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1 Einleitung

In der folgenden Bachelorarbeit sollen magnetische Strukturen in chiralen Magneten bei Tempe-
ratur 7' = 0 untersucht werden. Dafiir werden die unterschiedlichen thermodynamischen Grund-
zustande erst jeweils vorgestellt, speziell fir den Fall gekippter Magnetfelder die Phaseniibergénge

bestimmt und im Besonderen die Skyrmion-Skyrmion Wechselwirkung untersucht.

1.1 Strukturen in chiralen Magneten

Als chiralen Kristall bezeichnet man einen Kristall, der keine In-
versionssymmetrie besitzt. Abbildung 1.1 zeigt als Beispiel fir
Chiralitdt Mangan-Silizium, welches Forschungsobjekt vieler Ex-
perimentatoren ist[2]. Durch die fehlende Inversionssymmetrie

treten zusétzliche Terme in der Energie auf (sieche Abschnitt 1.3),

die zu neuen thermodynamisch stabilen Phasen im Magneten fiih-

ren kénnen. Im Folgenden werden alle im MnSi gefunden Phasen Abb. 1.1: Kristallstruktur

der Magnetisierung kurz charakterisiert. Andert sich die Magne- von MnSi [1]

tisierung M nicht mit der rdumlichen Variation, spricht man von

der polarisierten oder ferromagnetischen Phase. Die helische Phase zeichnet sich durch senkrecht
zur Ausbreitungsrichtung E stehender Magnetisierung M aus, in der konischen Phasen steht k
parallel zu einem angelegten Magnetfeld B (siche Abb. 1.2). Die ersten experimentellen Nachwei-
se der helisch /konischen Phasen in MnSi wurden in den 70er Jahren durch Neutronenstreuung
erbracht|3].

Eine weitere Phase wurde theoretisch durch Bogdanov im Jahr 1994 vorausgesagt|5]. Durch Wech-
selwirkungen im Magneten sollten Wirbel entstehen, welche wiederrum eine hexagonale Struktur
ausbilden. Erst im Jahr 2009 konnten Mdihlbauer et al., mittels Neutronenstreuung, eine stabile
Phase in MnSi mit hexagonaler Struktur (siehe Abb. 1.3) nachweisen|2]. Mit einem Lorentz-

Transmissions-Elektronen-Mikroskop gelang ein Jahr spéter Yu et al. eine Realraum-Aufnahme

Hf*“‘**#l““”?ftt -

Abbildung 1.2: Vergleich einer helischen und einer konischen Struktur|[4].
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0.08

(a) SANS an MnSi (b) Lorentz TEM an Feg.5Cog.5Si

Abbildung 1.3: (a) Experimentelles Ergebnis der Small-Angle-Neutronen Streuung mit den sechs
Streupeaks im reziproken Raum|2]. (b) Experimentelles Ergebnis der Lorentz-
Transmissions-Elektronenmikroskopie im Realraum|6].

der Magnetisierungswirbel|6]. Die Magnetisierungswirbel wurden nach Tony Skyrme benannt,
der erstmals 1960 die Moglichkeit topologisch geschiitzter (Quasi-)Teilchen in der Kernphysik
voraussagte|7]. Die Abbildungen 1.3 zeigen die beiden experimentellen Nachweise der stabilen
Skyrmionengitterphase. Seit diesen Nachweisen ist ein reges Interesse an der Erforschung der
Skyrmionen entbrannt, da sie aufgrund ihrer kleinen Abmessung und leichten Manipulierbarkeit
Kandidaten fiir neue effizientere Speichersysteme sind[8, 9.

Skyrmionen kénnen unterschiedliche Magnetisierungskonfigurationen haben|7|. In der Abbildung
4.1 sind zwei Simulationen solcher Skyrmiontypen dargestellt. Dabei weist bei beiden Typen die
zentrale Magnetisierung antiparallel zum polarisierten Untergrund. Detailliert werden die Eigen-

schaften und Strukturen der einzelnen Phasen im Hauptteil der Arbeit vorgestellt.

1.2 Motivation

Um die einzelnen Phasen zu stabilisieren, legten Forscher ein externes Magnetfeld B an die Pro-
be an. Somit konnte ein B-T-Phasendiagramm fiir die Probe erstellt werden (vergleiche hierzu
auch [2]). Es zeigte sich, dass in diinnen Schichten schon bei 7' = 0 und endlichem, senkrecht
zur Oberflache stehendem, Magnetfeld, Skyrmionen der thermodynamisch stabile Grundzustand
seien konnen, was in 3D Materialien nicht der Fall ist, und im Einklang mit den theoretischen
Vorhersagen steht. Ferner zeigte sich in theoretischen Abhandlungen, dass Skyrmionen unter
senkrechtem Magnetfeld stets repulsiv sind. Lin und Sazena gingen einen anderen Weg und si-
mulierten eine diinne Schicht mit gekipptem Magnetfeld|10]. In ihren Simulationen beobachteten
sie, dass sich einerseits die Skyrmionen verformten und andererseits Ketten bildeten. Sie fiihrten
diese Kettenbildung auf die Anisotropie der repulsiven Wechselwirkungen der Skyrmionen un-
tereinander zuriick, d.h. in die eine Richtung stofen sich Skyrmionen weniger stark ab als in die
andere.

Mit diesem Wissen stellen sich zwei mogliche Aufgabenstellungen:
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1. Wie sieht das Skyrmion-Skyrmion Potential aus?
2. Wie verdndern sich die Phasengrenzen unter Kippung des Magnetfeldes?

Diese beiden Fragen sollen im Rahmen dieser Arbeit beantwortet werden. Insbesondere ist bei
(1) zu untersuchen, ob das Potential durchgehend repulsiv ist, oder ob sich attraktive Téler aus-
bilden und wie sich das Potential unter Kippung des Magnetfeldes verhélt. Beide Punkte werden
mittels Computersimulationen bei konstanter Temperatur T' = 0 untersucht.

Um die Fragestellungen zu beantworten, werden wir im Folgenden die bendtigten Formeln und
Grundlagen sowie das genutzte Modell kurz erldutern. In Kapitel 2 wird die polarisierte Phase
untersucht und deren Energie sowie Anregungsspektrum. In Kapitel 3 widmen wir uns dann
der helisch /konischen Phase und bestimmen numerisch den Phaseniibergang von polarisierter
zu helisch /konischer Phase fiir das B-¢-Phasendiagramm. In den Kapiteln 4 bis 6 werden wir
Skyrmionen untersuchen. Dabei werden wir uns mit dem allgemeinen Aussehen eines einzelnen
Skyrmions unter dem Einfluss verschiedener Magnetfelder beschéftigen, darauf aufbauend das
Skyrmion-Skyrmion Potential sowie das Skyrmionlinienpotential untersuchen und zum Schluss
den Phaseniibergang des Skyrmiongitters zur polarisierten und zur helisch/konischen Phase be-

trachten.

1.3 Modell und Energie

Unterschiedliche Mechanismen konnen fiir die Bildung von Skyrmionen verantwortlich sein|7]:
1. langreichweitige magnetische Dipolwechselwirkungen
2. Dzyaloshinskii-Moriya Wechselwirkung
3. frustrierte Austauschwechselwirkung
4. Vier-Spin Austauschwechselwirkung

In den Féllen (3) und (4) ist das Skyrmion von derselben Grofenordnung wie die Gitterkostante.
Daher werden wir uns auf die Dzyaloshinskii-Moriya Wechselwirkung beschrinken, welche bei
chiralen Materialien auftreten kann. Da die Grofe der Skyrmionen in diesem Fall bei 5-100 nm
liegt|7] und somit weit tiber typischen Gitterkonstanten, kénnen wir das System mit einem Kon-
tinuumsmodell beschreiben|7].

Um die oben genannten Fragestellungen zu untersuchen, lassen sich noch folgende Vereinfachun-
gen vornehmen: Wir gehen von einem diinnen Film aus, so dass der Raum €2 nur eine Ausbreitung
in der z-y-Ebene hat. Statt die Konfiguration aller klassischen Spins s; zu betrachten, nutzen
wir die Eigenschaft, dass die Spins ein magnetisches Moment m;  s; erzeugen. Diese diskreten
lokalen magnetischen Momente konnen wir in das kontinuierliche Feld der Magnetisierung M (r)
tiberfithren. Ferner untersuchen wir ein System bei 7' = 0. Da die Addition einer Konstanten zur
Energie auf die Physik des System keinen Einfluss hat, konnen wir M = 1 setzen. Aus der Ma-
gnetisierung kénnen wir die Windungszahl W = (47)~! [ d?r M (d;M x dy M) bestimmen[11],

die bei Skyrmionen eine ganze Zahl ist und Unterscheidbarkeit von beispielsweise Blasen der
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Magnetisierung ermdglicht|7]. Das Energiefunktional lasst sich mit angelegtem Magnetfeld B
schreiben als[12, 7]

F[M] = / r L(YM?+D M(Vx M)—B- M, (1.1)
Q 2 —_—
h/_‘Term 1 Term 2 Term 3

wobei (VM)? = (9;M;)?. Term 1 ist der ferromagnetische Anteil, der unter Minimierung von
(1.1) die Magnetisierung parallel ausrichtet. Term 3 sorgt fiir die Ausrichtung entlang des an-
gelegten Magnetfeldes und Term 2 ist der, durch Dzyaloshinskii-Moriya Wechselwirkung her-
vorgerufene, zusatzliche Term. Dieser sorgt fiir eine Verdrillung der Magnetisierung und somit
der Ausbildung helisch/konischer- und Skyrmionstrukturen. Hierbei sei angemerkt, dass unter-
schiedliche Arten von Dzyaloshinskii-Moriya Wechselwirkungen exisitieren. Allgemein lasst sich

der Energiebeitrag schreiben als|5, 12]
Fowmr = FBNT + FRM = D™ (Mg oMz — M3 0aMa) + D(giaj M; 0aM;).  (1.2)

Allerdings werden wir in dieser Arbeit hauptsichlich den chiralen Anteil untersuchen. Nur in

Kapitel 4 wird auf D™ £ 0 eingegangen. Schreiben wir (1.1) in Indexnotation, erhalten wir

F[M] = /Qd2’l“ %(BQM]'F + D 5Z-ajMi(3an) — B; M. (13)

. . . . . o, OF[M]
Wenn eine Magnetisierungskonfiguration M im Raum €2 stabil ist, dann gilt =37/~ = 0.

1.3.1 Reskalierung

Im Folgenden werden wir (1.3) fiir unsere Zwecke modifizieren. Da eine stabile Phase gesucht
wird, koénnen wir (1.3) mit einer Konstanten strecken und stauchen. Stauchen wir um J und

schreiben r, = 7o (//D), dann erhalten wir

F[J]VI] = /Qde (g)z [(?)2 (0 M;)? + <l;)2 Eiaj Mi(0aM;) — %Mi

Multiplizieren wir die Gleichung aus, ersetzen F[M] J~' = F[M] und B J/p*> = B, dann ist

(1.4)

<

F[M] = /Qd2~ %(aan>2 + 5ioszi(8an) — BZMZ = /Qd2f £ (15)

das im Folgenden benutzte Energiefunktional. Aus Griinden der Lesbarkeit wird im Folgenden
auf die Tilde verzichtet.
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1.4 Landau-Lifshitz-Gilbert Gleichung

Um die zeitliche Entwicklung der Magnetisierung be-
schreiben zu konnen, betrachten wir die einzelnen Dreh-
momente, die auf die Magnetisierung wirken (siche Abb.
1.4). Zum einen das Drehmoment o« M X Beg, wel-
ches zur Prézession um das effektive Magnetfeld Bog =
—0F/0M fithrt[12], zum anderen einen D&mpfungs-
term «x M x 0y M. Der Dampfungsterm verringert den

Préazessionswinkel kontinuierlich bis die Magnetisierung

parallel zum effektiven Magnetfeld ausgerichtet ist. Zu-  Appb 1 4: Drehmomente in LLG: Pri-
sammengesetzt ergibt sich die Landau-Lifshitz-Gilbert zession (griin), Dampfung
Gleichung|13, S. 75]: (blau)

oM = —M x Bog + aM x 9, M (1.6)

Dabei ist a die Dampfungskonstante.

1.5 Simulation

Um eine diinne Schicht simulieren zu konnen, diskretisieren wir die Magnetisierung auf ein Recht-
eckgitter mit Magnetisierungsvektoren auf den Gitterplatzen. Die Systemgrofle bei periodischen
Randbedingen setzt sich aus Diskretisierungslénge a und Anzahl der Gitterplatze N zu der Fla-
che [, d*r = (Nya,)(Nyay) zusammen.

Um die Energie eines (meta-)stabilen Zustandes bei T = 0 bestimmen zu konnen, geben wir eine
anfangliche Konfiguration der Magnetisierung vor. Eine spontane Ausbildung von topologischen
Strukturen, auch in der zugehorigen Phase, wire aufgrund der zu {iberwindenen Energiebarriere
im ausgefrorenen System nicht moglich. Anschlieffend lassen wir mittels Runge-Kutta-Integration
von (1.6) die zeitliche Entwicklung beschreiben und regelméfig die Energie (1.5) protokollieren,
bis diese nicht weiter abféllt. Die so erhaltene Energie eines Zustandes konnen wir mit den Ener-
gien anderer vorgegebener Konfigurationen vergleichen. Dabei ist der Dadmpfungsparameter aus

(1.6) bei allen Simulationen auf o = 0.1 gesetzt.






2 Polarisierte Phase

In einem Ferromagneten bezeichnet man als polarisierte Phase den Zustand, in dem die Magneti-
sierung M raumlich konstant ist. Im Folgenden werden wir die Ausrichtung der Magnetisierung
im Vergleich zu einem angelegten Magnetfeld B untersuchen und danach das Anregungsspek-
trum (Magnonen) in der polarisierten Phase, analog der Gitterauslenkung bei Phononen im

Festkorper, bestimmen.

2.1 Ausrichtung der Magnetisierung

Wir untersuchen die Richtung von M relativ zur Ausrichtung von B. Ein Zustand im Magneten
ist stabil, wenn 55—]\1} = 0. Fiir die polarisierte Phase gilt als definierende Eigenschaft d,M = 0.

Somit vereinfacht sich das Energiefunktional (1.5) zu
1
F[M)] :/ dr? i(aaMi)Q + €iajMi(0aM;) — M -B = —M - B/ dr? . (2.1)
Q Q
Somit ist die polarisierte Phase ein stabiler Zustand, wenn M - B maximal ist. Daher muss gelten
M||B.
2.2 Magnonen

Im Folgenden wollen wir die Auslenkung aus der polarisierten Phase (M||B) des Ferromagne-
ten um 6M = (6M*',6M?)" betrachten. Das Magnetfeld B = B (0,sin ¢, cos ¢)” sei zeitlich
und rdumlich konstant, somit in der x-y-Ebene um den Winkel ¢ zur Ebenennormale (0,0,1)”

gekippt. Die Magnetisierung lasst sich darstellen als

1 0
1 A
= B+oM' | 0| +6M* | cos : 2.2
V1+ (6M1Y)2 + (6M2)2 , ¢ 22)
0 —sing
Aus dem Energiefunktional (1.5) ergibt sich fiir Beg
oE &
SE oM, _aam 282M3—3%M1—8%M1
o0& &
—p Bt =570 = | 5 ~ Dograamy | = | —200Ms — By — 1My — 03M> — 01 Ms | . (2.3)
s — O 201 My — 205 M — B3 — 93 M3 — 93 M3

Die zeitliche Entwicklung der Magnetisierung M , insbesondere von d M, wird durch die Landau-
Lifshitz-Gilbert Gleichung beschrieben. Setzen wir (2.2) und (2.3) in (1.6) ein, und nehmen ferner

11
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an, dass M2 < 1 und a = 0 ist, folgt nach Taylor-Entwicklung in linearer Ordnung

—B §M? — 2sin ¢(020 M) + (036 M?) + (926 M?)
oM = % (=B M + 2sin ¢p(020M?) + (036 M 1) + (036 M™1))(— cos ) | - (2.4)
(=B M + 2sin ¢(026M?) + (056 M) + (076 M™))(sin ¢)

Nach Fourier-Transformation
SMYM2(r t) = c/ dk:/ dw SMY?(k,w) eltkr—wt), (2.5)
R2 —o0

und Ausnutzen der linearen Unabhéngigkeit der Fourier-Basis, erhalten wir folgende Eigenwert-

gleichung, wobei auf die explizite Nennung der Abhéngigkeiten verzichtet wurde:

—i2 ko si —(B+ k2 + k2
wom = | 2hesine —(BrAER) 500 (2.6)
B4k} +k3  —i2 kysing

Dabei ist w’ := wp /v und die triviale Losung entspricht der vollstindig polarisierten Phase des
Ferromagneten. Als Eigenwerte erhalten wir w/, (k) = +(B + k? + k3 F 2ko sin ¢)), wobei wir uns

auf w' := W/, beschridnken. Analog zu Phononen im Festkérper ist w’ proportional zur Energie

der Magnetisierungsanregung (Magnon). Ein Minimum ist bei kmin = (0,sin¢)” = (0, 2%=)T
mit
W' (kmin) = why, = B — sin® ¢. (2.7)
Einsetzen des Eigenvektors dM = (i,1)7 in (2.5) an der Stelle ki, liefert
el(re sin ¢—t(B—sin? ¢)+m/2)
OM(r,t) =c ¢i(rasin g—t(B—sin? $)) (2.8)

In Abbildung 2.1 ist die rdumliche Entwicklung von M in der z-y-Ebene dargestellt, die eine
konische Struktur bildet. Fiir ' (kmin) = 0 ist eine Magnonbildung energetisch genauso sinn-
voll wie die vollstandig polarisierte Phase des Ferromagneten. Daher ldsst sich eine kritische
Magnetfeldstarke B, definieren:

B, =sin? ¢ (2.9)

Fiir B < B, sollten sich spontan Magnonen in der polarisierten Phase ausbilden, demnach wére
B, der Phaseniibergang von polarisierter zu konischer Phase.
Die genauen Phaseniibergéinge der helischen und konischen Phase werden wir im néchsten Kapitel

analysieren und mit unserer Rechnung von B, vergleichen.

12
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/
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Abbildung 2.1: Darstellung der Magnetisierung (schwarz) und des Magnetfeldes (rot) auf 3x10
Gitterplédtzen in der z-y-Ebene fiir ¢ = 40°.
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3 Helisch/Konische Phase

Die helische und konische Phase sind spiralférmige Anordnungen der Magnetisierung M, die
durch den Dzyaloshinskii-Moriya Term im Energiefunktional (1.5) ausgebildet werden (siehe
auch Abb. 1.2). Wie bereits in Kapitel 1 besprochen kennzeichnet die helische Phase eine Aus-
breitungsrichtung k senkrecht zur Magnetisierung M und die konische Phase ein k parallel zum
angelegten Magnetfeld B (bzw. in einem Monolayer ist die Projektion von B auf die Fliache
parallel zu 12:) Ein Ziel der vorliegenden Arbeit ist es, die Abhéngigkeit der Grenzen bei T' = 0
unterschiedlicher Phasen vom Kippwinkel zu untersuchen. Eine spezifische Unterscheidung der
helischen Phase von der konischen Phasen nehmen wir nicht vor, stattdessen untersuchen wir
allgemein die helisch /konische Phase (HK Phase). Die HK Phase kann einen Phaseniibergang
zur Skyrmiongitterphase ausbilden (siche Kapitel 6) und einen Ubergang zur polarisierten Phase
im Ferromagneten. In diesem Kapitel soll der Ubergang zur polarisierten Phase und weiter die
Ordnung des Phaseniibergangs untersucht werden.

Um die HK Phase zu simulieren setzen wir eine diskrete Magnetisierungslinie mit N, = 50,
Ny = 1 und a; = ay = a mit periodischen Randbedingungen in Helixstruktur mit Wellenlange
Amin = @ N,. Unter angelegtem Magnetfeld B = B (sin ¢, 0, cos ¢)” bestimmen wir die Energie
F[M] des ausrelaxierten Zustands. Um fiir jeden Punkt im Phasendiagramm (¢, B) die energe-
tisch giinstigste Konfiguration der HK Struktur zu erhalten, muss iiber a optimiert werden. Bei
unserer Optimierung ist a € {0.12,0.13,...,0.19,0.2}. Da sich in der HK Phase die Strukturen
entlang der Ebenenachse senkrecht zum angelegten Magnetfeld (hier y-Richtung) und entlang
der Ebenenachse parallel zum angelegten Magnetfeld periodisch (mit Periodenldnge Apin) wie-
derholen, reicht die Betrachtung dieser 1D Kette fiir die Simulation einer unendlich ausgedehnten
Fléche.

Um den Phaseniibergang bestimmen zu koénnen, vergleichen wir die Energiedichte

_ F[M]
a2 N,

EHK (3.1)
der HK Phase mit der Energiedichte der polarisierten Phase £p,) = B. Der Phaseniibergang
zwischen den beiden Phasen ist bei &gk = Epol. Vom Phaseniibergang zweiter Ordnung sprechen
wir, wenn eine Ableitung von F[M] stetig ist, ansonsten reden wir vom Phaseniibergang erster
Ordnung. Die polarisierte Phase kann als HK Phase mit unendlicher Periodenlénge, d.h. unend-
lichem a oder mit einem Offnungswinkel ¥ = arccos (M - B ) gegen 0 aufgefasst werden. Beides
muss bei der Bestimmung des Phaseniibergangs analysiert werden. In der Abbildung 3.1 sind
die Energiedichtedifferenzen gegen das Magnetfeld fiir unterschiedliche Kippwinkel ¢ aufgetra-
gen. Die gestrichelten Linien geben den Phaseniibergang an (fiir die genaue Bestimmung siehe

weiter unten). In Abbildung 3.2 sind die dazugehérigen Diskretisierungslingen und Offnungswin-

15
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Abbildung 3.1: Energiedichtedifferenz gegen das Magnetfeld fiir ausgewéhlte Kippwinkel ¢. Die
gestrichelten Linien stellen den Phaseniibergang von der HK zur polarisierten

Phase dar.
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Abbildung 3.2: Darstellung des Verhaltens der Diskretisierungslingen a und Offnungswinkel 9.
Die Phasengrenzen sind mit gestrichelten Linien gekennzeichnet.
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Abbildung 3.3: Vorlaufiges Phasendiagramm mit der HK Phase und polarisierter Phase. Die aus
der Simulation bestimmten Grenzen sind punktférmig dargestellt, das kritische
Magnetfeld aus (2.9) ist blau gekennzeichnet. Die Abweichung beider wird im
Text diskutiert.

kel abgebildet. Die Diskretisierungslange ist ein interpolierter Wert zur minimalen Energie, als
Offnungswinkel wurde der grofte Winkel ¢ aufgetragen, der in unseren 50 diskreten Magneti-
sierungsvektoren vorkam. Bei der Betrachtung der Abbildungen kénnen drei Félle unterschieden
werden: Im ersten Fall divergiert am Phaseniibergang die Wellenléinge, wihrend der Offnungswin-
kel einen endlichen Wert beibehilt (z.B. ¢ = 0°). Im zweiten Fall konvergiert der Offnungswinkel
gegen null bei endlicher Wellenlange (z.B. ¢ = 90°), im dritten Fall findet der Phasentibergang
bei endlicher Wellenlinge und endlichem Offnungswinkel statt (z.B. ¢ = 50°). In den ersten bei-
den Féllen wire zu erwarten, dass die Energien der HK Phase am Phaseniibergang stetig in die
Energiewerte der polarisierten Phase iibergeht und wir einen Phaseniibergang zweiter Ordnung
hétten. In Abbildung 3.1 steigen die Energiedichtedifferenzen fiir den ersten Fall allerdings deut-
lich iber null, bevor sie auf den Wert der polarisierten Phasen abfallen. Dies kommt durch die
Wahl des Wertebereichs von a zu Stande. Die Energiedichte £y hat ihr Minimum bei a > 0.2
und wiirde ohne Randbedingung an a (wie in unendlich grofen Systemen) stetig in Exk tiber-
gehen. Daher versagt fiir diese Punkte unser Simulationsmodell, was auf die Bestimmung des
Phaseniibergangs aber keinen Einfluss hat, da a am Phaseniibergang sehr schnell divergiert. Ins-
besondere der konstante Wert bei ¢ = 0° von 9 = 180° zeigt zum einen die komplett helische
Struktur, zum anderen, dass durch die Randbedingung an a dieser Zustand nie in die polari-
sierte Phase iibergehen kann, was zu weiter steigenden Energiedichtedifferenzen fiihrt. Die Werte
Euk —Epol > 0 bei endlichem a und endlichem 9 sind Charakteristika des Phaseniibergangs erster
Ordnung. Wie ldsst sich mit diesem Wissen der Phaseniibergang moglichst genau bestimmen?

Da die Diskretisierungslénge im ersten Fall schnell ansteigt, reicht eine lineare Interpolation der

Werte um &g — Epol. Bei der Konvergenz des Offnungswinkels und grofsem Kippwinkel geht
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3 Helisch/Konische Phase

die Energiedichte parabelférmig in die der polarisierten Phase tiber, daher bestimmen wir den
Phaseniibergang x¢ mit dem Fitansatz f(z) = a(z — 2¢)? mit a und g als Fitparameter und
f(x) < Enk —Epol. Den Ubergang erster Ordnung im dritten Fall bestimmen wir wieder mit einem
linearem Fit. In Abbildung 3.3 sind unsere Ergebnisse der Phasengrenzen mit dem analytisch
bestimmten kritischen Magnetfeld aus (2.9) aufgetragen. Betrachten wir die Ordnung der Pha-
seniibergénge, ldsst sich auch die Abweichung unserer simulierten Phasengrenze zum analytisch
bestimmten B, erkldren. Fiir ¢ < 25° haben wir einen Phaseniibergang zweiter Ordnung mit
divergierender Wellenldnge am Phaseniibergang. Fiir 25° < ¢ < 70° findet ein Phaseniibergang
erster Ordnung statt und fiir ¢ > 70° einer zweiter Ordnung mit Konvergenz des Offnungswin-
kels. Bei Analyse des Offnungswinkels kurz vor dem Phaseniibergang (siehe hierzu auch Abb. A.1
(b) im Anhang) stellen wir fest, dass dieser mit sinkendem Kippwinkel des Magnetfelds immer
weiter ansteigt. Der Offnungswinkel ist mit §M? aus dem Ansatz (2.2) korreliert. B, ist nur
giiltig fiir 6M"/> < 1, was bei grofem Offnungswinkel nicht der Fall ist. Dadurch verliert unsere
Berechnung von B, aus Kapitel 2 ihre Giiltigkeit fiir kleinere Kippwinkel.

Der simulierter Phaseniibergang in Abbildung 3.3 ist dem analytischen B, demnach vorzuzie-
hen. Als néchste Struktur in chiralen Magneten betrachten wir Skyrmionen, wobei wir zuerst
Eigenschaften des Skyrmions untersuchen, bevor wir in Kapitel 6 das Phasendiagramm vervoll-

standigen werden.
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4 Isoliertes Skyrmion

In diesem Kapitel werden wir einzelne Skyrmionen beschreiben und untersuchen. Wie in Kapitel
1 besprochen, exisitieren unterschiedliche Formen der Dzyaloshinskii-Moriya Wechselwirkung,
die fiir die Bildung unterschiedlicher Skyrmion Typen verantwortlich sind. Zum einen die chirale
Dzyaloshinskii-Moriya Wechselwirkung mit Parameter D in (1.2), zum anderen die Oberflichen
DM Wechselwirkung mit D", Hier werden wir uns nicht, wie in der restlichen Arbeit, auf den
Fall D™ = ( in (1.2) beschrinken (Bloch Typ), sondern betrachten auch den kontriiren Fall
mit D = 0 und D™*r =£ 0 (Neel Typ). Hierfiir simulieren wir eine Fliche mit N, = N, = 301,
ay = ay = 0.2 mit angelegtem Magnetfeld B = B (0, sin ¢, cos #)" und einem Skyrmion mittig
platziert. Wir werden exemplarisch bei ¢ = 0° und ¢ = 40° (B = 0.75) die Energien sowie die

Komponenten M3 entlang der Hauptachsen analysieren und Unterschiede herausarbeiten.

4.1 Magnetfeld Kippwinkel ¢ = 0°

Betrachten wir die Magnetisierung unter dem Einfluss eines senkrechten Magnetfelds. In Abbil-
dung 4.1 sind die beiden Skyrmiontypen (Bloch und Neel) dargestellt. Bei beiden handelt es sich
um Verwirbelungen der Magnetisierung um ein Zentrum, welches antiparallel zum polarisierten
Hintergrund steht. Augenscheinlich sind beide Skyrmiontypen rotationssymmetrisch zu ihrem
Zentrum und die Magnetisierung wird kontinuierlich in den Hintergrund iiberfiihrt. Bei Bloch
Skyrmionen bildet die Magnetisierung bei der Uberfithrung einen zusétzlichen Wirbel gegen den
Uhrzeigersinn. Die Neel Skyrmionen hingegen gehen radial kontinuierlich in den Hintergrund
iiber. Betrachten wir die Energie der einzelnen Skyrmiontypen, d.h. die Energie des ausrela-
xierten Systems F[M] abziiglich der Energie des Hintergrundes Fp, = —B fQ dr?, so erhalten
wir

FBioch = FNeel- (4.1)

Vergleichen wir jetzt noch Mj der Magnetisierung durch das Skyrmionzentrum (siehe Abb. 4.2
(a)), so fillt der kontinuierliche Ubergang in den polarisierten Hintergrund fiir beide Typen gleich
aus. Aufgrund der Rotationssymmetrie geniigt die Betrachtung entlang einer Hauptachse. Die
Frage bleibt, ob wir die Energiegleichheit auch analytisch verstehen kénnen. Der Unterschied

zwischen Bloch und Neel Skyrmionen ist eine Rotation der Magnetisierung um die z-Achse|[14].

cos7/2 —sin7/2 0 ~M3
MY =R, (7/2) M® = | sin7/a  cosm/a 0| MP = ME |, (4.2)
0 0 1 M3
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Abbildung 4.1: Darstellung der Magnetisierung unterschiedlicher Skyrmion Typen. Die Farbco-

dierung gibt die M3 Komponente an (von -1 rot bis +1 blau). Beide wurden bei
¢ = 0° und B = 0.75 ausrelaxiert. Dabei ist nur jeder zweite Magnetisierungs-

vektor abgebildet.

it \ f ’ R
i)
° ° /‘.'3 . s
o o > o
0.5 e o 0.5 »
o o ? 3
°
o o P
s o0 oo = o0 3 .
oo . @ Bloch (c, 151)
© 9
oo e e Bloch (151, c)
-0.5 0o ® Bloch -0.5 5 1
Ceo ® Neel (c, 151)
oo Neel 88
o0 iﬁ’ Neel (151, ¢)
-1.0 ® -1.0 ’
0 50 100 150 200 250 300 0 50 100 150 200 250 300
X [sites] c [sites]
(a) ¢ =0° (b) ¢ =40°

Abbildung 4.2: (a) Vergleich der M3 Komponente von Bloch und Neel Skyrmion entlang einer
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Achse durch das Zentrum fiir ¢ = 0°. (b) Vergleich der M3 Komponenten, diesmal
mit um ¢ = 40° gekippten Magnetfeld. Die M3 Komponente des polarisierten
Hintergrundes liegt bei 0.766. Auffillig ist die Ahnlichkeit der Symmetrie beider

Typen entlang unterschiedlicher Achsen.
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Abbildung 4.3: Darstellung der Magnetisierung unterschiedlicher Skyrmion Typen. Die Farbco-
dierung gibt die M3 Komponente an (von -1 rot bis 41 blau). Beide wurden bei
¢ = 40° und B = 0.75 ausrelaxiert. Dabei ist nur jeder zweite Magnetisierungs-
vektor abgebildet.

wobei MN die Magnetisierung der Neel Skyrmionen und M?P? die der Bloch Skyrmionen sei.

Berechnen wir die Energie mit dem interface Term aus (1.2) fiir die Neel Skyrmionen

FWWN—A%;M@HM%WLM%WWW%WLM%WK&W
= /Qd2r %(aaMJB) — MBoyME + MPoyMP + MPo,ME — MPo,MP — B3 M
- /Q dr %(aaMJB) + Eiag MP (0 MP) — By My P2 Fehiral pB)

erhalten wir direkt die Energiegleichheit mit den Bloch Skyrmionen und dem chiralen Term. So-
mit sind unter senkrecht zur Oberfliche stehendem Magnetfeld alle Rechungen und Simulationen
ebenso fiir Skyrmionen vom Neel Typ und der interface DM Wechselwirkung giiltig. Es stellt sich
die Frage, ob diese Aquivalenz auch fiir gekippte Magnetfelder gilt.

4.2 Magnetfeld Kippwinkel ¢ = 40°

In der Abbildung 4.3 ist diesselbe Anordnung wie in 4.1 dargestellt, mit dem Unterschied, dass
das Magnetfeld nicht senkrecht zur Ebene steht, sondern um ¢ = 40° gekippt wurde. Es bilden
sich wieder Magnetisierungswirbel um ein Zentrum, dessen Spin antiparallel zum polarisierten
Hintergrund steht. Das Bloch Skyrmion bildet einen Schweif senkrecht zum Magnetfeld aus,
wohingegen das Neel Skyrmion einen Schweif parallel zum Magnetfeld ausbildet. Somit ist die
Rotationssymmetrie des vorherigen Falls gebrochen. Die Energien beider Typen sind wieder
gleich. Betrachten wir wieder die Magnetisierungskomponente M3 entlang der Achsen (¢, 151) und
(151, ¢), wobei ¢ variabel, in Abbildung 4.2 (b). Da sich das Skyrmionzentrum bei der Relaxation
leicht verschoben hat, treten Abweichungen in der Symmetrie auf. Auffallig ist, dass Bloch- und
Neel Typ den gleichen Verlauf von M3 um 90° rdumlich rotiert haben. Entlang (¢, 151) beim
Bloch- und (151, ¢) beim Neel Skyrmion steigt die M3 Komponente vor dem Zentrum iiber den

polarisierten Hintergrund an, fallt zum Zentrum ab, um dann kontinuierlich in den polarisierten
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4 Isoliertes Skyrmion

Hintergrund tiberfiithrt zu werden.

Betrachten wir die verbleibenden Achsen genauer. In Abbildung 4.4 sind die Achsen (151,¢)
(Bloch) und (e, 151) (Neel) ab Skyrmionzentrum dargestellt. Beide Magnetisierungskomponenten
M3 bilden periodische Minima unterhalb des polarisierten Hintergrundes aus. Bestimmen wir den
Abstand d*?

Typ
mal Diskretisierung a), so ergibt sich

zwischen dem ersten und zweiten Minimum in Einheit einer Lange (Gitterplitze

Q

A2 9.852,
B2, ~ 9.852.

Dies entspricht in etwa der Wellenldnge eines Magnons (vgl. Kapitel 2). Es ist zu vermuten, dass
die Auslenkung aus der polarisierten Phase durch das Skyrmion ein Magnon im System anregt.
Auswirkungen dieser Anregung auf die Skyrmioninteraktion werden Gegenstand des Kapitel
5. Zusammenfassend sind in unserer Konfiguration beide Skyrmionenergien gleich und die Mg
Komponente um 90° radumlich getauscht. Betrachten wir den Fall des gekippten Magnetfeldes wie
im vorherigen Abschnitt analytisch. Die Magnetisierung des Neel Skyrmions sei wieder iiber (4.2)
mit der Magnetisierung des Bloch Skyrmions verbunden. Die ersten zwei Termen sind identisch

mit der vorherigen Rechnung, nur der letzte Term modifiziert sich:

, 1
FR MY = / d*r 5(aanN) + MYy MY — MYy MY + MY oo MY — MYoyMY — B - MY
Q
1
= /Q d*r 5(5—9an3) + iajMP (0aM}) — BT R.(n/2) MP
1 T
= / d*r 5(aanB) + €iajMP (0 M) — [R.(7/2)" B] MP
Q —_—
=B’

p~:d- Fchiral [MB]B’ )

Somit ist das Energiefunktional fiir Bloch und Neel Skyrmionen auch unter gekipptem Magnet-
feld bis auf die rdumliche Ausrichtung identisch. Das Energiefunktional fiir ein Neel Skyrmion
entspricht dem eines Bloch Skyrmions mit einem Magnetfeld B’, welches um einen Winkel —7/2
um die z-Achse gedreht wurde. Hiermit ist auch die Vertauschung der Achssymmetrien in unse-
ren Simulationen erklart.

Als weitere Konsequenz sind alle Rechnungen in dieser Arbeit auch fiir Neel Skyrmionen giiltig.
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Abbildung 4.4: Darstellung der M3 Komponente entlang entsprechender Achsen. Die Minima
sind durch die gestrichelten Linien gekennzeichnet und vergrofiert ist das jeweils
zweite Minimum dargestellt. Die diinne schwarze Linie markiert die M3 Kompo-

nente des Hintergrundes.
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5 Skyrmion Wechselwirkung

In diesem Kapitel wird die Frage behandelt, wie Skyrmionen miteinander interagieren, insbe-
sondere unter Kippung des angelegten Magnetfeldes. Im ersten Teil werden wir die Skyrmion-
Skyrmion Interaktion in Abhéngigkeit von B, und darauf aufbauend die Skyrmionlinien Inter-

aktion untersuchen.

5.1 Zwei Skyrmion Wechselwirkung

5.1.1 Simulation

Um das Skyrmion-Skyrmion Potential bestimmen zu kénnen, simulieren wir eine quadratische
Flache (N, = Ny = 301, a, = ay = 0.2) in der z-y-Ebene, in dessen Mitte ein Skyrmion platziert
wird. Das externe Magnetfeld sei gegeben durch B = B (0,sin ¢, cos$)’. In einem beliebigen
Abstand d = (dy,d,)" wird ein zweites Skyrmion gesetzt. Beide Skyrmionmittelpunkte fixieren
wir, indem wir die Magnetisierung um das Skyrmionzentrum fixieren, und relaxieren das System
bis zum stationdren Zustand mit der Energie F'(d). Das Zwei-Skyrmion-Potential kann auf zwei

dquivalente Arten bestimmt werden:

Vasiy(d) = F(d) = Fpol — 2 Fisky, (5.1)
Vit (d) = F(d) = F(d|ae0)- (5.2)

Dabei ist Fp die Energie des polarisierten Untergrundes (vgl. auch 2.1) und Figky die Energie
eines einzeln relaxierten Skyrmions ohne Untergrund. Eine Abweichung der beiden Potentia-
le VQISky und VQZSky wiirde auf einen systematischen Fehler, beispielsweise Randeffekte, in der
Simulation hindeuten. Daher lohnt es sich die Ubereinstimmung unseres Aufbaus einmalig zu
untersuchen. Fiir den Fall ¢ = 0 reicht aufgrund der Rotationssymmetrie der Skyrmionen die
Betrachtung entlang einer Achse. Fiir alle Magnetfeldstdrken B, bei denen Skyrmionen stabil
sind, bildet sich ein repulsives Potential aus. Das repulsive Potential sowie der Vergleich der
Potentialbestimmungsmethoden ist in Abbildung 5.1 gezeigt. Wie erwartet weichen die beiden
Potentialbestimmungsmethoden nicht voneinander ab, und wir betrachten in der restlichen Ar-
beit das Skyrmionpotential Vagiy = VQISky. Analysieren wir als néchstes den Fall des gekippten
Magnetfeldes. Abbildung 5.2 zeigt das Potential entlang der Hauptachsen durch den Skyrmion-
mittelpunkt (fixierte Magnetisierung). Entlang der z-Achse ist das Skyrmionpotential wie im
Fall ¢ = 0 rein repulsiv und die Skyrmionen wiirden aus energetischen Griinden einen méoglichst
grofen Abstand zueinander einnechmen. Betrachten wir das Potential entlang d = (0,d,)?, so
fallen Potentialminima mit Vogy, < 0 auf. Demnach ist es fiir die Skyrmionen energetisch sinn-

voller einen endlichen Abstand entlang dieser Achse einzunehmen. Der Abstand vom erstem zum
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Abbildung 5.1: Darstellung des repulsiven Potentials fiir ¢ = 0 und B = 0.75, Darstellung der
Gleichheit beider Bestimmungsmethoden.

12

zweiten Minimum betrégt d,> ~ 9.9, dies entspricht dem Wert der periodischen Schwankungen

der Magnetisierung M3 des Einzelskyrmions. Nehmen wir an, dass die Ausbildung der Minima

ihre Ursache in der Ausbildung von Magnonen hat, so miisste dieser Abstand der Magnonwellen-

lange Apin = ki:n = sir?ZOo ~ 9.8 entsprechen. Dies wiirde den Unterschied zwischen den beiden

Hauptachsen (d,,0) und (0, d,) erkldren, da die Magnonen entlang der z-Achse knyin,1 = 0 und

hieraus eine zugehorige Wellenldnge von A — oo haben (vgl. Kapitel 2 und 4). Nun betrachten
wir, wie sich das Potential mit den Systemparametern ¢ und B &ndert. In Abbildung 5.3 ist
die Abhéngigkeit der beiden Parameter dargestellt. Qualitativ verschiebt sich das Minimum mit
steigendem Kippwinkel ¢ in Richtung kleinerer Absténde und tieferen Potentialen. Das Mini-
mum verschiebt sich allerdings mit steigendem Magnetfeld zu kleineren Absténden. Dies ist mit
der Magnonrechnung nicht nachzuvollziehen, nach der die Position des Minimums unabhéngig
von B wére. Allerdings schrumpft das Skyrmion mit steigendem Magnetfeld und die Position
des ersten Minimums korreliert mit der Skyrmiongréfe. Daher betrachten wir den Abstand vom
ersten zum zweiten Minimum bei unterschiedlichen Kippwinkeln ¢ und vergleichen diesen mit

der Magnonwellenliange Apip:

Datenreihe | di2. | Awin | 2,/ Amin
¢ =35°,B=0.76 | 11.00 | 10.96 | 1.004
¢=40°,B=0.75 | 9.90 | 9.77 | 1.013

¢ =45°.B=0.75 | 9.02 | 8.89 1.015

Bei dem Vergleich wurde auf kleinere Winkel verzichtet, da die Bestimmung des zweiten Mi-
nimums kaum noch mdoglich war. Die Daten zeigen, dass in erster Naherung unser Ansatz der
Spinwellen eine gute Erklarung fiir die Ausbildung der Minima ist. Durch die Potentialminima

ldsst sich auch die Linienbildung, auf die in Kapitel 1 eingegangen wurde, verstehen.
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Abbildung 5.2: Potential entlang der beiden Symmetrieachsen unter gekippten Magnetfeld (¢ =
40° und B = 0.75). Die Mimima entlang (0, d,) wurden mit gestrichelten Linien
markiert und das zweite Minimum vergdfsert dargestellt.
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Abbildung 5.3: Darstellung von Vagiy, entlang (0,d,). In Abbildung (a) ist die Abhéngigkeit vom
Kippwinkel ¢ dargestellt, wobei B so gewdhlt wurde, dass das Skyrmion im Ver-
gleich zum Hintergrund energetisch keinen Unterschied ausmacht. Mit den gestri-
chelten Linien sind die einzelnen Minima in den Datenreihen markiert. Abbildung
(b) zeigt die Abhéngigkeit vom angelegtem Magnetfeld B bei ¢ = 40°, wobei die
Datenpunkte aus Darstellungsgriinden durch Linien ersetzt wurden.
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Abbildung 5.4: Skyrmionpotential mittels Koordinatensuperposition. In (a) ist der Vergleich zwi-
schen Relaxation und Superpositionsmethode entlang (0,d,) aufgetragen. (b)
zeigt die 2D Potentiallandschaft unserer Testflache, wobei (d;,d,) in Einheiten
von 0.2 diskretisiert wurde.

Als néchstes stellt sich die Frage, wie eine komplette 2D-Potentiallandschaft in unserer Fléache
ausschaut. Jedoch sind die Simulationen aufgrund der Modellgréfe sehr aufwendig. Eine Abbil-

dung des Potentials fiir eine Datenreihe entlang (d,, dmin) ist dem Anhang A zu entnehmen.

5.1.2 Naherung durch Koordinatensuperposition

Um die aufwendigen Simulationen zu umgehen, {iberlegen wir uns eine Magnetisierungsnaherung
Mg, aus der Magnetisierung M eines ausrelaxierten Systems, bestehend aus einem Skyrmion
auf polarisiertem Hintergrund. Dafiir superponieren wir den Skyrmionanteil Mgyy(ny,ny) =
M (ng,ny) — Mpor des diskretisierten Systems mit einem Skyrmionanteil um d = (d,, d,) € Z2,
verschobenen auf den polarisierten Hintergrund M. Dabei ist n;, € N und der polarisierte

Hintergrund nach Kapitel 2 gleich B. Somit erhalten wir als Néherung:

M (n;,ny) + M(ng —dg,ny — dy) — B

_ > (5.3)
|M (ng,ny) + M(ng — dg,ny — dy) — B

MSup(nza Ty, d)

Dazu nehmen wir wie in der Zwei-Skyrmion Relaxierung periodische Randbedingungen an. Die
Systemgrofe der Ein-Skyrmion Relaxation ist analog zur Zwei-Skyrmion Relaxation in Abschnitt
5.1.1. Mit der Energie F'[Msg,,(d)] konnen wir das Potential Vagiy, bestimmen. In der Abbildung
5.4 (a) ist die Zwei-Skyrmion Relaxation und die Superpositionsnidherung in einem Plot aufgetra-
gen. Qualitativ reproduziert die Ndherung das Minimum. Quantitativ fallt auf, dass fir kleinere
Absténde die Naherung, im Vergleich zur Relaxationsmethode, hohere Energiewerte produziert.
Mit dieser Naherung kénnen wir die 2D Potentiallandschaft erstellen und die Kontur des Mini-
mums abbilden (siehe Abb. 5.4 (b)). Aus Symmetriegriinden und Austauschbarkeit der beiden
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Skyrmionen geniigt die Berechnung von (d;,d.) € (Nyg x Np), ferner wurden kleine Abstédnde
(dy oder d,, kleiner 25) ausgespart. Eine Auflésung des zweiten Minimums ist dem Anhang A zu

entnehmen.

5.2 Skyrmionlinien Wechselwirkung

Die Kettenbildung aus [10] haben wir mit dem Skyrmionpotential aus den obigen Simulationen
erklaren konnen. Nun bleibt die Frage offen, wie sich die Ketten untereinander verhalten. In

anderen Worten: Wie sieht das Skyrmionlinienpotential aus?

Dazu simulieren wir eine Einheitszelle aus zwei

Skyrmionen (angeordnet wie in Abb. 5.5) und pe- {”H;HHH“HIH
riodischen Randbedingungen mit N, = 44, a, =  {{{ SRR - -~~~ > =21
0.194, a; = 0.2 und N, variabel. Ny und a, wurden \,\'\f
dabei so optimiert, dass bei angelegtem Magnetfeld R

\\\\\\

A I
B =0.75 (0,5in40°, cos 40°)7 die Skyrmionen ent- [/ 11 [{{{}
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e
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e} /
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lang der y-Richtung in den Potentialminima sitzen <

=2
X

und, begriindet durch die periodischen Randbedin-

gungen, unendlich lange Skyrmionketten simuliert Abb. 5.5: Einheitszelle zur Skyrmionlinien-

werden. Die ermittelte Energie F' ist jetzt abhén- potential Bestimmung. Dabei ist
gig von der Systemgrofe N, welches der zweifache nur jeder zweite Magnetisierungs-
Skyrmionlinienabstand ist. Um das Potential zu be- vektor abgebildet.

stimmen, ziehen wir die Energie des polarisierten

Hintergrunds und die Energie der zwei Skyrmionen unserer Zelle ab:
VSkyLine(Nx) = F(N:E) - FPol(Nx) - [F(Nx) - FPol(Na:)}Nz—mo- (54)

N, — oo ndhern wir durch N, = 400. Auf diese Weise kénnen wir das Skyrmionlinieninterakti-
onspotential simulieren. Da im vorangengangenen Abschnitt die Ndherung durch Koordinaten-
superposition gute Ergebnisse produzierte, werden wir das Skyrmionlinieninteraktionspotential
auf dhnliche Weise ndhern. Dafiir setzen wir wie in Abbildung 5.5 ein Skyrmion in die Mit-
te unserer grofiten Systemgrofe (N, = 400, alle weiteren Parameter wie oben) und lassen das
einzelne Skyrmion ausrelaxieren. Durch die periodischen Randbedingungen entspricht dies der
Relaxierung einer unendlich langen Skyrmionkette. Darauthin beschneiden wir das System auf
unser zu untersuchendes N, und superponieren nach (5.3) das System mit sich selbst, wobei
d = (N:/2,Ny/2)T. Hierdurch haben wir die gleiche Konfiguration wie in Abbildung 5.5. Auf-
grund des repulsiven Potentials entlang der z-Richtung beim Skyrmionpotential wére ein rein
repulsives Skyrmionlinieninteraktionspotential denkbar. In Abbildung 5.6 (a) sind die Ergebnisse
der Relaxierung und der Ndherung durch Koordinatensuperposition aufgetragen. Ein aufgetrete-
nes Minimum ist vergrofert dargestellt. Somit nehmen bei unserer Konfiguration (¢ = 40° und
B = 0.75) auch die Skyrmionlinien einen endlichen Abstand ein und das Potential ist entgegen

erster Erwartung nicht rein repulsiv. Wie ldsst sich dieses Ergebnis erkléren?
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5 Skyrmion Wechselwirkung
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Abbildung 5.6: Auswertung des Skyrmionlinienpotentials (bei ¢ = 40° und B = 0.75). In (a) sind
die drei verschiedenen Methoden dargestellt, in (b) modellhaft die Uberlagerung
der Potentiallandschaften. Die Positionierung der einzelnen Skyrmionen ist mit
den griinen Kreisen angedeutet. In die Minima zwischen den griinen Kreisen
setzen sich die Skyrmionen der benachbarten Linie.

Das Minimum des Skyrmion-Skyrmion Potentials hat eine langgezogene Form (vgl. Abb. 5.4 (b))
und es wére denkbar, dass die benachbarten Skyrmionlinien genau in die Ausldufer des Mini-
mums stofen. Um diese These zu untersuchen, nihern wir das Linienpotential als Uberlagerung
interpolierter Potentiallandschaften aus Abschnitt 5.1.2. In Abbildung 5.6 (b) sind exemplarisch
drei 2D Potentiallandschaften aufaddiert und es zeigt sich, dass sich Minima in der resultierenden
Potentiallandschaft ausbilden, die zur Position der Skyrmionlinienabstéinde passen. Als nichstes
iiberpriifen wir, ob sich durch Potentiallandschaftsiiberlagerung auch quantitativ die Ergebnisse
aus Relaxation und der Koordinatensuperposition reproduzieren lassen, was nicht weiter verwun-
dert, da periodische Effekte schon bei einzeln relaxierten Skyrmionen auftraten (siehe Kapitel 4).
In Abbildung 5.6 (a) ist die Potentialiiberlagerung zuséatzlich aufgetragen, die deutlich von den
simulierten Werten abweicht. Allerdings treten durch die Interpolation aus der Potentialland-
schaft viele Abweichungen in den Daten auf. Ferner sind auch Zwei-Korper- oder Drei-Korper
Wechselwirkungen, wie sie in den beiden anderen Verfahren beriicksichtigt werden, Kandidaten
fiir die Abweichungen. Dariiber hinaus stellt sich die Frage, wie sich das Skyrmionlinienpotential
fiir andere Kippwinkel und Magnetfelder verdndert. Fiir einen Kippwinkel ¢ # 0° ist es fiir die
Skyrmionen energetisch sinnvoller einen endlichen Abstand einzunehmen. Daher ldsst sich ver-
muten, dass der Phaseniibergang im Gegensatz zu dem Fall ¢ = 0° von zweiter Ordnung seien

sollte.
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6 Skyrmiongitter Phase

In diesem Kapitel wollen wir unser in Kapitel 3 begonnenes Phasendiagramm um die Ubergén-
ge des Skyrmiongitters, dessen Eigenschaften wir nun besser verstehen, komplettieren. Dafiir
werden wir zuerst den Phaseniibergang des einzelnen Skyrmions als Approximation fiir den Pha-
seniibergang des Skyrmiongitters mit der polarisierten Phase untersuchen. Im darauf folgenden
Abschnitt werden wir den Ubergang zur HK Phase herausarbeiten und dann das vollstindige

Phasendiagramm vorstellen.

6.1 Ubergang polarisierte Phase zur Skyrmiongitterphase

Im Folgenden wollen wir den Ubergang der Skyrmiongitter (SkX) Phase zur polarisierten Phase
bestimmen. Aus Effizienzgriinden betrachten wir den Ubergang eines einzelnen Skyrmions zur
polarisierten Phase, bzw. den Punkt der Energiegleichheit. Wie in Kapitel 5 gezeigt, entspricht
diese Rechnung nur einer Ndherung, da sich zum Phaseniibergang die Skyrmionen nicht unendlich
weit voneinander entfernen, sondern einen Phaseniibergang erster Ordnung bilden. Allerdings ist
der Energiegewinn durch die Potentialminima (siehe Kapitel 5) so klein, dass die Energiedichten-
gleichheit des Einzelskyrmion zur polarisierten Phase eine verniinftige Ndherung fiir den exakten
Phaseniibergang darstellt. Um dies zu zeigen, gehen wir davon aus, dass man die Energiedifferenz
des einzelnen Skyrmions zum polarisiertem Hintergrund Fgy, um den Phaseniibergang By mit
Fsky = 0+ (B —Br) sy darstellen kann. Die Abweichung AB = (B’ — Byr) zum exakten

9B |B=Br
Phaseniibergang B’ unter Einbeziehung der Potentialminima, ist durch

OF: Sky
OB |p_p,

AB + Vasky,min = 0 (6.1)
gegeben. Mit steigendem Kippwinkel sollte die Abweichung auf Grund der ausgeprigteren Mini-
ma grofer werden. Fiir ¢ = 40° betrigt die Abweichung nach der Abschéatzung (6.1) nur 1.2%.
Der Vorteil dieser Naherung ist, dass wir keine Optimierung von Systemparametern vornehmen
miissen und zuséatzlich groftenteils auf bestehende Daten aus Kapitel 4 und 5 zuriickgreifen kon-
nen.

Analog zu den vorherigen Kapiteln simulieren wir, mit N, = N, = 301, a, = ay = 0.2
und einem Skyrmion in der Mitte, die Zeitentwicklung unter einem angelegten Magnetfeld
B = B (0,sin¢,cos¢)”. Gesucht wird der Ubergang, bei der die ausrelaxierte Energie des
Systems F[M] gleich der Energie Fpo) = —B [, dr? (siehe Abschnitt 2.1) eines rein polarisierten
Zustands ist. Dabei wurden von ¢ = 0° in 5° Schritten bis zum Ubergang zur HK Phase die
Energien fiir verschieden Magnetfeldstirken B vor und nach dem Ubergang bestimmt. Durch

diese Werte wurde mittels linearer Interpolation der Ubergang bestimmt, der in der Abbildung
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6 Skyrmiongitter Phase
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Abbildung 6.1: Phasendiagramm mit eingezeichneter Phasengrenze von SkX zur polarisierten
Phase. Die errechneten Daten sind mittels Punkte gekennzeichnet, die Linien
und farbige Bereiche dienen als Orientierungshilfe.

6.1 durch die griine Datenreihe gekennzeichnet ist. Den Verlauf der Kurve in der HK Phase
lasst sich mit dieser Methode nicht bestimmen, da kein stabiler Hintergrund existiert und die
Skyrmionen zerlaufen wiirden (siehe hier als Beispiel Abb. A.3 im Anhang). Bei ¢ = 0° ist der
Phaseniibergang ungefihr bei 0.8 und fillt langsam, bis zum Schnittpunkt des Phaseniibergangs
der HK Phase mit der polarisierten Phase bei ¢ = 50°, ab. Da wir aus voherigen Rechnungen
wissen, dass zwischen der roten und der griinen Datenreihe in Abb. 6.1 der polarisierte Hinter-
grund energetisch sinnvoller als die HK Phase, und die SkX Phase sinnvoller als die polarisierte
Phase ist, muss dort eine stabile Skyrmiongitterphase liegen. Wie weit diese Phase unterhalb der

roten Datenreihe stabil ist wird im nachsten Abschnitt untersucht.

6.2 Ubergang Skyrmiongitterphase zur helisch/konischen Phase

Da, wie im vorherigen Abschnitt dargelegt wurde, eine Bestimmung des Phaseniibergangs in der
HK Phase mit obigem Aufbau nicht moglich ist, werden wir ein volles Skyrmiongitter, bzw. die
Einheitszelle mit periodischen Randbedingungen, simulieren und dieses optimieren. Dabei ist
das Skyrmiongitter auch unter gekipptem Magnetfeld immer ein zentriertes Rechteckgitter[10].
Der Aufbau der Einheitszelle ist identisch mit Abbildung 5.5, wobei zuerst grob iiber N, und
Ny bei konstantem a,; = a, = 0.2 die Energiedichte optimiert, und dann im zweiten Schritt
iber Optimierung von a, und a, die Systemgrofe noch weiter verfeinert wird. Die optimier-
te Energiedichte Eqxx = % wird mit der Energiedichte der HK Phase &k aus Kapitel
3 verglichen, wobei F[M] wieder die ausrelaxierte Energie des Systems unter dem Magnetfeld
B = B (0,sin ¢,cos ¢)T ist. Bei Energiedichtengleichheit kennzeichnen die Werte (¢, B) des voll
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6 Skyrmiongitter Phase
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Abbildung 6.2: Endgiiltiges Phasendiagramm mit allen untersuchten Phasengrenzen und der kri-
tischen Magnetfeldstirke aus Kapitel 2.

optimierten Systems wieder unseren Phaseniibergang von der HK Phase zur SkX Phase. Be-
trachtet man die Ergebnisse aus Kapitel 5, wire zu vermuten, dass die optimale Systemgrofie aus
den Positionen der Potentialminima hervorgehen wiirde. Allerdings ist der Energiedichtengewinn
bzw. -verlust durch eine dichtere Packung, aufer am Phaseniibergang zur polarisierten Phase,
ausschlaggebender. Die Abbildung 6.2 zeigt unseren Ubergang als untere griine Datenreihe. Einen
weiteren Datenpunkt konnte man iiber die Variation des Winkels bei fester Magnetfeldstarke er-
reichen. Mit steigendem Kippwinkel verzerrt sich das Skyrmiongitter anfangs nur sehr mébig.

Betrachten wir die optimierten Seitenverhéaltnisse der Einheitszelle am Phaseniibergang,

Winkel ‘ r = Nza, | y = Nyay ‘ %

¢ =0° 13.16 7.60 V3
¢ = 10° 13.16 7.60 V3
¢ = 20° 13.16 7.60 V3
¢ = 30° 13.30 7.56 1.76
¢ = 40° 13.65 7.52 1.82
¢ = 50° 15.76 7.60 2.07

so fallt diese mafige Verzerrung auf. Erst mit hoheren Kippwinkel nimmt die Verzerrung deut-
lich zu. Das abschlieffende Phasendiagramm 6.2 zeigt unsere gefunden Phasengrenzen. Alle drei
untersuchten Strukturen bilden im (¢, B)-Raum eine stabile Phase, wobei die SkX Phase fiir
steigende Kippwinkel immer weiter unterdriickt wird, bis sie bei ¢ = 50° nicht mehr stabil ist.
Die HK Phase hingegen profitiert von der Kippung des Magnetfeldes und wird dominanter. Un-
ser analytisch bestimmtes B, stellt nur fiir grofe Kippwinkel eine verniinftige Betrachtung des

Ubergangs von HK- zur polarisierten Phase dar.
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7 Fazit und Ausblick

In der vorliegenden Arbeit stellten wir uns zu Beginn die Frage, weshalb Skyrmionen in 2D Ma-
terialien unter gekippten Magnetfeldern bei T' = 0 linienférmig geordnet sind, und weitergehend,
wie das Skyrmion-Skyrmion Potential ausschaut. Im Laufe der Arbeit haben wir, mittels Com-
putersimulationen, das Skyrmion-Skyrmion Potential untersucht und attraktive Téler sowohl in
diesem als auch im Skyrmionlinienpotential gefunden. Die Genese der Potentialminima konnten
wir auf periodische Schwankungen, wahrscheinlich Magnon Anregungen, in der Magnetisierung
eines einzelnen Skyrmions ausmachen. Diese Minima treten nur bei gekippten Magnetfeldern
auf, stehen aber im Widerspruch zu bspw.[10], die die Linienbildung auf das weniger repulsive
Verhalten zuriickfiihren.

Der zweite Schwerpunkt der Arbeit lag auf der Erstellung eines B-¢-Phasendiagramms fiir 7' = 0.
Dafiir haben wir mittels Simulation die Energien unterschiedlicher, im Vorfeld bekannter, Phasen
verglichen, und so die Phaseniiberginge rausgearbeitet. Die Ordnung des Phaseniibergangs von
der HK zur polarisierten Phase zeigte dabei interessante Wechsel.

Es wurde gezeigt, dass alle Rechnungen und Simulationen in der Arbeit auch mit Oberflachen-
Dzyaloshinskii-Moriya Wechselwirkung ihre Giiltigkeit behalten.

Hierauf aufbauend kéonnte man die Temperaturabhéngigkeit der gefunden Phaseniibergéinge und
Potentialminima untersuchen. Auch die Abhéngigkeit des Skyrmionlinienpotentials vom Kipp-
winkel wurde nicht geklart. Fir mogliche Anwendungen wére auch die Interaktion von Skyr-
mionen mit dem Rand endlicher Systeme von Interesse. Insbesondere die Frage nach adhésivem
Verhalten durch die Potentialminima wiére fiir zukiinftige Speichermedien von Wichtigkeit. In
diesem Kontext wire auch die Skyrmiondynamik untersuchenswert. Zusétzlich konnte die Sys-
temdicke vom Monolayer zu einem System endlicher Dicke variiert werden.

Zusammengefasst haben wir viele interessante Einsichten in den Mikrokosmos der chiralen Ma-

gnete und dessen Phasen gewonnen, der auch noch in Zukunft viel Raum fiir Forschung l&sst.
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A Abbildungen

Zu Kapitel 3:
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Abbildung A.1: (a) Darstellung des letzten maximalen Offnungswinkels vor dem Phaseniiber-
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Abbildung A.2: ¢ = 40° und B = 0.75. (a) Potential entlang (d,dmin = 8.8). (b) Zweites

Minimum im Konturplot, berechnet mit Koordinatensuperposition.
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A Abbildungen

Zu Kapitel 6:
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Abbildung A.3: Zerlaufenes Skyrmion, relaxiert mit angelegtem Magnetfeld B =
0.65 (0,sin40°,cos40°)T. Der polarisierte Zustand des Hintergrunds ist
nicht stabil (Werte innerhalb der HK Phase), wodurch sich das Skyrmion stark

deformiert. Dabei ist nur jeder vierte Magnetisierungsvektor abgebildet.
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B Konventionen

Auflistung der benutzten Konventionen:

e Vektoren werden im Text durch Fettdruck gekennzeichnet. Soweit nicht anders angegeben,

stellt x; die i-te Komponente des Vektors x in der kanonischen Basis dar.
o = -y =x'y ist das Standardskalarprodukt zwischen & und y.
e Sollte & definiert sein, so ist, falls nicht anders angegeben, x = ||| = V& - .
o Essei 2= 7.

e Es gilt die Einsteinsche Summenkonvention, d.h. iber doppelt auftretende Indices wird

summiert.

.81

o) — 0 — 0

1,  fir (4,7, k) gerade Permutation von (1,2, 3).

e ¢;ji ist das Levi-Civita Symbol mit €55, = ¢ —1, fiir (4, j, k) ungerade Permutation von (1,2, 3).
0, sonst.
o Sei F[M(r)] = [, d™r E(M;,0,M;), dann ist f—]\}; = (%,%, fWFg)T mit 5‘5—]\1 = 8‘3\‘2 -
8u% (siche [15, S. 15]).

e i, j ist in rdumlicher Darstellung aus {1, 2,3}, a nur aus {1, 2}.
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