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1 Einleitung

In der folgenden Bachelorarbeit sollen magnetische Strukturen in chiralen Magneten bei Tempe-
ratur T = 0 untersucht werden. Dafür werden die unterschiedlichen thermodynamischen Grund-
zustände erst jeweils vorgestellt, speziell für den Fall gekippter Magnetfelder die Phasenübergänge
bestimmt und im Besonderen die Skyrmion-Skyrmion Wechselwirkung untersucht.

1.1 Strukturen in chiralen Magneten

Abb. 1.1: Kristallstruktur
von MnSi [1]

Als chiralen Kristall bezeichnet man einen Kristall, der keine In-
versionssymmetrie besitzt. Abbildung 1.1 zeigt als Beispiel für
Chiralität Mangan-Silizium, welches Forschungsobjekt vieler Ex-
perimentatoren ist[2]. Durch die fehlende Inversionssymmetrie
treten zusätzliche Terme in der Energie auf (siehe Abschnitt 1.3),
die zu neuen thermodynamisch stabilen Phasen im Magneten füh-
ren können. Im Folgenden werden alle im MnSi gefunden Phasen
der Magnetisierung kurz charakterisiert. Ändert sich die Magne-
tisierungM nicht mit der räumlichen Variation, spricht man von
der polarisierten oder ferromagnetischen Phase. Die helische Phase zeichnet sich durch senkrecht
zur Ausbreitungsrichtung k̂ stehender Magnetisierung M aus, in der konischen Phasen steht k̂
parallel zu einem angelegten MagnetfeldB (siehe Abb. 1.2). Die ersten experimentellen Nachwei-
se der helisch/konischen Phasen in MnSi wurden in den 70er Jahren durch Neutronenstreuung
erbracht[3].
Eine weitere Phase wurde theoretisch durch Bogdanov im Jahr 1994 vorausgesagt[5]. DurchWech-
selwirkungen im Magneten sollten Wirbel entstehen, welche wiederrum eine hexagonale Struktur
ausbilden. Erst im Jahr 2009 konnten Mühlbauer et al., mittels Neutronenstreuung, eine stabile
Phase in MnSi mit hexagonaler Struktur (siehe Abb. 1.3) nachweisen[2]. Mit einem Lorentz-
Transmissions-Elektronen-Mikroskop gelang ein Jahr später Yu et al. eine Realraum-Aufnahme

k

k || B

Abbildung 1.2: Vergleich einer helischen und einer konischen Struktur[4].
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1 Einleitung

(a) SANS an MnSi (b) Lorentz TEM an Fe0.5Co0.5Si

Abbildung 1.3: (a) Experimentelles Ergebnis der Small-Angle-Neutronen Streuung mit den sechs
Streupeaks im reziproken Raum[2]. (b) Experimentelles Ergebnis der Lorentz-
Transmissions-Elektronenmikroskopie im Realraum[6].

der Magnetisierungswirbel[6]. Die Magnetisierungswirbel wurden nach Tony Skyrme benannt,
der erstmals 1960 die Möglichkeit topologisch geschützter (Quasi-)Teilchen in der Kernphysik
voraussagte[7]. Die Abbildungen 1.3 zeigen die beiden experimentellen Nachweise der stabilen
Skyrmionengitterphase. Seit diesen Nachweisen ist ein reges Interesse an der Erforschung der
Skyrmionen entbrannt, da sie aufgrund ihrer kleinen Abmessung und leichten Manipulierbarkeit
Kandidaten für neue effizientere Speichersysteme sind[8, 9].
Skyrmionen können unterschiedliche Magnetisierungskonfigurationen haben[7]. In der Abbildung
4.1 sind zwei Simulationen solcher Skyrmiontypen dargestellt. Dabei weist bei beiden Typen die
zentrale Magnetisierung antiparallel zum polarisierten Untergrund. Detailliert werden die Eigen-
schaften und Strukturen der einzelnen Phasen im Hauptteil der Arbeit vorgestellt.

1.2 Motivation

Um die einzelnen Phasen zu stabilisieren, legten Forscher ein externes Magnetfeld B an die Pro-
be an. Somit konnte ein B-T -Phasendiagramm für die Probe erstellt werden (vergleiche hierzu
auch [2]). Es zeigte sich, dass in dünnen Schichten schon bei T = 0 und endlichem, senkrecht
zur Oberfläche stehendem, Magnetfeld, Skyrmionen der thermodynamisch stabile Grundzustand
seien können, was in 3D Materialien nicht der Fall ist, und im Einklang mit den theoretischen
Vorhersagen steht. Ferner zeigte sich in theoretischen Abhandlungen, dass Skyrmionen unter
senkrechtem Magnetfeld stets repulsiv sind. Lin und Saxena gingen einen anderen Weg und si-
mulierten eine dünne Schicht mit gekipptem Magnetfeld[10]. In ihren Simulationen beobachteten
sie, dass sich einerseits die Skyrmionen verformten und andererseits Ketten bildeten. Sie führten
diese Kettenbildung auf die Anisotropie der repulsiven Wechselwirkungen der Skyrmionen un-
tereinander zurück, d.h. in die eine Richtung stoßen sich Skyrmionen weniger stark ab als in die
andere.
Mit diesem Wissen stellen sich zwei mögliche Aufgabenstellungen:
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1 Einleitung

1. Wie sieht das Skyrmion-Skyrmion Potential aus?

2. Wie verändern sich die Phasengrenzen unter Kippung des Magnetfeldes?

Diese beiden Fragen sollen im Rahmen dieser Arbeit beantwortet werden. Insbesondere ist bei
(1) zu untersuchen, ob das Potential durchgehend repulsiv ist, oder ob sich attraktive Täler aus-
bilden und wie sich das Potential unter Kippung des Magnetfeldes verhält. Beide Punkte werden
mittels Computersimulationen bei konstanter Temperatur T = 0 untersucht.
Um die Fragestellungen zu beantworten, werden wir im Folgenden die benötigten Formeln und
Grundlagen sowie das genutzte Modell kurz erläutern. In Kapitel 2 wird die polarisierte Phase
untersucht und deren Energie sowie Anregungsspektrum. In Kapitel 3 widmen wir uns dann
der helisch/konischen Phase und bestimmen numerisch den Phasenübergang von polarisierter
zu helisch/konischer Phase für das B-φ-Phasendiagramm. In den Kapiteln 4 bis 6 werden wir
Skyrmionen untersuchen. Dabei werden wir uns mit dem allgemeinen Aussehen eines einzelnen
Skyrmions unter dem Einfluss verschiedener Magnetfelder beschäftigen, darauf aufbauend das
Skyrmion-Skyrmion Potential sowie das Skyrmionlinienpotential untersuchen und zum Schluss
den Phasenübergang des Skyrmiongitters zur polarisierten und zur helisch/konischen Phase be-
trachten.

1.3 Modell und Energie

Unterschiedliche Mechanismen können für die Bildung von Skyrmionen verantwortlich sein[7]:

1. langreichweitige magnetische Dipolwechselwirkungen

2. Dzyaloshinskii-Moriya Wechselwirkung

3. frustrierte Austauschwechselwirkung

4. Vier-Spin Austauschwechselwirkung

In den Fällen (3) und (4) ist das Skyrmion von derselben Größenordnung wie die Gitterkostante.
Daher werden wir uns auf die Dzyaloshinskii-Moriya Wechselwirkung beschränken, welche bei
chiralen Materialien auftreten kann. Da die Größe der Skyrmionen in diesem Fall bei 5-100 nm
liegt[7] und somit weit über typischen Gitterkonstanten, können wir das System mit einem Kon-
tinuumsmodell beschreiben[7].
Um die oben genannten Fragestellungen zu untersuchen, lassen sich noch folgende Vereinfachun-
gen vornehmen: Wir gehen von einem dünnen Film aus, so dass der Raum Ω nur eine Ausbreitung
in der x-y-Ebene hat. Statt die Konfiguration aller klassischen Spins si zu betrachten, nutzen
wir die Eigenschaft, dass die Spins ein magnetisches Moment mi ∝ si erzeugen. Diese diskreten
lokalen magnetischen Momente können wir in das kontinuierliche Feld der MagnetisierungM(r)

überführen. Ferner untersuchen wir ein System bei T = 0. Da die Addition einer Konstanten zur
Energie auf die Physik des System keinen Einfluss hat, können wir M ≡ 1 setzen. Aus der Ma-
gnetisierung können wir die Windungszahl W = (4π)−1

∫
d2r M(d1M × d2M) bestimmen[11],

die bei Skyrmionen eine ganze Zahl ist und Unterscheidbarkeit von beispielsweise Blasen der
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1 Einleitung

Magnetisierung ermöglicht[7]. Das Energiefunktional lässt sich mit angelegtem Magnetfeld B
schreiben als[12, 7]

F [M ] =

∫
Ω
d2r

J

2
(∇M)2︸ ︷︷ ︸
Term 1

+D M(∇×M)︸ ︷︷ ︸
Term 2

−B ·M︸ ︷︷ ︸
Term 3

, (1.1)

wobei (∇M)2 ≡ (∂iMj)
2. Term 1 ist der ferromagnetische Anteil, der unter Minimierung von

(1.1) die Magnetisierung parallel ausrichtet. Term 3 sorgt für die Ausrichtung entlang des an-
gelegten Magnetfeldes und Term 2 ist der, durch Dzyaloshinskii-Moriya Wechselwirkung her-
vorgerufene, zusätzliche Term. Dieser sorgt für eine Verdrillung der Magnetisierung und somit
der Ausbildung helisch/konischer- und Skyrmionstrukturen. Hierbei sei angemerkt, dass unter-
schiedliche Arten von Dzyaloshinskii-Moriya Wechselwirkungen exisitieren. Allgemein lässt sich
der Energiebeitrag schreiben als[5, 12]

FDMI = F inter
DMI + F chiral

DMI = Dinter(Mα ∂αM3 −M3 ∂αMα) +D(εiαjMi ∂αMj). (1.2)

Allerdings werden wir in dieser Arbeit hauptsächlich den chiralen Anteil untersuchen. Nur in
Kapitel 4 wird auf Dinter 6= 0 eingegangen. Schreiben wir (1.1) in Indexnotation, erhalten wir

F [M ] =

∫
Ω
d2r

J

2
(∂αMj)

2 +D εiαjMi(∂αMj)−BiMi. (1.3)

Wenn eine Magnetisierungskonfiguration M im Raum Ω stabil ist, dann gilt δF [M ]
δM = 0.

1.3.1 Reskalierung

Im Folgenden werden wir (1.3) für unsere Zwecke modifizieren. Da eine stabile Phase gesucht
wird, können wir (1.3) mit einer Konstanten strecken und stauchen. Stauchen wir um J und
schreiben rα = r̃α (J/D), dann erhalten wir

F [M ]

J
=

∫
Ω
d2r̃

(
J

D

)2
[(

D

J

)2

(∂αMj)
2 +

(
D

J

)2

εiαjMi(∂αMj)−
Bi
J
Mi

]
. (1.4)

Multiplizieren wir die Gleichung aus, ersetzen F [M ] J−1 ≡ F̃ [M ] und B J/D2 ≡ B̃, dann ist

F̃ [M ] =

∫
Ω
d2r̃

1

2
(∂αMj)

2 + εiαjMi(∂αMj)− B̃iMi ≡
∫

Ω
d2r̃ E (1.5)

das im Folgenden benutzte Energiefunktional. Aus Gründen der Lesbarkeit wird im Folgenden
auf die Tilde verzichtet.
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1 Einleitung

1.4 Landau-Lifshitz-Gilbert Gleichung

Beff

M

-M x Beff

M x ∂tM  

Abb. 1.4: Drehmomente in LLG: Prä-
zession (grün), Dämpfung
(blau)

Um die zeitliche Entwicklung der Magnetisierung be-
schreiben zu können, betrachten wir die einzelnen Dreh-
momente, die auf die Magnetisierung wirken (siehe Abb.
1.4). Zum einen das Drehmoment ∝ M × Beff , wel-
ches zur Präzession um das effektive Magnetfeld Beff =

−δF/δM führt[12], zum anderen einen Dämpfungs-
term ∝M × ∂tM . Der Dämpfungsterm verringert den
Präzessionswinkel kontinuierlich bis die Magnetisierung
parallel zum effektiven Magnetfeld ausgerichtet ist. Zu-
sammengesetzt ergibt sich die Landau-Lifshitz-Gilbert
Gleichung[13, S. 75]:

∂tM̂ = −M̂ ×Beff + αM̂ × ∂tM̂ (1.6)

Dabei ist α die Dämpfungskonstante.

1.5 Simulation

Um eine dünne Schicht simulieren zu können, diskretisieren wir die Magnetisierung auf ein Recht-
eckgitter mit Magnetisierungsvektoren auf den Gitterplätzen. Die Systemgröße bei periodischen
Randbedingen setzt sich aus Diskretisierungslänge a und Anzahl der Gitterplätze N zu der Flä-
che

∫
Ω d

2r = (Nxax)(Nyay) zusammen.
Um die Energie eines (meta-)stabilen Zustandes bei T = 0 bestimmen zu können, geben wir eine
anfängliche Konfiguration der Magnetisierung vor. Eine spontane Ausbildung von topologischen
Strukturen, auch in der zugehörigen Phase, wäre aufgrund der zu überwindenen Energiebarriere
im ausgefrorenen System nicht möglich. Anschließend lassen wir mittels Runge-Kutta-Integration
von (1.6) die zeitliche Entwicklung beschreiben und regelmäßig die Energie (1.5) protokollieren,
bis diese nicht weiter abfällt. Die so erhaltene Energie eines Zustandes können wir mit den Ener-
gien anderer vorgegebener Konfigurationen vergleichen. Dabei ist der Dämpfungsparameter aus
(1.6) bei allen Simulationen auf α = 0.1 gesetzt.
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2 Polarisierte Phase

In einem Ferromagneten bezeichnet man als polarisierte Phase den Zustand, in dem die Magneti-
sierungM räumlich konstant ist. Im Folgenden werden wir die Ausrichtung der Magnetisierung
im Vergleich zu einem angelegten Magnetfeld B untersuchen und danach das Anregungsspek-
trum (Magnonen) in der polarisierten Phase, analog der Gitterauslenkung bei Phononen im
Festkörper, bestimmen.

2.1 Ausrichtung der Magnetisierung

Wir untersuchen die Richtung vonM relativ zur Ausrichtung von B. Ein Zustand im Magneten
ist stabil, wenn δF

δM = 0. Für die polarisierte Phase gilt als definierende Eigenschaft ∂αM = 0.
Somit vereinfacht sich das Energiefunktional (1.5) zu

F [M ] =

∫
Ω
dr2 1

2
(∂αMi)

2 + εiαjMi(∂αMj)−M ·B = −M ·B
∫

Ω
dr2 . (2.1)

Somit ist die polarisierte Phase ein stabiler Zustand, wennM ·B maximal ist. Daher muss gelten
M ||B.

2.2 Magnonen

Im Folgenden wollen wir die Auslenkung aus der polarisierten Phase (M ||B) des Ferromagne-
ten um δM = (δM1, δM2)T betrachten. Das Magnetfeld B = B (0, sinφ, cosφ)T sei zeitlich
und räumlich konstant, somit in der x-y-Ebene um den Winkel φ zur Ebenennormale (0, 0, 1)T

gekippt. Die Magnetisierung lässt sich darstellen als

M =
1√

1 + (δM1)2 + (δM2)2

B̂ + δM1

1

0

0

+ δM2

 0

cosφ

− sinφ


 . (2.2)

Aus dem Energiefunktional (1.5) ergibt sich für Beff

− µ Beff =
δE

δM
=


∂E
∂M1
− ∂α ∂E

∂(∂αM1)
∂E
∂M2
− ∂α ∂E

∂(∂αM2)
∂E
∂M3
− ∂α ∂E

∂(∂αM3)

 =

 2∂2M3 − ∂2
1M1 − ∂2

2M1

−2∂1M3 −B2 − ∂2
1M2 − ∂2

2M2 − ∂1M3

2∂1M2 − 2∂2M1 −B3 − ∂2
1M3 − ∂2

2M3

 . (2.3)

Die zeitliche Entwicklung der MagnetisierungM , insbesondere von δM , wird durch die Landau-
Lifshitz-Gilbert Gleichung beschrieben. Setzen wir (2.2) und (2.3) in (1.6) ein, und nehmen ferner
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2 Polarisierte Phase

an, dass δM1,2 � 1 und α = 0 ist, folgt nach Taylor-Entwicklung in linearer Ordnung

∂tM =
γ

µ

 −B δM2 − 2 sinφ(∂2δM
1) + (∂2

2δM
2) + (∂2

1δM
2)

(−B δM1 + 2 sinφ(∂2δM
2) + (∂2

2δM
1) + (∂2

1δM
1))(− cosφ)

(−B δM1 + 2 sinφ(∂2δM
2) + (∂2

2δM
1) + (∂2

1δM
1))(sinφ)

 . (2.4)

Nach Fourier-Transformation

δM1,2(r, t) = c

∫
R2

dk

∫ ∞
−∞

dω δM1/2(k, ω) ei(kr−ωt), (2.5)

und Ausnutzen der linearen Unabhängigkeit der Fourier-Basis, erhalten wir folgende Eigenwert-
gleichung, wobei auf die explizite Nennung der Abhängigkeiten verzichtet wurde:

iω′δM =

(
−i2 k2 sinφ −(B + k2

1 + k2
2)

B + k2
1 + k2

2 −i2 k2 sinφ

)
δM. (2.6)

Dabei ist ω′ := ωµ/γ und die triviale Lösung entspricht der vollständig polarisierten Phase des
Ferromagneten. Als Eigenwerte erhalten wir ω′±(k) = ±(B + k2

1 + k2
2 ∓ 2k2 sinφ), wobei wir uns

auf ω′ := ω′+ beschränken. Analog zu Phononen im Festkörper ist ω′ proportional zur Energie
der Magnetisierungsanregung (Magnon). Ein Minimum ist bei kmin = (0, sinφ)T = (0, 2π

λmin
)T

mit
ω′(kmin) = ω′min = B − sin2 φ. (2.7)

Einsetzen des Eigenvektors δM = (i, 1)T in (2.5) an der Stelle kmin liefert

δM(r, t) = c

(
ei(r2 sinφ−t(B−sin2 φ)+π/2)

ei(r2 sinφ−t(B−sin2 φ))

)
. (2.8)

In Abbildung 2.1 ist die räumliche Entwicklung von M in der x-y-Ebene dargestellt, die eine
konische Struktur bildet. Für ω′(kmin) = 0 ist eine Magnonbildung energetisch genauso sinn-
voll wie die vollständig polarisierte Phase des Ferromagneten. Daher lässt sich eine kritische
Magnetfeldstärke Bc definieren:

Bc = sin2 φ (2.9)

Für B < Bc sollten sich spontan Magnonen in der polarisierten Phase ausbilden, demnach wäre
Bc der Phasenübergang von polarisierter zu konischer Phase.
Die genauen Phasenübergänge der helischen und konischen Phase werden wir im nächsten Kapitel
analysieren und mit unserer Rechnung von Bc vergleichen.
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2 Polarisierte Phase

Abbildung 2.1: Darstellung der Magnetisierung (schwarz) und des Magnetfeldes (rot) auf 3x10
Gitterplätzen in der x-y-Ebene für φ = 40◦.
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3 Helisch/Konische Phase

Die helische und konische Phase sind spiralförmige Anordnungen der Magnetisierung M , die
durch den Dzyaloshinskii-Moriya Term im Energiefunktional (1.5) ausgebildet werden (siehe
auch Abb. 1.2). Wie bereits in Kapitel 1 besprochen kennzeichnet die helische Phase eine Aus-
breitungsrichtung k̂ senkrecht zur MagnetisierungM und die konische Phase ein k̂ parallel zum
angelegten Magnetfeld B (bzw. in einem Monolayer ist die Projektion von B auf die Fläche
parallel zu k̂). Ein Ziel der vorliegenden Arbeit ist es, die Abhängigkeit der Grenzen bei T = 0

unterschiedlicher Phasen vom Kippwinkel zu untersuchen. Eine spezifische Unterscheidung der
helischen Phase von der konischen Phasen nehmen wir nicht vor, stattdessen untersuchen wir
allgemein die helisch/konische Phase (HK Phase). Die HK Phase kann einen Phasenübergang
zur Skyrmiongitterphase ausbilden (siehe Kapitel 6) und einen Übergang zur polarisierten Phase
im Ferromagneten. In diesem Kapitel soll der Übergang zur polarisierten Phase und weiter die
Ordnung des Phasenübergangs untersucht werden.
Um die HK Phase zu simulieren setzen wir eine diskrete Magnetisierungslinie mit Nx = 50,
Ny = 1 und ax = ay ≡ a mit periodischen Randbedingungen in Helixstruktur mit Wellenlänge
λmin = a Nx. Unter angelegtem Magnetfeld B = B (sinφ, 0, cosφ)T bestimmen wir die Energie
F [M ] des ausrelaxierten Zustands. Um für jeden Punkt im Phasendiagramm (φ,B) die energe-
tisch günstigste Konfiguration der HK Struktur zu erhalten, muss über a optimiert werden. Bei
unserer Optimierung ist a ∈ {0.12, 0.13, ..., 0.19, 0.2}. Da sich in der HK Phase die Strukturen
entlang der Ebenenachse senkrecht zum angelegten Magnetfeld (hier y-Richtung) und entlang
der Ebenenachse parallel zum angelegten Magnetfeld periodisch (mit Periodenlänge λmin) wie-
derholen, reicht die Betrachtung dieser 1D Kette für die Simulation einer unendlich ausgedehnten
Fläche.
Um den Phasenübergang bestimmen zu können, vergleichen wir die Energiedichte

EHK =
F [M ]

a2 Nx
(3.1)

der HK Phase mit der Energiedichte der polarisierten Phase EPol = B. Der Phasenübergang
zwischen den beiden Phasen ist bei EHK = EPol. Vom Phasenübergang zweiter Ordnung sprechen
wir, wenn eine Ableitung von F [M ] stetig ist, ansonsten reden wir vom Phasenübergang erster
Ordnung. Die polarisierte Phase kann als HK Phase mit unendlicher Periodenlänge, d.h. unend-
lichem a oder mit einem Öffnungswinkel ϑ = arccos (M · B̂) gegen 0 aufgefasst werden. Beides
muss bei der Bestimmung des Phasenübergangs analysiert werden. In der Abbildung 3.1 sind
die Energiedichtedifferenzen gegen das Magnetfeld für unterschiedliche Kippwinkel φ aufgetra-
gen. Die gestrichelten Linien geben den Phasenübergang an (für die genaue Bestimmung siehe
weiter unten). In Abbildung 3.2 sind die dazugehörigen Diskretisierungslängen und Öffnungswin-
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3 Helisch/Konische Phase
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Abbildung 3.1: Energiedichtedifferenz gegen das Magnetfeld für ausgewählte Kippwinkel φ. Die
gestrichelten Linien stellen den Phasenübergang von der HK zur polarisierten
Phase dar.
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Abbildung 3.2: Darstellung des Verhaltens der Diskretisierungslängen a und Öffnungswinkel ϑ.
Die Phasengrenzen sind mit gestrichelten Linien gekennzeichnet.
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Abbildung 3.3: Vorläufiges Phasendiagramm mit der HK Phase und polarisierter Phase. Die aus
der Simulation bestimmten Grenzen sind punktförmig dargestellt, das kritische
Magnetfeld aus (2.9) ist blau gekennzeichnet. Die Abweichung beider wird im
Text diskutiert.

kel abgebildet. Die Diskretisierungslänge ist ein interpolierter Wert zur minimalen Energie, als
Öffnungswinkel wurde der größte Winkel ϑ aufgetragen, der in unseren 50 diskreten Magneti-
sierungsvektoren vorkam. Bei der Betrachtung der Abbildungen können drei Fälle unterschieden
werden: Im ersten Fall divergiert am Phasenübergang die Wellenlänge, während der Öffnungswin-
kel einen endlichen Wert beibehält (z.B. φ = 0◦). Im zweiten Fall konvergiert der Öffnungswinkel
gegen null bei endlicher Wellenlänge (z.B. φ = 90◦), im dritten Fall findet der Phasenübergang
bei endlicher Wellenlänge und endlichem Öffnungswinkel statt (z.B. φ = 50◦). In den ersten bei-
den Fällen wäre zu erwarten, dass die Energien der HK Phase am Phasenübergang stetig in die
Energiewerte der polarisierten Phase übergeht und wir einen Phasenübergang zweiter Ordnung
hätten. In Abbildung 3.1 steigen die Energiedichtedifferenzen für den ersten Fall allerdings deut-
lich über null, bevor sie auf den Wert der polarisierten Phasen abfallen. Dies kommt durch die
Wahl des Wertebereichs von a zu Stande. Die Energiedichte EHK hat ihr Minimum bei a > 0.2

und würde ohne Randbedingung an a (wie in unendlich großen Systemen) stetig in EHK über-
gehen. Daher versagt für diese Punkte unser Simulationsmodell, was auf die Bestimmung des
Phasenübergangs aber keinen Einfluss hat, da a am Phasenübergang sehr schnell divergiert. Ins-
besondere der konstante Wert bei φ = 0◦ von ϑ = 180◦ zeigt zum einen die komplett helische
Struktur, zum anderen, dass durch die Randbedingung an a dieser Zustand nie in die polari-
sierte Phase übergehen kann, was zu weiter steigenden Energiedichtedifferenzen führt. Die Werte
EHK−EPol > 0 bei endlichem a und endlichem ϑ sind Charakteristika des Phasenübergangs erster
Ordnung. Wie lässt sich mit diesem Wissen der Phasenübergang möglichst genau bestimmen?
Da die Diskretisierungslänge im ersten Fall schnell ansteigt, reicht eine lineare Interpolation der
Werte um EHK − EPol. Bei der Konvergenz des Öffnungswinkels und großem Kippwinkel geht
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3 Helisch/Konische Phase

die Energiedichte parabelförmig in die der polarisierten Phase über, daher bestimmen wir den
Phasenübergang x0 mit dem Fitansatz f(x) = a(x − x0)2 mit a und x0 als Fitparameter und
f(x) < EHK−EPol. Den Übergang erster Ordnung im dritten Fall bestimmen wir wieder mit einem
linearem Fit. In Abbildung 3.3 sind unsere Ergebnisse der Phasengrenzen mit dem analytisch
bestimmten kritischen Magnetfeld aus (2.9) aufgetragen. Betrachten wir die Ordnung der Pha-
senübergänge, lässt sich auch die Abweichung unserer simulierten Phasengrenze zum analytisch
bestimmten Bc erklären. Für φ < 25◦ haben wir einen Phasenübergang zweiter Ordnung mit
divergierender Wellenlänge am Phasenübergang. Für 25◦ ≤ φ < 70◦ findet ein Phasenübergang
erster Ordnung statt und für φ ≥ 70◦ einer zweiter Ordnung mit Konvergenz des Öffnungswin-
kels. Bei Analyse des Öffnungswinkels kurz vor dem Phasenübergang (siehe hierzu auch Abb. A.1
(b) im Anhang) stellen wir fest, dass dieser mit sinkendem Kippwinkel des Magnetfelds immer
weiter ansteigt. Der Öffnungswinkel ist mit δM1,2 aus dem Ansatz (2.2) korreliert. Bc ist nur
gültig für δM 1/2 � 1, was bei großem Öffnungswinkel nicht der Fall ist. Dadurch verliert unsere
Berechnung von Bc aus Kapitel 2 ihre Gültigkeit für kleinere Kippwinkel.
Der simulierter Phasenübergang in Abbildung 3.3 ist dem analytischen Bc demnach vorzuzie-
hen. Als nächste Struktur in chiralen Magneten betrachten wir Skyrmionen, wobei wir zuerst
Eigenschaften des Skyrmions untersuchen, bevor wir in Kapitel 6 das Phasendiagramm vervoll-
ständigen werden.
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4 Isoliertes Skyrmion

In diesem Kapitel werden wir einzelne Skyrmionen beschreiben und untersuchen. Wie in Kapitel
1 besprochen, exisitieren unterschiedliche Formen der Dzyaloshinskii-Moriya Wechselwirkung,
die für die Bildung unterschiedlicher Skyrmion Typen verantwortlich sind. Zum einen die chirale
Dzyaloshinskii-Moriya Wechselwirkung mit Parameter D in (1.2), zum anderen die Oberflächen
DM Wechselwirkung mit Dinter. Hier werden wir uns nicht, wie in der restlichen Arbeit, auf den
Fall Dinter = 0 in (1.2) beschränken (Bloch Typ), sondern betrachten auch den konträren Fall
mit D = 0 und Dinter 6= 0 (Neel Typ). Hierfür simulieren wir eine Fläche mit Nx = Ny = 301,
ax = ay = 0.2 mit angelegtem Magnetfeld B = B (0, sinφ, cosφ)T und einem Skyrmion mittig
platziert. Wir werden exemplarisch bei φ = 0◦ und φ = 40◦ (B = 0.75) die Energien sowie die
Komponenten M3 entlang der Hauptachsen analysieren und Unterschiede herausarbeiten.

4.1 Magnetfeld Kippwinkel φ = 0◦

Betrachten wir die Magnetisierung unter dem Einfluss eines senkrechten Magnetfelds. In Abbil-
dung 4.1 sind die beiden Skyrmiontypen (Bloch und Neel) dargestellt. Bei beiden handelt es sich
um Verwirbelungen der Magnetisierung um ein Zentrum, welches antiparallel zum polarisierten
Hintergrund steht. Augenscheinlich sind beide Skyrmiontypen rotationssymmetrisch zu ihrem
Zentrum und die Magnetisierung wird kontinuierlich in den Hintergrund überführt. Bei Bloch
Skyrmionen bildet die Magnetisierung bei der Überführung einen zusätzlichen Wirbel gegen den
Uhrzeigersinn. Die Neel Skyrmionen hingegen gehen radial kontinuierlich in den Hintergrund
über. Betrachten wir die Energie der einzelnen Skyrmiontypen, d.h. die Energie des ausrela-
xierten Systems F [M ] abzüglich der Energie des Hintergrundes FPol = −B

∫
Ω dr

2, so erhalten
wir

FBloch = FNeel. (4.1)

Vergleichen wir jetzt noch M3 der Magnetisierung durch das Skyrmionzentrum (siehe Abb. 4.2
(a)), so fällt der kontinuierliche Übergang in den polarisierten Hintergrund für beide Typen gleich
aus. Aufgrund der Rotationssymmetrie genügt die Betrachtung entlang einer Hauptachse. Die
Frage bleibt, ob wir die Energiegleichheit auch analytisch verstehen können. Der Unterschied
zwischen Bloch und Neel Skyrmionen ist eine Rotation der Magnetisierung um die z-Achse[14].
D.h.

MN = Rz(π/2) MB =

cos π/2 − sin π/2 0

sin π/2 cos π/2 0

0 0 1

MB =

−M
B
2

MB
1

MB
3

 , (4.2)
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4 Isoliertes Skyrmion

(a) Bloch Typ (b) Neel Typ

Abbildung 4.1: Darstellung der Magnetisierung unterschiedlicher Skyrmion Typen. Die Farbco-
dierung gibt die M3 Komponente an (von -1 rot bis +1 blau). Beide wurden bei
φ = 0◦ und B = 0.75 ausrelaxiert. Dabei ist nur jeder zweite Magnetisierungs-
vektor abgebildet.
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(b) φ = 40◦

Abbildung 4.2: (a) Vergleich der M3 Komponente von Bloch und Neel Skyrmion entlang einer
Achse durch das Zentrum für φ = 0◦. (b) Vergleich derM3 Komponenten, diesmal
mit um φ = 40◦ gekippten Magnetfeld. Die M3 Komponente des polarisierten
Hintergrundes liegt bei 0.766. Auffällig ist die Ähnlichkeit der Symmetrie beider
Typen entlang unterschiedlicher Achsen.
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(a) Bloch Typ (b) Neel Typ

Abbildung 4.3: Darstellung der Magnetisierung unterschiedlicher Skyrmion Typen. Die Farbco-
dierung gibt die M3 Komponente an (von -1 rot bis +1 blau). Beide wurden bei
φ = 40◦ und B = 0.75 ausrelaxiert. Dabei ist nur jeder zweite Magnetisierungs-
vektor abgebildet.

wobei MN die Magnetisierung der Neel Skyrmionen und MB die der Bloch Skyrmionen sei.
Berechnen wir die Energie mit dem interface Term aus (1.2) für die Neel Skyrmionen

F int[MN] =

∫
Ω
d2r

1

2
(∂αM

N
j ) +MN

1 ∂1M
N
3 −MN

3 ∂1M
N
1 +MN

2 ∂2M
N
3 −MN

3 ∂2M
N
2 −B3M

N
3

=

∫
Ω
d2r

1

2
(∂αM

B
j )−MB

2 ∂1M
B
3 +MB

3 ∂1M
B
2 +MB

1 ∂2M
B
3 −MB

3 ∂2M
B
1 −B3M

B
3

=

∫
Ω
d2r

1

2
(∂αM

B
j ) + εiαjM

B
i (∂αM

B
j )−B3M3

p.d.
= F chiral[MB]

erhalten wir direkt die Energiegleichheit mit den Bloch Skyrmionen und dem chiralen Term. So-
mit sind unter senkrecht zur Oberfläche stehendem Magnetfeld alle Rechungen und Simulationen
ebenso für Skyrmionen vom Neel Typ und der interface DM Wechselwirkung gültig. Es stellt sich
die Frage, ob diese Äquivalenz auch für gekippte Magnetfelder gilt.

4.2 Magnetfeld Kippwinkel φ = 40◦

In der Abbildung 4.3 ist diesselbe Anordnung wie in 4.1 dargestellt, mit dem Unterschied, dass
das Magnetfeld nicht senkrecht zur Ebene steht, sondern um φ = 40◦ gekippt wurde. Es bilden
sich wieder Magnetisierungswirbel um ein Zentrum, dessen Spin antiparallel zum polarisierten
Hintergrund steht. Das Bloch Skyrmion bildet einen Schweif senkrecht zum Magnetfeld aus,
wohingegen das Neel Skyrmion einen Schweif parallel zum Magnetfeld ausbildet. Somit ist die
Rotationssymmetrie des vorherigen Falls gebrochen. Die Energien beider Typen sind wieder
gleich. Betrachten wir wieder die MagnetisierungskomponenteM3 entlang der Achsen (c, 151) und
(151, c), wobei c variabel, in Abbildung 4.2 (b). Da sich das Skyrmionzentrum bei der Relaxation
leicht verschoben hat, treten Abweichungen in der Symmetrie auf. Auffällig ist, dass Bloch- und
Neel Typ den gleichen Verlauf von M3 um 90◦ räumlich rotiert haben. Entlang (c, 151) beim
Bloch- und (151, c) beim Neel Skyrmion steigt die M3 Komponente vor dem Zentrum über den
polarisierten Hintergrund an, fällt zum Zentrum ab, um dann kontinuierlich in den polarisierten
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4 Isoliertes Skyrmion

Hintergrund überführt zu werden.
Betrachten wir die verbleibenden Achsen genauer. In Abbildung 4.4 sind die Achsen (151, c)

(Bloch) und (c, 151) (Neel) ab Skyrmionzentrum dargestellt. Beide Magnetisierungskomponenten
M3 bilden periodische Minima unterhalb des polarisierten Hintergrundes aus. Bestimmen wir den
Abstand d12

Typ zwischen dem ersten und zweiten Minimum in Einheit einer Länge (Gitterplätze
mal Diskretisierung a), so ergibt sich

d12
Bloch ≈ 9.852,

d12
Neel ≈ 9.852.

Dies entspricht in etwa der Wellenlänge eines Magnons (vgl. Kapitel 2). Es ist zu vermuten, dass
die Auslenkung aus der polarisierten Phase durch das Skyrmion ein Magnon im System anregt.
Auswirkungen dieser Anregung auf die Skyrmioninteraktion werden Gegenstand des Kapitel
5. Zusammenfassend sind in unserer Konfiguration beide Skyrmionenergien gleich und die M3

Komponente um 90◦ räumlich getauscht. Betrachten wir den Fall des gekippten Magnetfeldes wie
im vorherigen Abschnitt analytisch. Die Magnetisierung des Neel Skyrmions sei wieder über (4.2)
mit der Magnetisierung des Bloch Skyrmions verbunden. Die ersten zwei Termen sind identisch
mit der vorherigen Rechnung, nur der letzte Term modifiziert sich:

F int[MN] =

∫
Ω
d2r

1

2
(∂αM

N
j ) +MN

1 ∂1M
N
3 −MN

3 ∂1M
N
1 +MN

2 ∂2M
N
3 −MN

3 ∂2M
N
2 −B ·MN

=

∫
Ω
d2r

1

2
(∂αM

B
j ) + εiαjM

B
i (∂αM

B
j )−BTRz(π/2)MB

=

∫
Ω
d2r

1

2
(∂αM

B
j ) + εiαjM

B
i (∂αM

B
j )−

[
Rz(π/2)TB

]︸ ︷︷ ︸
≡B′

T
MB

p.d.
= F chiral[MB]B′ .

Somit ist das Energiefunktional für Bloch und Neel Skyrmionen auch unter gekipptem Magnet-
feld bis auf die räumliche Ausrichtung identisch. Das Energiefunktional für ein Neel Skyrmion
entspricht dem eines Bloch Skyrmions mit einem Magnetfeld B′, welches um einen Winkel −π/2

um die z-Achse gedreht wurde. Hiermit ist auch die Vertauschung der Achssymmetrien in unse-
ren Simulationen erklärt.
Als weitere Konsequenz sind alle Rechnungen in dieser Arbeit auch für Neel Skyrmionen gültig.

22



4 Isoliertes Skyrmion

Bloch (151, c)

Neel (c, 151)

235 240 245 250 255 260 265 270

0.76602

0.76604

0.76606

0.76608

0.76610

c [sites]

M
3

160 180 200 220 240 260 280 300

0.75

0.80

0.85

0.90

c [sites]

M
3

Abbildung 4.4: Darstellung der M3 Komponente entlang entsprechender Achsen. Die Minima
sind durch die gestrichelten Linien gekennzeichnet und vergrößert ist das jeweils
zweite Minimum dargestellt. Die dünne schwarze Linie markiert die M3 Kompo-
nente des Hintergrundes.
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5 Skyrmion Wechselwirkung

In diesem Kapitel wird die Frage behandelt, wie Skyrmionen miteinander interagieren, insbe-
sondere unter Kippung des angelegten Magnetfeldes. Im ersten Teil werden wir die Skyrmion-
Skyrmion Interaktion in Abhängigkeit von B, und darauf aufbauend die Skyrmionlinien Inter-
aktion untersuchen.

5.1 Zwei Skyrmion Wechselwirkung

5.1.1 Simulation

Um das Skyrmion-Skyrmion Potential bestimmen zu können, simulieren wir eine quadratische
Fläche (Nx = Ny = 301, ax = ay = 0.2) in der x-y-Ebene, in dessen Mitte ein Skyrmion platziert
wird. Das externe Magnetfeld sei gegeben durch B = B (0, sinφ, cosφ)T . In einem beliebigen
Abstand d = (dx, dy)

T wird ein zweites Skyrmion gesetzt. Beide Skyrmionmittelpunkte fixieren
wir, indem wir die Magnetisierung um das Skyrmionzentrum fixieren, und relaxieren das System
bis zum stationären Zustand mit der Energie F (d). Das Zwei-Skyrmion-Potential kann auf zwei
äquivalente Arten bestimmt werden:

V 1
2Sky(d) = F (d)− FPol − 2 F1Sky, (5.1)

V 2
2Sky(d) = F (d)− F (d|d→∞). (5.2)

Dabei ist FPol die Energie des polarisierten Untergrundes (vgl. auch 2.1) und F1Sky die Energie
eines einzeln relaxierten Skyrmions ohne Untergrund. Eine Abweichung der beiden Potentia-
le V 1

2Sky und V 2
2Sky würde auf einen systematischen Fehler, beispielsweise Randeffekte, in der

Simulation hindeuten. Daher lohnt es sich die Übereinstimmung unseres Aufbaus einmalig zu
untersuchen. Für den Fall φ = 0 reicht aufgrund der Rotationssymmetrie der Skyrmionen die
Betrachtung entlang einer Achse. Für alle Magnetfeldstärken B, bei denen Skyrmionen stabil
sind, bildet sich ein repulsives Potential aus. Das repulsive Potential sowie der Vergleich der
Potentialbestimmungsmethoden ist in Abbildung 5.1 gezeigt. Wie erwartet weichen die beiden
Potentialbestimmungsmethoden nicht voneinander ab, und wir betrachten in der restlichen Ar-
beit das Skyrmionpotential V2Sky ≡ V 1

2Sky. Analysieren wir als nächstes den Fall des gekippten
Magnetfeldes. Abbildung 5.2 zeigt das Potential entlang der Hauptachsen durch den Skyrmion-
mittelpunkt (fixierte Magnetisierung). Entlang der x-Achse ist das Skyrmionpotential wie im
Fall φ = 0 rein repulsiv und die Skyrmionen würden aus energetischen Gründen einen möglichst
großen Abstand zueinander einnehmen. Betrachten wir das Potential entlang d = (0, dy)

T , so
fallen Potentialminima mit V2Sky < 0 auf. Demnach ist es für die Skyrmionen energetisch sinn-
voller einen endlichen Abstand entlang dieser Achse einzunehmen. Der Abstand vom erstem zum
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Abbildung 5.1: Darstellung des repulsiven Potentials für φ = 0 und B = 0.75, Darstellung der
Gleichheit beider Bestimmungsmethoden.

zweiten Minimum beträgt d12
min ≈ 9.9, dies entspricht dem Wert der periodischen Schwankungen

der Magnetisierung M3 des Einzelskyrmions. Nehmen wir an, dass die Ausbildung der Minima
ihre Ursache in der Ausbildung von Magnonen hat, so müsste dieser Abstand der Magnonwellen-
länge λmin = 2π

kmin
= 2π

sin 40◦ ≈ 9.8 entsprechen. Dies würde den Unterschied zwischen den beiden
Hauptachsen (dx, 0) und (0, dy) erklären, da die Magnonen entlang der x-Achse kmin,1 = 0 und
hieraus eine zugehörige Wellenlänge von λ → ∞ haben (vgl. Kapitel 2 und 4). Nun betrachten
wir, wie sich das Potential mit den Systemparametern φ und B ändert. In Abbildung 5.3 ist
die Abhängigkeit der beiden Parameter dargestellt. Qualitativ verschiebt sich das Minimum mit
steigendem Kippwinkel φ in Richtung kleinerer Abstände und tieferen Potentialen. Das Mini-
mum verschiebt sich allerdings mit steigendem Magnetfeld zu kleineren Abständen. Dies ist mit
der Magnonrechnung nicht nachzuvollziehen, nach der die Position des Minimums unabhängig
von B wäre. Allerdings schrumpft das Skyrmion mit steigendem Magnetfeld und die Position
des ersten Minimums korreliert mit der Skyrmiongröße. Daher betrachten wir den Abstand vom
ersten zum zweiten Minimum bei unterschiedlichen Kippwinkeln φ und vergleichen diesen mit
der Magnonwellenlänge λmin:

Datenreihe d12
min λmin d12

min/λmin

φ = 35◦, B = 0.76 11.00 10.96 1.004
φ = 40◦, B = 0.75 9.90 9.77 1.013
φ = 45◦, B = 0.75 9.02 8.89 1.015

Bei dem Vergleich wurde auf kleinere Winkel verzichtet, da die Bestimmung des zweiten Mi-
nimums kaum noch möglich war. Die Daten zeigen, dass in erster Näherung unser Ansatz der
Spinwellen eine gute Erklärung für die Ausbildung der Minima ist. Durch die Potentialminima
lässt sich auch die Linienbildung, auf die in Kapitel 1 eingegangen wurde, verstehen.
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Abbildung 5.2: Potential entlang der beiden Symmetrieachsen unter gekippten Magnetfeld (φ =
40◦ und B = 0.75). Die Mimima entlang (0, dy) wurden mit gestrichelten Linien
markiert und das zweite Minimum vergößert dargestellt.
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(b) Abhängigkeit von B

Abbildung 5.3: Darstellung von V2Sky entlang (0, dy). In Abbildung (a) ist die Abhängigkeit vom
Kippwinkel φ dargestellt, wobei B so gewählt wurde, dass das Skyrmion im Ver-
gleich zum Hintergrund energetisch keinen Unterschied ausmacht. Mit den gestri-
chelten Linien sind die einzelnen Minima in den Datenreihen markiert. Abbildung
(b) zeigt die Abhängigkeit vom angelegtem Magnetfeld B bei φ = 40◦, wobei die
Datenpunkte aus Darstellungsgründen durch Linien ersetzt wurden.
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Abbildung 5.4: Skyrmionpotential mittels Koordinatensuperposition. In (a) ist der Vergleich zwi-
schen Relaxation und Superpositionsmethode entlang (0, dx) aufgetragen. (b)
zeigt die 2D Potentiallandschaft unserer Testfläche, wobei (dx, dy) in Einheiten
von 0.2 diskretisiert wurde.

Als nächstes stellt sich die Frage, wie eine komplette 2D-Potentiallandschaft in unserer Fläche
ausschaut. Jedoch sind die Simulationen aufgrund der Modellgröße sehr aufwendig. Eine Abbil-
dung des Potentials für eine Datenreihe entlang (dx, dmin) ist dem Anhang A zu entnehmen.

5.1.2 Näherung durch Koordinatensuperposition

Um die aufwendigen Simulationen zu umgehen, überlegen wir uns eine Magnetisierungsnäherung
MSup aus der Magnetisierung M eines ausrelaxierten Systems, bestehend aus einem Skyrmion
auf polarisiertem Hintergrund. Dafür superponieren wir den Skyrmionanteil MSky(nx, ny) =

M(nx, ny)−Mpol des diskretisierten Systems mit einem Skyrmionanteil um d = (dx, dy) ∈ Z2,
verschobenen auf den polarisierten Hintergrund Mpol. Dabei ist nx,y ∈ N und der polarisierte
Hintergrund nach Kapitel 2 gleich B̂. Somit erhalten wir als Näherung:

MSup(nx, ny,d) =
M(nx, ny) +M(nx − dx, ny − dy)− B̂
‖M(nx, ny) +M(nx − dx, ny − dy)− B̂‖

. (5.3)

Dazu nehmen wir wie in der Zwei-Skyrmion Relaxierung periodische Randbedingungen an. Die
Systemgröße der Ein-Skyrmion Relaxation ist analog zur Zwei-Skyrmion Relaxation in Abschnitt
5.1.1. Mit der Energie F [MSup(d)] können wir das Potential V2Sky bestimmen. In der Abbildung
5.4 (a) ist die Zwei-Skyrmion Relaxation und die Superpositionsnäherung in einem Plot aufgetra-
gen. Qualitativ reproduziert die Näherung das Minimum. Quantitativ fällt auf, dass für kleinere
Abstände die Näherung, im Vergleich zur Relaxationsmethode, höhere Energiewerte produziert.
Mit dieser Näherung können wir die 2D Potentiallandschaft erstellen und die Kontur des Mini-
mums abbilden (siehe Abb. 5.4 (b)). Aus Symmetriegründen und Austauschbarkeit der beiden
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5 Skyrmion Wechselwirkung

Skyrmionen genügt die Berechnung von (dx, dz) ∈ (N0 × N0), ferner wurden kleine Abstände
(dx oder dy kleiner 25) ausgespart. Eine Auflösung des zweiten Minimums ist dem Anhang A zu
entnehmen.

5.2 Skyrmionlinien Wechselwirkung

Die Kettenbildung aus [10] haben wir mit dem Skyrmionpotential aus den obigen Simulationen
erklären können. Nun bleibt die Frage offen, wie sich die Ketten untereinander verhalten. In
anderen Worten: Wie sieht das Skyrmionlinienpotential aus?

Nx

Ny

Abb. 5.5: Einheitszelle zur Skyrmionlinien-
potential Bestimmung. Dabei ist
nur jeder zweite Magnetisierungs-
vektor abgebildet.

Dazu simulieren wir eine Einheitszelle aus zwei
Skyrmionen (angeordnet wie in Abb. 5.5) und pe-
riodischen Randbedingungen mit Ny = 44, ay =

0.194, ax = 0.2 und Nx variabel. Ny und ay wurden
dabei so optimiert, dass bei angelegtem Magnetfeld
B = 0.75 (0, sin 40◦, cos 40◦)T die Skyrmionen ent-
lang der y-Richtung in den Potentialminima sitzen
und, begründet durch die periodischen Randbedin-
gungen, unendlich lange Skyrmionketten simuliert
werden. Die ermittelte Energie F ist jetzt abhän-
gig von der Systemgröße Nx, welches der zweifache
Skyrmionlinienabstand ist. Um das Potential zu be-
stimmen, ziehen wir die Energie des polarisierten
Hintergrunds und die Energie der zwei Skyrmionen unserer Zelle ab:

VSkyLine(Nx) = F (Nx)− FPol(Nx)− [F (Nx)− FPol(Nx)]Nx→∞. (5.4)

Nx →∞ nähern wir durch Nx = 400. Auf diese Weise können wir das Skyrmionlinieninterakti-
onspotential simulieren. Da im vorangengangenen Abschnitt die Näherung durch Koordinaten-
superposition gute Ergebnisse produzierte, werden wir das Skyrmionlinieninteraktionspotential
auf ähnliche Weise nähern. Dafür setzen wir wie in Abbildung 5.5 ein Skyrmion in die Mit-
te unserer größten Systemgröße (Nx = 400, alle weiteren Parameter wie oben) und lassen das
einzelne Skyrmion ausrelaxieren. Durch die periodischen Randbedingungen entspricht dies der
Relaxierung einer unendlich langen Skyrmionkette. Daraufhin beschneiden wir das System auf
unser zu untersuchendes Nx und superponieren nach (5.3) das System mit sich selbst, wobei
d = (Nx/2,Ny/2)T . Hierdurch haben wir die gleiche Konfiguration wie in Abbildung 5.5. Auf-
grund des repulsiven Potentials entlang der x-Richtung beim Skyrmionpotential wäre ein rein
repulsives Skyrmionlinieninteraktionspotential denkbar. In Abbildung 5.6 (a) sind die Ergebnisse
der Relaxierung und der Näherung durch Koordinatensuperposition aufgetragen. Ein aufgetrete-
nes Minimum ist vergrößert dargestellt. Somit nehmen bei unserer Konfiguration (φ = 40◦ und
B = 0.75) auch die Skyrmionlinien einen endlichen Abstand ein und das Potential ist entgegen
erster Erwartung nicht rein repulsiv. Wie lässt sich dieses Ergebnis erklären?
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5 Skyrmion Wechselwirkung
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(b) Potentiallandschaftssuperposition

Abbildung 5.6: Auswertung des Skyrmionlinienpotentials (bei φ = 40◦ und B = 0.75). In (a) sind
die drei verschiedenen Methoden dargestellt, in (b) modellhaft die Überlagerung
der Potentiallandschaften. Die Positionierung der einzelnen Skyrmionen ist mit
den grünen Kreisen angedeutet. In die Minima zwischen den grünen Kreisen
setzen sich die Skyrmionen der benachbarten Linie.

Das Minimum des Skyrmion-Skyrmion Potentials hat eine langgezogene Form (vgl. Abb. 5.4 (b))
und es wäre denkbar, dass die benachbarten Skyrmionlinien genau in die Ausläufer des Mini-
mums stoßen. Um diese These zu untersuchen, nähern wir das Linienpotential als Überlagerung
interpolierter Potentiallandschaften aus Abschnitt 5.1.2. In Abbildung 5.6 (b) sind exemplarisch
drei 2D Potentiallandschaften aufaddiert und es zeigt sich, dass sich Minima in der resultierenden
Potentiallandschaft ausbilden, die zur Position der Skyrmionlinienabstände passen. Als nächstes
überprüfen wir, ob sich durch Potentiallandschaftsüberlagerung auch quantitativ die Ergebnisse
aus Relaxation und der Koordinatensuperposition reproduzieren lassen, was nicht weiter verwun-
dert, da periodische Effekte schon bei einzeln relaxierten Skyrmionen auftraten (siehe Kapitel 4).
In Abbildung 5.6 (a) ist die Potentialüberlagerung zusätzlich aufgetragen, die deutlich von den
simulierten Werten abweicht. Allerdings treten durch die Interpolation aus der Potentialland-
schaft viele Abweichungen in den Daten auf. Ferner sind auch Zwei-Körper- oder Drei-Körper
Wechselwirkungen, wie sie in den beiden anderen Verfahren berücksichtigt werden, Kandidaten
für die Abweichungen. Darüber hinaus stellt sich die Frage, wie sich das Skyrmionlinienpotential
für andere Kippwinkel und Magnetfelder verändert. Für einen Kippwinkel φ 6= 0◦ ist es für die
Skyrmionen energetisch sinnvoller einen endlichen Abstand einzunehmen. Daher lässt sich ver-
muten, dass der Phasenübergang im Gegensatz zu dem Fall φ = 0◦ von zweiter Ordnung seien
sollte.
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6 Skyrmiongitter Phase

In diesem Kapitel wollen wir unser in Kapitel 3 begonnenes Phasendiagramm um die Übergän-
ge des Skyrmiongitters, dessen Eigenschaften wir nun besser verstehen, komplettieren. Dafür
werden wir zuerst den Phasenübergang des einzelnen Skyrmions als Approximation für den Pha-
senübergang des Skyrmiongitters mit der polarisierten Phase untersuchen. Im darauf folgenden
Abschnitt werden wir den Übergang zur HK Phase herausarbeiten und dann das vollständige
Phasendiagramm vorstellen.

6.1 Übergang polarisierte Phase zur Skyrmiongitterphase

Im Folgenden wollen wir den Übergang der Skyrmiongitter (SkX) Phase zur polarisierten Phase
bestimmen. Aus Effizienzgründen betrachten wir den Übergang eines einzelnen Skyrmions zur
polarisierten Phase, bzw. den Punkt der Energiegleichheit. Wie in Kapitel 5 gezeigt, entspricht
diese Rechnung nur einer Näherung, da sich zum Phasenübergang die Skyrmionen nicht unendlich
weit voneinander entfernen, sondern einen Phasenübergang erster Ordnung bilden. Allerdings ist
der Energiegewinn durch die Potentialminima (siehe Kapitel 5) so klein, dass die Energiedichten-
gleichheit des Einzelskyrmion zur polarisierten Phase eine vernünftige Näherung für den exakten
Phasenübergang darstellt. Um dies zu zeigen, gehen wir davon aus, dass man die Energiedifferenz
des einzelnen Skyrmions zum polarisiertem Hintergrund FSky um den Phasenübergang BT mit
FSky ≈ 0+(B−BT )

∂FSky

∂B

∣∣
B=BT

darstellen kann. Die Abweichung ∆B = (B′−BT ) zum exakten
Phasenübergang B′ unter Einbeziehung der Potentialminima, ist durch

∆B
∂FSky

∂B

∣∣∣∣
B=BT

+ V2Sky,min = 0 (6.1)

gegeben. Mit steigendem Kippwinkel sollte die Abweichung auf Grund der ausgeprägteren Mini-
ma größer werden. Für φ = 40◦ beträgt die Abweichung nach der Abschätzung (6.1) nur 1.2%.
Der Vorteil dieser Näherung ist, dass wir keine Optimierung von Systemparametern vornehmen
müssen und zusätzlich größtenteils auf bestehende Daten aus Kapitel 4 und 5 zurückgreifen kön-
nen.
Analog zu den vorherigen Kapiteln simulieren wir, mit Nx = Ny = 301, ax = ay = 0.2

und einem Skyrmion in der Mitte, die Zeitentwicklung unter einem angelegten Magnetfeld
B = B (0, sinφ, cosφ)T . Gesucht wird der Übergang, bei der die ausrelaxierte Energie des
Systems F [M ] gleich der Energie FPol = −B

∫
Ω dr

2 (siehe Abschnitt 2.1) eines rein polarisierten
Zustands ist. Dabei wurden von φ = 0◦ in 5◦ Schritten bis zum Übergang zur HK Phase die
Energien für verschieden Magnetfeldstärken B vor und nach dem Übergang bestimmt. Durch
diese Werte wurde mittels linearer Interpolation der Übergang bestimmt, der in der Abbildung
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6 Skyrmiongitter Phase
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Abbildung 6.1: Phasendiagramm mit eingezeichneter Phasengrenze von SkX zur polarisierten
Phase. Die errechneten Daten sind mittels Punkte gekennzeichnet, die Linien
und farbige Bereiche dienen als Orientierungshilfe.

6.1 durch die grüne Datenreihe gekennzeichnet ist. Den Verlauf der Kurve in der HK Phase
lässt sich mit dieser Methode nicht bestimmen, da kein stabiler Hintergrund existiert und die
Skyrmionen zerlaufen würden (siehe hier als Beispiel Abb. A.3 im Anhang). Bei φ = 0◦ ist der
Phasenübergang ungefähr bei 0.8 und fällt langsam, bis zum Schnittpunkt des Phasenübergangs
der HK Phase mit der polarisierten Phase bei φ = 50◦, ab. Da wir aus voherigen Rechnungen
wissen, dass zwischen der roten und der grünen Datenreihe in Abb. 6.1 der polarisierte Hinter-
grund energetisch sinnvoller als die HK Phase, und die SkX Phase sinnvoller als die polarisierte
Phase ist, muss dort eine stabile Skyrmiongitterphase liegen. Wie weit diese Phase unterhalb der
roten Datenreihe stabil ist wird im nächsten Abschnitt untersucht.

6.2 Übergang Skyrmiongitterphase zur helisch/konischen Phase

Da, wie im vorherigen Abschnitt dargelegt wurde, eine Bestimmung des Phasenübergangs in der
HK Phase mit obigem Aufbau nicht möglich ist, werden wir ein volles Skyrmiongitter, bzw. die
Einheitszelle mit periodischen Randbedingungen, simulieren und dieses optimieren. Dabei ist
das Skyrmiongitter auch unter gekipptem Magnetfeld immer ein zentriertes Rechteckgitter[10].
Der Aufbau der Einheitszelle ist identisch mit Abbildung 5.5, wobei zuerst grob über Nx und
Ny bei konstantem ax = ay = 0.2 die Energiedichte optimiert, und dann im zweiten Schritt
über Optimierung von ax und ay die Systemgröße noch weiter verfeinert wird. Die optimier-
te Energiedichte ESkX = F [M ]

NxaxNyay
wird mit der Energiedichte der HK Phase EHK aus Kapitel

3 verglichen, wobei F [M ] wieder die ausrelaxierte Energie des Systems unter dem Magnetfeld
B = B (0, sinφ, cosφ)T ist. Bei Energiedichtengleichheit kennzeichnen die Werte (φ,B) des voll
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6 Skyrmiongitter Phase
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Abbildung 6.2: Endgültiges Phasendiagramm mit allen untersuchten Phasengrenzen und der kri-
tischen Magnetfeldstärke aus Kapitel 2.

optimierten Systems wieder unseren Phasenübergang von der HK Phase zur SkX Phase. Be-
trachtet man die Ergebnisse aus Kapitel 5, wäre zu vermuten, dass die optimale Systemgröße aus
den Positionen der Potentialminima hervorgehen würde. Allerdings ist der Energiedichtengewinn
bzw. -verlust durch eine dichtere Packung, außer am Phasenübergang zur polarisierten Phase,
ausschlaggebender. Die Abbildung 6.2 zeigt unseren Übergang als untere grüne Datenreihe. Einen
weiteren Datenpunkt könnte man über die Variation des Winkels bei fester Magnetfeldstärke er-
reichen. Mit steigendem Kippwinkel verzerrt sich das Skyrmiongitter anfangs nur sehr mäßig.
Betrachten wir die optimierten Seitenverhältnisse der Einheitszelle am Phasenübergang,

Winkel x = Nxax y = Nyay
x
y

φ = 0◦ 13.16 7.60
√

3

φ = 10◦ 13.16 7.60
√

3

φ = 20◦ 13.16 7.60
√

3

φ = 30◦ 13.30 7.56 1.76
φ = 40◦ 13.65 7.52 1.82
φ = 50◦ 15.76 7.60 2.07

so fällt diese mäßige Verzerrung auf. Erst mit höheren Kippwinkel nimmt die Verzerrung deut-
lich zu. Das abschließende Phasendiagramm 6.2 zeigt unsere gefunden Phasengrenzen. Alle drei
untersuchten Strukturen bilden im (φ,B)-Raum eine stabile Phase, wobei die SkX Phase für
steigende Kippwinkel immer weiter unterdrückt wird, bis sie bei φ = 50◦ nicht mehr stabil ist.
Die HK Phase hingegen profitiert von der Kippung des Magnetfeldes und wird dominanter. Un-
ser analytisch bestimmtes Bc stellt nur für große Kippwinkel eine vernünftige Betrachtung des
Übergangs von HK- zur polarisierten Phase dar.
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7 Fazit und Ausblick

In der vorliegenden Arbeit stellten wir uns zu Beginn die Frage, weshalb Skyrmionen in 2D Ma-
terialien unter gekippten Magnetfeldern bei T = 0 linienförmig geordnet sind, und weitergehend,
wie das Skyrmion-Skyrmion Potential ausschaut. Im Laufe der Arbeit haben wir, mittels Com-
putersimulationen, das Skyrmion-Skyrmion Potential untersucht und attraktive Täler sowohl in
diesem als auch im Skyrmionlinienpotential gefunden. Die Genese der Potentialminima konnten
wir auf periodische Schwankungen, wahrscheinlich Magnon Anregungen, in der Magnetisierung
eines einzelnen Skyrmions ausmachen. Diese Minima treten nur bei gekippten Magnetfeldern
auf, stehen aber im Widerspruch zu bspw.[10], die die Linienbildung auf das weniger repulsive
Verhalten zurückführen.
Der zweite Schwerpunkt der Arbeit lag auf der Erstellung eines B-φ-Phasendiagramms für T = 0.
Dafür haben wir mittels Simulation die Energien unterschiedlicher, im Vorfeld bekannter, Phasen
verglichen, und so die Phasenübergänge rausgearbeitet. Die Ordnung des Phasenübergangs von
der HK zur polarisierten Phase zeigte dabei interessante Wechsel.
Es wurde gezeigt, dass alle Rechnungen und Simulationen in der Arbeit auch mit Oberflächen-
Dzyaloshinskii-Moriya Wechselwirkung ihre Gültigkeit behalten.
Hierauf aufbauend könnte man die Temperaturabhängigkeit der gefunden Phasenübergänge und
Potentialminima untersuchen. Auch die Abhängigkeit des Skyrmionlinienpotentials vom Kipp-
winkel wurde nicht geklärt. Für mögliche Anwendungen wäre auch die Interaktion von Skyr-
mionen mit dem Rand endlicher Systeme von Interesse. Insbesondere die Frage nach adhäsivem
Verhalten durch die Potentialminima wäre für zukünftige Speichermedien von Wichtigkeit. In
diesem Kontext wäre auch die Skyrmiondynamik untersuchenswert. Zusätzlich könnte die Sys-
temdicke vom Monolayer zu einem System endlicher Dicke variiert werden.
Zusammengefasst haben wir viele interessante Einsichten in den Mikrokosmos der chiralen Ma-
gnete und dessen Phasen gewonnen, der auch noch in Zukunft viel Raum für Forschung lässt.
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A Abbildungen

Zu Kapitel 3:
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Abbildung A.1: (a) Darstellung des letzten maximalen Öffnungswinkels vor dem Phasenüber-
gang. (b) Der maximale Öffnungswinkel ϑ gegen B für den Kippwinkel φ = 70◦

und gestrichelt der Phasenübergang.
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Abbildung A.2: φ = 40◦ und B = 0.75. (a) Potential entlang (dx, dmin = 8.8). (b) Zweites
Minimum im Konturplot, berechnet mit Koordinatensuperposition.
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A Abbildungen

Zu Kapitel 6:

Abbildung A.3: Zerlaufenes Skyrmion, relaxiert mit angelegtem Magnetfeld B =

0.65 (0, sin 40◦, cos 40◦)T . Der polarisierte Zustand des Hintergrunds ist
nicht stabil (Werte innerhalb der HK Phase), wodurch sich das Skyrmion stark
deformiert. Dabei ist nur jeder vierte Magnetisierungsvektor abgebildet.
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B Konventionen

Auflistung der benutzten Konventionen:

• Vektoren werden im Text durch Fettdruck gekennzeichnet. Soweit nicht anders angegeben,
stellt xi die i-te Komponente des Vektors x in der kanonischen Basis dar.

• x · y ≡ xTy ist das Standardskalarprodukt zwischen x und y.

• Sollte x definiert sein, so ist, falls nicht anders angegeben, x = ‖x‖ =
√
x · x.

• Es sei x̂ ≡ x
x .

• Es gilt die Einsteinsche Summenkonvention, d.h. über doppelt auftretende Indices wird
summiert.

• ∂1 ≡ ∂
∂x , ∂2 ≡ ∂

∂y und ∂3 ≡ ∂
∂z .

• εijk ist das Levi-Civita Symbol mit εijk =


1, für (i, j, k) gerade Permutation von (1, 2, 3).

−1, für (i, j, k) ungerade Permutation von (1, 2, 3).

0, sonst.

• Sei F [M(r)] =
∫

Ω d
mr E(Mi, ∂µMi), dann ist δF

δM = ( δF
δM1

, δF
δM2

, δF
δM3

)T mit δF
δMi

= ∂E
∂Mi
−

∂µ
∂E

∂(∂µMi)
(siehe [15, S. 15]).

• i, j ist in räumlicher Darstellung aus {1, 2, 3}, α nur aus {1, 2}.
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