Zk2k3

kk1
as

Zk2k3
kk1

= Z̃k2k3
kk1

∑
G

δ(k0 + k1 − k2 − k3 + G) δ(εk0 + εk1 − εk2 − εk3) (1.47)

where the sum runs over all reciprocal lattice vectors, taking umklapp processes into ac-
count, but we also include G = 0. Due to the principle of microscopic reversibility, the
transition rates have to obey the relation

Zk2k3
kk1

= Z kk1
k2k3

(1.48)
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which can be checked straightforwardly. The microscopic transition rates are still not the
physically realized transition rates: as we are dealing with fermionic particles, the outgoing
states k2 and k3 have to be empty, while the original states k and k1 should be occupied.
Hence, to obtain the actual probability of this event, the microscopic transition rate has
to be multiplied with the corresponding occupation probability for particles and holes,
respectively. The collision functional will take into account the probability to scatter out
of the original state, but also - with inverse sign - the reverse process of scattering into
the state k. These considerations allow us to write down the full Boltzmann equation for
interacting Fermions on a lattice as

(∂t + vk∇r + F∇k) fk = −
∫

dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
Z̃k2k3

kk1
(1.49)

× ( fkfk1(1− fk2)(1− fk3) − (1− fk)(1− fk1)fk2fk3 )

×
∑
G

δ(k0 + k1 − k2 − k3 + G) δ(εk0 + εk1 − εk2 − εk3)

Unfortunately, solving the full Boltzmann equation numerically is very costly already in
two dimensions. We will derive an approximation of this equation in the main part of the
thesis which shares all important characteristics with the full Boltzmann equation, and
which allows one to extract analytical predictions from it. We will proceed by introducing
a variational approach to calculate the conductivity predicted by the above equation.

1.3.8 Linearized Boltzmann equation

While it is not possible to treat the full Boltzmann equation (1.49) analytically, there are
analytical tools to treat a linearized version of it. We are going to linearize the collision in-
tegral in the deviations from the local equilibrium distribution f0

k. For weak driving forces,
the deviation from local equilibrium can be expected to be small, and the nonequilibrium
solution can be parametrized as

fk = f0
k −

∂f0
k

∂εk
φk = f0

k + βf0
k(1− f0

k)φk (1.50)

where β = 1/T is the inverse temperature and φk is a smooth function around the Fermi
surface. Before we proceed, we also note that the principle of detailed balance holds for
the Fermi function:

f0
kf

0
k1

(1− f0
k2

)(1− f0
k3

) = (1− f0
k)(1− f0

k1
)f0

k2
f0
k3

(1.51)

provided that εk+εk1−εk2−εk3 = 0. Given themicroscopic transition rates Z, we define the
equilibrium transition rates P as the many-body transition rates involving Pauli-blocking:

Pk2k3
kk1

:= f0
kf

0
k1

(1− f0
k2

)(1− f0
k3

) Zk2k3
kk1

(1.52)

Note that the principle of detailed balance holds also here due to (1.48) and (1.51):

Pk2k3
kk1

= P kk1
k2k3

(1.53)

We are now in a position to formulate the linearized Boltzmann equation. For later pur-
poses, it will be enough to consider the equation for a homogeneous system in a steady-state:
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we will use the linearized Boltzmann equation to extract an estimate for the conductivity
or diffusion constant in terms of the full Boltzmann Eq. (1.49). Therefore, we set

∂t fk = 0, ∇r fk = 0 (1.54)

The generalization to the inhomogeneous case is straightforward [30], but not of interest
to us. We use the ansatz (1.50), plug it in the full collision integral (1.49) and expand it
to first order in φk. One can straightforwardly derive the linearized Boltzmann equation,
which reads

F∇k f
0
k = −β

∫
dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
(φk + φk1 − φk2 − φk3)Pk2k3

kk1
(1.55)

where one uses detailed balance (1.53). Here, we approximated fk ≈ f0
k on the left hand

side of the Boltzmann equation, which already gives a non-vanishing contribution. In
contrast, as I[f0

k] = 0, the terms linear in φk give the first non-vanishing contributions
on the right hand side of the Boltzmann equation. Note that φk is a function of chemical
potential and temperature, as f0

k and the transition rates P are function of these variables.
The linearized Boltzmann equation is not an integro-differential equation any more,

but only an integral equation. Note that if we were able to solve the equation for φk by
inverting the linearized collision integral, we could calculate the particle current:

jn = − 1

(2π)d

∫
dkvk

∂f0
k

∂εk
φk = σF (1.56)

where we used Eq. (1.50). Using that φk ∝ F, we could therefore extract the conductivity
σ in terms of the Boltzmann equation. Therefore, our goal will be to invert the linearized
collision integral in Eq. (1.55). Unfortunately, this can usually not be done exactly.
Instead, we will present a way to approximate the inversion of the linearized collision
functional by making a proper variational ansatz for φ. This method will be presented in
the subsequent paragraph.

1.3.9 Variational principle

The variational method gives an estimate for the conductivity of the linearized Boltzmann
equation. It is based on a choice of certain momentum modes or channels, in which the
deviation from equilibrium is most pronounced. To simplify notation, it will be convenient
to introduce an operator-formalism for the momentum-dependent functions and matrices
that we worked with earlier. To this end, we define scalar product of two functions of
momentum k as

〈f, g〉 :=
1

(2π)d

∫
dk f(k) g(k) (1.57)

We also introduce the linear scattering operator on the space of k-dependent functions,

φ 7−→ P φ (1.58)

whose action shall be defined by the right hand side of Eq. (1.55). Furthermore, let X
denote the left hand side of Eq. (1.55), such that

X = Pφ (1.59)
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is an equivalent reformulation of Eq. (1.55). Using the definition of the scalar product
(1.57) and the identity ∇k f

0
k = β vk f

0
k(1 − f0

k), we can calculate the matrix elements of
the right and left hand side of Eq. (1.59) for the test functions φ and ψ, which yields

〈φ,X〉 = F
β

(2π)d

∫
dkφk vk f

0
k(1− f0

k) (1.60)

〈φ, Pψ〉 =
β

(2π)4d

∫
dk0dk1dk2dk3 φk0 P

k2k3
k0 k1

(ψk0 + ψk1 − ψk2 − ψk3) (1.61)

=
1

4

β

(2π)4d

∫
dk0dk1dk2dk3

× (φk0 + φk1 − φk2 − φk3) Pk2k3
k0 k1

(ψk0 + ψk1 − ψk2 − ψk3)

For the second equation, we used Eq. (1.55) and the fact that the integral in the first
line is unaltered under the substitution φk0 → φk1 , but changes sign under φk0 → φk2

and φk0 → φk3 . The above matrix elements will be an important building block for the
variational principle to follow, and we will calculate the integrals explicitly in the main
part of this thesis for a set of functions φ and ψ that we are going to specify.

A weaker version of the operator equation (1.59) is its projection onto its solution φ:

〈φ,X〉 = 〈φ, Pφ〉 (1.62)

To proceed further, we need the following
Theorem The solution φ of the integral equation (1.59) minimizes the functional

φ 7−→ 〈φ, Pφ〉
〈φ,X〉2

(1.63)

We present the proof in the Appendix (A.1). The variational principle states that in
order to find the solution of the integral equation (1.59), we have to minimize the above
functional. Before we do so, however, let us gain more physical understanding of this fact
by a reformulation of the variational principle.

1.3.10 Physical interpretation of the variational principle

The proceeding subsection seemed rather formal and lacking in physical interest. Therefore,
we will present a physical interpretation of the variational principle in the context of steady-
state transport, i.e. for an open system at fixed temperature such as a metal. Recall the
Shannon entropy, which is a measure of entropy out of equilibrium (kB = 1):

S = − 1

(2π)d

∫
dk [fk log(fk) + (1− fk) log(1− fk)] (1.64)

Now, we take the derivative of this expression with respect to time and consider only the
leading order terms in φ, which yields

Ṡ ≈ − 1

T

1

(2π)d

∫
dk φkḟk = − 1

T
〈φ, ḟ〉 (1.65)

where we omitted a term that takes an average increase in energy due to heating into
account, which drops out in a steady-state nonequilibrium situation at fixed temperature.
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1.3. TRANSPORT THEORY

As we are facing a steady-state situation of an open system, the open system’s total entropy
will be constant. Therefore, the rate of entropy production decomposes into a contribution
due to scattering and a contribution due to the field term which exactly cancel each other:

0 = Ṡ|field + Ṡ|scatt (1.66)

Using Eq. (1.65), we can identify those two contributions as

〈φ,X〉 = −T Ṡ|field (1.67)
〈φ, Pφ〉 = T Ṡ|scatt

Hence, it follows from the Boltzmann equation that these two rates of entropy production
are identical, i.e. scattering entropy production has to be Joule heating entropy production.
This common value coincides with the overall rate of generated entropy.

The following considerations go beyond the above steady-state non-equilibrium situ-
ation. The explicit expression for the entropy production due to Joule heating is given
by

〈φ,X〉 =
F

(2π)d

∫
dkvk φk

∂f0

∂εk
=

F

(2π)d

∫
dkvk δfk = jnF (1.68)

Using this relation, Eq. (1.62) and setting |F| = 1, we can identify the functional (1.63) as

〈φ, Pφ〉
〈φ,X〉2

=
1

〈φ,X〉
= 1/|jn| = 1/σ (1.69)

Hence, this expression yields a direct formula for the inverse conductivity in terms of the
Boltzmann equation. To conclude, the evaluation of the functional (1.63) in its minimum
automatically yields the inverse conductivity.

1.3.11 Variational ansatz and solution

Having gained an intuition about the variational principle, we want to calculate the con-
ductivity of the linearized Boltzmann equation. To do so, we will minimize the functional
(1.63) variationally, starting from the variational ansatz

φk =

N∑
i=1

ηi φ
(i)
k (1.70)

where the functions φ(i)
k constitute the momentum modes in which we expect the deviation

from equilibrium to be most pronounced. In order to have a good result for the conductiv-
ity, one has to make a good choice of modes based on physical arguments. The variables
ηi are the variational parameters that we want to determine. Defining the N ×N matrix
elements and N−vector components, respectively,

Pij := 〈φ(i), Pφ(j)〉,
Xi := 〈X,φ(i)〉, (1.71)

the inverse variational functional (1.63) becomes a function of ~η and can be written

~η 7−→
(
∑

i ηiXi)
2∑

ij ηiPijηj
(1.72)
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This functional is minimized by

Xi =
∑
j

Pij η̄j (1.73)

which can easily be inverted for a not too large number of modes N , and can be solved for
η̄. The coefficients are given by

η̄i =
∑
j

P−1
ij Xj (1.74)

which can be plugged into our expression for the functional (1.63). The inverse functional,
evaluated at its extremal value, finally yields the variational conductivity

σvar =
∑
ij

Xi(P
−1)ijXj (1.75)

in a unit force field. This concludes discussion of the variational principle. The conductivity
of the full Boltzmann equation can be estimated variationally by calculating integrals of
the type (1.61). The quality of the approximation depends on the choice of the modes φk.
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2

Hydrodynamics and the Boltzmann
equation

2.1 Introduction

In this thesis, we will analyze several physical problems involving dynamics and transport
in optical lattices. In the present chapter, we review the central tools that we will use
in this context, which are spatially inhomogeneous Boltzmann equations and nonlinear
hydrodynamic equations. Being second order partial differential equations, we also refer to
the hydrodynamic equations synomymously as diffusion equations. In the theory of trans-
port in solids, Boltzmann equations are established tools to predict electronic charge or
heat conductivities in metals [30]. However, these approaches have to be slightly modified
in the context of ultracold atoms, which are thermally isolated systems. The purpose of
this chapter is to explain the correspondence between the hydrodynamic approach and the
Boltzmann equation, and our numerical implementation of the latter.

Problems involving nonequilibrium dynamics are usually more difficult than their equi-
librium counterparts. On a technical level, the difficulty lies in the fact that the nonequilib-
rium distribution function is not known out of equilibrium, while it is known in equilibrium.
The weakest form of a non-equilibrium situation is the regime of linear response [15,36,37]:
here, the deviation from equilibrium is assumed to be a small correction, which is linear in
the driving force. In many physical applications, the determination of the linear currents
is already a much harder problem than calculating thermodynamic quantities.

Nonequilibrium and transport in the simplest interacting model systems is still com-
paratively poorly understood. There are only few methods available that allow to predict
transport beyond the linear response regime in dimensions larger than one, which holds
true even for numerical methods. In one-dimensional systems, much progress has been
achieved using the time-dependent density-matrix renormalization group (tDMRG) [38–
40]. Several classes of problems out of equilibrium have been treated with this method,
including thermalization [41,42], interaction quenches [43–45], dynamics in inhomogeneous
systems [46, 47] or excitation spectra [48]. In comparison with other numerical methods,
the tDMRG has the advantage of being able to treat systems that are both spatially inho-
mogeneous and out of equilibrium. However, the method is limited to comparatively short
times.

Dynamical mean-field theory (DMFT) is a further numerical tool to simulate either
inhomogeneous [3,49] or out-of-equilibrium systems [10,50,51] in two or higher dimensions.
To a certain extend, the dynamics of interacting quantum systems can also be studied
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using e.g. Quantum Monte Carlo simulations [52, 53], Gutzwiller approaches [54] or exact
diagonalization [42].

For large systems and not too strong interactions, Boltzmann equations are robust and
reliable tools to describe the semiclassical dynamics of inhomogeneous quantum systems
in dimensions larger than one, if the external potentials vary slowly. Simulating these
equations numerically without further approximations is computationally very costly [55]:
as integro-differential equations, Boltzmann equations involve the evaluation of a high-
dimensional collision integral at each point in discretized phase space and for each time
step. In this thesis, we will therefore approximate the Boltzmann equation in the relax-
ation time approximation, where we determine the corresponding transport scattering rate
variationally. The Boltzmann equation does not only serve us as a purely numerical tool,
but it also allows for analytical limits. In the context of this thesis, we will study effective
hydrodynamic equations which arise in the collision dominated regime of the Boltzmann
equation and which describe the diffusion of the system’s conserved quantities, such as
the particle and energy density. In the end of this chapter, we will review how these
hydrodynamic equations can be derived systematically from the Boltzmann equation.

2.2 Relaxation-time approximation for an isolated system

In order to study the dynamics of cold atoms in optical lattices, the usual relaxation-time
approximation has to be modified. When studying transport in quantum systems which
are thermally coupled to a bath, such as solids under usual experimental conditions, the
energy densities or temperatures are homogeneously distributed and constant. In contrast,
in isolated systems such as ultracold atoms in optical lattices, energy densities may be
spatially varying. Even more importantly, the total energy in the system is conserved. Also,
the filling in cold atom systems varies in space, e.g. due to the presence of a confining
potential. Therefore, the reference equilibrium Fermi function that is required for the
relaxation-time approximation cannot be constant any more: it must be a different Fermi
function at each position in space. As only the particle number n and the total energy
are conserved due to the presence of umklapp scattering events that violate momentum
conservation, the reference equilibrium distribution function is characterized only by the
two parameters n = (n, e), where e is the kinetic energy. The adjustment of the local Fermi
function to n must be made such that the scattering term conserves the local particle and
kinetic energy density: ∫

dk
(
fk − f0

k(n)
)

= 0 (2.1)∫
dk εk

(
fk − f0

k(n)
)

= 0

The above two equations suffice to uniquely determine the reference Fermi function, which
is characterized by two parameters1. We will review below how we numerically imple-
mented the determination of f0

k(n).
Let us now address the scattering rate. While there are several mechanisms of scattering

in solids such as scattering of phonons, impurities or lattice imperfections, ultracold atoms
scatter only due to inter-particle collisions. Hence, the scattering rate will also depend
implicitly on the position via the local densities n: besides a dependence on the local

1usually, f0
k is parametrized by µ and T
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energies, high density regions imply a high rate of collisions, while collisions are rare in
low density regions. Therefore, we have to consider a scattering rate function instead of a
single rate,

τ−1 −→ τ−1(n) (2.2)

To conclude, in contrast to the simplest version of a Boltzmann equation in relaxation-time
approximation that we introduced previously (1.40), the version required for a thermally
isolated, inhomogeneous systems such as ultracold atoms in optical lattices reads

∂tf + vk∇rf + F∇kf = −τ−1(n)(f − f0(n)) (2.3)

where vk is the group velocity of the 2D Hubbard model,

vk = ∇kεk = 2J

(
sin kx
sin ky

)
(2.4)

The force F is determined by external potential gradients, but it also takes interactions on
the Hartree level into account, where the individual particles are exposed to gradients of
the mean interaction potential of the surrounding particles:

F = −∇rV (r)− U∇rn(r) (2.5)

We are now going to review how we adjust the Fermi function and implement the equation
numerically, assuming that τ−1(n) is a known function. Afterwards we show how to
appropriately determine the transport scattering rate function.

2.3 Numerical Boltzmann simulations

Local Fermi function

The numerical scheme discussed below was developed in collaboration with David Rasch
and is also reviewed in [56]. Let us assume for the moment that τ−1 (n) is a known function
of two parameters n = (n, e). The Boltzmann simulation relies on a discretization of phase
space and time. Whenever we are writing integrals in thus section of the thesis, we are
actually refering to a discrete variant. Given the nonequilibrium phase-space distribution
function fk at time t, we first compute the local particle and kinetic energy densities
according to

n(r, t) =
1

(2π)d

∫
dk fk(r, t) e(r, t) =

1

(2π)d

∫
dk εk fk(r, t) (2.6)

Given n, we need to compute the difference between the nonequilibrium distribution func-
tion fk and a reference Fermi function

f0
k(β, z) =

1

1 + z eβεk
(2.7)

expressed in terms of an local inverse temperature β(r, t) and a local fugacity 2 z(r, t),
having the advantage that these variables do not diverge in the infinite temperature limit.

2We replace the more common variables T and µ by β = 1/T and z = exp(−µ/T )
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These two parameters have to be adjusted at each point r in position space such that

n(r, t) =
1

(2π)d

∫
dk f0

k(β(r, t), z(r, t))

e(r, t) =
1

(2π)d

∫
dk εk f

0
k(β(r, t), z(r, t)) (2.8)

is satisfied: this is required to guarantee that the collision term preserves the particle
number and the kinetic energy. In our numerical simulation, the set of equations is inverted
numerically using Newton’s algorithm.

Our physical applications involve inhomogeneous density distributions where large parts
of phase space are characterized by a very low occupation. For very low densities or fugac-
ities, the Fermi distribution function can be approximated by a Boltzmann distribution,

1

1 + z eβεk
≈ z−1 e−βεk (n� 1) (2.9)

It turns out that the numerical effort of finding the right (β, z) for given (e, n) is much
smaller in this case. Using the Bessel function B(x) =

∫ π
−π dk e

x cos(k), we obtain

n ≈ 1

(2π)2

∫
dk z−1 e−βεk = z−1B(2β)2

e ≈ 1

(2π)2

∫
dk z−1 εk e

−βεk = −4 z−1B′(2β)B(2β) (2.10)

As a consequence, β is determined by the ratio of e/n,

e/n = −4B′(2β)/B(2β) (2.11)

which can be inverted with much less numerical costs compared to the 2d Newton’s Al-
gorithm. Having obtained β, we use that z−1 = n/B(2β)2. We use this low density limit
whenever n < 10−4. The error is estimated in [56] and can be neglected.

As mentioned above, phase-space and time have to be discretized. Note that this
discretization has got nothing to do with the “physical” discretization of space by the
underlying optical lattice. While for fixed time, discrete derivatives in the space and
momentum coordinates are performed, the evolution in time-direction is performed using
a fourth-order Runge-Kutta scheme.

Equilibrium in the trap

For the simulations used in the chapters 4 and 5 of this thesis, the system is initially
prepared in equilibrium at a given β in the presence of a confining potential V (r) and
in presence of interactions that give rise to an extra potential U n(x, t). The initial dis-
tribution function has to be prepared self-consistently, taking its interaction energies into
account. This can be done using the local density approximation (LDA), which involves the
assumption that potentials are smooth and flat such the the system is locally translation-
ally invariant, implying that momentum remains approximately a good quantum number.
Thus, in equilibrium, external potentials can be absorbed by shifting the local chemical
according to

µeff (r) = µ0 − V (r)− U n(r) (2.12)
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Note that µeff (r) and a global inverse temperature β uniquely characterize the equilibrium
distribution function of the trapped system as

f0
k(r) =

1

1 + eβ(εk−µeff (r))
(2.13)

However, (2.13) is a self-consistent equation as µeff depends on the density and hence on
the distribution function itself. We use an iterative procedure to achieve self-consistency:
the distribution function is first prepared in absence of interactions,

f0
k(r)(0) =

1

1 + eβ(εk−µ0+V (r))
, (2.14)

followed by the iterated loop (m = 0, ..., N)

n(m)(r) =
1

(2π)d

∫
dk f0

k(r)(m), f0
k(r)(m+1) =

1

1 + eβ(εk−µ0+V0r2+Un(m)(r))
(2.15)

After about N ≈ 10 iterations, the distribution converges for the given values of β, V (r)
and µ0, including interaction energies on the the Hartree-level.

Numerical errors

It is a known fact that a numerical instability occurs if a first-order partial differential
equation is explicitly evolved in time. This property is discussed in the Appendix (A.2)
and in [57]: Numerical errors grow exponentially in time at a rate determined by the
ratio of ∆t/∆x, where ∆t and ∆x are the discretizations in time and in phase space,
respectively. This means that the accumulation of noise can be temporarily suppressed
by choosing a high temporal discretization while making the spatial discretization not too
high. This instability makes numerical simulations costly, as we are interested in times up
to 5000 J−1, and hence the temporal discretization has to be chosen very high.

2.4 Transport scattering rate

2.4.1 Definition of the transport scattering rate

Having explained the numerical implementation of the Boltzmann equation, we will now
review how the transport scattering rate τ−1(n) was determined. To start with, we should
emphasize that strictly speaking, there exists no well-defined notion of a scattering rate in
transport theory: In the linearized Boltzmann equation, the different momentum modes,
such as the modes for the particle, energy or momentum current, are damped with different
rates. Postulating a unique, momentum-independent scattering rate is a further simplifying
approximation, that makes the problem numerically tractable.

There are different possible choices for a scattering rate. As the physical quantity of
most interest and relevance is the particle density, we chose a transport scattering rate that
it optimally adjusted to the damping of the particle current. Hence, our scattering rate
correctly reproduces the mass conductivity (as opposed to e.g. the heat conductivity) of
the Hubbard model in the diffusive limit. In the introductory paragraph, an expression for
the conductivity in terms of the scattering rate 1/τ was given in Eq. (1.44). Second, also
a variational approximation of the conductivity σvar in terms of the full Boltzmann Eq.
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2.4. TRANSPORT SCATTERING RATE

(1.49) was given in Eq. (1.75). We can match these two expressions for the conductivity
by demanding

σvar
!

=
β

(2π)d

∫
dk vkvk f

0
k(1− f0

k) τ (2.16)

We use this matching as a definition of the transport scattering rate:

τ−1(β, z) :=

(
β

(2π)d

∫
dk vkvk f

0
k(1− f0

k)

)/
σvar(β, z) (2.17)

This way, the conductivities in terms of the Boltzmann equation in relaxation time approx-
imation and in terms of the full Boltzmann equation coincide by construction. It remains
to determine the conductivity σvar(β, z), using the variational principle explained before.

Unfortunately, we are not aware of any non-perturbative analytical or numerical method
that allows to calculate the conductivity of the two-dimensional Hubbard model. Even
in the infinite-temperature limit this problem remains difficult, while all thermodynamic
properties are exactly known. Note that dynamical mean field theory (DMFT) successfully
describes thermodynamic properties [3], while it fails to describe transport properties quan-
titatively. The reason is that DMFT neglects vertex corrections to the response functions
which are qualitatively important, both for finite and infinite temperatures.

Therefore we determine the transport scattering rate by calculating the conductivity
σvar(β, z) of the linearized Boltzmann equation, which involves a collision integral of the
form (1.55). Note that the transport coefficients of the linearized Boltzmann equation are
the transport coefficients of the Hubbard model for not too strong interactions U , as can
be formally derived in second-order Keldysh perturbation theory in the ratio of U/J [34].

2.4.2 Variational conductivity of the Hubbard model

Using the variational approach described in the introductory paragraph, we calculate the
conductivity of the linearized Boltzmann equation, using an appropriate variational ansatz.
Note that an alternative approach to calculating the conductivity is the memory-matrix
formalism [36, 58, 59], which leads to the same final expressions in terms of integrals [56].
The memory-matrix approach in general is a more powerful technique and can also be
applied when the Boltzmann formalism does not apply, as e.g. in one-dimensional situa-
tions [60]. It can be shown quite generally, however, that these approaches are equivalent
whenever the Boltzmann approach is valid [61].

Only due to the presence of Umklapp processes, the conductivity of a clean isolated
lattice system is finite. We use that for a local contact interaction, the Golden-rule transi-
tion coefficients Z̃ are isotropic and nothing but 2π U2/~, where we set ~ = 1. Therefore,
the microscopic transition rates (1.47) are given by

Zk2k3
kk1

= 2π U2
∑
G

δ (k + k1 − k2 − k3 + G) δ (εk + εk1 − εk2 − εk3) (2.18)

where the sum runs over all reciprocal lattice-vectors G. The transition rates are needed
later when we apply the variational method.

In the variational approach, we have to specify generalized currents φ(i)
k in which we

expect the deviation from equilibrium to be most pronounced: these are the the momentum
modes which are least damped by the linearized collision integral. The ansatz for the
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2. HYDRODYNAMICS AND THE BOLTZMANN EQUATION

nonequilibrium distribution function following (1.70) reads

fk = f0
k −

∂f0
k

∂εk

4∑
i=1

ηi φ
(i)
k (2.19)

which involves four variational parameters ηi and the generalized currents φ(i)
k , which we

selected to be

φ
(1)
k = vk

x, φ
(2)
k = εkvk

x, φ
(3)
k = kx, φ

(4)
k = (π − kx) (2.20)

This ansatz is justified as follows: φ(1) and φ(2) are chosen in order to to calculate the
mass and thermal conductivity as well as the corresponding cross-terms. The two remain-
ing momentum and hole momentum currents, φ(3) and φ(4), are important to take the
low-temperature physics into account: At low temperatures and at low particle or hole
densities, Umklapp scattering processes get exponentially suppressed. Therefore, momen-
tum is almost conserved in these regions, and hence the distribution function will deviate
strongly from the equilibrium distribution function in those modes. Note that the correct
low-temperature physics is not taken into account by more conventional versions of the
relaxation-time approximation: there, the relaxation-rate is often identified with a single-
particle relaxation rate [30], neglecting the vertex corrections. The variational approach is
known to give only a lower bound for the conductivity [30,62], however, we believe that it
gives an accurate result within a few percent in the regime where the linearized Boltzmann
equation applies. We have checked this statement by reducing the number of variational
parameters.

In the introductory paragraph, we have derived an approximate formula for the con-
ductivity in terms of the linearized Boltzmann equation (1.71), involving a 4 × 4-matrix
Pij and a 4-vector Xi. For our specific choice of variational modes and transition rates, we
arrive at

Pij =
πβ U2

2

∑
G

∫
dk0

(2π)2

dk1

(2π)2

dk2

(2π)2

dk3

(2π)2
f0
k0
f0
k1

(1− f0
k2

)(1− f0
k3

)

×
(
φ

(i)
k0

+ φ
(i)
k1
− φ(i)

k2
− φ(i)

k3

)(
φ

(j)
k0

+ φ
(j)
k1
− φ(j)

k2
− φ(j)

k3

)
(2.21)

× δ(k0 + k1 − k2 − k3 + G) δ(εk0 + εk1 − εk2 − εk3)

Xi = β

∫
dk

(2π)2
φ

(i)
k vk f

0
k(1− f0

k) (2.22)

As we have shown below, the conductivity results as the matrix product

σvar = Xt ˆP−1X (2.23)

Note that the dependence on inverse temperature β and fugacity z enters via the Fermi
functions, and that the conductivity has an overall prefactor of U−2. The remaining
integrals (2.21,2.22) were solved numerically using a Monte-Carlo integration for a discrete
set of values for T and µ.

Figure 2.1 shows the resulting transport scattering rate as a function of the density
for different temperatures. The curves converge upon increasing temperature towards a
limiting curve at T =∞ or β = 0, which has the asymptotic form of

τ−1(n, 0) = τ−1
0 n (1− n) (2.24)

τ−1
0 ≈ 0.609U2/J
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Figure 2.1: Scattering rate as a function of the density for various temperatures. Upon
reducing temperature, Umklapp-scattering gets reduced and gets exponentially suppressed
away from half filling at very low T. Approaching infinite T, a limiting inverted parabola
with a non-universal prefactor results.
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2. HYDRODYNAMICS AND THE BOLTZMANN EQUATION

In our numerical implementation, the scattering rate function is interpolated by a smooth
curve which is given in [56], such that the scattering rate can be evaluated for all values of n
and β. This concludes the description of the numerical solution of the Boltzmann equation.
We will now derive the hydrodynamic or diffusive limit of the Boltzmann equation formally.
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2.5. FROM BOLTZMANN TO HYDRODYNAMICS

2.5 From Boltzmann to hydrodynamics

2.5.1 Formal derivation

The Boltzmann equation in relaxation-time approximation is a very utile numerical tool,
however, in spatially inhomogeneous situations, it is typically too complex to extract ana-
lytical information from it. It depends on several independent energy or time scales such
as the bandwidth, interaction energy, scattering rate and the strength of external forces.
Therefore, it is useful to study a hydrodynamic limit of the Boltzmann equation, which was
derived in collaboration with Akos Rapp. Studying this limit amounts to deriving coupled
diffusion equations for the conserved quantities of the system. In the hydrodynamic limit,
the microscopic details of scattering are neglected and the system’s dynamics is solely
characterized by the flow of its conserved quantities. In the case of interacting particles
on a lattice, the conserved quantities are the particle and energy densities, n = (n, e), but
not momentum. Note that the Boltzmann equation is highly nonlinear, as the scattering
rate itself depends on n. Therefore we can expect the resulting diffusion equations also to
be nonlinear, which will have a large impact on their mathematical properties.

The diffusive limit of the Boltzmann equation relies on the assumption of being always
close to local equilibrium. Therefore, we start with the ansatz

fk(r) = f0
k(r) + δfk(r) (2.25)

where f0
k(r) is a local Fermi function, and we assume that δfk(r) is small. Using this

decomposition, the Boltzmann equation in relaxation time approximation (2.3) reads

(∂t + vk∇r + F∇k)(f0
k + δfk) = − δfk

τ(n)
(2.26)

Necessary ingredients to hydrodynamics are the continuity equations. These equations are
formally derived from the Boltzmann Eq. (2.26) by using that∫

dk (∂t + vk∇r + F∇k)(f0
k + δfk) = 0 (2.27)∫

dk εk (∂t + vk∇r + F∇k)(f0
k + δfk) = 0

where we have used that the collision term preserves the particle number and the kinetic
energy. The fact that δfk is a periodic function on the Brillouin zone leads to the absence of
boundary terms, implying

∫
∇kδfk = 0. We also use the definition of the particle density

n =
∫
fk/(2π)d and the kinetic energy density e =

∫
εkfk/(2π)d to derive

ṅ = −∇r
1

(2π)d

∫
dkvk δfk(r) (2.28)

ė = −∇r
1

(2π)d

∫
dk εk vk δfk(r) + F

1

(2π)d

∫
dkvk δfk(r)

where we used that
∫
εk∇kδfk = −

∫
vk δfk. The above equations are already the conti-

nuity equations in terms of the Boltzmann equation, but we can bring them into a more
familiar form, using the definitions for the particle and energy currents:

jn =
1

(2π)d

∫
dkvk δfk(r), je =

1

(2π)d

∫
dk εk vk δfk(r) (2.29)
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2. HYDRODYNAMICS AND THE BOLTZMANN EQUATION

Using the above expressions for the currents, the continuity equations can be brought to
the standard form:

ṅ = −∇r jn, ė = −∇r je + F jn (2.30)

The source term in the kinetic energy continuity equation reflects the fact that potential
energy can be converted into kinetic energy (Joule heating) and vice versa.

The diffusive approach is valid if the scattering time is the smallest time scale in
the system, i.e. the Boltzmann equation is dominated by its right-hand side. As a side
remark, note that due to the dependence of the scattering time on the local densities, it
is not globally small: in fact, it even diverges for vanishing particle densities. Hence, the
diffusion equation can only be valid in these regions if its left hand side is also small. The
validity of the diffusion equation is formally discussed in the Appendix (B.2).

As a second step, we have to calculate the particle and energy current, which amounts
to calculating δfk. Let us formally solve Eq. (2.26) for δfk in the collision-dominated
regime. If the scattering time τ is the smallest parameter in the problem, i.e. much
smaller that inverse forces or inverse spatial gradients, an iterative solution to the equation
is given by

δfk =
∞∑
n=1

[−τ(n)(∂t + vk∇r + F∇k)]n f0
k (2.31)

The diffusive or hydrodynamic limit emerges from the first-order approximation of the
above solution,

δfk ≈ −τ(n) (vk∇r + F∇k) f0
k(n) (2.32)

where we also neglected the time-derivative3. Most importantly, consider f0
k as a function

of n and momentum. In combination with the continuity equations, we can therefore derive
a closed set of equations for n, as the currents are given by

jn = − 1

(2π)d

∫
dk τ(n)vk (vk∇r + F∇k)f0

k(n) (2.33)

je = − 1

(2π)d

∫
dk τ(n) εk vk (vk∇r + F∇k) f0

k(n)

2.5.2 General case

Despite of the fact that Eqs. (2.30) and (2.33) are a closed set of equations, we have only
little intuition on them. Especially the dependence of f0

k(n) on n is somewhat counterintu-
itive and should be clarified. Therefore, using the chain rule of differentiation, we express
the currents as

jn = − 1

(2π)d

∫
dk τ(n)vk ·vk

(
∂f0

∂µ
,
∂f0

∂β

)(
∂(µ, β)

∂(n, e)

)(
∇rn
∇re

)
(2.34)

− 1

(2π)d

∫
dk τ(n)vk ·vk

∂f0

∂εk
F

je = − 1

(2π)d

∫
dk τ(n) εk vk ·vk

(
∂f0

∂µ
,
∂f0

∂β

)(
∂(µ, β)

∂(n, e)

)(
∇rn
∇re

)
(2.35)

− 1

(2π)d

∫
dk τ(n)εkvk ·vk

∂f0

∂εk
F

3The time-derivative yields second-order spatial derivatives for δfk that we neglect, as
∂t f

0
k = ∂n f

0
k ṅ ∼ ∂n f

0
k ∆rn
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2.5. FROM BOLTZMANN TO HYDRODYNAMICS

where vk ·vk is the dyadic product in the spatial coordinate, and a matrix multiplication is
involved in each integral. Let us spend a few more lines to give these equations a meaning.
In a similar way as we have derived a formula for the particle conductivity in terms of
the scattering rate (1.44), we can generalize this result and define a matrix of generalized
conductivities

σ̂(n) =
τ(n)

(2π)d

∫
dk

(
vk ·vk

∂f0k
∂µ vk ·vk

∂f0k
∂β

εkvk ·vk
∂f0k
∂µ εkvk ·vk

∂f0k
∂β

)
(2.36)

where the diagonal entries are the particle and energy conductivities respectively: these
terms measure the system’s response in terms of particle and energy flow on gradients in
chemical potential and inverse temperature. The off-diagonal entries measure the strength
of thermoelectric effects. We also define a 2× 2-matrix of “susceptibilities”

χ̂(n) =

(
∂(n, e)

∂(µ, β)

)
, (2.37)

which measures the response of the density n and kinetic energy e to changes in the
inverse temperature and the chemical potential. We can then consider the matrix product
of the generalized conductivity and the inverse susceptibility to define a matrix of diffusion
constants,

D(n) = σ̂(n)χ̂−1(n) (2.38)

Importantly, the matrix of diffusion constants inherits its nonlinearity from the nonlinear-
ities of the scattering time, D(n) ∝ τ(n). Finally, the generalized diffusion equation can
be expressed as(

ṅ
ė

)
= ∇

(
D(n)∇

(
n
e

))
+

(
∇(Fσ11(n))
∇(Fσ12(n))

)
+

(
0

F · jn

)
(2.39)

In our concrete applications, we do not need the diffusion equations in their full generality.
Instead, we consider their high temperature limit, which we will review below.

2.5.3 High temperature expansion

For the analytical studies in the context of this thesis, we need a simplified variant of the
above diffusion equations. It turns out that the high-temperature limit of the diffusion
equations greatly simplifies them, and even the simplified equations still give considerable
agreement when comparing their solutions with simulations of the Boltzmann equation at
high temperatures. Therefore, we will review the equations in the high-temperature limit
in this paragraph, following the Appendix of [63].

As we want to derive simplified expressions for the currents, given in Eq. (2.33), the
first goal is express f0

k(n) as a function of n in the limit of small inverse temperatures
β � 1, but finite fugacities z. The result can be presented in arbitrary dimensions, but we
will concentrate on d = 2 in order to simplify the notation. We start from an expansion of
f0
k in terms of β and z:

f0
k(z, β) =

1

zeβεk + 1
(2.40)

=
1

1 + z
− z

(1 + z)2
εkβ +

(z − 1)z

2(1 + z)3
ε2kβ

2 − z(1 + (z − 4)z)

6(1 + z)4
ε3kβ

3 +O(β4)
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Next, we calculate the particle density as a function of the variables z and β by integrating
over all momenta:

n(z, β) =
1

4π2

∫
d2k f0

k(z, β)

≈ 1

1 + z
+ 2 J2 z(z − 1)

(z + 1)3
β2 (2.41)

We took and will take advantage of the fact that integrals of the form
∫
dk εnk/(2π)d can

be calculated explicitly for any integer n. These integrals give integer multiples of powers
of the hopping amplitude J that generally depend on the dimension [63]. We can also
calculate the kinetic energies and find

e(z, β) =
1

4π2

∫
d2k εkf

0
k(z, β) (2.42)

≈ −4 J2 z

(1 + z)2
β − 6 J4 z(1 + (z − 4)z)

(1 + z)4
β3

These relations can be inverted up to order e3 and plugged into equation (2.40). This yields
the equilibrium distribution function in terms of the local densities and energy densities:

f0(n, e) ≈ n+
εk

4 J2
e−

(1− 2n)(4 J2 − ε2k)

32 J4 (1− n)n
e2 +O(e3) (2.43)

Using these expressions, we can calculate the currents for the particle and energy densities,
which are given by

jn ≈ −2 J2 τ(n)∇rn+
τ(n)

2
(∇rV ) e− τ(n)

16

(1− 2n+ 2n2)

(1− n)2n2
(∇rn)e2 +

τ(n)

8

(1− 2n)

(1− n)n
e∇re

je ≈ −3

2
J2 τ(n)∇re+

3

8
τ(n)

1− 2n

(1− n)n
(∇rV )e2 (2.44)

Again, we used that expressions of the form
∫
dkvikv

j
k ε

n
k/(2π)d give integer multiples of

powers of J . In chapter 5 of this thesis, we will simplify these equations even further, where
we combine them with the high temperature limit of the scattering rate function (2.24). A
this point, we want to emphasize that in absence of external potentials and for very high
temperatures, i.e. e ≈ 0, the particle diffusion equation decouples from the energy sector,
which is important for the theoretical discussion in chapter 3.
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3

Fermionic transport in a
homogeneous Hubbard model

3.1 Introduction

Transport properties are among the defining characteristics of materials, distinguishing in-
sulators from metals or superconductors. Yet, they are typically more difficult to calculate
than e.g. thermodynamic quantities. Foundations of fermionic transport were laid in 19th
century Cologne by Georg Simon Ohm [64], followed by first ideas of how to explain the
emergence of currents and dissipation in solids due to Drude [65], who wrongly assumed
that the free motion of electrons gets damped by collisions with lattice ions. After the
development of the band theory of solids [66], physicists became aware of the fact that the
nature of dissipation and transport is a very delicate subject. Electrons collide due the
presence of lattice defects, impurities, the coupling to lattice phonons, electron-electron
interactions and other effects. Surprisingly, applying an electric field to a perfectly con-
ducting lattice system should not lead to a directed flow of electrons, but instead to an
oscillatory movement of the electrons. This phenomenon is called Bloch oscillations [66]
and will be subject of chapter 6, where we analyze the damping of Bloch oscillations by
interactions. Up to now, the quantum-mechanical description of a stationary electrical
current in a metal at fixed temperature has remained a complicated problem, reflecting
the general difficulty to treat non-equilibrium quantum systems.

Ultracold atoms in optical lattices open the possibility of simulating transport in
strongly interacting systems in a well controlled experimental framework. As optical lat-
tices are clean and defect free, one can examine the transport of fermionic particles in an
environment where the particle and heat currents get only damped due to inter-particle in-
teractions. But besides providing new insights with relevance for condensed matter physics,
they are very interesting on their own right, especially in the field of non-equilibrium.

A prominent, early non-equilibrium experiment with cold atoms was the observation of
the dynamics of the order parameter after a quench through the superfluid-to-Mott phase
transition in 2002 [12]. This experiment was a hallmark in the field of nonequilibrium
many-body dynamics and let to an increasing interest in the topic of quantum quenches,
which also motivated the development of novel numerical techniques such as the time-
dependent density-matrix renormalization group (tDMRG) [38–40] and non-equilibrium
extensions of dynamical mean field theory (DMFT) [50]. Also, the realization of a quantum
variant of Newton’s cradle, performed in the group of D. Weiss [13], was an experimental
breakthrough: for the first time, the theoretical debate on the presence or absence of ther-
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malization in integrable systems could be explored experimentally. In the experiment, two
one-dimensional atomic clouds of hard-core Bosons were repeatedly brought to collision,
which were not found to equilibrate to a thermal state after more than 1000 collision events.
The experiment has inspired further theoretical research about thermalization of isolated
systems, exemplified by the formulation of the “eigenstate thermalization hypothesis” [67].

Most experiments have been performed with bosonic atoms, but more recently, also
fermionic systems have attracted more and more attention. Early experiments by M.
Zwierlein et al. in 2005 showed the crossover from a BCS superfluid of cooper pairs to
a BEC of bosonic molecules at positive scattering lengths, involving fermionic atoms [6].
More recently, spin transport was measured for this system, both in the diffusive regime
and also far from equilibrium [68]. While these studies were performed in absence of a
lattice, fermionic atoms in optical lattices were recently used to realize a Mott-insulating
state in experiment [2,3]. These experiments triggered further theoretical and experimental
research on the strongly repulsive Hubbard model, exemplified by studies on the lifetime
of metastable repulsively-bound fermionic pairs [69,70]. Nonequilibrium experiments with
lattice-Fermions might give an estimate for the conductivity in the Mott regime, which is
subject of recent theoretical studies [10,71] and of applied relevance for novel devices.

The expansion dynamics of an initially confined fermionic cloud in the one-dimensional
Hubbard model was studied numerically using the tDMRG [46]. In a regime, where U
is much larger than the bandwidth, doubly occupied sites were found to assemble in the
center - a phenomenon referred to as “quantum distillation“ - which was proposed to serve
as a means to cool fermionic ultracold atoms. In a recent follow-up study, the short-time
expansion dynamics was analyzed numerically [72], where a linear growth of the cloud’s
radius was observed numerically for short times and small clouds. Note, that the physics
of the Hubbard model in d > 1 can be expected to be very different from d = 1 due to the
integrability of the model in the latter case. Besides the above-mentioned studies, there
are many further dynamic experiments involving bosonic [73–77] and fermionic [78–80]
quantum gases.

The study that will be reviewed in this chapter emerged from a joint theoretical-
experimental collaboration with the group of Immanuel Bloch (MPI Munich) and Eugene
Demler (Harvard), and it is based on one of the first experiments on lattice-transport with
ultracold atoms [81]. Here, we analyzed the expansion dynamics of an initially confined
fermionic atomic cloud in an optical lattice in the presence of interactions. The cloud
was prepared in equilibrium in the presence of a harmonic trapping potential, which was
switched off subsequently. This way, it could expand in the presence of the optical lattice.
The expansion velocity was found to drop dramatically in the presence of interactions, but
surprisingly, the drop was independent of the attractive or repulsive character of the inter-
actions. This could be explained by us by demonstrating a novel dynamic symmetry of the
Hubbard model. Below, we will review the experimental findings and the corresponding
theoretical results. Large parts of the project were done in collaboration with David Rasch
and are also reviewed in his PhD thesis [56]. More details on the experimental realization
can be found in the PhD thesis of Ulrich Schneider [16].
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3.2 Experiment

The central technical innovation in the experiment [81] was the realization of an approxi-
mately ”flat“, i.e. spatially homogeneous optical lattice. As explained earlier in subsection
1.1.3, an atomic cloud is always naturally confined to the center of a red detuned laser
beam. This fact had made experiments involving a homogeneous lattice potential impos-
sible. An approximately flat optical lattice has been realized in the center of the trap
by superimposing the red-detuned optical trapping potential with a blue-detuned optical
lattice potential, such that the confinement and the deconfinement adds up to zero.

The experiment [3] is initiated as follows: in the presence of a red-detuned harmonic
dipole trap, a cloud of 2 − 3 × 105 fermionic atoms is cooled down to the temperature
T/TF = 0.13 by evaporative cooling, where TF is the Fermi temperature of the atoms
in the harmonic trap. The cloud consists of a balanced “spin”-mixture, i.e. a mixture
of potassium atoms in the two lowest hyperfine states. Subsequently, a blue-detuned 3D
optical lattice at wavelength λ = 738 nm is ramped up linearly within 56 ms, until the
lattice depth of 8 Er is reached1. During this time, the strength of the magnetic field is kept
at a value that corresponds to a vanishing interaction strength (209.1 G). This procedure
prepares the atoms in a band-insulating state in the middle of the lattice, surrounded by
a thin metallic shell.

The aim of the next step is to prepare the cloud at infinite temperature. To do this,
the lattice depth is slowly increased from 8 to 20 Er, such that tunneling between the
lattice sites is almost completely suppressed. This is a done at a rate slow enough to
avoid transitions into higher bands. It is then kept at the final value for another 40 ms.
While the atoms are localized in the steep potential wells, their phase coherence gets
lost: all momentum states get equally populated, and hence the cloud assumes an infinite
temperature. This waiting time is also used to tune the magnetic field to the desired
value in order to realize attractive or repulsive interactions. In the end, the lattice depth
is rapidly changed to the desired final value (typically 8 Er) while simultaneously the
harmonic trapping potential is eliminated. This is realized by reducing the intensity of the
red-detuned dipole trap by about 90%, such that its remaining confining potential exactly
compensates the anti-confinement of the blue-detuned laser beams which create the optical
lattice. While the atomic cloud expands in the homogeneous optical lattice, phase-contrast
images are taken of the density profile in periodic steps in time. This allows one to keep
track of the time-evolution of the density profile in a non-destructive way, as opposed to
destructive time-of-flight measurements. More details on the experimental parameters are
given in [81]. To summarize, a interacting cloud of atoms, initially at infinite temperature
in the lowest band is released from a harmonic trap and expands in an optical lattice.

3.3 Non-interacting case

3.3.1 Free expansion rate

It is observed in experiment that a striking change in the cloud’s symmetry occurs during
the expansion process: While it is spherically symmetric initially, it obtains a square shape
while it expands. Experimental pictures of the observed density distributions are shown
in Fig. 3.1: the cloud assumes the square shape of the Brillouin zone.

Due to the initial preparation, each particle is localized in a Wannier state, which is an
11 Er = h2/(2mλ2)
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Figure 3.1: Time-evolution of the density profile of a noninteracting expanding cloud. In
the course of time, the density-distribution assumes the square symmetry of the Bril-
louin zone. Figure k: Measured cloud width R(t) and deconvolved width, Rs(t) =√
R2(t)−R2(0). The solid lines represent the quantum-mechanical prediction (tunnel-

ing) while the dashed lines denote the corresponding classical random walk prediction
(thermal hopping). Figure made by U. Schneider

equal superposition of all Bloch waves that contain the information of the Brillouin zone.
Therefore, the cloud’s velocity distribution is not rotationally invariant. The cloud’s mean
velocity v at infinite temperatures is given by

v =

(
1

4π2

∫
dkvk

2

)1/2

=
√

2 d J (3.1)

where we set ~ = 1, a = 1. This theoretical constant expansion rate agrees very well
with the experimental measurements, as can be seen in the inset of Fig. 3.1. In contrast,
thermal hopping can certainly be excluded, as this would result in a random walk whose
radius would grow as the square-root in time (dashed curves in Fig. 3.1). In the noninter-
acting case, the particles evolve under the action of the tight-binding Hamiltonian alone,
H = −J

∑
<ij> c

†
icj , which can in principle easily be simulated numerically, using Slater

determinants. However, also the semiclassical approach works very well in this case as the
cloud is large and density gradients are small2.

2For a noninteracting system, semiclassics just amounts to a first-order gradient expansion
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Figure 3.2: Analytic density profiles of the noninteracting expansion in d = 1, starting from
a delta peak. The analytic result n0(x, t) (given by Eq. (3.3), thin black line) develops
peaks at x = vmax t, where vmax = 2J are the maximal velocities of the band. These peaks
tend to wash out, when one considers the convolutions n(x, t) =

∫
n0(x, t)g(x) with Gaus-

sian initial density distributions g(x) = Exp[−x2/(2α2)]/
√

2πα where α = 0.05, 0.1, 0.2
are the dark blue, blue and cyan curves, respectively. The curves are plotted at the times
t = 0 (dashed) and t = 0.25 (solid).

3.3.2 Minimal model of free expansion

Semiclassics allows for an analytic solution of the expansion dynamics. Let us first consider
the case d = 1. We assume that the particles are initially sharply localized at the origin
before they expand freely. Particles travel at velocities vk = 2J sin(k), and for the following
calculation we set J = 1. The dynamics of a semiclassical particle at position x and
momentum k, which has started at the origin x0 = 0 at time t0, is described by the
distribution function

f(x, k, t) = δ(x− 2 sin k(t− t0)) (3.2)

The density profile n0(x, t) =
∫
f(x, k, t) dk/2π for an assembly of such particles, which is

initially characterized by an infinite temperature, is given by

n0(x, t) =

∫
dk

2π

1

2

1

|t− t0|
δ(

x/2

t− t0
− sin k)

=
2

4π

Θ(1− |x/2|t−t0 )

|t− t0|
1

arcsin′( |x/2|t−t0 )

=
1

2π

Θ(1− |x/2|t−t0 )

|t− t0|
1√

1− 1
4( x
t−t0 )2

(3.3)

Note that this density distribution is characterized by two singularities that travel at the
speed of the fastest particles vmax = 2J , as can be seen in Fig. 3.2. This is an artifact
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U=0

Figure 3.3: Boltzmann simulations of the noninteracting case, taking lattice inhomo-
geneities into account. When particles approach the “edge” of the laser beam in one
direction, their hopping amplitude in the perpendicular direction increases. This leads to
an enhancement of the expansion velocities along the diagonals, in agreement with the
experimental observations. Inset: Experimental density profiles for U = 0 at long times.
Pictures and experimental data by U. Schneider [81].

of the initial delta-distribution. In order to get a more realistic density profile, one has to
consider the convolution of Eq. (3.3) with a broadened initial density distribution g(x),
i.e.

n(x, t) =

∫
dxn0(x, t) g(x) (3.4)

The densities n0(x, t) and n(x, t) are compared in Fig. 3.2, where g(x) are Gaussians of
different widths. Finally, note that the analogous problem in d = 2 factorizes, and hence
its density distribution is just given by a product of two one-dimensional distributions,

nd=2
0 (x, y, t) ∝ n0(x, t)n0(y, t) (3.5)

With a loving eye, the resulting four-peak structure of the density distribution can also be
seen in the experimental data (Fig. 3.1) and also occurs visibly in the numerical simulations
for U = 0, see Figs. 3.3 and 3.4.

3.3.3 Lattice inhomogeneities

Another experimental observation in the noninteracting case is the fact that for long times,
the atomic clouds tends to deviate from the perfect square shape. Very large clouds expand
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3. FERMIONIC TRANSPORT IN A HOMOGENEOUS HUBBARD MODEL

faster along the diagonals of the lattice than along the lattice axes, as can be seen in Fig.
3.3. This effect can be understood as follows: when the cloud has grown large, its motion
starts to become affected by lattice inhomogeneities due to the finite width of the laser
beams. It is important to notice that upon approaching the laser “edge” in x direction,
the hopping amplitude in y direction gets increased, and vice versa. This effect can be
easily implemented in the semiclassical formalism by making the kinetic energies spatially
dependent:

ε(kx, ky) −→ ε(x, y, kx, ky) = A(y)ε(kx) +A(x)ε(ky) (3.6)

In the Appendix (B.1), we show how to calculate the factors A(x) by modeling physical
laser profiles. The new ansatz is such that it reproduces the original hopping rate J in
the center of the trap, i.e. A(0) = 1, and increases it by about 25% for a distance of 100
lattice constants from the center. Our resulting simulations were in good agreement with
the experimental observations, see Fig. 3.3.

3.4 Interacting case

3.4.1 Experimental observation

Interactions were found to modify the expansion dynamics drastically when compared
to the noninteracting case. In the presence of interactions, the experiment as described
above was repeated for different positive and negative values of the Hubbard on-site en-
ergy U/J ∈ [−10, 10]. Surprisingly, it was found that the mere presence of interactions
slows down the expansion velocities drastically, independent of the sign of the interaction
strength. Note that this observation contradicts the naive expectation that repulsive inter-
action push the cloud apart, while attractive interactions hold the cloud together: instead,
both U and −U lead to the same expansion dynamics. Furthermore it is found that the
cloud’s radius grows approximately linear in time for all values of U , but with different
rates. Thus, a unique expansion velocity can be addressed to each interaction strength.
Fig. 3.6 shows the expansion velocities as a function of U . Furthermore, it can be seen
that while the outer parts of the cloud assume a square shape as in the noninteracting
case, the core of the cloud remains spherically symmetric during its expansion. Fig. 3.4
shows the experimentally measured density profiles for different U .

3.4.2 Theoretical interpretation

Let us start our analysis with a qualitative theoretical explanation of the experimental
findings. Note that the experimentally realized interaction strengths were weak enough
to avoid the system’s the Mott insulating regime. Yet, let us consider interactions large
enough to drive the system locally to thermal equilibrium wherever the local densities are
not too small and the local density gradients are not too large. In this case, most parts
of the system should be in a regime where a diffusion equation applies. This diffusion
equation can be expected to be highly nonlinear: the scattering rate and therefore also
the diffusion constant depends crucially on the local particle density, as we have shown
in chapter 2. In regions where the local density per spin is close to 1/2, the dynamics
should be dominated by frequent collisions. Hence, the particles’ directed motion will be
suppressed, reflected by a small diffusion constant in these regions. When considering
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Figure 3.4: In-situ images of the density distribution. Pictures are taken after a fixed
time of expansion (25 ms) for various interaction strengths. Identical behavior for positive
and negative interactions is observed. Also, an increasing number of atoms remains in
the spherically symmetric regime upon increasing |U/J |. Bottom-line: 2D Boltzmann-
simulations for various interaction strengths.
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3. FERMIONIC TRANSPORT IN A HOMOGENEOUS HUBBARD MODEL

regions with lower densities3, the mean free path and therefore the diffusion constant
grows. Finally, the dynamics in the tails of the cloud is almost ballistic, because the
local density is so low that particles almost never collide with each other. Therefore, the
system is characterized by a spatial crossover from diffusive dynamics in the center of the
cloud to a ballistic dynamics in its tails. The diffusion equation that describes the center
of the cloud is rotationally symmetric, and therefore the core remains round during the
expansion. In contrast, the tails of the cloud assume a square shape, as the dynamics is
effectively ballistic. This crossover also becomes visible in Fig. 3.5 which shows results
from a numerical simulation of the Boltzmann equation that we explain below.

For larger and larger interaction strengths U , larger and larger parts of the cloud enter
the diffusive regime. Assuming that most parts of the cloud are describable by the diffusion
equation, one might naively expect that the cloud’s radius R grows in time t according to
R ∼ t1/2, which is in contradiction to the measured growth rate R ∼ t. Note, however, that
the first mentioned scaling law does not necessarily hold for nonlinear diffusion equations,
as we will discuss later.

The scattering rate τ−1(n) ∼ U2 depends only on the modulus of the interaction
strength U , and not on its sign. As diffusive particles expand slower than ballistic par-
ticles, we can expect the cloud’s expansion velocity to decrease for large values of ±U .
However, this fact alone does not explain the observed symmetry in the expansion dy-
namics for attractive and repulsive interactions: interaction energies Eint ∼ U have a
non-negligible impact on the system’s dynamics and are obviously sensitive to the sign of
U . The invariance of the expansion velocities under the transformation U → −U emerges
due to a dynamic symmetry of the Hubbard model and will be explained later. We will
proceed in reviewing our numerical Boltzmann simulations.

3.5 Numerical simulations

As the dynamics of the expanding atomic cloud is characterized by a crossover from dif-
fusive dynamics in the center to ballistic dynamics in the tails, we need a model that can
describe both regimes and the crossover regime in-between. One of the simplest models
that has this property is the Boltzmann equation. We use it in a version of the relaxation
time approximation described in chapter 2:

(∂t + vk∇r + F∇k)fk = −τ−1(n)(fk − f0
k) (3.7)

F = −U ∇rn

Here, vk = ∇kεk describes the group velocity of the particles, and the Force-term F takes
interaction energies on the Hartree level into account. We will now describe how the
problem-specific conditions are implemented numerically.

3.5.1 Geometry

We model the expansion dynamics of a two-dimensional cloud, initially prepared in a
rotationally invariant trapping potential. The high symmetry of the initial state and the
lattice allows us to exploit several symmetries in the system’s geometry in order to minimize
the computational costs. We can exploit an eightfold symmetry in the discretized phase-
space, as described in detail in [56]. This discretization usually involves 100 × 100 sites

3Due to particle-hole symmetry, the same argument also applies to regions where the local density per
spin is close to 1.
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3.5. NUMERICAL SIMULATIONS

in the spatial coordinates and 40 × 40 momenta, as well as a temporal discretization of
∆t = 10−3 J−1. We have to simulate times up to tmax = 100J−1 ≈ 100× 0.57 ms for the
given experimental parameters, as we derive as a side result in Appendix (B.6).

In experiment, the atomic cloud is initially prepared rotationally symmetric in a 3-
dimensional optical lattice. Subsequently, the laser intensity in the vertical direction is
increased such that vertical tunneling is almost completely suppressed. This leads to sev-
eral two-dimensional atomic layers that spread independently in the horizontal direction.
Imitating the experimental conditions, we have to simulate 21 different 2-dimensional lay-
ers with different initial cloud radii. Imitating the experimental imaging technique, the
densities of the individual layers have to be integrated vertically to correspond to the mea-
sured density profiles [16]. However, the density distribution of a single two-dimensional
atomic layer and the layer-averaged density profile do not differ much and yield very similar
expansion velocities.

3.5.2 Adjusting initial parameters

According to the experimental procedure, the cloud is initially prepared in equilibrium,
before the local temperatures are quenched to infinity. To prepare an equilibrium distri-
bution function in the presence of a harmonic trapping potential, we need to know three
parameters: The initial inverse temperature β, the prefactor of the harmonic potential V0

and the offset of the chemical potential µ0.
The value of V0 is determined by measuring the trapping frequency of the optical

potential and using Eq. (1.24); the resulting numerical value is given by V0 = 0.0097 J/a2.
Instead of µ0 and β, however, we are only given the total number of particles of the three
dimensional layered system, N3D = 2 × 105, and the initial cloud radii R, which can be
read-off from the measured density profiles, see supplementary material to [81]. Hence,
we use the equations for the total number of particles and the squared cloud radius in
equilibrium

N3D =
∞∑

z=−∞

∫
d2r

∫
d2k

4π2

1

1 + eβ(εk−µ0+V0(r2+z2))

R2 = N
∫
d2r

∫
d2k

4π2

r2

1 + eβ(εk−µ0+V0r2)

(3.8)

which can be solved numerically for µ0 and β, using Newton’s algorithm. The sum runs
over the different 2D layers and N is the normalization of the corresponding integral.
Note that in order to prepare the atoms in an initial state independent of the interaction
strength, the density profile was “frozen in” in absence of interactions before U was tuned
to a finite value, as we have explained above. However, still the particle number N and
also the cloud radius R may vary slightly in each experimental realization. Therefore,
we also obtain slightly varying initial temperatures and chemical potentials as starting
parameters for the different simulations. However, these variations turn out to not very
pronounced: while β lies in the range between 0.13 and 0.19, µ0 lies between 17.4 and 20.7
for the different numerical runs that correspond to a given value of U . The detailed values
have been listed in [56].

As a last step before we start the simulation of the time evolution, we calculate the
local particle densities n(r), and we subsequently modify the initial distribution function
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Figure 3.5: Theoretical simulation of the time-evolution of a typical density profile for
U/(4J) = 0.29 . The diffusive-to-ballistic crossover could be reproduced: round regions in
the density distributions are in the diffusive regime, while the ballistic regime is character-
ized by a square-shape.

fk and the local inverse temperature β according to

fk(r) = n(r), β(r) = 0 (3.9)

This procedure imitates the experimental step of destroying the phase coherence between
the different lattice sites and thereby creating a fixed density profile and an infinite tem-
perature in the lowest band.

3.6 Comparison of numerical and experimental data

3.6.1 Expansion velocities

Using the Boltzmann equation, we adjusted the initial conditions to the experimental
situation as described above and simulated the expansion of the atomic cloud. The time-
evolution of a typical theoretical density profile is shown in Fig. 3.5, which shows the same
diffusive-to-ballistic crossover as seen in the experimental data.

An interesting quantity to observe in experiment is the growth of the cloud’s radius in
time, R(t). The cloud radius was obtained from phase-contrast images and was defined
to be the half-width at half maximum (HWHM) of the density distribution: this quantity
turns out to be less sensitive with respect to noise than, e.g., the radius obtained from a
Gaussian fit to the density distribution. As stated above, the expansion rate of the cloud
radius is approximately constant in time, R ∼ t, or to be more precise:

R(t) ≈
√
R2

0 + v2
exp(U) t2 (3.10)

where R0 is the initial radius. Here, vexp is a constant expansion velocity that can be
addressed to each interaction strength U . Fig. 3.5 shows the velocity vexp(U) of the
expanding core as function of the interaction strength U and compares theory with exper-
iment, where the red curve shows the numerical simulation and the black curve is a guide
to the eye. The points are experimental measurements.

Note that not a full quantitative agreement could be achieved, which is discussed later.
In this figure, the aforementioned U → −U symmetry becomes quantitatively visible.
Expansion velocities drop dramatically already at moderate interaction strengths, which
reveals the strong impact of interactions on the mass transport. Note that these veloc-
ities assume negative values for interaction strengths |U/J | ≥ 3, both in theory and in
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experiment. Here, the diffusive expansion in the center is very slow compared to the bal-
listic velocities of the free particles in the low density regions. Therefore, the core rather
“melts” like a block of ice instead of expanding: the width at half maximum therefore
shrinks, Ṙ(t) < 0. The asymmetric behavior for very large interactions can be attributed
to light-assisted collisions on the attractive side of the Fermi gas.

3.6.2 Momentum distribution

Note that not all observables are invariant under the change of U → −U : some quantities
satisfy a more complicated symmetry relation. Given the noequilibrium distribution func-
tion as calculated from the Boltzmann equation at a given time t > 0, we can extract the
momentum-distribution from it by integrating over the spacial coordinates:

n(k, t) =

∫
d2r fk(r, t) (3.11)

This quantity corresponds to the momentum-distribution that one would obtain when
doing a time-of-flight measurement. Density plots of the simulated momentum distribution
functions are shown as insets (i - v) in Fig. 3.5. Plots are made for a simulated expansion
time of 40 ms and for different interaction strengths.

During the expansion, the cloud converts interaction energy into kinetic energy or
vice-versa, depending on the sign of U : it reduces its kinetic energy for U < 0, and it
further increases its kinetic energy for U > 0. As the distribution function is prepared at
β = 0, finite inverse temperatures β > 0 emerge at attractive interactions: the cloud gets
cooled during its expansion. This can be seen in Fig. 3.5 (i), where momenta accumulate
around the origin while states at high momenta get reduced. However, just the opposite
behavior is seen in Figure (v), where the occupation of states around momentum (π, π) gets
enhanced during the expansion, while low momentum states get reduced. The enhanced
population of high-energy states reflects the emergence of negative absolute temperatures,
β < 0. A subsequent project that is subject of the thesis at hand will be exclusively
devoted to negative temperatures. Therefore, we will stop the corresponding discussion
here and instead interpret the emergence of the apparent (anti-) symmetry in the expansion
dynamics with respect to the operation U → −U . No comparison between theory and
experiment is currently available for the momentum distributions.

3.7 Dynamic symmetry of the Hubbard model

The observed and simulated symmetry in the expansion dynamics turns out to be an exact
dynamic symmetry of the Hubbard model, proposed by Eugene Demler and described in
Ref. [81]. This symmetry relies on the initial state, on the observable and on the Hubbard
Hamiltonian. To begin with, it is important that the initial state and the observable are
symmetric under time-reversal symmetry. We will also need to introduce a “π-boost”
operator that shifts all momentum states by Q = (π, π):

BQ ĉq = ĉq+Q (3.12)

Note that B2
Q = 1, which will be used later. The crucial symmetry property of the Hubbard

model H(U) is the fact that its prefactor can be inverted by flipping U and simultaneously
boosting all momentum states by Q:

H(U) = −BQH(−U)BQ (3.13)
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Figure 3.6: a: Expansion velocities of the cloud radius for various interaction strengths.
The red curve is taken from a Boltzmann-simulation which includes an average over sev-
eral 2D layers. While the time-evolution of the density is symmetric, the momentum-
distribution (insets i-v) evolves anti-symmetrically upon changing U → −U . The momen-
tum distributions are calculated after a simulated expansion time of 40 ms. No fitting
parameters are involved in the simulation. b & c: One-dimensional dispersion-relation
(red line) and velocity-distribution (green line). Initial state (b) vs. final state (c), where
the momentum-distribution has evolved differently for U > 0 (red dots) and U < 0 (blue
dots). The resulting velocity distributions are, however, identical. Picture by U. Schneider,
taken from [81].
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As an artifact of the cosine-dispersion, the above equation can be traced back to the identity
cos(q + π) = − cos(q). Importantly, our initial state is prepared at infinite temperature,
implying an equal population of all momentum states. Therefore, its density-matrix ρ0 :=
ρ(t = 0) is invariant under the “π-boost”, i.e.

ρ0 = BQ ρ0 BQ (3.14)

Now, let us combine these requirements and consider the time-evolution of an arbitrary
time-reversal invariant observable Ô:

〈Ô〉H(U)(t) := Tr
(
eiH(U)tρ0e

−iH(U)tÔ
)

(3.13)
= Tr

(
BQe

−iH(−U)tBQρ0BQe
+iH(−U)tBQÔ

)
(3.14)

= Tr
(
e−iH(−U)tρ0e

+iH(−U)tBQÔBQ

)
T.R.

= Tr
(
e+iH(−U)tρ0e

−iH(−U)tBQÔBQ

)
= 〈BQÔBQ〉H(−U)(t) (3.15)

To summarize our result: starting at infinite temperature, the time-evolution of a given
observable in the repulsive Hubbard model is identical to the time-evolution of the “π -
boosted” observable in the attractive Hubbard model and vice-versa.

Let us now consider two important examples. First, note that the local density operator
n̂(r) is invariant under the boost, BQn̂(r)BQ = n̂(r), and therefore we find

〈n̂(r)〉H(U) = 〈n̂(r)〉H(−U) (3.16)

This identity explains the observed dynamic symmetry with regard to the cloud’s density
profile and expansion velocity: these quantities evolve exactly the same under the Hamil-
tonians H(U) and H(−U), which explains the symmetry of the expansion velocity as a
function of interaction strength, see Fig. 3.6. As a second example, let us consider the
momentum distribution operator, which obviously satisfies BQn̂(k)BQ = n̂(k + Q), and
therefore

〈n̂(k)〉H(U) = 〈n̂(k + Q)〉H(−U) (3.17)

The above relation explains our numerical results for the momentum distributions, which
are shown in the insets of Fig. 3.6: the momentum distributions of clouds that expand in
the attractive or repulsive Hubbard model differ by a shift of all momentum states by Q.
Hence, momentum distributions at positive temperature correspond to momentum distri-
butions at negative temperature at opposite values of U , and vice versa. This concludes
the discussion on the dynamic symmetry of the Hubbard model.

Let us also give a more intuitive explanation of the dynamic symmetry of the Hubbard
model. Counter-intuitively, the attractive or repulsive character of interactions was found
to have no impact on the expansion dynamics. Repulsive forces always increase momenta,
but they do not always increase velocities: while in free space where εk ∝ k2, larger
momenta imply also larger velocities vk = ∇kεk ∝ k, this is not necessarily the case for
the Hubbard model, where the velocities for the momenta k and Q− k are identical, see
Fig. 3.6. Let us emphasize again that the observed dynamic symmetry is not an artifact
of the Boltzmann simulation, but a general property of the Hubbard model.
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3.8 Nonlinear diffusion equation

3.8.1 Validity of hydrodynamics

Our next goal is to try to gain more analytic insight in this complex expansion process.
Although we have already simplified the problem by studying transport in the Hubbard
model by using the Boltzmann equation in relaxation-time approximation, even the Boltz-
mann equation is still rather complex: it is characterized by several time scales given by
the strength of external and internal forces, the group velocities and the rate of scattering.
In order to get rid of one of these parameters, we need a controlled limit which simplifies
the Boltzmann equation. An obvious choice is the hydrodynamic (or diffusive) limit, which
assumes that the time between subsequent collisions, τscatt, is the smallest time scale in
the problem. If other time scales are much larger, the microscopic details of scattering
are not important any more and the system is close to local equilibrium. Hydrodynamic
approaches are powerful and well established techniques in many different areas of physics,
including not only classical systems but also quantum systems. However, hydrodynamics
certainly does not describe the tails of the expanding cloud correctly, which is governed by
ballistic motion.

In chapter 2, we showed how to derive coupled diffusion equations from the Boltzmann
equation. Again, let us combine the particle density n and the kinetic energy density
e in the container variable n(r, t). In absence of external potentials, the hydrodynamic
equations (2.39) simplify in absence of potentials according to

ṅ = ∇ (D(n)∇n) (3.18)

where D is a 2× 2-matrix of diffusion constants. In the previous chapter, we determined
D in such a way as to reproduce the diffusion constant of the Hubbard model. Using the
high temperature limits of the currents given in Eq. (2.44), we can identify the coefficients
of the matrix of diffusion constants to linear order in e as

D(n) ≈ τ0

n

(
2 J2 0

0 3
2 J

2

)
+ O(e2) (3.19)

where we used the infinite temperature and low-density limit of the scattering rate function
from Eq. (2.25), which states that τ(n) ≈ τ0/n with τ0 ≈ 1.647 J/U2. Importantly, the
sectors for particle and energy diffusion approximately decouple in absence of potentials
and for very high temperatures or small kinetic energy densities e. We therefore study the
particle diffusion equation alone:

ṅ = ∇(D(n)∇n), D(n) = 2J2τ0/n (3.20)

Note that the above hydrodynamic approach is not valid in one dimension, where the
Hubbard model is integrable and the isolated system doesn’t necessarily thermalize to a
state solely characterized by n and e.

In order to identify the validity of the diffusive approximation, the leading nonlinear
corrections to the currents can be compared to the linear currents. If we want the diffusion
equation to be valid, this ratio defines dimensionless number that has to be small. In the
Appendix (B.2), we show that this criterion is equivalent to

1

τscatt
� 1

τexp
:=
|∇(D(n)∇(D(n)∇n))|

|D(n)∇n|
(3.21)
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where 1/τscatt is a typical scattering rate in the system and 1/τexp is the cloud’s charac-
teristic expansion rate. This criterion can be further simplified by scaling considerations.
Let us therefore replace the gradients by the inverse cloud radius, which in turn can be
estimated using the total number of particles, i.e. ∇ ∼ 1/R ∼ 1/N1/3. We also use that
the diffusion constant can be estimated as D ∼ v2 τscatt ∼ J2 τscatt, which can be combined
to the criterion

1

τscatt
� J

1/N1/3
(3.22)

where we took the square root on both sides. There is also an alternative criterion for the
validity of the diffusion equation. The other criterion states that the diffusive currents must
never involve velocities larger than the maximally allowed ballistic velocities v imposed by
the lattice, jdiff = D(n)∇n� jball ≈ n v. This criterion leads to the same result after the
above scaling analysis. Using that 1/τscatt ∼ nU2/J for low densities, Eq. (3.22) can be
also expressed as

n� J2

U2N1/3
(3.23)

Therefore, one might expect naively that in the physical case of N = 105 particles, almost
the entire cloud should be in the diffusive regime and that it therefore suffices to use the
diffusion equation alone to model the entire system. This naive expectation turns out to
be incorrect, as we will show below.

3.8.2 Fast diffusion equation

Due to divergence of the scattering time τ(n) for low densities n, the hydrodynamic ap-
proach looses necessarily its validity in the tails of the cloud. However, upon increasing the
interaction strength U , larger and larger parts of the cloud are in the diffusive regime, as
is correctly predicted by Eq. (3.23). For large enough values of U , we could hope that we
can describe the entire cloud in terms of the diffusion equation alone. Here we will show
that this is not the case.

Introducing the constant C = 2J2τ0 ≈ 3.29 J3/U2, we will now study the particle
diffusion equation (3.20) in more detail, valid at high temperatures and low densities:

ṅ = C∇
(

1

n
∇n
)

(3.24)

The interaction strength U enters quadratically in C ∼ U−2 and can be absorbed into
a re-definition of the time variable, t → t/C. Consequently, interactions only affect the
speed of diffusion and nothing else. Let us generalize the diffusion equation slightly by
introducing a new parameter δ such that δ = 1 gives our original equation:

∂tn(r, t) = ∇
(

1

nδ
∇n(r, t)

)
(3.25)

The above equation is called the fast diffusion equation and has been extensively studied
in the mathematical literature, as is reviewed in a book of J. L. Vazquez [82].

In Fig. 3.7, we compare numerical simulations of the Boltzmann equation to numerical
simulations of the fast diffusion equation for δ = 1, starting from identical density distri-
butions. The numerical solutions of the two equations agree in the bulk of the system for
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3. FERMIONIC TRANSPORT IN A HOMOGENEOUS HUBBARD MODEL

short times and large interaction strengths. There are significant deviations in the tails
of the cloud even for strong interactions: while the Boltzmann equation only allows for
finite spreading velocities, particles can become arbitrarily fast according to the diffusion
equation.

3.8.3 Scaling solutions

A subset of solutions for nonlinear diffusion equations of the type (3.25) can usually be
found by making a certain scaling ansatz. These solutions are called Barenblatt-type
solutions [83]. Although scaling ansatzes clearly cannot capture all possible solutions of
the equation, some properties of the Barenblatt solutions might be valid for a wider class
of solutions as well. We make the following ansatz for the particle density, involving a
scaling function f and the unknown parameter α > 0:

n(r, t) =
1

tdα
f(r/tα) (3.26)

Note that the prefactor t−dα is fixed, as the total integral of n over r gives the total number
of particles and must be independent of time. The nonlinear diffusion equation for radially
symmetric initial conditions in d dimensions reads

0 = − ∂t n(r, t) +
1

rd−1
∂r

(
rd−1

n(r, t)δ
∂rn(r, t)

)
(3.27)

Using our scaling ansatz for this equation yields an ordinary differential equation for the
scaling function f . Substituting r → q = r/tα yields

0 = dαf(q) + qαf ′(q) (3.28)

− t1−2α+dαδ

(
(d+ 1)f(q)−δf ′(q)

q
+ f(q)−δf ′′(q)− f(q)−δ−1f ′(q)2δ

)
where the first two terms on the right hand side are due to the time derivative, while the
remaining terms come from the spatial derivatives. These contributions have to cancel
each other for all times t, and hence the parameter α has to be adjusted such that t drops
out of the equation:

α =
1

2− dδ
=

1

2− d
(δ = 1) (3.29)

The above relation is of much more interest to us than the explicit form of the scaling
function, which is given as the solution of the ordinary differential equation (3.28). It tells
us that in dimensions d = 3, no positive α exists, and hence no scaling solution exists in
d = 3. Also note that in two dimensions, the exponent α diverges: this is the marginal case
for the existence of a scaling solution. The larger the value of α, the faster the Barenblatt-
solution expands. We therefore conclude that the diffusion equation in two dimensions for
δ = 1 is very fast, and it is therefore also called the superfast diffusion equation [82].

3.8.4 Universal particle loss rate

It turns out that the fast diffusion equation has got remarkable properties concerning the
conservation of the total number of particles. By integrating equation (3.27) radially over
space up to a certain radius rmax, we see that

∂tN ∼ rd−1

nδ
n′(r)

∣∣∣∣
r=rmax

(3.30)
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Figure 3.7: Radial density profiles multiplied by r3/r2
0, where r0 = 200, for various inter-

actions (increasing from top to bottom) and three subsequent times (left to right). We
compare the simulated Boltzmann-data (blue) to the densities resulting from a simulation
of the diffusion equation (red), given identical initial conditions. While the diffusion equa-
tion is rotationally invariant, the Boltzmann equation is not. Therefore, we show three
different curves for the Boltzmann simulations: in each picture, the blue curve on the
top corresponds to the density along the diagonal, while the lowest one shows the density
along the x-axis. The dashed curve in-between is a radial average. The Boltzmann and
diffusion equations agree in the bulk of the cloud for sufficiently large interaction strengths.
Note that in contrast to the diffusion equation, the Boltzmann equation predicts a finite
spreading velocity, given by the lattice dispersion relation.
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3. FERMIONIC TRANSPORT IN A HOMOGENEOUS HUBBARD MODEL

For δ ≥ 1 the above surface-term does generally not vanish for rmax → ∞, assuming
exponential or power-law tails for n. Hence, the fast diffusion equation generally does not
conserve the total number of particles: instead, particles may leave the system at infinity.
Note that the boundary term depends on the two exponents δ and d.

From now on, we will concentrate on the physically relevant case of δ = 1. The superfast
diffusion equation is also called the logarithmic diffusion equation, as ∇( 1

n∇n) = ∆ log(n).
Let us relate the spatial dimension d to the possibility to find solutions of the superfast
diffusion equation which satisfy particle number conservation. In order to maintain particle
number conservation, we derive from Eq. (3.30) that the asymptotic decay of the density
profile n has to satisfy |∂r log(n)| < c/rd−1 for all c > 0, implying

| log(n(r))| < c

∫ r

r0

1

r̃d−1
dr̃ (r →∞) (3.31)

for some r0 > 0. As the density goes necessarily to zero and hence the logarithm diverges,
also the right hand side has to diverge, which only happens for d < 2. Therefore, particles
get lost for d ≥ 2. Still, solutions that do not obey particle number conservation can
be found also in this case: those solutions are determined by their particle number loss
rates at infinity. In fact, one can specify a time-dependent current at infinity to make the
partial differential equation’s solution unique [82]. In contrast, for d < 2, solutions with
a conserved total particle number exist. In one dimension, e.g., one can check that the
function n(x, t) = 2t/(x2 + (vt)2) is a solution for arbitrary v.

In d = 3, it has been shown [82] that no solutions exists for initial conditions that
involve asymptotically decaying density profiles, i.e. n(r → ∞, t = 0) = 0. This can be
interpreted as follows: here, the diffusion is so fast, that all particles vanish at infinity in
an infinitesimally small time step. In d = 2, Eq. (3.29) tells us that the scaling exponent
α diverges. Let us try to understand this case better and map the rotationally invariant
two-dimensional diffusion equation to a one-dimensional diffusion equation, following [82].
To this end, we define the function ñ(u, t) by

n(r, t) = ñ(log(r), t)/r2 (3.32)

It can easily be checked that ñ(u, t) solves the fast diffusion equation in d = 1 if n(r, t)
solves the fast diffusion equation in d = 2. Note that ñ(u, t) = n(eu, t)e2u, which leads to
the identity

∂u log(ñ(u)) = 2 + n′(eu)eu/n(eu) −→ 2 (u→ −∞) (3.33)

where we used the fact that n′(0) = 0 because n(r, t) should be differentiable in the origin.
We now can calculate the change in the total number of particles in the course of time:

Ṅ =

∫ ∞
0

dr 2πr ∂tn(r, t)
(3.32)

=

∫ ∞
0

dr 2πr ∂tñ(log(r), t)/r2

= 2π

∫ ∞
−∞

du ∂tñ(u, t) = 2π

∫ ∞
−∞

du ∂2
u log ñ(u, t)

(3.33)
= −4π + 2π lim

u→∞

ñ′(u)

ñ(u)
≤ −4π (3.34)

In the last line, we used that the additional contribution to −4π is negative:

lim
u→∞

∂u log(ñ(u))
(3.33)

= lim
r→∞

r n′(r)/n(r) ≤ lim
r→∞

r ∂r(cr
−2)/n(r) ≤ 0 (3.35)
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3.8. NONLINEAR DIFFUSION EQUATION

where we used that the asymptotic decay of n is faster than r−2 to give a finite total
number of particles. Hence, studying the total number of particles for the two-dimensional
superfast diffusion equation leads to a surprising result: there exists an unavoidable, uni-
versal minimal particle loss rate of 4π, which is independent of the size and shape of the
density distribution. The universal loss rate can also be proved geometrically, as is re-
viewed in Appendix (B.3). Although the above equation is an inequality, it becomes an
equality for many initial conditions. One example for such a case is given by the following
initial density distribution:

nε(r, 0) = n0(r) + ε (3.36)

Here, the function n0 obeys n0(r →∞) = 0 and the offset ε gives an upper bound to the
diffusion constant for any finite ε. In the limit ε→ 0, the system exhibits a loss rate which
is given by the universal value of 4π [82]. We also used such a type of regularization when
we compared the Boltzmann equation to the diffusion equation, see Fig. 3.7.

Let us come back to our original diffusion equation (3.24), including the physical pa-
rameters τ0, J and U . In theory, the universal particle loss rate should be given by

Ṅ ≤ −4π 2J2τ0 ≈ −41.3 J3/U2 (3.37)

Due to the minimal loss rate, the total number of particles should vanish after a finite time
tmax, which is given by

tmax = −N/Ṅ ∼ N U2/J3 (3.38)

This result is of course unphysical : as atoms cannot leave the physical system, the number
of particles is conserved4. We have shown previously that on a lattice, group velocities are
bounded by the band width. Unbounded velocities are an artifact of the diffusion equation
and don’t reflect the physical situation. In contrast, the Boltzmann equation correctly
describes that the cloud cannot expand faster than ballistically. The unphysical result of a
universal loss rate reflects the breakdown of hydrodynamics: diffusion equations alone can
not describe the expansion process, even for large U where almost the entire cloud is in
the diffusive regime.

The ballistic particles at the cloud’s edges regularize the diffusive dynamics in the
center: they act as “traveling boundary conditions” and limit the diffusive domain of the
cloud. In three dimensions, the diffusive core is literally held together by the ballistic
boundary: we have stated previously that no solution for a finite total number of particles
would exist in infinite space.

While the diffusive core is held together by the ballistic tails, the tails are fed by the
diffusive core when the particles enter the low density regions. The expansion dynamics is
therefore determined by the complex interplay between these two regions.

To conclude, the diffusive dynamics cannot be studied without the feedback from the
ballistic particles in the tails. We will now review an analytic toy model, where we combine
finite group velocities with the universal loss rate.

3.8.5 Interplay of the diffusive and ballistic regime

Despite of being unphysical, we will now investigate if the universal loss rate of 4π is
nevertheless reflected in some property of the physical system. It particular, we pose the
question if it can be used to estimate the rate at which the cloud’s radius grows in time.

4Here, we consider an idealized situation of a perfectly conservative lattice potential and are not referring
to atomic losses e.g. due to three-body collisions, which have nothing to do with the universal loss rate.
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Figure 3.8: Cloud radii defined as
√
〈r2〉 as function of time for different interaction

strengths. Data are taken from a simulation of the Boltzmann equation. Initial conditions
correspond to physical parameters.

From our Boltzmann simulation, we know that the diffusive core emits particles into the
ballistic regions of the cloud at an approximately constant rate. Could it be that this rate
coincides with the universal loss rate of the diffusion equation? To address this question,
let us consider a toy model in which ballistic particles are released from the center of the
optical lattice at a continuous rate W (t). Let us assume that the momentum distribution
of these particles is uniform, corresponding to an infinite temperature. In analogy to Eq.
(3.3) we calculated the emerging density profile of this system:

nball(r, t) =

∫
dk

(2π)d

∫ t

0
dt′W (t′) δ(r− vk(t− t′)) (3.39)

Calculating the mean-square displacement amounts to calculating

〈r2〉(t) =
1

N

∫
d2r r2 nball(r, t)

= 〈vk
2〉
∫ t

0 W (t′)(t− t′)2 dt′∫ t
0 W (t′) dt′

(3.40)

where 〈vk
2〉 =

∫
dk

(2π)d
vk

2. Note that the rate at which particles are emitted from the
core, W (t), should give the total number of particles when integrated over all times, i.e.∫∞

0 W (t′)dt′ = N . Since the universal loss rate predicts a constant flow of particles out
of the diffusive core, we choose W (t) = N/tmax for times t < tmax and W (t) = 0 for
t > tmax, where tmax was defined in Eq. (3.38). Using 〈vk

2〉 = 4J2, this leads to the
following prediction for the growth of the radius:

〈r2〉 ≈ 4 J2

{
t3/(3tmax) (t < tmax)

t2 (t� tmax)
(3.41)
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This concludes our toy model: assuming that the diffusive core emits particles at a constant
rate determined by the universal loss rate, the radius grows in time according to the power-
law r ∼ t3/2. Let us reformulate Eq. (3.41) again in the regime where t < tmax. By defining
r =

√
〈r2(t)〉, r0 =

√
〈r2(0)〉 and v =

√
〈vk

2〉, this relation can be written alternatively
as

r

r0

(
vtmax
r0

)1/2

=
1√
3

(
vt

r0

)3/2

(3.42)

In order to check this result, we can use the simulated density profiles from the Boltzmann
equation, using v = 2J . The results of this analysis can be seen in Fig. 3.9, which verifies
that for not too small interactions, r ∼ t3/2. But the analysis reveals more: the slopes of
the curves, shown in the inset, should according to Eq. (3.42) coincide with the value of

1√
3
≈ 0.577 (dashed line). Our analytical prediction and the numerical Boltzmann data

agree up to 20% for a broad span of values of U/J , which is a remarkable result. We also
showed the asymptotic behavior for a much larger system than currently experimentally
realizable (lower plot), where the proposed power-law behavior can be seen even clearer.

To summarize, the universal loss rate serves as an adequate analytic estimate for the
rate, at which ballistic particles are emitted from the diffusive core of the atomic cloud.
Characterizing the unphysical two-dimensional fast diffusion equation, it still influences
the rate, at which the physical system’s radius grows. This estimate seems to be valid over
different orders of magnitude in the interaction strength.

3.9 Discrepancies between theory and experiment

Using the numerical simulation of the Boltzmann equation, we are able to reproduce all
experimentally observed phenomena qualitatively and semi-quantitatively. This includes
the U → −U symmetry, the melting of the diffusive core for strong interactions and
the pronounced drop in the spreading velocity of the cloud when tuning the interaction
strength away from the noninteracting case. However, the observed spreading velocities
are consistently larger than predicted by our theory. Therefore one might wonder about
the origins of the systematic deviations between theory and experiment.

We will not review all possible origins for systematic errors on the experimental side,
which are mainly discussed in [16]. To mention a few of them, there are the possible
occupation of higher bands, particle-losses due to light-assisted collisions and imaging-
errors. However, we believe that these factors had only a minor effect and are probably
not responsible for the observed discrepancies between theory and experiment.

On the theoretical side, there were many approximations involved to derive the Boltz-
mann equation in relaxation-time approximation from the full underlying quantum theory.
Note that in the noninteracting case, good agreement was achieved. Therefore, there is
good reason to believe that the use of semi-classical methods, in which the noninteracting
cloud follows the Liouvillian dynamics, is well justified.

The main discrepancies occur in the presence of interactions. First, note that even the
full Boltzmann equation (1.49) originates from a Keldysh perturbative expansion to second
order in U/(4J) [34]. If this expansion were the main origin of deviations, one would expect
that the discrepancies become larger with increasing interaction strength. However, such
a tendency is not apparent in the numerical data.

We therefore believe that the most important deviations between theory and experiment
probably come from the relaxation-time approximation. Note that the relaxation-time
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Figure 3.9: Upper figure: Growth of the cloud radius as function of t3/2 in renormalized
units (data taken from Boltzmann simulations). Units are chosen such that the slope
of the curves yields 1√

3
≈ 0.577 according to (3.42)(dashed line in the inset). For large

interactions, r ∼ t3/2, while for small interactions, t ∼ r (overall ballistic expansion).
Lower figure: Same plot for a larger system. We give the interaction strength in units of
u = U/D

√
nmaxr0, where nmax is the maximal density, r0 the initial radius and D is half

of the band width.
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approximation is derived from the full collision integral in two steps: first, the collision-
integral is linearized, and second, the diffusion constant is calculated variationally, based on
the linearized Boltzmann equation. However, after having tested the variational estimate
with different numbers of variational parameters, we do not believe that the variational
method is a serious source of error in our approach.

Instead, we believe that the linearization of the Boltzmann equation is probably the
main source of the observed discrepancies between theory and experiment. Linearization
of the collision integral is well justified if the entire system is approximately in local equi-
librium. While this assumption is certainly true in the center of the cloud for not too
small interactions, it is not valid in the regions of the cloud which are characterized by a
crossover between diffusive and ballistic dynamics. Note that although the major part of
the cloud may be in local equilibrium, there is a strong feedback from the ballistic tails
to the diffusive core. The error that stems from the incorrect description of the crossover
regime is uncontrolled and can be large, thus we expect it to be mainly responsible for the
observed discrepancies between theory and experiment.

3.10 Summary and outlook

We studied the expansion dynamics of a cloud of fermionic atoms in an optical lattice after
releasing it from a trapping potential. The system was modeled numerically using a Boltz-
mann equation in relaxation-time approximation, whose hydrodynamic limit results in a
highly singular diffusion equation. Identical growth rates of the cloud radius for +U and
−U were found both in theory and in experiment, which we explained by revealing a novel
dynamic symmetry of the Hubbard model. For the case of an expanding repulsively inter-
acting cloud, we predicted the emergence of local negative absolute temperatures, which
have however not been addressed experimentally. Furthermore, the system is characterized
by a crossover from a diffusive regime in the center of the cloud to a ballistic regime in
the tails. While the diffusion equation alone predicts an unphysical particle loss rate and
therefore cannot be used alone to describe the physical system, the loss rate serves as an
estimate for the rate at which ballistic particles are emitted from the diffusive core.

Experimentally, it would be interesting to observe the expansion dynamics in the pres-
ence of a linear potential, as will be discussed theoretically in chapter 5. From a math-
ematical point of view, it would be interesting to work out a regularization scheme for
a proper hydrodynamic limit of the Boltzmann equation for lattice-particles, taking the
limited group velocities into account.
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4

Equilibration rates and negative
absolute temperatures

4.1 Introduction

Nothing can be colder than absolute zero. And yet, the notion of negative absolute temper-
atures, T < 0, exists. They are, however, not colder than infinitely cold, but characterize
states that have more kinetic energy than any other equilibrium state at T > 0; in this
sense, they are hotter than infinitely hot. The present chapter reviews one possibility to
realize negative absolute temperatures in experiments with cold atoms, following an article
by Akos Rapp, Achim Rosch and the author [84,85].

Negative temperatures describe equilibrated systems that are characterized by an in-
verted population of energy states. To realize negative temperatures in experiment, one
needs a system that is thermally very well isolated from its environment, which is usually
at T > 0. The first system with this property was realized with nuclear spins [86–88]. Cou-
pled nuclear spins that are forced to align with an external magnetic field can be brought
to a state at negative absolute temperature by rapidly reversing the magnetic field, so that
the spins can not react fast enough and rearrange. As the system is very well isolated
from its environment, the spins cannot get rid of their excess energy and equilibrate to a
thermal state at negative temperature. It has been also observed that antiferromangeti-
cally coupled nuclear spins order ferromagnetically at negative temperature. This example
shows that negative temperatures give access to new regions of the phase diagram for a
given system.

Ultracold atoms in optical lattices are ideal candidates to realize negative temperature
in experiment, as they are almost perfectly isolated from their environment. The first
proposal of realizing negative temperatures with cold atoms in optical lattices is due to
Mosk [89], who proposed to realize T < 0 by inverting a trapping potential, which we
will discuss below. In his article, he mainly studies the system’s tunneling rate into higher
bands, which has to be small in order to realize gases at T < 0 that are sufficiently stable.

The group of W. Ketterle recently realized negative absolute “spin” temperatures in an
experiment with bosonic atoms [90]. A balanced mixture of bosonic atoms at two internal
states with different magnetic moments was prepared in the presence of a strong magnetic
field gradient. This way, the cloud splits in two parts with opposite spin polarizations.
Subsequently the lattice depth was increased such that the system entered the Mott insu-
lating regime. In analogy to the realization of negative temperatures with nuclear spins,
the magnetic field gradient was quickly reversed. Consequently, negative absolute spin
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4.2. QUALITATIVE DISCUSSION
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Figure 4.1: Schematic plot of entropy as a function of energy for a system with a bounded
continuous spectrum. The inverse temperature is defined as the slope of the entropy curve,
as 1/T = ∂S/∂E. If the system is bounded both from above and from below, both positive
and negative temperatures are possible.

temperatures emerged, which could be estimated by measuring the width of the mixed
region of spins at the border between the two polarized regions.

In a recent study, A. Rapp discusses the possibility of exploiting negative tempera-
tures to explore new regions of phase diagrams: in particular, he suggests to use negative
temperatures to study the attractive SU(3) Hubbard model with repulsively interacting
173Yb atoms [91], which have been recently used to experimentally realize a lattice model
with SU(6) symmetry [92]. An experimental realization of the SU(3) Hubbard model with
ultracold atoms would be highly desirable, as it shows similarities to quantum chromody-
namics [93]. For practical reasons, 173Yb atoms are a promising sort of fermionic atoms
to experimentally realize the attractive SU(3) Hubbard model, as Akos Rapp points out
in his article. Unfortunately, however, their scattering length is positive [92]. Negative
absolute temperature would reverse the character of interactions and thereby allow for an
experimental simulation of the SU(3) Hubbard model at attractive interactions.

In our article [84], we study Mosk’s qualitative proposal of realizing T < 0 with empha-
sis on the dynamics of the corresponding non-equilibrium process. We also point out that
a bosonic condensate at negative absolute temperature will condense in the band maxima
instead of the band minima. Hence, a time-of-flight image of such a condensate will show
peaks at finite momentum (π, π, π), setting the lattice constant a = 1. A schematic plot
of this scenario is shown in Fig. 4.2. Note that in our aforementioned study on a freely
expanding cloud in chapter 3, we already predicted the emergence of negative local temper-
atures for repulsive interactions if the cloud is initially prepared at infinite temperature. In
this chapter, we will discuss the possibility of realizing equilibrated negative temperatures.

4.2 Qualitative discussion

4.2.1 General properties of negative temperatures

Negative absolute temperatures are a well known and established concept [94, 95]. They
describe systems with an inverted population of energy states: states at higher energy
have a higher occupation than states at lower energy. Recall the definition of the partition
function that describes all thermodynamic quantities (kB = 1),

Z = Tr exp (−Ĥ/T ) (4.1)
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T > 0 T < 0

Figure 4.2: Expected time-of-flight image for Bose-condensates at positive temperature
(left) and negative temperature (right). While the usual BEC at T > 0 condenses at zero
momentum, a BEC at T < 0 will condense in the band-maxima at momentum (π, π, π).

A system at T < 0 with an spectrum that is unbounded from above would have a divergent
partition function, and thus is not well defined. Therefore, negative absolute temperatures
are only possible if a (many-body) state of highest energy exists, i.e. when the energy
spectrum is bounded from above.

States at negative temperature are in thermodynamic equilibrium unlike other systems
with population inversion such as lasers, whose population inversion is created artificially by
some external drive. All laws of thermodynamics equally apply for negative temperatures
as well. Recall the definition of temperature,

1/T = ∂S/∂E (4.2)

where E is the energy and S is the system’s entropy. When the entropy of a system de-
creases with increasing energy, negative temperatures emerge. Such a situation is sketched
in Fig. 4.1.

Counter-intuitively, a Carnot engine that operates between two reservoirs, one of them
having a positive temperature and the other one having a negative temperature, has an
efficiency larger than 1. When heat is extracted from a system at negative temperature,
its entropy increases, as can be seen in Fig. 4.1. Therefore, heat can be extracted from
both reservoirs simultaneously, while the total entropy still increases.

Let us try do develop some intuition on negative temperatures. In equilibrium, each
state at temperature T of the HamiltonianH is equivalent to a reference state at T̃ = −T of
the Hamiltonian H̃ = −H: their equilibrium density matrices, which describe all physical
properties, coincide due to the identity

exp(−H/kBT ) = exp(−H̃/kBT̃ ) (4.3)

Therefore, states at negative temperatures can generally be understood as states of the
inverted Hamiltonian at positive temperatures. This mapping will be especially important
to understand the nonequilibrium processes that we want to study below, which result in
a thermal final state at T < 0.
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4.2.2 Negative temperatures in the Hubbard model

We will concentrate mainly on fermionic systems, described by the Fermi Hubbard model

H = −J
∑

<ij>,σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓ + V0(t)
∑
iσ

r2
iniσ (4.4)

where V0(t)r2 is a time-dependent trapping potential and σ =↑, ↓ is the hyperfine index for
the Fermions. We consider a balanced population of hyperfine states. As shown in [89], it
is sufficient to concentrate on the lowest band alone, as transitions into higher bands which
might result from non-adiabatic manipulations of V0(t) can be neglected for our purposes.

How can negative temperatures be realized in optical lattices? Obviously, initially a
cloud of Fermionic atoms has to be prepared at a positive temperature, as it is usually first
cooled down by evaporative cooling before the optical lattice is switched on. This means
that one has to realize negative temperatures dynamically within the optical lattice. We
model the corresponding process by varying certain coupling constants of the Hubbard
model in time. As already indicated in Eq. (4.4), it will suffice to manipulate the trapping
potential.

For Bosons, negative absolute temperatures are only possible at attractive interactions.
The bosonic interaction Hamiltonian reads

HB
int =

U

2

∑
i

ni(ni − 1) (4.5)

where ni counts the number of Bosons on site i. As the occupation number is not restricted
for Bosons, the Bose-Hubbard model as a whole is unbounded from above for U > 0, as all
interacting Bosons can accumulate on a single lattice site. In contrast, the corresponding
fermionic variant of the interaction operator (4.4) is bounded both from below and from
above, as no more than two spin 1

2 Fermions can coexist on one lattice site. A bosonic
system at U > 0 will collapse at T < 0, just as it would collapse at T > 0 and U < 0. In
Ref. [84], we discuss a scheme how a BEC at negative temperatures can nevertheless be
realized in experiment.

As stated previously, the Fermi Hubbard modelH at T < 0 is equivalent to the Hubbard
model H̃ at T > 0 with parameters −V0,−U and −J . It is important to remember that
flipping the sign of the kinetic energy is equivalent to shifting all momenta by Q = (π, π, π),
where we have set the lattice constant a = 1. This property of the Hubbard model is based
on the relation −J cos(k) = J cos(k + π) and is also related to the dynamical symmetry
of the Hubbard model, as discussed in the previous chapter. As a consequence, the phase
diagrams of H and H̃ have to coincide upon shifting all momenta by Q. For Bosons at
T < 0, this explains the aforementioned condensation at momentum Q.

Is there a similar striking signature of negative temperatures for fermionic atoms? Note
that also condensates of “cooper pairs” of attractively interacting fermionic atoms have been
realized in optical traps [6]. Using optical lattices, it should be possible to realize such a
fermionic condensate also at negative temperatures for U > 0, T < 0, in analogy to the
fermionic condensate at U < 0, T > 0. Unfortunately, the fermionic superfluid at T < 0
will still be condensed at zero momentum due to the identity∑

k

c†k↑c
†
−k↓ =

∑
k

c†k+Q↑c
†
−k−Q↓ (4.6)

Therefore, it cannot be easily distinguished from a condensate at positive temperatures by
simple time-of-flight measurements.
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Figure 4.3: Experimental scheme of realizing negative absolute temperatures as proposed
in [84, 89]. Fermionic atoms in an optical lattice are exposed to a sudden change of the
trapping potential, V (r) → −V (r). For energetic reasons, the system is still trapped and
equilibrates to a new thermal state at T < 0.

4.2.3 Proposed scheme of realizing T < 0

In order to reach thermodynamic equilibrium at T < 0, the external trapping potential has
to be chosen such that the inhomogeneous Hubbard Hamiltonian (4.4) is only bounded from
above and not from below. It is important to notice that the Fermi Hubbard model without
external potentials is bounded both from below and from above: it is the external trapping
potential that decides about the boundedness of the inhomogeneous Hubbard Hamiltonian.
Initially, V0 is necessarily positive, but when the trapping potential is inverted, the system
does only allow for equilibrium at negative temperatures:

V0 −→ −V0 =⇒ T > 0 −→ T < 0 (4.7)

Lattice-particles subject to an inverted trapping potential, V0 < 0, are also confined: as the
kinetic energy of each atom is bounded, particles cannot accelerate in the inverted trapping
potential and escape. Instead, they remain trapped in energetically allowed regions around
the center of the trapping potential, just as it is the case for V0 > 0. We therefore propose
to invert the trapping potential in a time-dependent way, as depicted in Fig. 4.3. Note that
the system, subject to V0 → −V0, will equilibrate to a thermal state: its dynamics can be
mapped to the dynamics of a reference system, characterized by −U and −J and V0 > 0.
As the reference system will equilibrate to positive temperatures, the original system will
necessarily equilibrate to negative temperatures. Hence, reversing the harmonic potential
in some time-dependent way is the basic idea of realizing negative temperatures in optical
lattices.

Manipulating the prefactor of the trapping potential V0(t) in time necessarily implies
that the system’s entropy increases. In [84], a protocol for the creation of a bosonic BEC
at T < 0 was given. The generated total entropy was shown to be small enough for a
sufficiently large condensate fraction to exist in the final state. The associated amount of
heat that is created for different time-dependent manipulations of V0 will be studied below
for Fermions.
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Figure 4.4: Instantaneous quench of the trapping potential V0i → −0.05V0i for U/J = 2.
Solid lines: cuts through the density profile at time t = 0 J−1 (black) and at time t =
800 J−1 (brown). Symbols: corresponding local inverse temperatures at various times. At
t = 800 J−1, equilibrium is reached to good approximation, reflected in an almost spatially
constant inverse temperature.

4.3 Quantitative analysis

4.3.1 Numerical simulations

We studied the relaxation dynamics towards negative temperatures using the version of the
Boltzmann equation introduced in chapter 2. To shorten the duration of numerical simu-
lations, we chose a two-dimensional setup. In contrast to the simulations reviewed in the
previous study of the expanding atomic cloud, we simulated only a single two-dimensional
layer of atoms. However, an explicitly time-dependent external trapping potential had to
be implemented in the Runge-Kutta scheme.

Initially, the system is prepared in equilibrium in the presence of a trapping potential
Vi(x) = V0i x

2 with V0i = 0.01J/a2, N = 3000, 6000 and 12000 particles, various values of
U and β = 0.13, which characterizes the system uniquely and which mimics the experimen-
tal conditions realized in [81] for N = 6000 particles in the central layer. Resulting initial
entropies are S/N = 1.2kB, consistent with current experiments. Note that time is mea-
sured in units of the inverse hopping amplitude J , which translates to SI units according
to 1 ~/J = 0.568 ms for a lattice depth of 8 Er, as reviewed in Appendix (B.6).

4.3.2 Instantaneous quench

Let us first study the case of a “quench” in the trapping potential: V0i > 0 is switched in-
stantaneously to the negative final value V0f < 0. The time-evolution of the local densities
and temperatures are shown in Fig. 4.4. As previously, local temperatures are defined for
a local reference system in equilibrium which has got the same filling and kinetic energy.
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As we have explained above, the system at inverted V0 equilibrates to a thermal state
at T < 0. This is shown in Fig. 4.4, where the symbols show the time-evolution of the
local inverse temperatures: starting from a homogeneous β > 0, local temperatures evolve
in time and finally equilibrate to a homogeneous, negative value.

In contrast to e.g. a quench in the interaction strength, not all particles are affected
by the quench of the trapping potential instantly and in the same way: particles in the
middle of the trap are not immediately affected, because they only feel the gradients of the
trapping potential which are always small in the center of the trap. In contrast, particles
in the tails are exposed to a very large difference in potential gradients. Therefore, changes
in the local temperatures first emerge in the tails of the cloud. We observe numerically
that the new local negative temperatures slowly diffuse from the tails of the cloud into the
bulk, until a global equilibrium at β < 0 is reached. However, due to the small scattering
rates and large potential gradients in the tails, it takes longer to equilibrate to the new
homogeneous negative temperature there. This can be seen in Fig. 4.4.

4.3.3 Time scales of global equilibration

We will now try to learn more about the time scale of equilibration to a homogeneous
negative temperature after the quench in the trapping potential.

There are two relevant time scales involved in the Boltzmann equation: one time-scale
is obviously given by the local scattering time τ(n, e) which drives the system to local
equilibrium. Note, however, that the collision term of the Boltzmann equation preserves
the local energy and local particle density by construction. Hence, it can not lead to a
redistribution of kinetic energy in the cloud, which is necessary for global equilibration.
Therefore, we need to consider a second time scale that describes how long it takes for
particles and energies to redistribute within the system. Under the assumption that most
parts of the system remain close to local equilibrium even after the quench, this time scale
can be extracted from a diffusion equation and we will refer to it as τD. We have argued
before that transport in optical lattices for moderate interactions will be diffusive and not
convective. Although the diffusion constant depends on the local density, one can crudely
postulate an averaged diffusion constant D that describes the entire system. If R =

√
〈r2〉

measures the extend of the cloud, the time-scale related to diffusion can be estimated to
be

τD ∼
R2

D
(4.8)

To further investigate the scaling of τD with the system parameters, we approximate the
diffusion constant as D ∼ v2 τ , where v ∼ Ja is a typical velocity and τ is a typical inverse
scattering rate. Using 1/τ ∼ nU2/J for a small averaged density n and nR2/a2 ∼ N , we
obtain

τD ∼
U2N

J3
(4.9)

Note that this time scale has just the opposite dependency on U and n as the local scattering
time, which according to Eq. (2.25) is approximately given by

τ ∼ J

nU2
(4.10)

Using our numerical simulations, we were able to check numerically how long the system
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Figure 4.5: Instantaneous quench. Time required to approximately reach equilibrium in the
center of the trap, as a function of U . J t90 is the time after which the critical temperature
β90 is reached, where β90 is 90% of the final temperature in the limit U → 0. Inset: Inverse
temperature in the center of the trap as a function of τD/t, where τD = U2N/(4J)3, for
various values of U and particle numbers N (solid, dashed and dotted curves for N =
3000, 6000, 12000 respectively). Dashed-dotted curve: β90. The fastest equilibration rate
is obtained for intermediate values of U .

takes to relax into global equilibrium. To this end, we ran simulations for systems with
N = 3000, 6000 and 12000 particles for various interaction strengths. We were considering
an instantaneous quench, in which the trapping potential is directly switched to its final
value, V0i → V0f .

The results of the simulation are shown in Fig. 4.5. The inset shows the temperature
in the middle of the trap as a function of τD/t, where we defined τD = U2N/(4J)3. For
large N and not too small U , the curves with different values of U and N have a tendency
to collapse on a single curve. This means that τD is indeed the right time scale that
determines how long it takes to equilibrate globally. However, as our scaling predictions
are based on the hydrodynamic (diffusive) limit, they do not hold for too small values of
U . This can be seen by the fact that the yellow, green and red curve in Fig 4.5 do not lie
on top of each other. Note that there is a regime where (β − βeq) ∼ 1/t for long times:
in this regime, the cloud’s density distribution has approximately reached its equilibrium
configuration, while the energy density still needs to re-distribute. Hence, the long time
dynamics should be governed by ordinary (linear) energy diffusion, which obeys this scaling
law.

The main plot of Fig. 4.5 shows the time t90, at which 90% of the final equilibrium
temperature is reached in the center of the trap as a function of U/J . We observed that
this time scale increases both for small and for large values of U . For small U , the diffusive
time scale τD is formally small, however, local relaxation is slow due to τ ∼ J/U2. On
the other hand, for large U , local relaxation is fast, but τD ∼ U2N/J3 is large, i.e. it
takes very long to redistribute heat within the system. Therefore, also here the global
relaxation time diverges in the limit U → ∞. We find that there is an optimal value
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Figure 4.6: Time-dependent ramping of the harmonic trapping potential. The different
curves show the prefactor V0(t) of the harmonic potential, following Eq. (4.13), for four
different values of ∆t. In all cases, the trapping potential is first switched instantaneously
from +V0i to −V0i, followed by a linear reduction of |V0| up to the value V0f within the
time span ∆t. The larger ∆t, the close is the system to the adiabatic limit and the smaller
|T∞|, where T∞ < 0 is the equilibrated final temperature, as can be seen in Fig. 4.7.

Uopt of intermediate magnitude, where the time to reach global equilibrium is fastest by
demanding that τ ∼ τD, which leads to

Uopt ∼
J

N1/4
(4.11)

and hence to the optimal global equilibration time τopt:

τopt ∼
U2

optN

J3
∼
√
N J−1 (4.12)

Note that in all cases it takes long time to equilibrate globally, as we have found numerically
that t90 > 300/J ≈ 170ms. This time scale is much larger than the time scales associated
to local equilibration.

4.3.4 Continuous ramping and adiabaticity

Our simulations have shown that in the case of an instantaneous quench, relaxation to
equilibrium at T < 0 can be realized in an experimentally accessible time. However, the
final values of β are close to zero in the equilibrated final state. For different reasons
however, one might be interested in realizing states at large negative β, meaning small |T |.
Therefore, one needs to realize a refined scheme, where the trapping potential is varied in
an almost adiabatic way from V0 > 0 to V0 < 0.

A first idea for such an almost adiabatic ramping protocol might be to first increase the
laser intensities slowly such that hopping becomes completely suppressed. After flipping
the confining potential V0 → −V0 instantaneously, the lattice intensities could be slowly
reduced to arrive at the original value for J . The problem is that the time scales of equili-
bration will diverge upon sending J → 0. Unfortunately, the duration of every experiment

73



4.3. QUANTITATIVE ANALYSIS

0 1 2 3

t/∆t

-1

-0.5

0

0.5

Jβ
(t

,r
=

0
) 10 100

J∆t

-1.5

-1

-0.5

0

Jβ
(t

=
fi

x
e
d
,r

=
0
)

t=2∆t
t=∞

∆t

t

-V0i

-V0f

V0i

J∆t=20,40,80,200,400,
800,1600, adiabatic

U=1J

Figure 4.7: Inverse temperatures in the center of the trap as function of t/∆t. The trapping
potential V0(t) is ramped according to (4.13), depicted in Fig. 4.6 and in the left inset.
The right inset compares the inverse temperatures β(0, t = ∞) and β(0, t = 2∆t) as a
function of ∆t. Blue dashed curves denote the adiabatic limit.

involving optical lattices is limited due to particle losses and heating by inelastic scattering
with the laser photons. We therefore propose another scheme where negative temperatures
can be realized within experimentally accessible time scales. The proposed scheme is based
on a time-dependent trapping potential. In order to reach low final entropies, it is impor-
tant to restrict the phase space volume that is accessible to the Fermions after inverting
the trapping potential. To this end, we propose to compress the fermionic cloud tightly,
which results in a band-insulating state at large V0. As a first step, the trapping potential
is reversed abruptly, V0i → −V0i. Due to the tight compression of the cloud, the density
distribution can only redistribute very little, so that only a small amount of entropy is pro-
duced in the process of equilibration. As a second step, we propose to reduce the strength
of the trapping potential slowly, −V0i → V0f in a time span referred to as ∆t. This way,
the cloud can expand and thereby “cool”, i.e. assume smaller values of |T | with T < 0.
Hence, we propose the following time-dependent protocol for V0(t):

V0(t) =


V0i t = 0

−V0i + (V0i + V0f ) t/∆t 0 < t ≤ ∆t
V0f t > ∆t

(4.13)

This protocol is graphically depicted in Fig. 4.6. It has the advantage of allowing for lower
temperatures in the equilibrated final state than in the case of an instantaneous quench.
Ideally, the strength of the trapping potential is reduced adiabatically, ∆t → ∞ (see Fig.
4.6), which is, however, experimentally obviously not practicable. In Appendix (C.1), we

74



4. EQUILIBRATION RATES AND NEGATIVE ABSOLUTE TEMPERATURES

show how the final temperatures for the adiabatic limit can be calculated, based on LDA.
We used the Boltzmann simulations to predict how close we are to this adiabatic limit,
when opening the trap within the time span ∆t.

Fig. 4.5 shows the time evolution of the inverse temperature in the center of the trap
for different rates 1/∆t, at which the strength of the trap is reduced. The horizontal
axis denotes the rescaled time t/∆t. The larger we choose ∆t, the more we approach
the adiabatic limit, reflected in lower and lower entropies in the final state (larger |β| for
the same V0f and N). Our numerics revealed that even for ∆t = 1600J−1 ≈ 1 sec under
typical experimental conditions [81], deviations from the adiabatic limit are considerable.
In the adiabatic limit, entropy is only generated during the initial switch V0i → −V0i in
the band-insulating state. We found that entropy production due to this switch is tiny for
our initial conditions, as ∆S/N ≈ 0.12 kB. This results in a final value of β ≈ −1.2 J−1

for ∆t → ∞. Hence, |T | remains relatively high even for adiabatic conditions due to the
high entropy in the initial state. However, it is possible to reach T ≈ −2J within the time
200/J ≈ 100ms.

The right inset of Fig. 4.7 compares two different inverse temperatures as a function
of the parameter ∆t: while the lower curve shows the expected equilibrated final inverse
temperature, the upper curve shows the inverse temperature in the center of the trap at
2∆t. The dashed curve at the bottom of the plot shows the adiabatic limit. Again, the
plot provides a measure for the adiabaticity: the larger ∆t, the larger |β(t→∞)| and the
closer we are to this limit already at 2∆t.

4.4 Summary

We proposed a scheme to experimentally realize negative absolute temperatures for ul-
tracold atoms in optical lattices. Negative temperatures are an established concept in
statistical physics, but in the context of ultracold atoms they might help to enable the ex-
perimental realization of novel phases. The scheme is based on an inversion of the trapping
potential in a time-dependent way. Fermionic ultracold atoms are first prepared in a band
insulating state before the potential is flipped. While this process already induces negative
temperatures, we propose to reduce the strength of the potential subsequently to achieve
lower |T |. Using our Boltzmann simulations, we determined the emergent final tempera-
tures for different rates 1/∆t at which the strength of the trapping potential is reduced,
and found that deviations from the adiabatic case are still pronounced even for ∆t ≈ 1
sec. For the case of an instantaneous quench in the trapping potential to the final value,
we identified the relevant time-scales of global equilibration, which is approximately given
by τD = (4J)−3U2N . This time scale describes how fast the kinetic energy can diffuse and
redistribute in the system after the quench in the trapping potential, as required to achieve
global equilibrium. We found that equilibration is fastest for intermediate values of U , as
τD ∼ U2 competes with the time-scale τ ∼ U−2 of local equilibration. These results are
not only important in problems related to negative temperatures, but play a role whenever
time-dependent manipulations are performed on the external trapping potential.
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5

Symmetric expansion in a
gravitational potential

5.1 Introduction

Probing the conductivity of a metal by applying an electric field belongs to the most fun-
damental experiments one can think of. The physics of a quantum particle in a periodic
potential in the presence of a linear potential is an old topic, pioneered by Felix Bloch
shortly after the birth of quantum mechanics [96]: non-interacting particles show the phe-
nomenon of Bloch oscillations, which emerge due to the coherent Bragg-scattering of the
wave packets from the periodic potential. While these oscillations have not been observed
for electrons in solids due to the large impact of scattering on impurities, phonons or other
electrons, they have been observed in semiconductor-superlattices [97], optical waveguide
arrays [98] and ultracold atoms in optical lattices [74,99,100]. Bloch oscillations have also
been applied to measure masses of atoms with ultrahigh precision [101]. Constant forces
for ultracold atoms in optical lattices are naturally realized by the gravitational potential.
For harmonically trapped systems, the presence of gravity has the only effect of shifting
the potential minimum. However, the atoms are exposed to the linear gravitational po-
tential when the harmonic trapping potential has been eliminated, as described in [81].
Alternatively, constant forces can be realized using accelerated lattices [74, 102]. In the
present chapter we study the dynamics of an interacting fermionic cloud in an optical lat-
tice, subject to a linear (gravitational) potential, which was analyzed in collaboration with
Akos Rapp and Achim Rosch [63].

In the presence of interactions, Bloch oscillations get damped, which has been ob-
served in experiment with bosonic atoms [76]. The damping of Bloch oscillations has been
studied in various situations and is also the subject of chapter 6 of this thesis. Most
theoretical studies have been concerned about homogeneous systems [51, 103–111]. As
Bloch oscillations were originally observed for bosonic atoms in optical lattices rather than
fermionic atoms, the earlier theoretical studies have been also carried out for bosonic sys-
tems [106, 108, 109]. Fermions have not been studied until recently. Using nonequilibrium
extensions of DMFT, lattice-electrons in the presence of a constant force have been sim-
ulated first for the Falicov-Kimball model [104, 105] and later for the fermionic Hubbard
model [10, 51, 111], often with focus on the regime of strong interactions. This problem is
often associated with the question of how electric fields can lead to a breakdown of a Mott
insulator. This so-called dielectric breakdown is a topic of great relevance for novel solid
state devices and been studied recently in experiments [112, 113] and in theory, where it
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has been approached analytically [11,71,107,114,115] and numerically by means of DMFT
and DMRG methods [10,116].

When studying the dynamics of ultracold atomic clouds, it is very important to realize
that these systems are very well thermally isolated from their environment. Therefore, total
energy conservation will play a central role in our discussion. This condition is in stark
contrast to the typical conditions in solid state experiments, where the coupling to a heat
bath (e.g., the phonon system) fixes the temperature. Let us first comment on an infinite
and homogeneously filled system in the presence of a constant force, that we are going to
study in detail in chapter 6. In contrast to condensed matter systems, in which the linear
steady-state particle currents are usually characterized by a fixed temperature, an isolated
system, such as the Hubbard model, will get heated up due to Joule heating. The system
will get hotter and hotter in the course of time, and the final state will be characterized
by an infinite temperature and a vanishing current. This physical necessity holds true
in many different parameter regimes of the Hubbard model: at moderate interactions, it
applies both for the collision-dominated linear response regime and for the opposite regime,
characterized by weakly damped Bloch oscillations, which will be also subject of chapter
6. But also in the Mott insulating regime, where currents are exponentially suppressed,
we expect heating up to infinite temperatures in the very long time limit, which seems to
be consistent with the short-time behavior observed with non-equilibrium DMFT [10].

In contrast to homogeneously filled systems, a finite cloud of lattice-particles in a
gravitational field behaves very differently, as we will argue below. But also here, energy
conservation plays a major role when studying the long time dynamics. Using a discrete
version of the Gross-Pitaevskii equation, the dynamics of an interacting bosonic cloud in
a tilted optical lattice was studied by Kolovsky, Gómez and Korsch [117] and by Krimer,
Khomeriki and Flach [118]. The Gross-Pitaevskii equation has recently been rigorously
derived for the dilute limit of a many-body Schrödinger equation [119] by Erdös, Schlein
and Yau. However, bosonic atoms out equilibrium are known to be characterized by a non-
trivial interplay of their condensed and uncondensed fractions. An approach that involves
condensed and uncondensed Bosons as two coupled hydrodynamic fluids has already been
worked out by Landau [120] in the context of superfluid Helium. Going beyond hydrody-
namics, Kirkpatrick and Dorfman [121] have derived equations for a condensate which is
coupled to a Boltzmann equation for the uncondensed fraction of particles. These equa-
tions were later generalized by Zaremba, Nikuni and Griffin [55,122] and for the first time
applied to trapped ultracold bosonic atoms, e.g. to predict the damping of the breathing
mode.

We consider the nontrivial coupling between the mean-field and the uncondensed
Bosons in tilted optical lattices to be very important, especially when one is interested
in the long time limit which we expect to be characterized by very high temperatures.
Studying the dynamics of the Gross-Pitaevskii equation alone yields theoretical predic-
tions that can be expected to be very different from the results one would obtain from a
calculation that respects both bosonic components. The Gross-Pitaevskii equation with-
out coupling to the uncondensed Bosons has been studied in Refs. [117] and [118]. In
these studies, a sub-diffusive spreading of the cloud’s radius R as a function of time t was
postulated, i.e. R ∼ t1/γ , where γ > 2. While the numerical value of γ ≈ 5.3 was obtained
in Ref. [118], the scaling law γ = 4 was postulated in Ref. [117], by approximating the
dynamics of the mean-field equation by an effective nonlinear diffusion equation. In this
framework, the diffusion constant was assumed to be proportional to the square of the
local density, thus claiming the porous medium equation to be valid, which can be shown
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Figure 5.1: Finite atomic cloud in an optical lattice subject to a linear potential. A
symmetric expansion preserves the cloud’s total energy balance. Heat currents transport
kinetic energy “uphill”, as atoms loose potential energy at the bottom and gain it at the
top of the cloud. The heat current is driven by a gradient of inverse temperature, with
T > 0 at the top, T =∞ in the center, and T < 0 at the bottom of the cloud.

to obey the claimed scaling law [82]. However, as we will show in the present chapter and
in chapter 6, the coupling between particle and energy diffusion is qualitatively important
for different density dependences of the diffusion constant. In our opinion, studying the
dynamics of a finite cloud of bosonic atoms in a tilted optical lattice, taking the inter-
play between condensed and uncondensed atoms into account, is still a challenging and
interesting open problem.

In the present chapter, we consider a finite cloud of interacting fermionic atoms in a
tilted optical lattice, described by the Fermi Hubbard model in the presence of an additional
linear potential. While we will consider the regime of over-damped Bloch oscillations in the
present chapter, the opposite regime of weakly damped Bloch oscillations will be discussed
in chapter 6.

5.2 Qualitative discussion

We argue that the physics of a finite atomic cloud in an optical lattice is very different
from the homogeneous system: energy conservation prevents the cloud from moving up
or down over long distances, as illustrated in Fig. 5.1. Without interaction, the particles
are Bloch oscillating and their individual total energies are conserved. This assumption
is justified as long as the optical lattice is sufficiently deep and inter-band transitions are
suppressed.

In presence of interactions, the dynamics is more complex: particles can exchange their
kinetic energies by collisions. Therefore, the atoms’ individual energies are not conserved
any more, but now the cloud’s total energy is conserved. Total energy conservation allows
the cloud to expand symmetrically upwards and downwards the gravitational potential:
descending particles at the “bottom” of the cloud convert potential energy into kinetic
energy, while other particles at the “top” of the cloud rise upwards and convert kinetic
energy back into potential energy. This process is possible in the presence of interactions,
which induce a non-vanishing heat conductivity in the system and thus allow for the
transport of energy from the bottom to the top of the cloud.
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So far we have only argued that a symmetric expansion is an energetically allowed
option for the dynamics of the cloud. This argument alone does not necessarily imply
that the system will evolve accordingly, as the energy balance would also be satisfied
differently, e.g. when the system does not move at all. However, if the cloud does expand
symmetrically, it will certainly increase its phase space volume that way. Therefore, we
can expect that the proposed phenomenon will happen: the cloud expands symmetrically
upwards and downwards the gravitational potential.

A large cloud in the presence of a force that is not too strong will be approximately in
local equilibrium, such that it is characterized by local temperatures. Let us therefore try
to predict the distribution of local temperatures in the cloud. Given that the cloud expands
symmetrically, the particle current vanishes in the center of the trap. However, the energy
current is finite, as it is necessary for the exchange of energies between the upper part and
the lower part of the cloud. The presence of an energy current without a particle current
implies an approximately constant gradient in inverse temperature, β = 1/T , around the
center. In analogy to the homogeneous system, we can expect that the center of the
cloud will be at infinite temperature, β = 0, for large times. As the inverse temperature
vanishes in the center and it is positive in the cloud’s upper half, it is necessarily negative
in the lower half of the cloud, as we have argued that β has an approximately constant
gradient around the center. This is the situation sketched in Fig. 5.1: the cloud expands,
using an energy current that mediates between positive and negative temperatures. This
implies that we have identified another nonequilibrium process where negative absolute
temperatures emerge dynamically.

So far we just presented a qualitative picture of what to expect to happen. Our main
results to be presented below show (i) that all proposed phenomena indeed show up in an
appropriate Boltzmann simulation and (ii) that the simulated problem can even be solved
analytically in the long-time limit.

5.3 Numerical analysis

We expect the dynamics of a two-dimensional fermionic cloud in the presence of a linear
potential to be describable with the following extended fermionic Hubbard model,

H = −J
∑
〈ij〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓ + g
∑
i,σ

xi niσ (5.1)

where xi denotes the distance of the x coordinate of the site i from the origin. Again, we
will set the lattice constant a = 1. The force −g thus points in the x direction, and it
distinguishes our analysis from the previous study presented in chapter 3, where we studied
the free expansion of an initially confined atomic cloud in an optical lattice. As we will
see below, the dynamics in the presence of a constant force is very different. Studying
the dynamics for a two-dimensional system instead of a three-dimensional one has another
advantage with regard to experimental realizations: the strength of the gravitational po-
tential can easily be increased or reduced by tilting the two-dimensional lattice vertically.

For typical experimental parameters, the gravitational force is of the same order of
magnitude as the hopping amplitude, g ≈ J . However, we are more interested in a regime
where g is much weaker. This allows us to approximate the dynamics of the Hubbard
model by the two-dimensional variant of the Boltzmann equation that we established in
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chapter 2, which in the presence of a linear potential reads

∂tf + vk∇rf + F∇kf = −τ−1(n)(f − f0(n))

F = −∇r(gx)− U∇rn(r, t) (5.2)

Note that the linear potential prevents equilibrium at finite T . We prepare the system in
equilibrium in the presence of an additional trapping potential at a temperature T = J
(a typical temperature of current experiments), taking interaction energies into account.
This initial trapping potential Vi(r) = 0.01xi

2 is switched-off in the beginning of the time-
evolution. Note that we chose initial conditions translationally invariant in the y direction,
i.e. the direction perpendicular to the force. This has the advantage that the spatial y
dependence completely drops out of the equation. Thus, the problem reduces in dimen-
sionality to two momentum coordinates and only one spatial coordinate, which allows us
to study the dynamics for longer times. From a theoretical perspective, these initial condi-
tions are useful, as we can study the expansion along the direction of the linear potential
without considering an additional spreading of the cloud in the direction perpendicular to
the force, which would complicate the situation. We simulated intermediate interaction
strengths U/J ≤ 2 and times up to 5000J−1. As observables, we computed the particle-
and energy densities, local temperatures, the center of mass and the local currents.

Fig. 5.2 shows results from a numerical simulation of the Boltzmann equation (5.2). Let
us first focus on the short-time dynamics. Starting initially in equilibrium at finite β > 0,
the cloud drifts downwards and thereby converts potential energy into kinetic energy until
its total kinetic energy has vanished. For sufficiently strong interactions such that Bloch
oscillations are over-damped, the center of mass x0(t) ∼

∫
dxn(x)x becomes stationary.

This can be seen in the inset of Fig. 5.3, which shows the movement of the center of mass for
different interaction strengths. In the Appendix (D.1) we study the short-time dynamics
of the center of mass in more detail.

The characteristics of the long-time dynamics are even more prominent. Fig. 5.2 shows
that after a short transient, temperatures in the center of the cloud become infinite. Also,
the entire temperature profile of the cloud becomes antisymmetric with respect to the
cloud’s center of mass, implying negative absolute temperatures at the bottom of the
cloud. Gradients in inverse temperature are approximately linear and quasi-stationary, i.e.
they change only on very long time scales. On these scales, the slow symmetric expansion
of the cloud also becomes visible in the figure. The tails of the cloud are characterized by
Bloch oscillations, where the local densities are too low and scattering events too rare for
local equilibration. To conclude, all properties of our above qualitative discussion could be
verified by the Boltzmann simulation. We will proceed in studying the expansion dynamics
analytically.

5.4 Hydrodynamic theory

Similarly to the previous studies, the dynamics in terms of the Boltzmann equation is too
complex to be predicted analytically, as the system is characterized by the interplay of
several competing time and length scales. The diffusive limit reduces the 2d-dimensional
phase space dynamics to a coupled set of d-dimensional diffusion equations for the con-
served quantities, which in our case are the particle and energy densities 1. Formally, the
diffusive limit is justified if the time between two scattering events is smaller than the

1As stated previously, momentum is not conserved due to the presence of umklapp scattering processes.
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Figure 5.2: Time-evolution of the density profile (red) and inverse local temperatures (blue
dots) from a simulation of the Boltzmann equation for U/J = 1 and g = 0.13J . Starting
at positive local temperatures, the cloud initially drifts in the direction of the force and
thereby heats up. Soon, it reaches a state whose dynamics is very slow and which is
characterized by T > 0 at the top, T = ∞ in the center and T < 0 at the “bottom” of
the cloud, accompanying the cloud’s symmetric expansion. The green line denotes the
quantity β(1) = −∂xn/(n∂xV ), which according to the analytic formula (5.13) is expected
to agree with β in the diffusive regime. The non-trivial prediction becomes apparent for
long times.
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Bloch oscillation period, i.e. gτ/2π � 1. In addition to this criterion, the linear potential
has to be weak, as has been discussed in chapter 1. The opposite limit of weakly damped
Bloch oscillations is subject to chapter 6.

In addition to studying the problem in the diffusive limit, we use two more additional
simplifications: first, we use that local kinetic energies and hence inverse temperatures are
typically high during the expansion process. Note that

β ≈ − e

4 J2 n
(5.3)

holds approximately for high temperatures. We simplify the diffusion constant further,
using the high temperature expansion that was carried out in chapter 2 and where the
particle and energy currents were perturbatively expressed in terms of n and e. We combine
those equations with the relaxation rate in its dilute and infinite temperature limit, using
that

τ−1(n, e) ≈ n/τ0 (5.4)

where τ0 ≈ 1.647 J/U2 as given in Eq. (2.25). This approximation is justified, as we are
mainly interested in the dynamics at long times when the density has become dilute, i.e.
n� 1. The above assumptions result in coupled diffusion equations for the local particle
and kinetic energy densities:

∂tn + ∇jn = 0, ∂te+∇je = −jn∇V, (5.5)

jn = −J
2τ0

n

(
2 +

e2

16J2n2

)
∇n+

τ0e

2n
∇V +

τ0e

8n2
∇e+O(e3)

je = −3J2τ0

2n
∇e+

3τ0e
2

8n2
∇V +O(e3) (5.6)

The source term in the continuity equation for the kinetic energy takes into account that
the total energy density and not the kinetic energy density is conserved. Above, we listed
all terms of the high temperature expansion that turn out to contribute in the long-time
limit according to the following analysis.

As an alternative to the above equations, one could also have derived similar equations
directly from the linearized Boltzmann equation (1.55): to this end, one could use the
variational principle presented in chapter 1 to calculate the matrix of diffusion constants
for n and e variationally. However, here we derived the hydrodynamic equations from
the relaxation-time approximation in order to allow for a quantitative comparison between
our numerical simulations and our analytical predictions. Both versions of hydrodynamic
equations agree up to changes in numerical prefactors. In this sense, Eqs. (5.5) and (5.6)
are exact for the high temperature limit of the Hubbard model in dimensions d > 1 for large
clouds and not too strong forces g. Note that in d = 1, the Hubbard model is integrable
and is characterized by infinitely many conservation laws. Therefore, this hydrodynamic
approach does not apply there.

5.5 Analytic solution of the hydrodynamic equations

5.5.1 Scaling ansatz

The hydrodynamic equations (5.5) and (5.6) form a closed set of equations that should
describe the same expansion dynamics as the Boltzmann equation (5.2), given that the
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required approximations were justified. Despite of being non-trivially coupled and highly
nonlinear, these equations can be solved analytically. The analytic solution is based on a
scaling ansatz.

In the following, we are going to measure the distance x relative to the center of mass.
We start our asymptotic analysis with the following scaling ansatz for the particle density:

n(x, t) = N0
1

R(t)
F [x/R(t)] , (5.7)

We impose the normalization conditions
∫
dz F [z] =

∫
dz z2F [z] = 1 on the scaling func-

tion. Then, N0 is the total number of particles and R is the radius of the cloud. Note
that we also assume that F [z] = F [−z]. The scaling ansatz postulates that the expansion
dynamics depends only on the ratio of x/R(t), where the function R(t) is unknown for
the moment and measures the diameter of the density profile, i.e. R2(t) =

∫
dx x2n/N0.

Our goal is to calculate both functions, i.e. R(t) and F [z], in the long-time limit. Note
that we don’t have the option to choose the prefactor in front of the scaling function other
than 1/R(t): only this way, the total integral over the x-coordinate remains independent
of time, which means that the total number of particles is constant.

The coupled hydrodynamic equations also require a second scaling ansatz for the kinetic
energy density. This second ansatz is more sophisticated, and relies on the idea that to
leading order, energy conservation prevents the cloud from rapidly expanding, making the
expansion dynamics very slow. We decompose the kinetic energy density into a dominant
contribution e0 and a subleading correction ∆e,

e = e0 + ∆e (5.8)

where we define the leading order contribution to the kinetic energy density e0 such as to
make the particle current vanish. Following this idea, we use Eq. (5.6) for the particle
current jn and set to zero, where we consider only the lowest power in e. We then identify
e0 as the term that fulfills that relation exactly:

0 = −2
J2τ0

n
∇n+

τ0e0

2n
∇V (5.9)

This equation can be solved for e0, which yields

e0(x, t) =
4J2

∂xV
∂xn (5.10)

It can be checked easily that e0 does not generally solve the energy continuity equation. It
is important to also consider the corrections ∆e = (e− e0), which finally leads to the fact
that the cloud expands. We therefore make a second scaling ansatz for ∆e,

∆e(x, t) =
J

R(t)1+γ
G[x/R(t)] , (5.11)

involving a second scaling function G[z] and an unknown scaling exponent γ. In accordance
with its subleading character, we assume that γ > 0. Combining Eqs. (5.7),(5.10) and
(5.11), we arrive at the scaling form for the total kinetic energy density:

e(x, t) =
4J2

∂xV
N0

1

R(t)2
F ′[x/R(t)] +

J

R(t)1+γ
G[x/R(t)] (5.12)
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Figure 5.3: Cubed radius of the cloud as a function of time for different interaction strengths
U and different strengths of gravity g. To a good approximation, R3(t) ∼ (t − t0). Inset:
Damped Bloch oscillations of the center of mass x0(t) in a regime beyond the range of
validity of the diffusion equation (strong forces).

This concludes our scaling ansatz. Before we proceed, let us check if e0 is indeed the
dominant contribution to the kinetic energy, such that ∆e is really small. To this end, we
combine (5.10) with (5.3) to derive

β(x) ≈ − ∂x n(x)

n(x) ∂x V (x)
(5.13)

If e ≈ e0, this relation should be almost an identity. We test this relation numerically in
Fig. 5.2, where β(x) is plotted blue, and the right hand side of Eq. (5.13) is plotted green.
In the long-time limit, we see that this identity is satisfied to a very good approximation,
which confirms the fact that ∆e is very small.

In the following, we are going to solve the coupled diffusion equations asymptotically,
using Eq. (5.7) and Eq. (5.12). The problem amounts to solving a problem that involves
two (continuity) equations and two unknowns R(t) and γ.

5.5.2 Particle number continuity

As a first step, we will relate the scaling exponent γ to the function R(t) that describes
the growth of the radius. To this end, we use the particle number continuity equation in
combination with our scaling ansatz. Note that there are two different ways to calculate
the particle current, using the scaling ansatz: it can be obtained either from the right or
the left hand side of the particle number continuity equation (5.5),(5.6). Using the left
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hand side, the particle current j̃n can be obtained via integration over x:

j̃n(x, t) = −
∫ x

−∞
∂t n(x′, t) dx′ = N0

x

R(t)2
F [x/R(t)]Ṙ(t) (5.14)

Alternatively, the right hand side of equation (5.6), neglecting terms of order e2, gives

jn(x, t) = −2
J2τ0

n
∂xn+

τ0(e0 + ∆e)

2n
∂xV

(5.9)
=

τ0∆e

2n
∂xV

=
∂xV J τ0G[x/R(t)]R(t)−γ

2N0 F [x/R(t)]
(5.15)

The two expressions (5.14) and (5.15) have to be identical, i.e. jn = j̃n. This identification
yields

R(t)γ−1Ṙ(t) =
∂xV Jτ0G[z]

2N2
0 zF [z]2

=:
αγ

γ
(5.16)

where we have substituted x by the new variable z = x/R(t), and α > 0 is an unknown
constant. We also used that the partial differential equation factorizes in the new variables
t and z. The ordinary differential equation for R(t) is solved for

R(t) = (Rγ0 + αγt)
1/γ ≈ α t1/γ (t→∞) (5.17)

where we used that we are interested in asymptotically long times, and where R0 is the
radius at the initial time zero. As a result, we have achieved to relate R(t) and γ, using
the particle number continuity equation.

5.5.3 Energy continuity equation

It remains to determine γ, using the energy continuity equation. We calculate the necessary
currents with the scaling ansatzes

n(x, t) =
N0

α
t−1/γ F [x t−1/γ/α]

e(x, t) =
4J2N0

∂xV α2
t−2/γF ′[x t−1/γ/α] +

J

α1+γ
t−1−1/γG[x t−1/γ/α] (5.18)

which are nothing but (5.7) and (5.12) in combination with the fact that R(t) = α t1/γ .
Note that we can calculate the particle current in two equivalent ways, using either jn or
j̃n, given by (5.15) and (5.14) respectively. To reduce the number of terms, we use j̃n, i.e.
we calculate

0 = ∂te+ ∂x je + j̃n ∂xV (5.19)

We use the full expressions for the particle and energy currents including Hartree-corrections,
i.e. V (x) = gx+Un(x), and higher order terms in e. The expressions for the currents and
the resulting energy continuity equation are very lengthy and are given in section D.2 of
the Appendix. When having calculated the energy continuity equation with the ansatzes
(5.18), we again substitute the spatial variable x by

z = x t−1/γ/α (5.20)
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which eliminates the time-dependence in the arguments of the scaling functions F and G.
For later convenience, we also replace α by the new variable α0, where

α0 = α

(
J4τ0

g2N0

)−1/γ

(5.21)

We can now calculate the energy continuity equation, involving the ansatzes and variables
mentioned above. The resulting equation is extremely lengthy, but it can be represented
as a fractional polynomial in t of the form

0 = C0[z] t−1 + C1[z] t
− 2
γ
−1

+ C2[z] t
− 1
γ
−2

+ C3[z] t−3/γ + ... (5.22)

which involves the coefficient functions Ci[z] that depend on the variable z, and on the
scaling functions and the parameters J , g, τ0 and N0, but not on t. Importantly, we ne-
glected all powers in t which are subleading in the large t limit for any choice of γ. As an
example, we neglected terms proportional to t−5/γ , which are a priori smaller than terms
proportional to t−3/γ for any γ > 0.

We want Eq. (5.22) to be asymptotically satisfied in the large t limit. The non-vanishing
coefficient C0[z] = α3

0 z F [z]/(6γ) stems from the time derivative of the energy continuity
equation. It needs at least one other coefficient Ci[z] that decays with the same power law,
i.e. as t−1, in order to be canceled asymptotically. It turns out that there is only a single
choice for γ which makes this possible, namely the choice of

γ = 3 (5.23)

Let us reflect this important result for a moment: the scaling functions depend on the
argument r/t1/3, which tells us that the cloud’s radius R increases subdiffusively as the
third root of time,

R ∼ t1/3 (t→∞) (5.24)

This remarkable analytic result explains the numerical observation of the slow expansion
dynamics in the Boltzmann simulations. To test the result, we plotted the cube of the
cloud’s radius as a function of time in Fig. 5.3. For a wide range of parameters we obtain
straight lines, which verifies our result and justifies the approximations involved in the
analytical derivation.

5.5.4 Formulas for the scaling functions

Having already achieved our main result, i.e. proving the asymptotic scaling law R ∼ t1/3,
we will show now that even an explicit formula for the scaling functions F [z] and G[z] can
be obtained for large times. To do so, we consider Eq. (5.22) in combination with γ = 3.
The terms proportional to C1 and C2 become subleading in the limit of long times,

C0[z]t0 + C1[z]t−
2
3 + C2[z]t−

1
3
−1 + C3[z]t0 −→ C0[z] + C3[z] (t→∞) (5.25)

Using the explicit formulas for the coefficient functions from the Appendix (D.2), we arrive
at the following ordinary differential equation for F , valid asymptotically in the long-time
limit:

0 = C0[z] + C3[z]

= −F
(3)[z]

F [z]
− 2F ′[z]3

F [z]3
+

3F ′[z]F ′′[z]

F [z]2
+

1

18
α3

0zF [z] (5.26)
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This equation can be alternatively written as

∂3
z logF [z] =

α3
0

18
z F [z] (5.27)

Surprisingly, a simple analytic solution can be found even for the scaling function under
the assumption that α0 � 1: the above differential equation is solved approximately by a
Gaussian function,

F [z] ≈ e−z
2/2

√
2π

+O(α3
0) (5.28)

We are also able to derive a formula that expresses G[z] in terms of F [z]. To this end,
we proceed in almost the same way, starting from the continuity equation for the energy
density. This time, however, we use the alternative expression jn for the particle current
from Eq. (5.15) instead of using j̃n from Eq. (5.14), resulting in

0 = ∂te+ ∂x je + jn ∂xV (5.29)

Also here, we use the ansatz (5.18) and repeat the previous steps, but this time we imme-
diately set γ = 3 and we are only interested in the limit t→∞. The resulting equation is
similar to Eq. (5.26), but now involves both scaling functions F and G:

0 = −6F (3)[z]− 13F ′[z]3

F [z]2
+

20F ′[z]F ′′[z]

F [z]
+
g3G[z]

2J3N0
(5.30)

Using Eq. (5.26) to get rid of the third derivative F (3)[z] yields

G[z] =
2N0J

3

g3

(
α3

0zF [z]2

3
+
F ′[z]3

F [z]2
− 2F ′[z]F ′′[z]

F [z]

)
(5.31)

Finally, we want to use Eq. (5.31) to derive a new relation: we relate the corrections to the
kinetic energy ∆e to the particle currents and the gradients of the particle density. Using
the scaling ansatz for the density and substituting x = z R(t) yields the scaling function

F [z] =
R(t)n(zR(t), t)

N0
(5.32)

Now, using Eq. (5.31) in combination with Eq. (5.32) and (5.11) yields

∆e ≈ 2

gτ0
njn +

2J4(∂xn)3

g3n2
− 4J4n(∂xn)(∂2

xn)

g3n2
(5.33)

where we have used jn = xṘ(t)n(x, t)/R(t) according to (5.14). As will be shown below,
we use the last relation to compare our analytical findings with the Boltzmann simulations.
This concludes our analytical solution of the asymptotic expansion dynamics in the diffusive
limit. Most importantly, we have found asymptotic scaling of R ∼ t1/3, but we have also
derived explicit formulas for the scaling functions in the long time limit. We have also
shown that the scaling function for the density profile is almost a Gaussian.
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5.5.5 Comparison of the analytical and numerical results

We can now use our analytic predictions and compare it with the numerical results. For
not too strong forces and large clouds, the Boltzmann equation is in its diffusive regime,
and we can expect that its dynamics is very close to the dynamics predicted by the coupled
diffusion equations (5.5),(5.6). The top panel of Fig. 5.4 shows a scaling plot of the density
profile. Here, we compare the particle densities for a range of time between 500 and 3500,
in which the cloud’s radius changes significantly, see also Fig. 5.2. The plot shows the
scaling function F [z], obtained by rescaling the densities according to Eq. (5.32), where
R(t) is the instantaneous second moment of n(x, t). All curves lie on top of each other
to surprising accuracy, reflecting that the numerically simulated densities are close to a
self-similar form, justifying our scaling ansatz. We also compare the scaling functions with
a normalized Gaussian function (green, dashed line), which according to Eq.(5.28) is its
theoretically expected shape for a small parameter α0. This parameter depends on the
initial conditions and can be extracted from the slope of the curves in Fig. 5.3, using that

g2R3 ≈ α3
0

J4τ0

N0
t (5.34)

which can be derived from Eqs. (5.17) and (5.21). α0 is not small for the numerical data
shown in Fig. 5.4: in fact, for U/J = 2, g/J = 0.325 we find that α0 ≈ 3. However,
the top panel of Fig. 5.4 shows that the Gaussian form of the scaling function, predicted
in Eq. (5.28), is still approximately satisfied. In the second panel of Fig. 5.4, we show
the kinetic energy density e(x, t) and compare it with e0(x, t) from Eq. (5.10), rescaled
according to the scaling ansatz. We find that the curves for e (blue curves) and e0 (red
curves) are so close to each other that they can hardly be distinguished from one another,
reflecting the smallness of ∆e.

In the lowest panel, we compare two different quantities that are identified with each
other only according to our analytical study: while the red curves show the original ∆e
defined as the tiny difference between e and e0 (second panel), the blue curves show ∆e
according to Eq. (5.33). Note that a priori, these two quantities seem completely unrelated
to each other, as the first one mainly contains information on the energy density, while
the second quantity knows only about particle densities and currents. However, also here,
the blue and red curves agree to a high precision. This nontrivial fact substantiates our
analytical study. Note that the quantities in the lowest panel are an order of magnitude
smaller than the previous quantities and should be very sensitive to discrepancies between
Boltzmann numerics and analytics. For large z, the blue and red curves deviate from
each other. This fact is to be expected, as in the cloud’s tail regions, the local interpar-
ticle scattering rates are too small to drive the system to local equilibrium. Hence, the
hydrodynamic approximation is not valid there.

5.6 Summary and outlook

To summarize, we have analyzed the dynamics of interacting fermionic ultracold atoms in
optical lattices in the presence of a gravitational potential. We concentrated on the diffusive
limit, where τ � τB = 2π/g. After a short transient, the cloud expands symmetrically.
We systematically derived coupled diffusion equations for the particle- and kinetic energy
density. Using a scaling ansatz, we were able to solve the equations analytically in the long
time limit. We found that the cloud radius R grows in time as R ∼ t1/3 as opposed to
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ordinary diffusion, where R ∼ t1/2. We were also able to find the scaling function, which
turns out to be very close to a normalized Gaussian. Comparing the analytical theory
with numerical data from a Boltzmann simulation, we found excellent agreement even to
subleading order in the sense of our previous discussion.

Yet, the above study does not describe the ultimate long time limit of the problem.
Note that the diffusive approximation relied on the fact that the scattering time is much
shorter than the period of Bloch oscillations, i.e. τ0/n � τB. As the density profile gets
more and more dilute, i.e. n → 0, the cloud will sooner or later reach a regime where
inter-particle scattering is not strong enough any more to over-damp Bloch oscillations.
This regime is necessarily reached when τ0/n � τB. Using the scaling ansatz (5.18) for
n(x, t) with the result γ = 3 , the diffusive approximation looses its validity when

t� N4
0 /(α

3
0 g J

4 τ4
0 ) (5.35)

For much longer times, the cloud willl enter the opposite regime, where Bloch oscillations
are only weakly damped. This regime will be studied in chapter 6, where we show the
emergence of a different scaling law. Experimentally, however, it will be very difficult to
observe the dynamics of the system at such long times. As mentioned before, it is also a
challenging and highly relevant follow-up study to solve the corresponding bosonic problem,
which is characterized by a non-trivial interplay between the dynamics of condensed and
uncondensed bosonic atoms.
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6

Damping of Bloch oscillations and
stroboscopic diffusion

6.1 Introduction

The observation of Bloch oscillations belongs to the pioneering experiments with ultracold
atoms [99] and has been achieved several years even before the regime of strong correla-
tions has been accessed in these systems. The basics of Bloch oscillations can be easily
understood in a semi-classical picture e.g. in one dimension. Let us consider the dynamics
of a wave packet at position x and initial momentum k in the presence of a constant force
F in a lattice model, whose energy dispersion is given by εk = −2J cos(k). Solving the
semi-classical equations of motion (1.31), one finds

x(t)− x(0) = −2JF−1 (cos(k + Ft)− cos(k)) (6.1)

Hence, the wave packet is not uniformly accelerated by the constant force, but keeps
oscillating instead. Bloch oscillations have been first predicted for electrons in periodic
potentials by Felix Bloch [96], but they have never been observed for crystalline solids due
to the fast scattering on impurities, phonons, lattice defects or other electrons. Besides
ultracold atoms, there are more quantum systems that show these oscillations, among
which are semiconductor-superlattices [97], and optical waveguide arrays [98].

We will be interested in the damping of Bloch oscillations in the fermionic Hubbard
model. When such a system exhibits Bloch oscillations, it is in a state far from thermo-
dynamic equilibrium. In the presence of interactions, the dynamics is characterized by a
competition between the static driving force F and the scattering rate τ−1

scatt ∼ U2, which
drives the system back to equilibrium. As we have pointed out in chapter 5, it is very
important to take into account that the Hubbard model describes a thermally isolated sys-
tem, such that the particle currents will lead to an intrinsic heating in the long time limit.
Therefore, if interactions are weak enough not to over-damp Bloch oscillations, scattering
will nevertheless lead to a damping of the amplitude of Bloch oscillations. Due to the
exponential decay of all momentum modes, the system will be characterized by a constant
momentum distribution in the long time limit, which can be interpreted as an infinite
temperature as well.

The damping of Bloch oscillations has been observed in experiment with bosonic
atoms [76], and it has been studied theoretically in many physical realizations [51,103–111].
For various fermionic lattice models, the damping of Bloch oscillations has been studied
numerically using DMFT [51,104,105,111]. In particular, Eckstein and Werner simulated
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the damping of Bloch oscillations for the fermionic Hubbard model [51], where they espe-
cially analyzed the regime of intermediately strong and weak interactions. In their study,
the decay of the current mode was observed numerically. For weak interactions, it was
found to decay exponentially on top of its oscillatory dynamics, while for stronger interac-
tions, these oscillations were found to be over-damped and the current was exponentially
decaying. In this chapter, we will present an analytic theory of the damping of Bloch
oscillations, whereupon we also explain the numerical findings by Eckstein and Werner.

When a finite cloud of interacting lattice-particles is exposed to a constant force, we
have shown in chapter 5 that its dynamics is strongly influenced by energy conservation:
the cloud as a whole can not move upwards or downwards over large distances. While
we were interested in the collision-dominated regime in chapter 5, we will consider here
the opposite limit of weakly damped Bloch oscillations. As can be seen e.g. in Eq. (6.1),
Bloch oscillations localize the particles in a region whose width is determined by the inverse
force. Non-interacting particles can not leave this region, in which they are periodically
oscillating up and down. However, in the presence of interactions, the particles can be
kicked out of their periodic orbits by scattering processes. As a consequence, the cloud
as a whole can expand by collisions. In this chapter, we will derive an effective diffusion
equation for the cloud’s dynamics on top of its rapid oscillatory movement, which is very
different from the conventional diffusion that emerges in the collision-dominated regime.

The present chapter is organized as follows. In sections 6.2 and 6.3, we analyze the
damping of Bloch oscillations in the homogeneous Hubbard model, where we will present
an analytic theory for the decay of Bloch oscillations, based on the Boltzmann equation. In
section 6.2, we introduce two perturbative schemes to calculate the system’s heating rate
in the two limits of over-damped and weakly damped Bloch oscillations. While this section
is conceptually important for the study of the inhomogeneous system, it can be skipped by
readers who are only interested in the homogeneous system, because we introduce a more
powerful way to address the homogeneous system in section 6.3. Here, we systematically
derive coupled differential equations for the dynamics of the kinetic energy mode and map it
to a damped harmonic oscillator equation, which can be solved exactly. The analytic results
are also compared to a numerical solution of the full Boltzmann equation in one dimension.
Finally, in section 6.4 we study the dynamics of an inhomogeneous, finite cloud of fermionic
particles in the Hubbard model, driven by a linear potential at weak interactions, such that
Bloch oscillations are only weakly damped. We show that the dynamics of the system can
be semi-quantitatively approximated by a nonlinear, stroboscopic diffusion equation that
governs the cloud’s dynamics on top of its rapid oscillatory movement. The equations
for the particle density and kinetic energy density are structurally similar to the diffusion
equations derived in chapter 5, however, their dependence on the scattering time and on
the local density is found to be inverse to the aforementioned study. This leads to the
peculiar sub-diffusive scaling law or R ∼ t1/5 at which the cloud expands, where R is the
cloud’s radius and t is the time variable.

6.2 Two perturbative limits for the homogeneous system

6.2.1 Over-damped Bloch oscillations

As a very first step, let us consider the rate at which a thermally isolated system heats
up in the presence of a constant force in the linear response regime, which is characterized
by local equilibrium. This approach is conceptually very similar to deriving the Diffusion
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equation from the Boltzmann equation.
We first consider the regime where the Bloch oscillation period τB = 2π/F , is much

larger than the time between two scattering events, τB � τscatt. In this case, the system
is always close to local equilibrium. Therefore, we decompose the non-equilibrium distri-
bution function fk as the sum of an equilibrium Fermi function f0

k and a tiny perturbation
δf0

k,

fk = f0
k + δfk (6.2)

This ansatz is chosen such that it approximately solves the right-hand side of the Boltzmann
equation, i.e. it minimizes the collision integral. Plugging this ansatz into the Boltzmann
equation and neglecting δf on the left-hand side yields

(∂t + F∇k) f0
k = −

∫
dk′

(2π)d
Mkk′δfk (6.3)

A formal solution of the equation can be obtained, provided the inverse of the scattering
matrix Mkk′ is known:

δfk = −
∫

dk′

(2π)d
M−1

kk′ (∂t + F∂k′) f0
k′ [z(t), β(t)] (6.4)

Here, we regard f0
k as a function of inverse temperature and fugacity. This will be of

later convenience as z and β converge to finite values in the infinite temperature limit, in
contrast to µ and T . We will now use the fact that by the chain rule,

∇kf
0
k = vk

∂f0
k

∂εk
(6.5)

∂tf
0
k =

∂f0
k

∂β
β̇ +

∂f0
k

∂z
ż

=
εk
β

∂f0
k

∂εk

∂β

∂e
ė+

∂f0
k

∂z

∂z

∂e
ė

=
∂f0

k

∂εk

(
εk
β

∂β

∂e
+

1

z β

∂z

∂e

)
ė (6.6)

Combining the above equations with Eq. (6.4), we can calculate the particle current,
which yields

jn =

∫
dk

(2π)d
vkδfk

= −
∫

dk

(2π)d
dk′

(2π)d
vkM

−1
kk′

∂f0
k′

∂εk′

[
Fvk′ +

(
εk′

β

∂β

∂e
+

1

z β

∂z

∂e

)
ė

]
(6.7)

Using the continuity equation, the time-evolution of the kinetic energy is determined by

ė = −∇je + F jn = F jn (6.8)

Combining Eqs. (6.7) and (6.8) gives us an equation for the time-evolution of the kinetic
energy

ė = −F
∫

dk

(2π)d
dk′

(2π)d
vkM

−1
kk′

∂f0
k′

∂εk′

[
Fvk′ +

(
εk′

β

∂β

∂e
+

1

z β

∂z

∂e

)
ė

]
(6.9)
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Let us have a closer look on this equation: its right hand side carries an overall prefactor
of |M−1|F � 1 where |M−1| is a characteristic scattering rate addressed to M . We can
therefore solve the equation iteratively and concentrate on the leading term, neglecting ė
on the right hand side. The result can be expressed by the conductivity in terms of the
linearized Boltzmann equation,

σ = σxx = −
∫

dk

(2π)d
dk′

(2π)d
vxkM

−1
kk′v

x
k′
∂f0

k′

∂εk′
, (6.10)

which leads to the most general result for the heating rate of the homogeneous system
close to equilibrium,

ė = σ(e)F2 (6.11)

The implicit dependence of the conductivity σ on the kinetic energy e can be worked out
explicitly for high temperatures. We can use the high temperature version of f0

k as given
in Eq. (2.43) or Eq. (6.42), which leads to ∂f0

k/∂εk ≈ e/(2J2d). Then, the conductivity
(6.10) simplifies to

σ ≈ −
∫

dk

(2π)d
dk′

(2π)d
vxkM

−1
kk′vxk′

2J2d
e =: −e τsc

2
(6.12)

which implicitly defines the scattering time τsc. Hence, the final result can be expressed as

ė ≈ −F
2 τsc

2
e, e(t) = e0 exp(−1

2
F 2 τsc t) (6.13)

At high temperatures, the scattering operatorMkk′ ∼ τ−1
sc ∼ U2/J becomes approximately

independent of temperature. Using vk ∼ 2J , Eq. (6.13) can be approximated as

ė ∼ −4 J F 2

U2
e (6.14)

By using the time scale τB = 2π/F , which measures the time of one Bloch oscillation
period in absence of interactions, the heating rate can be finally estimated as

1/τheat ∼ τsc/τ
2
B (6.15)

6.2.2 Weakly damped Bloch oscillations

General philosophy

After having studied the heating rate of an isolated lattice system in the collision dominated
linear response regime, we want to study the opposite limit, where the scattering rate is
much smaller than the driving force, τ−1

scatt � F . The perturbative calculation that we
are going to present here is mostly conceptually important, as it can be generalized to a
spatially inhomogeneous situation, which will be done in section 6.4. A more direct way
of addressing the homogeneous system will be presented in section 6.3.

We are interested in a situation where the Fermions are dominantly Bloch oscillating;
yet, from time to time the particles scatter on each other. Again, we want to calculate the
heating rate of the system, reflected in the decay of the kinetic energy and current mode.
As the Bloch oscillations are only weakly damped, the solution of the Boltzmann equation
will be a distribution function far from thermal equilibrium. Usually, the linearization of
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the Boltzmann equation around an equilibrium Fermi function would therefore be inap-
propriate. However, as we expect that the particle current will get damped in the long
time limit, the non-equilibrium distribution function will get closer and closer to a constant
distribution function, fk → n (t → ∞), in momentum space. As a constant distribution
is formally the same as an equilibrium distribution at infinite temperature, we can lin-
earize the distribution function around T =∞. Hence, we study the linearized Boltzmann
equation

(∂t + F∇k) fk = −
∫

dk′

(2π)d
Mkk′(fk′ − n) (6.16)

Here, n is the constant density of the system and M is the linearized collision integral of
the Boltzmann equation at infinite temperature, specified in Appendix (E.1). Similarly to
the collision-dominated case, an approximate solution to the Boltzmann equation can be
found using a proper decomposition of the distribution function. In the linear response
regime, the non-equilibrium distribution function was decomposed into the Fermi function
f0 and a tiny perturbation δf . The ansatz was designed to approximately solve the right
hand side of the Boltzmann equation. Here, we are considering the opposite case, where the
Boltzmann equation is dominated by its left hand side. An appropriate decomposition of
the non-equilibrium distribution function should almost solve the left-hand side. Therefore,
we decompose fk according to

f = fB + δf (6.17)

where fB is an exact solution of the non-interacting Boltzmann equation

(∂t + F∇k) fB(k, t) = 0 (6.18)

and δf � fB is a tiny correction which describes the deviation from the purely Bloch-
oscillating behavior. Note that δf nevertheless is an important contribution that takes
the damping of the oscillations into account. Let us now construct fB. At time t = 0,
the system shall be described by the momentum distribution function f(k, 0) as an initial
condition. In defining

fB(k, t) := f(k− Ft, 0) (6.19)

one immediately recognizes that the above definition of fB solves Eq. (6.18) for any
f(k, 0). The function fB can be considered as a zeroth order solution of the Boltzmann
equation in the expansion parameter τB/τsc, and we will use it as a starting point for a
perturbative expansion. For the linearization of the collision integral to be justified, we
have to assume that

|fB(k)− n| � n (6.20)

for all k. Using our proposed decomposition, the Boltzmann equation reads

(∂t + F∇k) δfk = − 1

(2π)d

∫
dk′Mkk′(fBk′ + δfk′ − n) (6.21)

As we will show below, the inverse of the Liouvillian operator (∂t + F∇k) is proportional
to F−1 ∼ τB. Therefore, the contribution of δfk on the right hand side of Eq. (6.21) is
suppressed by another factor of τBMkk′ ∼ τB/τscatt � 1. Omitting this term yields

(∂t + F∇k) δfk ≈ −
1

(2π)d

∫
dk′Mkk′(fBk′ − n) (6.22)

The strategy will be to solve the equation for δfk by applying the inverse Liouvillian
operator on both sides.
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Perturbative solution

We will proceed in deriving an explicit expression for the function δfk in terms of the
known function fBk . The perturbation δfk describes the net flow of particles that get
scattered out of their free, periodic motion. To simplify the resulting expressions, we will
be only interested in the integrated flow of particles that get scattered within one Bloch
cycle. As this approach involves an integration over the Bloch period, it will be crucial
that the function fBk is periodic in the Bloch period τB = 2π/F . While this is always
the case in one dimension, it is not necessarily the case in dimensions larger than one
for incommensurate ratios of the vector components of F. For simplicity, we consider a
situation where

F = F


1
1
...
1

 (6.23)

points into the diagonal direction of the lattice1. In order to solve Eq. (6.22) for δfk, we
have to find the operator inverse of the Liouvillian. To find its inverse, let us consider the
equation

(∂t + F∇k) a(k, t) = b(k, t) (6.24)

It can be checked straightforwardly that its solution is given by

a(k, t) =

∫ t

0
dt′ b(k− F(t− t′), t′) + a(k− Ft, 0) (6.25)

We now combine the definition of fB in Eq. (6.19) with the defining Eq. (6.22) for δf and
its formal solution Eq. (6.25) to derive

δfk(t) = −
∫

dk′

(2π)d

∫ t

0
dt′Mk−F(t−t′),k′

(
f(k′ − Ft′, 0)− n

)
(6.26)

where we used that δfk is initially zero, as it grows to a finite value only due to scattering
processes at t > 0. Furthermore, we will not be interested in the rapid Bloch oscillations
on top of the weak damping. Therefore, integrate the solution δfk over one Bloch cycle
and normalize by τB, where we define

δfk :=
1

τB

∫ τB

0
dt δfk(t) (6.27)

We can also substitute k′ → k′ + Ft′ in Eq. (6.26) in order to get rid of the oscillations
in the momentum argument of the initial distribution function f(k, 0). The resulting
equation is the analog of Eq. (6.4) in the case of linear response, which relates the first
order perturbative correction of the Boltzmann equation to the instantaneous distribution
function f(k, 0):

δfk = −
∫

dk′

(2π)d
Mkk′

(
f(k′, 0)− n

)
(6.28)

1Note that F does not denote the absolute value of F, but rather its projection on one of the coordinate
axes. This notation is extremely useful and will be kept throughout the chapter.
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Here, we defined

Mkk′ :=
1

τB

∫ τB

0
dt

∫ t

0
dt′Mk−F(t−t′),k′+Ft′ (6.29)

Note that when estimating M ∼ U2/J , we find that M ∼ F−1 U2/J has a different
dimensionality from the original scattering matrix.

In order to proceed in the spirit of the previous study, we have to parametrize the
instantaneous distribution function f(k, 0) by the relevant momentum modes of the system.
In the case of linear response, the instantaneous distribution function was a Fermi function
and uniquely parametrized by the density n and kinetic energy e. As we will discuss in
more detail in section 6.3, far from equilibrium the system is only fully characterized by
the set of all modes. However, as a first approximation, it makes sense to parametrize the
instantaneous distribution function f(k, 0) also by its density and energy density mode,

f(k, 0) ≈ n+
1

2J2d
e εk (6.30)

where 2J2d =
∫
dk ε2k/(2π)d is a normalization constant. The quality of this approximation

will be discussed in section 6.3. Note that it is not necessary to include the current mode
vk in the above ansatz, as it is periodically converted into the energy mode and vice versa
by the Bloch oscillations. As we have the freedom to define our initial time as we wish, we
can choose t = 0 such that the particle current due to Bloch oscillations is at its turning
point, i.e. such that it is zero.

We now use the energy continuity equation ė = F jn for the homogeneous system,
where we calculate the current with Eq. (6.28) and use the ansatz (6.30) for f(k, 0):

ė ≈ F

∫
dk

(2π)d
vk δfk

≈ −F
∫

dk

(2π)d
dk′

(2π)d
vk Mkk′ εk′

2J2d
e (6.31)

We will show in Eq. (6.44) that the continuity equation is valid arbitrarily far from
equilibrium. As the force points into the diagonal direction of the lattice, it is convenient
to introduce a scalar variant of the velocity mode:

vk = vk · (1, 1, ..., 1)T (6.32)

This allows us to relate the matrix elements of M to matrix elements of M :∫
dkdk′ vkMkk′ εk′

(6.29)
=

1

τB

∫ τB

0
dt

∫ t

0
dt′
∫
dkdk′ vk Mk−F(t−t′),k′+Ft′ εk′

subst.
=

1

τB

∫
dkdk′ Mkk′

∫ τB

0
dt

∫ t

0
dt′ vk+F(t−t′) εk′−Ft′

(E.14)
=

1

2F

∫
dkdk′ vkMkk′ vk′ (6.33)

where we shifted the momentum integration variables. The remaining integral identity
relies on trigonometric identities and leads to the fact that the time integrals can be
performed exactly, as is shown in Appendix (E.14). Combining this result with Eq. (6.31),
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we arrive at the final result for the damping rate of the kinetic energy mode on top of
strong Bloch oscillations, which reads

ė ≈ −1

2

∫
dk

(2π)d
dk′

(2π)d
vk Mkk′ vk′

2J2d
e (6.34)

Remarkably, the damping rate is completely independent of the force F and depends only
on the current-current matrix element of the scattering matrix M . In contrast to Eq.
(6.15) that we derived for the linear response limit, here we can identify the heating rate
with the microscopic scattering rate of the system,

1/τheat ∼ 1/τsc (6.35)

This concludes the study of the heating rate of the homogeneous system in the regime
of weakly damped Bloch oscillations. Before we proceed with the next section, let us
emphasize that naively, one could also have calculated the energy change after one Bloch
period differently, namely by using that

ė ≈ e(τB)− e(0)

τB

(?)
=

1

τB

∫
dk

(2π)d
εk δfk(τB) (6.36)

The question mark above shall signify that the relation is not an exact identity, but only
holds if δfk is an exact solution of the Boltzmann equation. If this were the case, both
ways of calculating ė were indeed equivalent:

1

τB

∫
dk

(2π)d
εk δfk(τB) =

1

τB

∫
dk

(2π)d
εk

∫ τB

0
dt δḟk(t) (6.37)

Boltzm.
= − 1

τB

∫
dk

(2π)d
εk

∫ τB

0
dtF∇kδfk(t)

P.I.
= F

1

τB

∫
dk

(2π)d
vk

∫ τB

0
dt δfk(t)

= F

∫
dk

(2π)d
vk δfk

where we assumed that δfk fulfills the Boltzmann equation and
∫
dk′Mkk′εk′ = 0. Im-

portantly, however, δfk does not fulfill the Boltzmann equation exactly, as it is only an
approximation to the solution. Hence, we have to use Eq. (6.31) to calculate ė, and not
the right hand side of Eq. (6.36) in order to satisfy the conservation laws exactly. This is
especially important in the spatially inhomogeneous generalization of the approach, where
the total particle number and total energy must be conserved.

6.3 Generalized continuity equations

We will now present an alternative framework in which the dynamics of the system’s
momentum modes can be studied in various regimes. We will refer to this approach as
the method of deriving generalized continuity equations. We will show below that this
approach is more general than the perturbative schemes described before: it allows us not
only to study the over-damped and the weakly damped regime, but also various regimes
in between. But it also has the disadvantage that it is not obvious how to generalize
the new approach to spatially inhomogeneous systems, while we are successful in doing so
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with the first approach, as we will show in section 6.4. Again, we start from the linearized
Boltzmann equation

(∂t + vk∇r + F∇k) fk = −
∫
dk′Mkk′ (fk′ − n) (6.38)

where M is the matrix of the linearized collision integral at infinite temperature. Let us
discuss the possibility of deriving effective diffusion equations from the Boltzmann equation.
In usual (collision-dominated) diffusion, it is assumed that the smallest time scale is given
by the relaxation rate, i.e. the matrix Mkk′ is large and therefore the right hand side
dominates the Boltzmann equation. If this is satisfied, it is guaranteed that the non-
equilibrium distribution function fk is always close to an equilibrium distribution function,
and in particular it is fully determined by the system’s conserved quantities, which are the
particle density n and kinetic energy density e, i.e. fk = fk(n, e). In a regime far beyond
the conventional diffusive limit, things are much more complicated.

A priori, there is no reason to assume that a generic non-equilibrium distribution func-
tion should be parametrized only by two parameters; instead it can be any function of
momentum k. In terms of its Fourier representation, the distribution function is therefore
characterized by an infinite set of momentum modes.
In the spatially homogeneous case, Eq. (6.38) formally simplifies in the Fourier represen-
tation; however, we are still left with an infinite set of coupled ordinary differential equa-
tions for the different mode occupation coefficients. The basic idea of this section is to
truncate the number of momentum modes to a “physically relevant” subset.

Let us introduce a scalar product in the space of momentum-dependent functions,

〈f(k)|g(k)〉 :=
1

(2π)d

∫
dk f(k) g(k) (6.39)

The minimal modes that are needed to describe the system’s dynamics in the diffusive
limit are the particle density n, the kinetic energy density e, the particle current ~v and the
heat current ~h:

n = 〈1|fk〉, e = 〈εk|fk〉, ~v = 〈vk|fk〉, ~h = 〈εkvk|fk〉, ... (6.40)

Above, the dots shall indicate that out of equilibrium, the list of modes is in principle not
restricted. In a similar way of how we derived the continuity equations (2.28) from the
Boltzmann equation, we can derive a more general set of coupled equations,

〈1| (∂t + vk∇r + F∇k) fk〉 = 0 (6.41)
〈εk| (∂t + vk∇r + F∇k) fk〉 = 0

〈vk| (∂t + vk∇r + F∇k) fk〉 = −〈vk|M |fk〉
〈εkvk| (∂t + vk∇r + F∇k) fk〉 = −〈εkvk|M |fk〉

where |1〉 denotes the constant function in momentum space. Above, we used that the
scattering terms vanish for the particle number and energy modes, i.e. 〈1|M |fk〉 =
0, 〈εk|M |fk〉 = 0. Again, also here the list of equations for the different momentum modes
is in principle not limited. Due to the orthogonality of these modes, the non-equilibrium
distribution function fk close to infinite temperature at time t can be expressed uniquely
as

fk(r, t) = n(r, t) +
e(r, t)

2J2d
εk +

~v(r, t)

2J2
vk +

~h(r, t)

6J4
εkvk + ... (6.42)
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where the normalization of the coefficients stems from the following integral identities:∫
dk

(2π)d
ε2k = 2J2d,

∫
dk

(2π)d
vikv

j
k = 2J2δij ,

∫
dk

(2π)d
ε2kv

i
kv

j
k = 6J4δij (6.43)

The scalar products in Eq. (6.41) can then be carried out, where the orthogonality of
the different modes is used. Using the ansatz for the distribution function (6.42) and the
orthogonality of the modes, they can be equivalently expressed as

ṅ+∇r~v = 0 (6.44)
ė+∇r

~h− F~v = 0

~̇v + 2J2∇rn+ F e = − 1

2J2
〈vk|M |vk〉~v −

1

6J4
〈vk|M |εkvk〉~h+ ...

~̇h+
3

d
J2∇re+ 〈εkvk|F∇kfk〉 = − 1

2J2
〈εkvk|M |vk〉~v −

1

6J4
〈εkvk|M |εkvk〉~h+ ...

among which the first two equations are nothing else but the continuity equations for the
particle and energy density, respectively. All other modes are damped and coupled to each
other by the corresponding matrix elements of the scattering matrix Mkk′ . The above set
of coupled differential equations can now be used to study the many-body dynamics of
the system. In general, the above selection of modes does not suffice to characterize the
system’s full dynamics: all higher modes may couple to the lower modes by the scattering
terms on the right hand side. For a situation far from local equilibrium, there is unfortu-
nately no good reason why the higher modes should not contribute, because they are not
necessarily damped much faster than the lower modes. In units of one scattering time,
basically all modes are significantly damped. However, if the off-diagonal matrix elements
of the scattering matrix M are small, many of the momentum modes decouple from each
other, and therefore we can restrict our attention to a selection of relevant modes. Note
that neglecting off-diagonal scattering elements also amounts to neglecting thermo-electric
effects, where the particle current is scattered into the energy current channel and vice
versa.

6.3.1 Reproducing conventional diffusion

As a first application and test of the set of equations (6.44), we show that the (conventional)
diffusion equations for the particle and energy density at high temperatures can be derived
from them. Let us start from the generalized continuity equations, where we restrict our
attention to the case F = 0. Furthermore, let us define

M̂ =

(
〈vk|M |vk〉/(2J2) 〈vk|M |εkvk〉/(6J4)
〈εkvk|M |vk〉/(2J2) 〈εkvk|M |εkvk〉/(6J4)

)
(6.45)

as the projection of the scattering matrix M on the subspace spanned by the current and
energy current modes. The equations for the dynamics of the particle and heat currents
in Eq. (6.44) can be formulated as(

~̇v

~̇h

)
+

(
2J2∇rn

(3/d)J2∇re

)
≈ −M̂

(
~v
~h

)
(6.46)

where we neglected the scattering from higher momentum modes into the particle and
energy current modes and vice versa. If the rate, at which ∇rn and ∇re change in time, is
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much smaller than the scattering rate associated to M , they can be regarded as approxi-
mately constant. Then, this set of equations is solved by(

~v
~h

)
= −M̂−1

(
2J2∇rn

(3/d)J2∇re

)
+ e−M̂tC (6.47)

where C = (C1, C2)T is some constant. If the dynamics is dominated by collisions, the
exponential term will decay very rapidly and therefore will not contribute. Alternatively,
this result can also be obtained by setting ~̇v = ~̇h = 0 in Eq. (6.46). We can define the
matrix D̃ as the matrix that mediates between the currents and the density gradients:

D̃ = −M̂−1 ·
(

2J2 0
0 3

dJ
2

)
(6.48)

We claim that the matrix D̃ is an approximation to the matrix of diffusion constants D at
high temperatures, which we are going to show now. To this end, we give a short derivation
of the diffusion constant in the language of the linearized Boltzmann Eq. (6.38) in absence
of the force. In the same way as we have shown for the relaxation time approximation in
chapter 2, one can show that

δfk = −
∫

dk′

(2π)d
M−1
kk′ vk′∇rf

0
k′(n, e) (6.49)

which is the analog of Eq. (2.32), and which expresses the corrections to local equilibrium
in terms of f0

k. We can express the same equation in the language of vectors and the scalar
product (6.39) as

|δfk〉 = −M−1 |vk∇rf
0
k(n, e)〉 (6.50)

= −M−1
(
|vk∂nf

0
k〉, |vk∂ef

0
k〉
)(∇rn
∇re

)
≈ −M−1

(
|vk〉,

|εkvk〉
2J2d

)(
∇rn
∇re

)
where we used the chain rule of differentiation and the fact that for high temperatures,
∂nf

0
k ≈ 1 and ∂ef0

k ≈ εk/(2J
2d) as can be seen e.g. from Eq. (6.42). Furthermore, from

jn = 〈vk|δfk〉, je = 〈εkvk|δfk〉 (6.51)

we can identify the matrix of diffusion constants as

D = −
(
〈vk|
〈εkvk|

)
M−1

(
|vk〉,

|εkvk〉
2J2d

)
(6.52)

= −
(
〈vk|M−1|vk〉 〈vk|M−1|εkvk〉/(2J2d)
〈εkvk|M−1|vk〉 〈εkvk|M−1|εkvk〉/(2J2d)

)
= −M̃ ·

(
2J2 0
0 3

dJ
2

)
where we used Eq. (6.50), and where we have defined

M̃ =

(
〈vk|M−1|vk〉/(2J2) 〈vk|M−1|εkvk〉/(6J4)
〈εkvk|M−1|vk〉/(2J2) 〈εkvk|M−1|εkvk〉/(6J4)

)
(6.53)
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By comparing Eqs. (6.48) and (6.52), we see that if M̂ and M̃ are inverse to each other,
we have proven that D = D̃. Indeed, M̂ and M̃ are almost inverse to each other:

M̃ ≈ M̂−1 (6.54)

While M̂−1 is the inverse of the projected scattering matrix on the subspace of the particle
and energy currents, M̃ is the projection of the full inverse matrix. To a good approx-
imation, these two matrices coincide, because the current and energy current modes are
the weakly damped, “slow” modes in the system [30]. Therefore, the matrix elements
〈vk|M |vk〉, 〈εkvk|M |vk〉, 〈vk|M |εkvk〉 and 〈εkvk|M |εkvk〉 are comparatively small, and
they hence contribute strongly to the inverse matrix. Hence, the generalized continuity
equations allow us to reproduce the conventional hydrodynamic (diffusive) limit of the
Boltzmann equation.

6.3.2 Damping of Bloch oscillations and the harmonic oscillator

We will now analyze the spatially homogeneous system. Again, we consider the situation
where the force F = F (1, 1, ..., 1)T points in the diagonal direction of the lattice2. The
case where the force points in the direction of an individual lattice coordinate can be also
treated with our method, but is is slightly more complicated as it leads to a splitting of the
energy mode in the direction of the force and the perpendicular directions, whose dynamics
are coupled. As the force points into the diagonal direction, the current mode will deviate
from equilibrium in the diagonal direction. As the scattering matrix M has no preferred
lattice coordinate, the momentum distribution can be expected to remain the same for
each lattice coordinate. We therefore simplify the ansatz (6.42) according to

fk(t) = n+
e(t)

2J2d
εk +

v(t)

2J2d
vk + ... (6.55)

where vk is the scalar current or velocity mode defined in Eq. (6.32) and v(t) is its
coefficient. Spatial homogeneity reduces the complexity of Eqs. (6.44), which simplify to

ė− F v = 0 (6.56)

v̇ + F e = − 1

2J2d
〈vk|M |vk〉 v

whereby we neglected the dynamics of the heat current mode and the possibility to scatter
between the current and heat current modes, which means that we neglected thermo-
electric effects. For the following analysis, it will be convenient to define the damping
parameter

τ−1 :=
1

2

〈vk|M |vk〉
2J2d

(6.57)

As a side remark, note that we have encountered τ−1 before: it is exactly the rate at
which we have shown the energy mode to get damped in the limit of weakly damped Bloch
oscillations, as can be seen in Eq. (6.34). Let us now combine the two coupled first-order
ordinary differential equations (6.56) and create a single second-order differential equation
out of them, which reads

v̈ = F 2 v − 2τ−1 v̇ (6.58)
2As before, scalar parameter F signifies the projection of the force on the individual lattice coordinates.
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Surprisingly, this is nothing but the equation of the classical damped harmonic oscillator.
As it is known from textbooks [123], the harmonic oscillator is characterized by three
regimes: the over-damped regime, the under-damped regime, and the critically damped
regime in between. All regimes carry over to the damping of Bloch oscillations, and we
will discuss them below. Let us emphasize that the full solution of Eq. (6.58) is given by

v(t) = e−t/τ

[
A exp

(
t

√
1

τ2
− F 2

)
+B exp

(
−t
√

1

τ2
− F 2

)]
(6.59)

but we are going to discuss the limits of this solution instead, as they correspond exactly
to the two regimes that we have been studying before.

a.) Over-damped limit

Let us first study the case where Fτ � 1. In this case we can approximate the square root
in the full solution Eq. (6.59) as√

1/τ2 − F 2 ≈ τ−1

(
1− 1

2
(τF )2

)
(6.60)

Therefore, the velocity and hence also the kinetic energy mode decays according to

e(t) = e0 exp

(
−1

2
t τ F 2

)
(6.61)

in this limit. As we will show now, this is an approximation to a previous result that we
obtained in the over-damped regime, given by Eq. (6.13). First let us demonstrate that
the factor −eτ/2 is an approximation to the system’s conductivity σ:

σ
(6.12)
≈ −〈vk|M−1|vk〉

2J2d
e ≈ − 2J2d

〈vk|M |vk〉
e

(6.57)
= −e τ

2
(6.62)

where we approximated the matrix element of the inverse matrix of M by the inverse
matrix element of M . As discussed before, the current-current matrix element is small,
as the current is only weakly damped by umklapp scattering. Hence, this matrix element
becomes dominant in the inverse matrix, and therefore the approximation is well justified.
Using this approximation and combine it with Eq. (6.61), we find that

e(t) ∼ exp(−τ t
2
F 2) (6.63)

which is nothing but Eq. (6.13) from the first section of this chapter. Therefore, the
over-damped limit gives the analogous result to the diffusive limit.

b.) Weakly damped Bloch oscillations

In the limit of F τ � 1, the square roots in Eq. (6.59) become negative. Introducing

ω =
√
F 2 − 1/τ2 (6.64)

the dynamics of the kinetic energy is approximately given by

e(t) = e0 e
−t/τ cos(ωt) (6.65)
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Most prominently, the envelope of the oscillations decay exponentially at the rate τ−1.
This result is in correspondence with the perturbative result (6.34) obtained earlier, which
exactly contains the definition of the factor 1/τ as the decay rate. Therefore, also the limit
of weakly damped Bloch oscillations is describable with the method of deriving generalized
continuity equations as we have done in this section. However, here we were able to derive
an expression for the interaction-dependent frequency shift of these oscillations, too.

c.) Marginal case

In the marginal case of Fτ = 1, Bloch oscillations get critically damped. For the initial
condition that e(0) = e0 and ė(0) = 0, the dynamics of the kinetic energy mode is given
by

e(t) = (e0 + e0t/τ) e−t/τ (6.66)

which contains corrections to a purely exponential decay of the energy mode. Note that
this limit is highly non-perturbative in the ratios τB/τsc or τsc/τB and can not be derived
from the perturbative approaches that we have discussed before.

6.3.3 Comparison with Boltzmann simulations

We can now proceed and compare our analytic findings with a numerical simulation of
a Boltzmann equation. As a minimalistic model that describes the physics of inter-
particle scattering and relaxation to equilibrium, we decided to do the comparison for
a one-dimensional, discrete homogeneous Boltzmann equation, including the full collision
integral:

(∂t + F ∂k) fk(t) = −U
2

J

1

N

∑
k1,k2,k3

δ(k + k2 − k2 − k3 modπ, 0) (6.67)

× (fkfk1(1− fk2)(1− fk3)− fk2fk3(1− fk)(1− fk1))

× δ (εk + εk1 − εk2 − εk3 , 0)

Here, the operator ∂k f = (fi+1 − fi−1)/2∆k with ∆k = 2π/N stands for the discrete
derivative and δ signifies the Kronecker δ-symbol. Note that in contrast to the continuous
equation, the collision integral carries a prefactor of U2/J instead of U2 as the discrete
delta-constraint for the energy is dimension-less. As in previous studies, the presence of
umklapp processes is crucial to ensure equilibration to the fixed frame of reference give
by the lattice. The distribution function fk was initially prepared as a Fermi function at
T = J , a typical temperature for current experiments with ultracold fermionic atoms.

Note that the one-dimensional Boltzmann equation has got very peculiar relaxation and
scattering properties and does not properly describe the one-dimensional Hubbard model,
as we discuss in more detail in Appendix (E.2). However, we will be interested in using it
as a simplistic, well defined discrete model that allows us to easily compare our analytic
findings with numerical simulations. To this end, we need to calculate the current-current
matrix element 〈vk|M |vk〉 ∼ τ−1 of the corresponding linearized Boltzmann equation. This
matrix element is particularly easy to calculate in one dimension, and we calculate it for
the discrete linearized Boltzmann equation in Appendix (E.2). Following Eq. (E.12), it is
approximately given by

〈vk|M |vk〉 ≈ 4n(1− n)U2 J (N � 1) (6.68)
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Figure 6.1: Over-damped Bloch oscillations of the kinetic energy at filling 1/2. Blue curve:
numerical simulation of the Boltzmann Eq. (6.67) for the parameters U/J = 4 (yielding
τ = 0.25) and F = 0.4J such that Fτ = 0.1 guarantees the validity of the diffusive regime.
Red dashed curve: analytic result from Eq. (6.61).

such that when using the defining Eq. (6.57) for τ , the latter at filling n = 1/2 is given by

τ = 4J/U2 (6.69)

We can now study the three regimes of the harmonic oscillator equation and compare it
with simulations of the Boltzmann equation.

Figures 6.1, 6.2 and 6.3 show the cases of over -damped, weakly damped and marginally
damped Bloch oscillations, respectively. While the blue curves show the numerical simu-
lations of the Boltzmann Eq. (6.67), the dashed red curves show the analytic predictions
given by Eqs. (6.61), (6.65) and (6.66), respectively. Note that the analytic results only
depend on the initial kinetic energy e0, which was adjusted to the initial kinetic energy in
the numerical simulations. As the analytic formulas depend only on the force F and on the
calculated damping rate τ−1, no fitting parameters were involved. Surprisingly, the ana-
lytic formulas describe the complex dynamics of the Boltzmann equation extremely well,
despite of the fact that they are based on a high temperature expansion of the collision inte-
gral and neglect thermoelectric couplings. Note that the weakly damped and over-damped
regimes of Bloch oscillations have also been observed numerically for the Hubbard model
by Eckstein and Werner [51], using DMFT. Our quantitative mapping to the harmonic
oscillator equation gives a first analytic explanation for this numerical observation.

This concludes the study of the homogeneous system, where we essentially neglected
the scattering between the damped momentum modes. In the presence of inter-mode
scattering, the equations (6.44) are probably not analytically solvable. Having solved the
homogeneous system with this approach, one could ask about the possibility to fully solve
the spatially inhomogeneous system as well. However, we are not aware how to solve the
complicated coupled equations (6.44) in the presence of spatial gradients. Instead, we will
continue with our earlier approach that we introduced in subsection 6.2.2 to derive effective
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Figure 6.2: Weakly damped Bloch oscillations of the kinetic energy at filling 1/2. Blue
curve: numerical simulation of the Boltzmann Eq. (6.67) for the parameters U/J = 1
(yielding τ = 4) and F = 2.5J such that Fτ = 10 gives rise to the regime of weak
damping. Red dashed curve: analytic result from Eq. (6.65).
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Figure 6.3: Marginally damped Bloch oscillations of the kinetic energy at filling 1/2. Blue
curve: numerical simulation of the Boltzmann Eq. (6.67) for the parameters U/J = 1
(yielding τ = 4) and F = 0.25J such that Fτ = 1 gives rise to the marginal case. Red
dashed curve: analytic result from Eq. (6.66).
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equations for the inhomogeneous system in the limit Fτ � 1, where again we average the
oscillatory dynamics over the Bloch period.
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Bloch-localized

de-localized by scattering

Figure 6.4: Sketch of the situation described by the stroboscopic diffusion equation: at
very weak interactions, particles are dominantly Bloch-oscillating in the restricted region
indicated by the blue double-arrows, and scatter only rarely. Only by inter-particle scat-
tering, they can be kicked out of their periodic motion. On top of the fast periodic Bloch
oscillations, we can therefore expect a nonlinear diffusion process to occur, where the speed
of diffusion, reflected by the diffusion constant D ∼ n, is proportional to the local density.

6.4 The stroboscopic diffusion equation

6.4.1 Introduction

We will now study the spatially inhomogeneous situation. Just as in chapter 5, we will
be interested in the dynamics of an interacting, finite cloud of Fermions in a tilted optical
lattice, described by the Hubbard model with an additional linear potential. However,
in contrast to the previous study which was based on the collision-dominated diffusive
regime where Fτsc � 1, we will now be interested in the opposite limit of weakly damped
Bloch oscillations, where Fτsc � 1. Our study is nevertheless based on the validity of the
Boltzmann equation, which requires smooth external potentials. In this sense, one should
better have very small scattering rates in mind, instead of strong forces.

Let us now try to derive effective equations of motion for the cloud of atoms. In chapter
5, we derived coupled diffusion equations and found that the coupling of the energy and
particle diffusion was essential. We can still expect that this is also the case in the limit
of strong Bloch oscillations, as the system is still thermally isolated. As we are interested
in the opposite limit, where the system is dominantly Bloch oscillating, the conventional
diffusion equations which rely on being close to local equilibrium obviously are not valid in
this regime. Instead, we may hope to derive alternative equations of motion for the lowest
momentum modes.

Scattering events are rare, but they are crucial for the long time dynamics of the sys-
tem, as they break the periodicity of the cloud’s Bloch oscillating motion. This situation
is sketched in Fig. 6.4, which shows that the cloud can only move over long distances by
scattering: the isolated, Bloch oscillating particles at the edge of the cloud are localized on
a length scale given by the inverse force. When looking at those particles stroboscopically
in units of the Bloch oscillation period, they do not move at all. Instead, only the rare
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collisions between particles can break the periodicity in the dynamics and lead to a spread-
ing of the cloud. Having this picture in mind, we are interested in deriving a stroboscopic
diffusion equation, that describes the expansion of the cloud whereby we ignore its rapid
Bloch oscillating motion.

The regime of weakly damped Bloch oscillations is highly relevant in the context of
ultracold atoms in optical lattices exposed to a linear (gravitational) potential. As we
have pointed out in the conclusions of chapter 5, a finite cloud of atoms that expands in
an optical lattice in the presence of gravity will in the long time limit always enter the
regime of weakly damped Bloch oscillations. The reason is that while the cloud expands,
its density goes to zero and therefore the scattering rate decreases, while the strength of
the force remains always the same. While we found in chapter 5 for the collision-dominated
regime that the cloud’s radius R grows according to the law R ∼ t1/3 in time t, the system
will display a different scaling law in the regime dominated by Bloch oscillations, which
we will identify at the end of this chapter.

The system is characterized by three different macroscopic length scales: the radius
R of the cloud, the length scale J/F on which the external potential changes, and the
scattering length Jτsc. While J/F � Jτsc already characterizes the regime of strong
Bloch oscillations, we still have the option to study a small cloud in a weak potential, i.e.
R � J/F , or a large cloud in a steep potential, R � J/F . We will be interested in the
second case, such that we consider the following hierarchy of length scales:

1/R� 1/(τscJ)� F/J (6.70)

We will study the system using the perturbative scheme introduced in section 6.2.2. While
this method may have seemed rather formal and complicated compared with the method of
deriving generalized continuity equations, it reveals its full use in a spatially inhomogeneous
situation. In the presence of spatial gradients, we are not aware of how to extract any
information about the long time dynamics from Eq. (6.44). However, the perturbative
method is easily generalizable to a spatially inhomogeneous situation. It turns out that we
have done most of the work already in section 6.2.2.

How well can we expect the stroboscopic diffusion equation to reproduce the full dy-
namics of the Boltzmann equation? As we stated previously, there is no principle reason
to describe the system’s dynamics only in terms of the particle and energy density alone
in a situation far from local equilibrium. In fact, here the situation is even worse than
in the homogeneous system: previously, the dynamics of the energy and velocity mode
were separated from all other momentum modes when neglecting inter-mode scattering.
In the inhomogeneous case, all modes are in addition coupled to each other by spatial
gradients, as can be seen in Eq. (6.44). This makes the inhomogeneous system much
more complicated. Here, we review the derivation of a minimalistic variant of a diffusion
equation with a minimal number of momentum modes. We claim that our approach is
semi-quantitative: the final diffusion equation is only qualitatively correct, but we show
how to principally calculate the numerical parameters of the diffusion constant and how to
systematically improve the quality of the approximation by considering a larger number of
modes. The goal of the section will be to analyze the scaling of the growth of the cloud’s
radius as a function of time. This scaling relation does not depend on the numerical values
of the diffusion constant, but might also be modified when considering a larger number of
momentum modes.
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Figure 6.5: Numerical simulation of the nonlinear stroboscopic diffusion equations (6.102).
We simulated the case F = 1 J and measure time in units of τ0 F

2/J2. Initially, the system
was prepared at zero kinetic energy and with a Gaussian density profile n(x, 0) = exp(−x2).
Within one time unit, the density approximately assumes the shape of its scaling function,
as can be seen in Fig. 6.7. This characteristic shape drastically varies from the conventional
diffusive limit studied in chapter 5, where it was found to be approximately a Gaussian.

6.4.2 Decomposition of the distribution function

In order to derive effective diffusion equations in the case of strong Bloch oscillations, we
will follow and extend the approach of section 6.2.2. This time, we will be interested in
finding an approximate solution to the inhomogeneous linearized Boltzmann equation in
the presence of a constant force F,

(∂t + vk∇r + F∇k) fk(r, t) = −
∫

dk′

(2π)d
Mkk′ (fk′(r, t)− n(r, t)) (6.71)

Beyond the standard diffusive limit that we have derived from this equation in chapter 2,
this is a non-trivial problem. Again, we consider a situation where the force F points in
the diagonal direction of the lattice:

F = F

1
...
1

 (6.72)

In analogy to the homogeneous case, we start from the decomposition

fk = fBk + δfk (6.73)

where fBk solves the non-interacting problem,

(∂t + vk∇r + F∇k) fBk (r, t) = 0 (6.74)
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In the presence of spatial gradients, the construction of fBk is a bit more subtle than in
the homogeneous situation. To simplify the problem, let us consider a situation where the
initial distribution function is translationally invariant in the direction perpendicular to
the force. By the symmetry of the initial state and by the fact that the projection of the
force F on every lattice coordinate is the same, we can expect the distribution function to
remain translationally invariant in this direction. Let therefore r be the component of r
along the diagonal. Let us now consider the function

ξk,t = F−1 (εk−Ft − εk) (6.75)

which has the dimensionality of a length. One can easily check that

(∂t + vk∂r + F∇k) (r + ξk,t) = 0 (6.76)

In fact, any function that depends on the composite argument (r + ξk,t) solves the non-
interacting Boltzmann equation. The function ξk,t is related to the displacement of a
Bloch-oscillating particle at time t from its initial position r. If at time t = 0, the system
is characterized by the distribution function f(r,k, 0), one can check easily that

fB(r,k, t) = f (r + ξk,t, k− Ft, 0) (6.77)

is a solution to Eq. (6.74) with the given initial condition. Let us now calculate the
scattering integral of this zeroth-order solution in order to obtain the first order correction
to the non-interacting result. To this end, we define

b(r,k, t) = − 1

(2π)d

∫
dk′Mk,k′ fB(r,k′, t) (6.78)

= − 1

(2π)d

∫
dk′Mk,k′ f

(
r + ξk′,t, k

′ − Ft, 0
)

k′→k′+Ft
= − 1

(2π)d

∫
dk′Mk,k′+Ft f

(
r + ξk′+Ft,t, k

′, 0
)

In order to find the deviation from the non-interacting solution fB, we have to invert the
Liouvillian operator, which amounts to solving the following equation for δf(r,k, t):

(∂t + vk∂r + F∇k) δf(r,k, t) = b(r,k, t) (6.79)

In analogy to Eq. (6.25), it can be checked straightforwardly that the solution is given by

δf(r,k, t) =

∫ t

0
dt′ b(r + ξk−F(t−t′),t′ , k− F(t− t′), t′)

(6.78)
= −

∫ t

0
dt′
∫

dk′

(2π)d
Mk+F(t−t′),k′+Ft′

× f(r + ξk′+Ft′,t′ + ξk−F(t−t′),t′ , k
′, 0)

This is the analog equation of Eq. (6.26) in the inhomogeneous case, but for our purposes
it is still too complicated. We would like to take advantage of the fact that the cloud radius
R is much larger than the length scale associated to the Bloch oscillations ξk,t ∼ JF−1. We
can therefore expand the Bloch oscillating distribution function in its spatial argument:

f(r + ξk′+Ft′,t′ + ξk−F(t−t′),t′ , k
′, 0) ≈ f(r, k′, 0)

+ ∂r f(r, k′, 0)
(
ξk′+Ft′,t′ + ξk−F(t−t′),t′

)
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Again we define

δfk(r) =
1

τB

∫ τB

0
δf(r,k, t) (6.80)

In analogy to Eq. (6.28), we then find

δfk(r) = −
∫

dk′

(2π)d
Mkk′

(
f(r,k′, 0)− n(r, 0)

)
−
∫

dk′

(2π)d
Mkk′ ∂r f(r,k′, 0)

(6.81)

In a similar way as in Eq. (6.29), we have defined

Mkk′ =
1

τB

∫ τB

0
dt

∫ t

0
dt′Mk−F(t−t′),k′+Ft′ (6.82)

Mkk′ =
1

τB

∫ τB

0
dt

∫ t

0
dt′Mk−F(t−t′),k′+Ft′

(
ξk′+Ft′,t′ + ξk−F(t−t′),t′

)
In order to derive effective, coupled diffusion equations for the lowest modes, we again
have to parametrize the initial distribution function fk(r) by those modes. As we have
discussed before, the system’s dynamics far from equilibrium may be highly complex and
characterized by the interplay of all momentum modes, but we will restrict our attention
to the dynamics of the density and energy density. At time t = 0, we approximate

f(r,k, 0) ≈ n(r) +
e(r)

〈εk|εk〉
εk (6.83)

where 〈εk|εk〉 = 2J2d. This initial condition approximately emerges when preparing the
system in local equilibrium at high temperature, before the constant force is switched
on. However, at longer times, the system might be characterized by a spatially varying
phase shift in the kinetic energy mode, i.e. εk → εk−φ(r). Including this phase shift as
a third mode and studying its impact on the dynamics will be left for future studies.
As discussed before, we will continue studying the system’s dynamics qualitatively, by
deriving a minimal variant of the stroboscopic diffusion equation that is characterized by
the coupled dynamics of the density and the kinetic energy alone.

In analogy to our previous study of the homogeneous system, we will be interested in
the net flow of particles and energy, integrated over one Bloch period and divided by τB.
Therefore we use Eq. (6.81) and calculate the particle current jn(n, e) =

∫
vkδfk(r) and

energy current je(n, e) =
∫
εkvkδfk(r) from it, where we use the above parametrization

(6.83) for f(r,k, 0). Those currents are given by(
jn
je

)
= −

(
〈vk|M |1〉 〈vk|M |εk〉/〈εk|εk〉
〈εkvk|M |1〉 〈εk|M |εk〉/〈εk|εk〉

)
︸ ︷︷ ︸

=D

·
(
∂r n
∂r e

)
−
(
〈vk|M |εk〉
〈εkvk|M |εk〉

)
e

〈εk|εk〉

(6.84)

We then use those currents in combination with the continuity equations

ṅ = −∂r jn, ė = −∂r je + F jn (6.85)

We can identify the matrix D in Eq. (6.84) as the diffusion constant of the problem. So
far, we have only derived an abstract result, which is the generalization of Eq. (6.31) that
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we derived in the homogeneous case. Again, we need to relate the matrix elements of M
and M to matrix elements of M in order to make the equation transparent. As previously,
we will be able to do so due to several trigonometric identities.

Let therefore be ak ∈ {vk, εkvk} and bk ∈ {1, εk}. Calculating the entries of the matrix
of diffusion constants D then amounts to calculating matrix elements of the structure
〈ak|M |bk〉. According to the definition of M in Eq. (6.82), we find that

〈ak|Mkk′ |bk′〉 =
1

τB

∫ τB

0
dt

∫ t

0
dt′ 〈ak+F(t−t′)|Mkk′

(
ξk′,t′ + ξk,t′

)
|bk′−Ft′〉 (6.86)

where we have made the substitutions in the momentum integrals k→ k + F(t − t′) and
k′ → k′ − Ft′ involved in the scalar products. Furthermore, we can take advantage from
the following trigonometric identities:

εk−Ft = εk cos(Ft)− vk sin(Ft) (6.87)
vk−Ft = vk cos(Ft) + εk sin(Ft)

ξk,t = F−1 (εk cos(Ft)− vk sin(Ft)− εk)

These identities help us to separate the momentum integrals from the time integrals, and
perform the time integrals exactly. In Appendix (E.3), we will present the calculation of
the matrix elements in more detail. As a result, we find the following relations:

〈vk|M |1〉 =
1

2F 2
〈vk|M |vk〉 (6.88)

〈vk|M |εk〉 = − 3

2F 2
〈εkvk|M |vk〉

〈εkvk|M |1〉 = 0

〈εkvk|M |εk〉 =
1

4F 2
(〈εkvk|M |εkvk〉 + R)

where the remaining terms

R =
1

4
{〈v2

k|M |ε2k〉 − 〈ε2kvk|M |vk〉 − 3〈ε2k|M |v2
k〉 (6.89)

−〈ε2k|M |ε2k〉+ 3〈v3
k|M |vk〉+ 3〈v2

k|M |v2
k〉}

contain matrix elements involving higher momentum modes. To be consistent with de-
scribing the system qualitatively in terms of the lowest modes, we negelect all matrix
elements involving modes that are orthogonal to the particle- and energy current modes.
When submitting this thesis, we therefore wrongly concluded that R could be neglected.
However, later we became aware of the fact that R contains contributions that can not be
neglected, e.g. due to the finite overlap between v3

k and vk. Carrying out the calculation
in the presence of those contributions may modify the following scaling analysis and will
be left for future studies. In the following, we will present the analysis for R = 0.

The matrix of diffusion constants is approximately given by

D =
1

4F 2

(
2 〈vk|M |vk〉 −6 (〈εkvk|M |vk〉+R) /(2J2d)

0 〈εkvk|M |εkvk〉/(2J2d)

)
(6.90)

The matrix entries involving M can be calculated in the same way (see Appendix (E.3)),
and we find that

〈vk|M |εk〉 =
1

2F
〈vk|M |vk〉 (6.91)

〈εkvk|M |εk〉 = 0 (6.92)
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To conclude, ignoring R as discussed before, the diffusive currents read(
jn
je

)
= − 1

4F 2

(
2 〈vk|M |vk〉 −6 〈εkvk|M |vk〉/(2J2d)

0 〈εkvk|M |εkvk〉/(2J2d)

)
·
(
∂r n
∂r e

)
−
(

1
2F
〈vk|M |vk〉

2J2d
e

0

)
(6.93)

6.4.3 Relaxation-time approximation

The coupled diffusion equations (6.93) describe the stroboscopic diffusion for a general
scattering matrix Mkk′ and depend on the matrix elements of M in terms of the current
and heat current modes. Let us now study the equations in the easiest approximation
one can think of, which is the relaxation time approximation. Hence, let us express the
relaxation time approximation in terms of the scattering matrixM . At high temperatures,
the non-equilibrium distribution function fk and the reference Fermi function f0

k are given
by

fk = n+
e

2J2d
εk + rk (6.94)

f0
k

(2.43)
= n+

e

2J2d
εk +O(e2) (6.95)

where 〈εk|εk〉 = 2J2d and where we introduced the function rk that contains the informa-
tion about all higher momentum modes of fk. Neglecting terms of order e2, the collision
term of the relaxation time approximation can be expressed as

−1

τ

(
fk − f0

k

)
= −1

τ
rk

!
= −

∫
dk

(2π)d
Mkk′ (fk′ − n) (6.96)

which leads to the obvious identification of

M = τ−1

(
1− |εk〉〈εk|

〈εk|εk〉

)
(6.97)

The matrix M preserves the kinetic energy mode by construction and damps all other
modes at the same scattering rate τ−1. The different matrix elements in (6.93) can be
calculated explicitly using this definition of M , which yield

〈vk|M |vk〉 = τ−1〈vk|vk〉 = τ−1 2J2d (6.98)

〈εkvk|M |εkvk〉 = τ−1〈εkvk|εkvk〉 = τ−1 6J4d

〈εkvk|M |vk〉 = τ−1〈εkvk|vk〉 = 0 +O(e2)

(6.99)

Consequently, the relaxation time approximation excludes scattering from the particle
current mode to the heat current mode. One could, however, easily consider a situation
where 〈εkvk|M |vk〉 6= 0 as well, but here we would like to draw the connection to our
previous study in chapter 5, which was also based on the relaxation time approximation.
Furthermore, let us consider the case of low densities n and high temperatures, where the
scattering rate is approximately given by

τ−1 = τ−1
0 n (6.100)
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where τ−1
0 ≈ 0.609U2/J as we have shown in Eq. 2.25. In this case, the coupled diffusion

equations (6.93) simplify towards

ṅ = −∂rjn, ė = −∂rje + F jn

(
jn
je

)
= −τ

−1
0 n

4F 2

(
4 J2d 0

0 3 J2

)
·
(
∂r n
∂r e

)
− τ−1

0 n

4F 2

(
2F e

0

)
(6.101)

As discussed in the previous subsection, for R 6= 0 there will be a constant thermoelectric
coupling, leading to a particle current induced by energy gradients. Let us now predict
the growth rate of the density profile as predicted by the above equations. In chapter 5,
we studied a similar problem, where we analyzed the scaling properties of the energy and
particle diffusion equation in the conventional sense, i.e. close to local thermodynamic
equilibrium. In the regime of stroboscopic diffusion, we proceed with the same philosophy.
First of all, let us set τ−1

0 = 1, i.e. we measure time in units of the scattering period. Also,
the dimensionality d just enters as a numerical factor in these equations, so let us also set
d = 1, although we are actually interested in d > 1 as the one-dimensional Boltzmann
equation and therefore also the diffusion equation does not correctly describe the physics
of the Hubbard model in d = 1 due to the integrability of the latter. To keep the notation
as simple as possible, we also set J = 1. Furthermore, we rename the projected force
F = −g J to compare the result with chapter 5, so that our equations read

ṅ = −∂r jn, ė = −∂r je − g jn (6.102)

jn = − 1

g2
n∂rn+

1

2g
n e, je = − 3

4g2
n∂re

6.4.4 Scaling solution

We start our analysis with a proper scaling ansatz for the particle density n. In analogy
to Eq. (5.7), we write

n(r, t) =
1

tα
F [r/tα] (6.103)

which involves a scaling function F [z] and an unknown exponent α. In the spirit of chapter
5 and motivated by numerical simulations to be discussed below, we can expect that to
leading order, energy conservation prevents the cloud from expanding. Setting jn = 0 in
the equation for the particle current yields

e(r, t) ≈ e0(r, t) =
2

g
∂r n(r, t) (6.104)

However, only corrections to this result lead to an expansion of the cloud. Therefore, we
need the second scaling ansatz

e(r, t) =
2

g
∂r n(r, t) +

1

tβ
G[r/tα] (6.105)

In order to determine the two unknown scaling exponents α and β, we use the two conti-
nuity equations. First, let us consider the particle continuity equation. Using its left hand
side, the particle current is given by

j̃n(r, t) = −
∫ r

−∞
∂t n(r′, t) dr′ =

r α

t1+α
F [r/tα] (6.106)
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while the right hand side yields

jn(r, t) =
1

2g
n (e− e0) (6.107)

=
1

2g

1

t(α+β)
F [r/tα]G[r/tα]

By setting jn = j̃n and by substituting r → z = r/tα, we find the relation

β = 1− α (6.108)

Next, we consult the energy continuity equation. In contrast to the results of chapter 5,
the energy continuity equation yields a manageable number terms that we are able to list
completely:

0 = ė+ ∂rje + g j̃n (6.109)

= −3F [z]F (3)[z]t−5α

2g3
− 2αzt−2α−1F ′′[z]

g
− 4αt−2α−1F ′[z]

g

− 3

4g2
t−2α−1F ′[z]G′[z]− 3t−5αF ′[z]F ′′[z]

2g3
+
αgzF [z]

t

− 3

4g2
F [z]t−2α−1G′′[z]− αztα−2G′[z]− (1− α)G[z]tα−2 (6.110)

In order to have energy conservation for long times, the exponent α has to be adjusted in
such a way to have at least one term that cancels the contribution αgzF [z]/t which stems
from the time derivative. Apart from α = 0 and α = 1 which would spoil our scaling
ansatzes, the only choice we have is to set

α = 1/5 (6.111)

As a consequence, also the cloud’s radius R(t) =
(∫
r2 n(r, t)/

∫
n(r, t)

)1/2 grows according
to the scaling law

R(t) ∼ t1/5 (6.112)

which can be checked numerically by simulating the diffusion equations (6.102). The
comparison will be carried out in subsection 6.4.6.

6.4.5 Approximate solution of the scaling function

Before we carry out the comparison between numerics and analytics, note that Eq. (6.109)
also provides us with an ordinary differential equation for the scaling function F [z], ob-
tained by setting α = 1/5:

3
(
F [z]F (3)[z] + F ′[z]F ′′[z]

)
− 2

5
g4 z F [z] = 0 (6.113)

First, note that the parameter g4 can be absorbed by a scaling transformation, and can be
in fact replaced by an arbitrary constant C ∈ R+. To this end, we implicitly define a new
scaling function F̃ and a new variable z̃ according to

F [z] =: C−1/5g4/5 F̃ [C−1/5g4/5 z], z̃ := z C−1/5g4/5 (6.114)
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For later convenience, let us however rename F̃ → F and z̃ → z. Under this transformation,
Eq. (6.113) straightforwardly becomes

3
(
F [z]F (3)[z] + F ′[z]F ′′[z]

)
− 2C

5
zF [z] = 0 (6.115)

The scaling symmetries of the particle density as a function of time t and the parameter g
is checked numerically in Fig. 6.7. While we are not aware of an exact analytical solution
of Eq. (6.115) for C 6= 0 which most likely does not exist, we will now demonstrate the
calculation of an approximate analytical solution of the scaling function F . Let us first
postulate the solution and later verify our claim. The approximate solution is given by

F0[z] :=
A

b

√
3

2
Exp[−2 (InvErf(z/b))2] (6.116)

where InvErf denotes the inverse error function. It can be checked that A gives the
function’s total integral, while its compact support is given by [−b, b]. This function is
plotted in Fig. 6.7 for A = b = 1. Together with an allowed constant shift of the parameter
z which would spoil the scaling function’s symmetry around the origin, the parameters A
and b uniquely fix the third order ordinary differential equation’s solution.

Let us emphasize again that Eq. (6.116) gives only an approximate solution to Eq. (6.115).
To see this, one can check that

3
(
F0[z]F

(3)
0 [z] + F ′0[z]F ′′0 [z]

)
2
5 zF0[z]

≈ 15

2

√
3Aπ2

[
1 +

π

12

(z
b

)2
+O

((z
b

)4
)]

(6.117)

is approximately constant if z . b, and hence F0 solves Eq. (6.115) for not too large z
with C = 15

2

√
3Aπ2, which is also tested numerically in the inset of Fig. 6.7 and discussed

below. For z ∼ b, the differential Eq. (6.115) is not satisfied any more, however, as F0

decays to zero for z → b, the total error turns out to be small. In the following subsection
we will compare the numerically simulated density profiles with the approximate scaling
form (6.116), and the quality of our approximation will be tested.

6.4.6 Comparison of the analytic and numerical results

Let us now compare our asymptotic analytic scaling prediction with numerics, where we
simulate the dimensionless stroboscopic diffusion equations (6.102). Figure 6.5 shows the
time evolution of the particle and energy density, where we started from a Gaussian distri-
bution n(r, 0) = exp(−r2) centered around the origin and a vanishing kinetic energy. The
physical process which governs the expansion is very similar to the one described in chap-
ter 5: the cloud expands symmetrically while the kinetic energy becomes anti-symmetric
around the origin. As the most prominent difference to the collision-dominated case, the
density dependence of the diffusion constant D ∼ n now is inverse to the previous case
where D ∼ 1/n. Therefore, the diffusion is fast in the bulk, and slow in the tail regions
of the cloud. This explains the emergence of very different characteristic density profiles,
which can be seen in Figs. 6.5 and 6.7.

The scaling law R ∼ t1/5 is tested numerically in Fig. 6.6, which shows the growth
of the radius, raised to different integer powers, as a function of time. Only the integer
1/α = 5 makes the resulting curve a straight line.

Figure 6.7 shows the rescaled particle densities of a numerical simulation of the dif-
fusion Eq. (6.102), simulated for different values of g and taken at different times t with
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Figure 6.6: Radius R(t) =
(∫
r2 n(r, t)/

∫
n(r, t)

)1/2 of the numerically simulated density
profiles, raised to the power 1/α for α = 1/4, 1/5, and 1/6 and normalized to its value
at t = 300 τ0. In agreement with our analytic results, α = 1/5 is the physically realized
exponent. n(r, t) is obtained from a numerical simulation of the coupled stroboscopic
diffusion equations (6.102) for g = 1.

a normalized Gaussian curve as initial condition. The rescaling was done according to
Eqs. (6.103) and (6.114) involving α = 1/5, such that the curves can be expected to show
the scaling function F [z]. Under the scaling transformations, all numerically simulated
densities collapse onto a single curve. Here, we introduced an additional non-universal
scaling parameter c ≈ 2.48 (fixed for all curves) which is chosen such that the “edges” of
the simulated, rescaled density profiles coincide with −1 and 1. The plot reveals that our
scaling predictions are indeed fulfilled. We can now compare the rescaled density profiles
with our approximate analytical version of the scaling function F0[z] of Eq. (6.116) with
area A = 1 and support [−1, 1], i.e. b = 1. To a good approximation, F0 agrees with the
rescaled particle densities of the numerically simulated stroboscopic diffusion equations. In
the inset of Fig. 6.7, we compare F0[z] with a numerical solution of the ordinary differential
Eq. (6.115) that determines the scaling function. Here, we adjusted the initial conditions
at z = 0 to the analytic result F0 and chose C = 15

2

√
3π2 in Eq. (6.115) as required by

Eq. (6.117). Also here, the numerical result agrees with the analytical estimate to a high
precision without any fitting.

To conclude, we have found that F [z] ≈
√

3
2 Exp[−2 (InvErf(z))2] is a good approxima-

tion to the scaling function. For comparison, very different scaling functions may emerge
for other non-linear diffusion equations. As an example, in chapter 5 we have identified
F [z] ≈ 1√

2π
exp[−z2/2], involving a density dependence of the diffusion constant according

to D ∼ 1/n (as opposed to D ∼ n as studied in this chapter), and the coupling of particle
and energy diffusion. For D ∼ n2 without the coupling to the energy sector, the scaling
function assumes a semi-circular shape [117].

As a final remark, let us again comment on the aforementioned study of an expanding
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Figure 6.7: Scaling function F [z] = c g−4/5t1/5 n(z c g−4/5t1/5, t) of the density profile for
different potential strengths g and times t (colored dashed curves). The non-universal con-
stant c ≈ 2.48 is chosen such that the “edges” of the rescaled density profiles simultaneously
coincide with ±1. These curves are compared to the approximate analytic scaling function
F0[z] =

√
3

2 Exp[−2 (InvErf(z))2] (black line) of Eq. (6.116) with A = b = 1. The scal-
ing function F differs drastically from the initial normalized Gaussian density distribution
(gray line). Inset: Comparison of F0[z] (black line) with a numerical solution of Eq. (6.115)
that determines the scaling function F [z] (red line) with initial values F (i)[0] = F

(i)
0 [0] for

i = 0, 1, 2 and C = 15
√

3π2/2.
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bosonic cloud of atoms in a tilted optical lattice [117]. The authors approximated the
dynamics of the Gross Pitaevskii equation by a single nonlinear diffusion equation for the
particle density with D ∼ n2, resulting in R ∼ t1/4. The results obtained in the last
two chapters of this thesis have shown, however, that the scaling exponents get drastically
modified when the sectors of particle and energy diffusion are coupled to each other.

6.5 Summary and outlook

We studied the dynamics of interacting fermionic particles in the Hubbard model, subject
to a static force, in the strongly Bloch oscillating regime far beyond local equilibrium.
Based on the Boltzmann equation, we derived effective equations of motion for the sys-
tem’s lowest momentum modes, such as the particle density and the kinetic energy density.
For a homogeneous system, we presented two alternative ways to predict how Bloch oscil-
lations get damped in the regime of weak scattering. Based on the linearized Boltzmann
equation, we derived analytic formulas for the damping of Bloch oscillations by mapping
the problem to a damped harmonic oscillator equation, where the damping rate is given by
the current-current matrix element of the scattering matrix. Excellent agreement between
numerical simulations of the Boltzmann equation and the analytic results were found for all
three regimes of the system, characterized by over-damped, weakly damped and marginally
damped Bloch oscillations. Two of these regimes were also observed numerically by Eck-
stein and Werner [51] using DMFT and could thus be analytically explained by us. For
a finite, weakly damped Bloch oscillating cloud of Fermions, we derived effective, stro-
boscopic diffusion equations that describe the system’s dynamics on top of its periodic
oscillations. These diffusion equations were found to look structurally similar to the cou-
pled diffusion equations studied in chapter 5, where we studied the same problem in the
collision-dominated regime. However, as an important difference, the dependence of the
two diffusion constants on the local density n and on the scattering rate was found to
be inverse to each other: while at high temperatures, we found D ∼ 1/n in the case of
ordinary diffusion, we derived D ∼ n for stroboscopic diffusion. As a result, the growth
rate of the cloud’s radius R as a function of time t was found to obey R ∼ t1/5 in the case
of stroboscopic diffusion, in contrast to R ∼ t1/3 for conventional (collision-dominated)
diffusion.

As a follow-up study, it would be interesting to analyze the damping of Bloch oscil-
lations and sub-diffusive spreading of a finite cloud when the force points in a different
direction of the lattice, such as in the direction of a single lattice axis. Furthermore, one
could also study the expansion dynamics of a finite cloud in the stroboscopic regime which
is not translationally invariant in the direction perpendicular to the force. Here, one can
expect that the cloud expands faster on the equipotential lines in the horizontal directions
than in the vertical direction, as the coupling of the particle diffusion to the energy diffusion
is essential in the vertical direction, while it is probably less important in the horizontal
direction.

It would be also conceptually interesting to find out if the stroboscopic diffusion equa-
tion can be derived directly from the generalized continuity equations presented in section
6.3, or if the generalized continuity equations can be used also for other problems related to
non-linear transport. Furthermore, it would be desirable to simulate the sub-diffusive ex-
pansion dynamics using the inhomogeneous Boltzmann equation also in the case of weakly
damped Bloch oscillations. However, as Boltzmann simulations can only be carried out
up to a limited time due to the unavoidable increase of numerical noise, the scaling or
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R ∼ t1/5 would probably be too slow to become visible in the Boltzmann data.
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Summary

Ultracold atoms may act as quantum simulators of strongly correlated materials, but they
also show a plethora of novel dynamic effects that have no analogues in condensed matter
physics. Energy conservation has a crucial impact on the many-body dynamics in op-
tical lattices. In this thesis, we reviewed different out-of-equilibrium processes involving
fermionic ultracold atoms.

We first described in chapter 2 how we addressed a transport scattering rate to the
Hubbard model, and we derived hydrodynamic equations and their high temperature limits
from our version of the Boltzmann equation in relaxation time approximation.

In chapter 3, we analyzed the expansion dynamics of an initially confined cloud of
fermionic atoms after the release from a trap. Modeling the system numerically with
a Boltzmann equation, we could reproduce semi-quantitatively the experimentally ob-
served dramatic drop in the expansion velocities in the presence of interactions. Counter-
intuitively, identical expansion rates for attractive and repulsive interactions were found in
theory and in experiment, which we could explain in terms of a novel dynamic symmetry of
the Hubbard model. We also found that the expansion dynamics is governed by a crossover
from a ballistic expansion in the tail regions of the cloud to a diffusive expansion in the
center. However, the system’s dynamics can not be described by the diffusive part of the
cloud alone, but relies on the interplay of the diffusive bulk and the ballistic tails: while the
ballistic tails get fed by the diffusive core, they hold the core region together and thereby
regularize the otherwise singular diffusive dynamics. The singular diffusion equation that
characterizes the bulk predicts a universal loss rate of particles, and we showed that it
can be used as an estimate for the rate at which the diffusive core emits particles into the
ballistic tails.

In chapter 4, we analyzed a dynamic process and the corresponding time scales of
realizing negative absolute temperatures in experiments with cold atoms in optical lattices.
The scheme is based on changing the sign of the external trapping potential, which inverts
the boundedness of the system’s energy spectrum. As a consequence, the system relaxes
to a new thermal state at T < 0. We then proposed to almost adiabatically reduce
the strength of the inverted potential, so that the trapped cloud can expand slowly and
thereby “cool”, i.e. reach smaller values of |T | with T < 0. Using a numerical simulation
of the Boltzmann equation, we determined the amount of heat that is produced when the
potential strength is changed non-adiabatically within a finite time span ∆t. We found
that ∆t has to be of the order of several hundreds of milli-seconds in order to be close
to the adiabatic limit. For the case of an instantaneous switch of the trapping potential
to the final shape, we identified the relevant time-scale of global equilibration, which is
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approximately given by τD = (4J)−3U2N , where N is the number of particles and U and
J are the Hubbard parameters. This time scale is associated to the redistribution of heat
and particles among the system by particle and energy diffusion.

The dynamics of a finite interacting cloud of fermionic atoms in a tilted optical lattice
was studied in chapter 5. Here, we were interested in a regime where the Bloch oscillation
rate 1/τB ∼ F is much smaller than the typical scattering rate 1/τsc, i.e. 1/τB � 1/τsc,
so that Bloch oscillations are over-damped. Instead of “dropping downwards”, the cloud
was found to diffuse symmetrically upwards and downwards the gravitational potential.
The associated diffusive process is driven by an energy current that runs through the cloud
and supplies the particles that climb upwards with the necessary energy, gained by the
particles that go downwards. We showed analytically that the cloud’s radius R grows
in time according to R ∼ t1/3 , which is in excellent agreement with a direct numerical
simulation of the Boltzmann equation.

The opposite limit of weakly damped Bloch oscillations, i.e. 1/τB � 1/τsc, was subject
of chapter 6. We first demonstrated two alternative approaches to calculate the decay
rate of the Bloch-oscillating current for the homogeneous system. Based on the linearized
Boltzmann equation, we derived coupled ordinary differential equations for the different
momentum modes of the system. Neglecting thermoelectric effects, these formulas simpli-
fied to the classical damped harmonic oscillator equation for the particle current mode,
which has an analytic solution. Using this mapping, we could analytically explain the
transition from weakly damped to over-damped Bloch oscillations, which was observed
numerically within dynamical mean field theory by Eckstein and Werner [51]. We also
found very good agreement with a numerical simulation of the one-dimensional Boltz-
mann equation. We then analyzed the spatially inhomogeneous problem of a strongly
Bloch-oscillating, weakly interacting finite cloud of Fermions, which we studied in chapter
5 for the opposite limit. Here, we derived an effective “stroboscopic” diffusion equation
that describes the cloud’s dynamics on top of its rapid Bloch-oscillating movement. Most
prominently, the diffusion constant D ∼ n was found to be proportional to the local density
n and scattering rates, whereas we previously derived D ∼ 1/n for ordinary diffusion at
high temperatures. Performing a similar scaling analysis as in chapter 5, we find R ∼ t1/5
for the growth of the cloud’s radius in time, consistent with a numerical simulation of the
stroboscopic diffusion equation.
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Appendix A

Fundamentals and Method

A.1 Variational principle

Let us give a proof of the following theorem, following [30]:
Theorem The solution φ of the integral equation (1.59) minimizes the functional

φ 7−→ 〈φ, Pφ〉
〈φ,X〉2

(A.1)

Proof
The scattering operator P has some characteristic properties. Obviously, it is linear. Im-
portantly, the operator is also symmetric, as can clearly be seen in (1.61), i.e. 〈φ, Pψ〉 =
〈ψ, Pφ〉. As the individual entries in Pk2k3

k0 k1
are all positive as physical transition rates, it

is also positive definite by the same argument, i.e. 〈φ, Pφ〉 ≥ 0.
The remaining proof consists of two parts. First, we will show that among all functions

φ that satisfy (1.62), the solution of the integral equation (1.59) maximizes the value of
〈φ, Pφ〉.
To show this, assume ψ is another function that satisfies (1.62), but not (1.59). Then, by
linearity, symmetry and positive-definiteness of P ,

0 ≤ 〈(φ− ψ), P (φ− ψ)〉
= 〈φ, Pφ〉+ 〈ψ, Pψ〉 − 〈φ, Pψ〉 − 〈ψ, Pφ〉
= 〈φ, Pφ〉+ 〈ψ, Pψ〉 − 2〈ψ, Pφ〉
= 〈φ, Pφ〉+ 〈ψ, Pψ〉 − 2〈ψ,X〉
= 〈φ, Pφ〉 − 〈ψ, Pψ〉 (A.2)

and hence

〈φ, Pφ〉 ≥ 〈ψ, Pψ〉 (A.3)

Second, assume that φ solves the integral equation (1.59), and hence also (1.62). Therefore,

〈φ, Pφ〉
〈φ,X〉2

=
1

〈φ, Pφ〉
(A.4)

which gets minimized by φ, as we have shown before. �
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A.2. STABILITY ANALYSIS OF THE BOLTZMANN EQUATION

A.2 Stability analysis of the Boltzmann equation

The Boltzmann equation in relaxation-time approximation is a nonlinear first-order partial
differential equation. We explicitly evolved the equation in time, using a fourth-order
Runge-Kutta scheme. Here, we want to explain why the numerical implementation of the
Boltzmann equation is numerically not stable, following [57]. But instead of considering
the Boltzmann equation in use, let us consider a simpler first-order partial differential
equation, for which we present a von Neumann stability analysis. Let the simpler equation
be given by

∂tf(x, t) = −v ∂xf(x, t) (A.5)

In analogy to the Runge-Kutta scheme used for the Boltzmann equation, we also want
to consider a simple scheme that evolves the equation explicitly in time. Let us therefore
consider the discrete difference equation

fn+1
j − fnj

∆t
= −v

fnj+1 − fnj−1

2∆x
(A.6)

where n is a discrete time-index while j is a discrete position index. A solution of the
difference equation can be found with the ansatz

fnj = ξ(k)n ei k∆x j (A.7)

where one finds that

ξ(k) = 1− iv∆t

∆x
sin(k∆x) (A.8)

Note that ξ(k) is an eigenmode of the system. The stability analysis reveals that if |ξ(k)| ≥
1 for some k, the eigenmode is growing. Given this is the case, the approach is unstable,
and Eq. (A.8) reveals that this is indeed always the case. Hence, the approach of explicitly
evolving the equation in time leads to exponentially growing noise. Interestingly, the rate
at which the noise grows in time depends on the ratio ∆t/∆x: the growth of the noise
can be temporarily suppressed by either increasing the time discretization, or by reducing
the (phase-)space discretization. In practice, we need a very fine discretization in the
time-direction to simulate long times, which makes our computations very expensive.
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Appendix B

Expansion in a homogeneous lattice

B.1 Effects of the laser beam curvature

Spatially varying laser intensities modify the local hopping amplitudes. Such an effect
can be implemented easily in the Boltzmann equation. It is important to realize that
approaching the “edge” of the the laser in x direction modifies the hopping amplitude in y
direction and vice versa. This effect can be easily implemented into the kinetic part of the
Hamiltonian, which we generalize to

ε(kx, ky) −→ ε(x, y, kx, ky) = A(y)ε(kx) +A(x)ε(ky) (B.1)

with a certain space-dependent amplitude A(x) that recovers the old result in the center
of the lattice, i.e. A(0) = 1. The goal of this section is to calculate A(x) and to explain
how it is obtained from the experimental parameters.

Before we do so, let us understand how the space-dependent amplitude modifies the
Boltzmann equation. In order to obtain the left-hand side of the Boltzmann equation, we
have to evaluate the Poisson bracket of the Hamiltonian with the distribution function,
which generates new kinetic terms:

{ε(r,k), f(r,k)}r,k = A(y)v(kx)∂xfk +A(x)v(ky)∂yfk

+A′(y)ε(kx)∂kyfk +A′(x)ε(ky)∂kxfk (B.2)

Note that the spatially varying laser intensities thus not only modify the local velocities,
but also act as additional forces. Let us proceed in demonstrating how to determine A(x).
The problem reduces to calculating

(a) J(V0), i.e. how the hopping parameter J depends on the lattice depth V0 and

(b) V0(x), i.e. how the local lattice depth V0 depends on the spatial coordinate x.

For step (a), let us temporarily assume that V0 is constant. We are interested in a two-
dimensional geometry, but as the Schrödinger equation separates in the two coordinates for
the given potential, the problem can be reduced to one dimension. In order to determine the
functional relation between the lattice depth and the kinetic energy, we have to diagonalize
the one-dimensional Hamiltonian

H =
1

2m
∆ +

1

2
V0 cos (2π x) (B.3)
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B.1. EFFECTS OF THE LASER BEAM CURVATURE
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Figure B.1: Rescaled hopping parameter J(V0)/J(V0 = 8 Er) as a function of the laser
intensity in units of the recoil energy, where V0 = 8 Er is the lattice depth in the center of
the laser which was realized in the experiment.

where we measure distance in units of the lattice constant a = λ/2, given by half the
wave length λ = 738 of the laser. We are considering potassium atoms, with mass
m = 40u where u is the proton mass. We measure energy in terms of the recoil energy,
Er = h2/(2mλ2). Following [15], the Schrödinger equation can be conveniently formulated
in momentum space, it maps to a tight-binding model where V0 determines the hopping
amplitude. We can thus diagonalize the Hamiltonian for a large, but finite system. The
Hamiltonian has the following structure, shown here for only 7 lattice sites:

H =



(k+ 12π
λ )

2

2m
V0
4 0 0 0 0 0

V0
4

(k+ 8π
λ )

2

2m
V0
4 0 0 0 0

0 V0
4

(k+ 4π
λ )

2

2m
V0
4 0 0 0

0 0 V0
4

k2

2m
V0
4 0 0

0 0 0 V0
4

(k− 4π
λ )

2

2m
V0
4 0

0 0 0 0 V0
4

(k− 8π
λ )

2

2m
V0
4

0 0 0 0 0 V0
4

(k− 12π
λ )

2

2m


(B.4)

We perform the diagonalization numerically for 60 lattice sites, where finite-size effects are
negligible. This allows us to extract the band-width D of the lowest band numerically as
a function of V0. Using the physically realized lattice depth of 8Er, we obtain that the
hopping amplitude J = D/4 of the lowest band in units of the recoil energy is given by

J = 0.0308201Er (B.5)

As a side result, the relation ∆ t = h/J [Er] allows us to relate the time step ∆t in the
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numerical simulation to the physical time in milli-seconds, which yields

∆ t = 0.568 ms (B.6)

The relative dependence of the hopping amplitude on the lattice depth is shown in Fig.
B.1, which shows the function J(V0)/J(V0 = 8 Er) (8 Er is the lattice depth that was used
in experiment). This concludes step (a).

For step (b), we calculate how the the lattice depth V0(x) depends on the spatial
coordinate x, as this tells us how the hopping parameter J = J(V0(x)) changes in space.
As V0 is a measure for the laser intensity, we only have to know how the laser intensity
depends on space. According to [16], the beam has a waist of about x0 = 150 µm ≈ 406.5
in units of the lattice constant. This corresponds to an intensity profile proportional to
V0(x) = V0(0) e−2(x/x0)2 .

The above result allows us to calculate the dependence of the hopping strength as a
function of the spatial coordinate. As all we have are numerical data and no analytical
formulas, we fit a quartic polynomial to our numerical result, which is given by

A(x) =
J(8 Er e

−2(x/x0)2)

J(8 Er)
≈ 1 + 2.012208(x/x0)2 + 0.871425(x/x0)4 (B.7)

The spatially varying hopping parameter A(x) can easily be implemented in the Boltzmann
equation.

B.2 Validity of the diffusion equation

In order to derive a criterion for the validity of the diffusion equation, we estimate the
magnitude of the second order term in the series expansion (2.31). The coefficients of this
expansion are given by

δf
(n)
k = [−τ(n)(∂t + vk∇r)]

n f0
k (B.8)

where we assumed for simplicity that τ depends only on the particle density n, which is a
good approximation at high temperatures. We would like to derive a simple expression for
the criterion that the leading order current is much larger than its first nonlinear correction:

|j(2)
n |/|j(1)

n | � 1 (B.9)

Above, we have defined

j(n)
n =

1

(2π)2

∫
dkvk δf

(n)
k (B.10)

While j
(1)
n = −D(n)∇rn is known, we still need to calculate j

(2)
n . For the following calcu-

lation, we will use the following identities,∫
dkvk f

0
k = 0

∫
dkv2

k vkf
0
k = 0 (B.11)
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where we used that f0
k is an even function in momentum space and vk is odd, such that

the integrated product vanishes. The second-order current is therefore given by

j(2)
n =

1

(2π)2

∫
dkvk [−τ(n)(∂t + vk∇r)]

2 f0
k (B.12)

(B.11)
=

1

(2π)2
τ(n)

∫
dkvk

2 [∂t ◦ τ(n)∇r +∇r ◦ τ(n)∂t] f
0
k

= τ(n)∂t

(
1

(2π)2

∫
dkvk

2 τ(n)
∂f0

k

∂n
∇rn

)
+ τ(n)∇r

(
1

(2π)2

∫
dkvk

2 τ(n)
∂f0

k

∂n
∂tn

)
= τ(n)∂t (D(n)∇rn) + τ(n)∇r (D(n)ṅ)

≈ τ(n)∂t (D(n)∇rn) + τ(n)∇r (D(n)∇r(D(n)∇rn))

where ◦ denotes the composition of two differential operators, and in the last line we used
that ṅ ≈ ∇rD(n)∇rn. Assuming that the emerging terms are all of approximately the
same size and don’t cancel each other, we concentrate on the second term and estimate∣∣∣∣∣j(2)

j(1)

∣∣∣∣∣ ∼
∣∣∣∣τ(n)∇r(D(n)∇r(D(n)∇rn))

D(n)∇rn

∣∣∣∣ ∼ v2τ2

r2
� 1 (B.13)

Above, we made the very crude approximation of identifying ∇r ∼ 1/r as the cloud’s
inverse radius, and we approximated D ∼ v2 τ for a characteristic velocity v and a typical
scattering time τ .

B.3 Geometric interpretation of the universal loss rate

The minimal loss rate of 4π in d = 2 can be also derived geometrically [82]. It is in close
connection to the Euler characteristic χ(M) of a two-dimensional orientable manifold M ,
which is a topological invariant. In our context, M has the topology of a two-dimensional
disc, where χ(M) = 1. Let us specify a metric g on that manifold by

g = n(x1, x2) dx1 ∧ dx2 (B.14)

where n(x1, x2) is our initial two-dimensional density distribution. Note that the volume
of the manifold then corresponds to the total number of particles N :

V ol(M) =

∫
M
n = N (B.15)

Let us now consider the Ricci-flow of that given manifold, ∂t gij = −2Rij , which describes
the flow of the manifold’s metric towards vanishing curvature1. As the curvature tensor
consists of second order spatial derivatives of the metric, one can show that the superfast
diffusion equation and the Ricci flow are equivalent [82] for the special choice of g, i.e.

∂t gij = −2Rij ⇔ ṅ = ∆ log(n) (B.16)

The integrated version of the Ricci flow in absence of surface terms for the given metric
reads

∂tN = −2

∫
M
K

G.−B.
= −4π χ(M) (B.17)

1More generally, the Ricci flow drives the metric towards the unique metric of constant curvature, which
is specified by topology. A manifold that has the topology of a disc can only assume a vanishing constant
curvature.
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where K is the Gaussian curvature of the metric, and we used the Gauss-Bonnet theo-
rem, which relates the integrated Gaussian curvature of a manifold to 2π times its Euler
characteristic. As χ(M) = 1, this concludes the geometrical proof.
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Appendix C

Negative absolute temperatures in
optical lattices

C.1 Final temperatures, two limiting cases

There exists no simple way to calculate the amount of heat created in the system after a
time-dependent manipulation of the external trapping potential. In chapter 4, we perform
a time-dependent manipulation of the prefactor V0(t) of the harmonic potential according
to the protocoll (4.13) . However, there are two limits in which the final temperatures can
be calculated exactly: the adiabatic limit of ∆t→∞, and the instantaneous quench with
∆t = 0, involving an infinite “waiting” time afterwards. In these two limits, we calculated
the final temperature and density profiles using the local density approximation (LDA), in
which the external trapping potential is absorbed by a shift in the local chemical potential.

Immediately after the quench, the density and kinetic energy distribution is still the
same as before, as the kinetic energy and particle densities need a finite amount of time to
adjust to the new trapping potential. Therefore, the total energy after the quench E> is
just determined by the total change in potential energy, which changes instantly after the
quench. Let us assume that we quench the trapping potential at t = 0. Then, the total
energy after the quench E> is given by

E> := E(t < 0) + ∆E (C.1)

∆E = lim
t→0+

∫
d2r (V0(t)− V0(−t)) r2 n(r, 0)

Given E>, we can determine two limits exactly: the adiabatic limit (i) of going from −V0i

to V0f infinitesimally slowly, i.e. Ṡ(t > 0) = 0, and (ii) the limit of an instantaneous
quench where Ė(t > 0) = 0.

In the following, we are going to demonstrate this approach in more detail. Let the
interaction strength U be fixed. For given µ0, β and V0, let

n(r) ≡ n(µ0,β,V0)(r) (C.2)

denote the local equilibrium particle density including Hartree-corrections, calculated self-
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consistently as specified in Eq. (2.15). We introduce the following functions:

N(µ0, V0, β) :=

∫
dr n(r) (C.3)

Ekin(µ0, V0, β) :=

∫
dr

∫
dk

(2π)d
εk

1 + eβ(εk−(µ0+Un(r)+V0r2))

Epot+int(µ0, V0, β) :=

∫
dr

(
V0r

2n(r) +
U

2
n(r)2

)
E(µ0, V0, β) := Ekin(µ0, V0, β) + Epot+int(µ0, V0, β)

N and E denote the total number of particles and the total energy of the trapped system
as a function of the global inverse temperature β, the prefactor of the harmonic trapping
potential V0 and the offset of the chemical potential µ0. First, let us consider the simpler
case of an instantaneous quench (ii). In this case, the total energy after the quench at
t = 0 is conserved. Hence, the final equilibrium temperature is uniquely determined by N ,
the final trap configuration V0f < 0 and the total energy immediately after the quench,
E>, calculated with Eq. (C.1). Using a two-dimensional variant of Newton’s algorithm,
we solve the following equations for µ0 and β, which characterize the equilibrated system
in the long time limit:

N = N(µ0, V0f , β) (C.4)
E> = E(µ0, V0f , β)

This concludes case (ii). Second, let us consider the adiabatic limit (i). Here, the trapping
potential is first inverted, V0i → −V0i and let to equilibrate. Therefore, we first calculate
the corresponding equilibrium configuration by numerically solving the equations

N = N(µ′,−V0i, β
′) (C.5)

E> = E(µ′,−V0i, β
′)

for µ′ and β′. After the quench, we open the trapping potential adiabatically, i.e. from
now on, the system’s entropy is conserved. Let us therefore define

s(ω, β) := β2∂β

(
1

β
log

(
1

1 + eβω

))
(C.6)

S(µ0, V0, β) :=

∫
dr

∫
dω ν(ω) s(ω − (µ0 + V0r

2 + Un(r)), β)

where ν(ω) is the density of states of the two-dimensional Hubbard model, and S is the
system’s total equilibrium entropy. We first calculate the system’s entropy S> after the
quench, followed an infinite waiting time, which is given by

S> := S(µ′,−V0i, β
′) (C.7)

To calculate the final inverse temperature β and chemical µ0 potential after the adiabatic
opening of the trap to the final trap configuration characterized by V0f , we numerically
solve the equations

N = N(µ0, V0f , β) (C.8)
S> = S(µ0, V0f , β)

for β and µ0. This concludes case (i).
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Appendix D

Expansion in a gravitational
potential

D.1 Short time dynamics

The short time dynamics is characterized by a rapid drift of the cloud’s center of mass in
the direction of the force, assuming that initially T > 0. During this process, potential
energy is converted into kinetic energy. We want to calculate the motion of the cloud’s
center of mass,

x0(t) =
1

N0

∫
dxxn(x, t) (D.1)

where N0 =
∫
dxn(x, t). The motion of the cloud is determined by the conservation of the

total energy,

Etot =

∫
dx

(
e(x, t) + g xn(x, t) +

U

2
n2(x, t)

)
(D.2)

Let us assume that x0(0) = 0. Then, using the definition of x0, we obtain

x0(t) =
1

g N0

∫
dx(e(x, 0)− e(x, t)) +

U

2N0 g

∫
dx(n(x, 0)2 − n(x, t)2) (D.3)

This equation can be used to analyze both the short time dynamics and the long time
dynamics of x0. The Hartree interaction energy decreases only on very long time scales.
For the short time dynamics it can be regarded as constant, as can be seen in Fig. D.1.

Let us focus on the center of mass motion at very weak interactions, such that strong
Bloch oscillations become apparent. The inset of Fig. 5.3 in the main text shows the decay
of the center of mass oscillations. In particular, the center of mass at odd multiples of half
the Bloch period approximately assumes its asymptotic value at long times. This can be
understood as follows: at very weak interactions and at t = (2n + 1)π/g for n ∈ N , the
kinetic energy vanishes in d = 2, because all momenta in the direction of the force are
shifted by π, while all momenta in perpendicular direction are unaltered. Note that also
the Hartree energy is approximately zero. Therefore,

x0(t = (2n+ 1)π/g) ≈ 1

g N0

∫
dx e(x, 0) (D.4)
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Figure D.1: Decay of the kinetic and potential energy oscillations: potential energy (green),
kinetic energy (red) and Hartree energy (blue dots). The upper panel shows in intermedi-
ately strong driving force, while the lower panel shows a strong driving force for U/J = 1.
The Hartree energy decays only on very long time scales.

Using the parameter T = 1J as used in our numerical simulations and approximating
e ≈ −4J2n/T yields the numerical value of x0(π/g) ≈ −1.59J/g, which agrees very well
with the center of mass minima in our numerical data, shown in the inset of Fig. 5.3.
Note that in the limit of very long times, the center of mass gets shifted due to the slowly
decreasing Hartree energy,

x0(t→∞) = x0(π/g) +
U

2N0g

∫
dxn(x, 0)2 (D.5)

D.2 Scaling analysis of the energy continuity equation

In the main text, the scaling ansatz (5.18) is plugged into the the energy continuity equa-
tion. The resulting equation can be expressed as a fractional power series in t, with
coefficients Ci[z], such that the equation reads

0 = C0[z] t−1 + C1[z] t
− 2
γ
−1

+ C2[z] t
− 1
γ
−2

+ C3[z] t−3/γ + ...

where we neglected the series coefficients of t−5/γ , t−7/γ , t−9/γ , t−1−4/γ , t−1−6/γ , t−2−3/γ

which are a priori subleading. Hence we do not list the corresponding coefficients. The
remaining coefficients Ci[z] are given by
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Appendix E

Damping of Bloch oscillations

E.1 Linearized collision integral

Let us consider the matrixM that emerges from the linearization of the collision integral of
the Boltzmann equation (6.16). We want to relate this matrix to the microscopic transition
rates Z explicitly, which are given by

Zk2k3
kk1

= U2
∑
G

δ (k + k1 − k2 − k3 + G) δ (εk + εk1 − εk2 − εk3) (E.1)

In analogy to Eq. (1.50), we start from the following ansatz of the non-equilibrium distri-
bution function fk close to infinite temperature:

fk = n+ n(1− n)φk (E.2)

As shown in section 1.3.8, the linearized collision integral can be expressed as

Ilin[φ] = −
∫

dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
(φk + φk1 − φk2 − φk3)Pk2k3

kk1
, (E.3)

Pk2k3
kk1

= U2 n2 (1− n)2
∑
G

δ (k + k1 − k2 − k3 + G) δ (εk + εk1 − εk2 − εk3) (E.4)

Here we have used that P simplifies drastically in the infinite temperature limit, as the
Pauli blocking factors simplify accoring to

f0
kf

0
k1

(1− f0
k2

)(1− f0
k3

) −→ n2(1− n)2 (T →∞) (E.5)

Substituting δfk = n(1− n)φk, such that fk = n+ δfk, we arrive at the following form of
the collision integral:

−
∫

dk′

(2π)d
Mkk′δfk′

!
= −

∫
dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
(δfk + δfk1 − δfk2 − δfk3) P̃k2k3

kk1

= −δfk
∫

dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
P̃k2k3

kk1
(E.6)

−
∫

dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
δfk1

(
P̃k2k3

kk1
− P̃k1k3

kk2
− P̃k2k1

kk3

)
where we defined P̃ = P/(n(1− n)), and we have just re-labeled the integration variables.
We can therefore identify the matrix of the linearized collision integral as

Mkk′ = δkk′

∫
dk1

(2π)d
dk2

(2π)d
dk3

(2π)d
P̃k2k3

kk1
+

∫
dk2

(2π)d
dk3

(2π)d

(
P̃k2k3

kk′ − P̃k′k3
kk2
− P̃k2k′

kk3

)
(E.7)
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Finally let us also give the current-current matrix element ofMkk′ . In analogy to Eq.(1.61),
this matrix elements is given by

Mvv :=
1

(2π)2d

∫
dkdk′ vkMkk′ vk′ (E.8)

=
1

4
U2n(1− n)

1

(2π)4d

∑
G

∫
dk0dk1dk2dk3 (vk0 + vk1 − vk2 − vk3)2

×δ (k0 + k1 − k2 − k3 + G) δ (εk0 + εk1 − εk2 − εk3)

E.2 Damping of the particle current

Let us now calculate the current-current matrix element 〈vk|M |vk〉 of the scattering matrix
M for the linearization of the discrete Boltzmann equation (6.67) explicitly in d = 1. As
we have shown before, this quantity determines the damping rate of the current mode vk.

As stated before, we only study the equation as a minimal model that describes the
dynamics of interparticle scattering. It is a special constraint for a one-dimensional system
to satisfy energy and momentum conservation at the same time. Trivially, scattering
processes that simply exchange the incoming and outgoing momenta statisfy the energy
and momentum constraint,

k0, k1 → k1, k0 (E.9)

Obviously, this process does not lead to a damping of the particle current. Let us therefore
address the question, which scattering processes can lead to relaxation to equilibrium.

For the discrete Boltzmann equation (6.67), the is a macroscopic number of scattering
processes that satisfy energy and lattice momentum conservation, but also allow for a non-
trivial change of the momentum states. This type of process is graphically depicted in Fig.
(E.1): the scattering process is possible if the two momentum states before the collision
are positioned symetrically around the momentum π/2 or −π/2. As a consequence, the
sum of their kinetic energies adds up to zero, and their momenta add up to ±π. This pair
of states can now scatter in any other pair of momentum states that satisfies the same
condition (of having zero total kinetic energy and a total momentum of ±π).

Note that the number of states that can undergo this scattering process is suppressed by
a factor 1/N due to the fine-tuning of the two momenta. However, the set of possible final
states is proportional to N , where N is the number of discrete momenta. Therefore, the
scattering process described above is relevant and survives for large values of N . Note that
in a more physically realistic model, the outgoing momenta after the scattering event may
eventually be determined by further conservation laws, which are not taken into account
in the Boltzmann equation. We can now consider the discrete Botzmann equation and
calculate the discrete variant of the matrix element of the collision kernel. Following Eq.
(E.8) and adjusting the formula to the discrete Boltzmann Eq. (6.67), it is given by

〈vk|M |vk〉 = n(1− n)
U2

4 J N2

∑
k0,k1,k2

(vk0 + vk1 − vk2 − vk0+k1−k2)2 δ(εk0 + εk1 − εk2 − εk0+k1−k2)

(E.10)

where δ(ε) = δε,0 is the discrete (Kronecker) delta. Let us further simplify this sum. First,
note that the two particles of a given pair of scattering partners must have the same velocity
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Figure E.1: Energy and momentum preserving scattering processes in 1D. The red curve
shows the energy dispersion. The initial momentum states (blue circles) before scattering
have to be centered around the momentum ±π/2 in order to have vanishing total kinetic
energy and total momentum ±π. In order to satisfy energy and momentum conservation,
they can scatter in any pair of final momentum states with vanishing total kinetic en-
ergy and total momentum ±π (pairs of black points as two examples for a continuum of
possibilities).

before and after the collision, as

|k0 + k1| = π =⇒ vk1 = 2J sin(k1) = 2J sin(±π − k0) = 2J sin(k0) = vk0

vk0+k1−k2 = v±π−k2 = vk2 (E.11)

and which becomes also graphically apparent from Fig. (E.1). Now, using our knowledge
about the possibility of scattering, we can simplify Eq. (E.10) and let the sum run only
over those momenta that satisfy the energy and momentum constraint of scattering. From
our above discussion, we know that |k0 +k1| = π must hold and leads to the only scattering
process that can relax the current mode. Therefore, the discrete matrix element reduces
to

〈vk|M |vk〉 = n(1− n)
U2

4 J N2

∑
k0,k1,k2

(vk0 + vk1 − vk2 − vk0+k1−k2)2 δ(|k0 + k1| − π)

(E.11)
= n(1− n)

U2

4 J N2

∑
k0,k2

(2vk0 − 2vk2)2

N�1−→ n(1− n)
U2

4 J

1

4π2

∫
dk0 dk2 (2vk0 − 2vk2)2

= 4n(1− n)U2 J (E.12)

where we approximated the discrete sum in absence of the delta-constraint by a continuous
integral. This approximation works very well, as we have also calculated the discrete
matrix element 〈vk|M |vk〉 numerically using Eq. (E.10), and found excellent agreement
with (E.12) already for N = 20.
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E.3 Oscillatory integrals

The goal of this section is to provide some integral identities needed in chapter 6. As the
force points into the diagonal direction of the lattice, the following identities hold:

εk−Ft = εk cos(Ft)− vk sin(Ft) (E.13)
vk−Ft = vk cos(Ft) + εk sin(Ft)

ξk,t = F−1 (εk cos(Ft)− vk sin(Ft)− εk)

Now, we can calculate

〈vk|M |εk〉 =
1

τB

∫
dkdk′ Mkk′

∫ τB

0
dt

∫ t

0
dt′ vk+F(t−t′) εk−Ft′ (E.14)

=
1

τB

∫
dkdk′ vkMkk′ vk′

∫ τB

0
dt

∫ t

0
dt′
(
− sin(Ft′) cos(F (t− t′))

)
=

1

2F

∫
dkdk′ vkMkk′ vk′

=
1

2F
〈vk|M |vk〉 (E.15)

where we have used the fact that
∫
dk′Mkk′εk′ = 0 and

∫
dk εkMkk′ = 0. Similarly, we can

calculate 〈εkvk|M |εk〉. Applying the trigonometric identities (E.13) on εk+F(t−t′)vk+F(t−t′)εk−Ft′

and doing the time integration results is a collection of terms, each one of them being pro-
portional to one of the following integrals:

0 =

∫ τB

0
dt

∫ t

0
dt′ sin

(
Ft′
)

sin
(
Ft− Ft′

)
cos
(
Ft− Ft′

)
(E.16)

0 =

∫ τB

0
dt

∫ t

0
dt′ sin

(
Ft′
)

cos2
(
Ft− Ft′

)
0 =

∫ τB

0
dt

∫ t

0
dt′ sin

(
Ft′
)

sin2
(
Ft− Ft′

)
0 =

∫ τB

0
dt

∫ t

0
dt′ sin

(
Ft− Ft′

)
cos
(
Ft′
)

cos
(
Ft− Ft′

)
0 =

∫ τB

0
dt

∫ t

0
dt′ cos

(
Ft′
)

cos2
(
Ft− Ft′

)
0 =

∫ τB

0
dt

∫ t

0
dt′ sin2

(
Ft− Ft′

)
cos
(
Ft′
)

As each integral vanishes, we find that 〈εkvk|M |εk〉 = 0.
Now, let us proceed in calculating the matrix elements involving M , which we need to

calculate the diffusion constant (6.84). First of all, note that 〈vk+F(t−t′)|Mkk′ξk,t′ |1〉 = 0
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because of
∫
dk′Mkk′ = 0. Therefore, we omit ξk,t′ in Eq. (6.86) and calculate

〈vk|M |1〉
(6.86)

=
1

τB

∫ τB

0
dt

∫ t

0
dt′
∫

dkdk′

(4π2)d
vk+F(t−t′)Mkk′ ξk′,t′

(6.87)
=

∫
dkdk′

(4π2)d
vkMkk′ vk′

(
1

τB

∫ τB

0
dt

∫ t

0
dt′(−1)F−1 sin

(
Ft′
)

cos
(
F
(
t− t′

)))
=

∫
dkdk′

(4π2)d
vkMkk′ vk′

1

τB

∫ τB

0
dt
−t sin(Ft)

2F

=
π

F 3

1

τB

∫
dkdk′

(4π2)d
vkMkk′ vk′

=
1

2F 2
〈vk|M |vk〉 (E.17)

where again we omitted terms that are zero due to the identities
∫
dk′Mkk′εk′ = 0 and∫

dk εkMkk′ = 0. We can proceed in exactly the same way to calculate also the other
three matrix elements in Eq. (6.84).
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