
Institute of Theoretical Physics
University of Cologne

Time-Dependent Disorder in a Topological Insulator
Realised with a Quantum Walk

Bachelor Thesis
Supervised by Prof. Dr. Achim Rosch
Second Referee Prof. Dr. Simon Trebst

Submitted by Jan Gelhausen
Matriculation Number 4878728

January 26, 2012
Cologne 2011/2012





Contents

1. Abstract 1

2. Motivation 3

3. Introduction to Theoretical Concepts 5
3.1. Quantum Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2. Trivial and Non-Trivial Topological Insulators . . . . . . . . . . . . . . . . 7

3.2.1. Topological Invariant in 2D Time-Reversal Invariant Systems . . . . 11
3.3. Antiunitary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. Investigation of Topological Phases with a Quantum Walk in 1D 14
4.1. The Split-Step Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2. Energies and Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3. Topological Classification of the STQW . . . . . . . . . . . . . . . . . . . . 18

4.3.1. Symmetries of the Hamiltonian . . . . . . . . . . . . . . . . . . . . 19
4.3.2. Enforcing the Phase Transition – The Winding Number . . . . . . . 21

4.4. Determination of the Topological Phase-Diagram . . . . . . . . . . . . . . 22
4.5. The Bound State – Non-Trivial Topological Character of the System . . . . 23

5. Exposing the Bound State to Disorder 25
5.1. Static Disorder (Energy Conservation) . . . . . . . . . . . . . . . . . . . . 25
5.2. Dynamic Disorder (No Energy Conservation) . . . . . . . . . . . . . . . . . 26
5.3. Dynamic Disorder (Correlation Lengths) . . . . . . . . . . . . . . . . . . . 31
5.4. Diffusive Tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5. Analytical Investigation of the Decay for the Bound State . . . . . . . . . . 36

5.5.1. Calculation of the Bound State – The Bulk Hamiltonian . . . . . . 36
5.5.2. Calculation of the Decay Coefficients . . . . . . . . . . . . . . . . . 39

5.6. Comparing Numerical Results with Theoretical Expectations . . . . . . . . 42

6. Programming the Quantum Walk 46
6.1. Improving the Runtime - Finite Size Effect . . . . . . . . . . . . . . . . . . 46

7. Outlook - Quantum Walk on a Square Lattice (2D) 48

A. Appendix 52
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B. Declaration and Acknowledgements 64

I





1. Abstract

Demler et al. showed that modified versions of the discrete time quantum walk, i.e. the
quantum mechanical analogue of the classical random walk, can function as quantum sim-
ulators for all topological phases classified in one and two dimensions [1]. Furthermore,
they discussed the existence of robust edge modes, which are only present at the spatial
boundary of a topological phase, and which account for the non-trivial topological charac-
ter of the system.
In this Bachelor Thesis, the effect of both time-dependent and static disorder on the bound
state of a one-dimensional topological insulator realised with a quantum walk are investi-
gated both numerically and analytically. The motivation for this approach is that in an
experimental set-up the sequence of unitary operations, which defines the quantum walk,
is often realised imperfectly.
It is shown that the bound state of a one-dimensional topological insulator is insensitive to
static disorder (energy conservation), whereas a time-dependent perturbation causes the
bound state to decay (no conservation of energy). It can be observed that the bound states
decay exponentially and that the decay constants scale quadratically with the strength of
the disorder. In the long-time limit, the behaviour of the wave functions becomes diffusive.
A future prospect is the investigation of the behaviour of two-dimensional edge states
realised on a square lattice with a quantum walk (Ref. [1]), which are subject to noise.
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Zusammenfassung

Demler et al. haben gezeigt, dass modifizierte Versionen eines diskreten ’Quantum Walk’,
dem quantenmechanischen Analogon des klassischen ’Random Walk’, als quanten Simu-
latoren für alle in ein und zwei Dimensionen klassifizierten topologischen Phasen dienen
können [1]. Zusätzlich wurde die Existenz von robusten, lokalisierten Zuständen diskutiert,
die sich nur an der Grenze unterschiedlicher topologischer Phasen aufzeigen. Ihre Existenz
ist ein Beweis für den topologisch nicht trivialen Charakter des Systems.
In dieser Bachelorarbeit wird die Einwirkung von zeitabhängiger als auch zeitunabhängiger
Störung auf den gebundenen Zustand in einem eindimensionalen topologischen Isolator, der
mit Hilfe eines ’Quanten Walk’ realisiert wird, numerisch als auch analytisch untersucht.
Die Motivation für diese Vorgehensweise ist der Tatsache geschuldet, dass in einem exper-
imentellen Aufbau die Sequenz von unitären Transformationen, die den ’Quanten Walk’
definiert, nicht ideal realisiert werden kann.
Es wird gezeigt, dass der gebundene Zustand eines eindimensionalen topologischen Iso-
lators robust gegenüber der Einwirkung von statischer Unordnung ist (Energierhaltung),
wohingegen eine zeitabhängige Störung den gebundenen Zustand zerfallen lässt (keine En-
ergieerhaltung). Es wird beobachtet, dass die gebundenen Zustände exponentiell zerfallen,
wobei die Zerfallskonstanten quadratisch mit der Stärke der Unordnung skalieren. Für
lange Zeiten wird das Verhalten der Wellenfunktion am gebundenen Zustand diffusiv.
In Zukunft ist die Untersuchung zweidimensionaler lokalisierter Zustände auf einem quadratis-
chen Gitter, die mit Hilfe eines ’Quantum Walk’ realisiert werden ([1]), unter dem Einfluss
von zeitabhängiger als auch zeitunabhängiger Störung, geplant.
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2. Motivation

This Bachelor Thesis is based on the ideas of Demler, Berg, Rudner and Kitagawa [1]
who showed that quantum walks can realise and explore a wide range of dynamics of
topologically distinct phases. They engineer a quantum walk in a way that allows it to
support a topological phase transition in one and two dimensions, leading to the existence
of topologically protected bound states. What is more, they showed that the discrete-time
quantum walk is able to realise all ten possible symmetry classes in one and two dimensions.
These classes can be distinguished by time-reversal symmetry, particle-hole symmetry and
chiral symmetry [2].

The behaviour of quantum walks themselves is fascinating, because they turn out to be a
powerful tool in quantum information science. The quantum walk is a quantum version of
a classical random walk and is defined as a sequence of unitary operations. It nevertheless
shows striking differences to its classical counterpart, employing the effects of superposition
and coherent delocalisation of particles leading to interference phenomena.

Topological insulators (in 2D and 3D) were predicted theoretically in 2005 [4] and 2007 [5],
prior to their first experimental discovery in 2007 [6], compare [7]. Topological insulators
are new kinds of material in a sense that its quantum state of matter is characterised
by topological invariances rather than by a local order parameter. These materials are
insulating in their bulk, but can conduct electricity on their surface. These edge (2D) or
surface (3D) states are non-accidental, because they are protected both by symmetry and
topology; meaning that they cannot be destroyed by non-magnetic impurities or imperfec-
tions of the crystal.
Moreover, they are expected to host a lot of interesting features (e.g. charge fractionalisa-
tions or Majorana fermions [8] which are chargeless and their own antiparticles) and are
thereby a field of intensive theoretical and experimental research.

The goal of this Bachelor Thesis is to analyse (both numerically and analytically) the
behaviour of topologically protected states in 1D that are subject to noise.

Therefore, the Bachelor Thesis is structured as follows: The first chapter provides the
reader with a short introduction to the general properties (definition, mathematical struc-
ture, idea) of a discrete-time quantum walk in 1D, since a modified protocol of the discrete-
time protocol is used to realise topologically distinctive phases in the main part.
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In the second part of the introduction, the reader is given a short overview of the proper-
ties of topological insulators, especially focusing on the difference of a topologically trivial
(band)insulator and a non-trivial topological (band)insulator. Their first theoretical dis-
covery in quantum Hall states is described as an example for the simplest two-dimensional
topologically ordered state in order to convey the idea of topological notion. Furthermore,
the abstract mathematical concept of topological invariants and its relation to the Berry
phase, which provides a physical understanding of the idea of topological order, are briefly
summarised.

As the topological character of the Hamiltonian of the split-step protocol is based on its
symmetries that are described by the existence of antiunitary operators, the reader finds a
short section about their properties. This is relevant, because these properties are necessary
later on when the symmetry relations are derived.

In the fourth chapter, the theoretical concept of a split-step protocol is introduced, making
it possible to realise topologically distinct phases. In the following sections its topologi-
cal classification is derived and its consequences on the form of the energy spectrum are
explained. Furthermore, it is described how the phase transition (realisation of different
winding numbers) is enforced. The existence of the bound state (limited to phase bound-
aries) is numerically probed by the iteration of the split-step protocol.

The main part (Chapter 5) of the thesis investigates the behaviour of the bound states that
are exposed to various forms of disorder (both dynamic and static). This is of particular
interest for an experimental realisation of a quantum walk, where the system is inevitably
subjected to noise or disorder.

In case of static disorder, the bound states are expected to persist, whereas in case of dy-
namic disorder the system’s energy is not conserved and the states decay. It is of particular
interest which function describes the decay best and how the processes of decay are related
to the strength of disorder. This is investigated both numerically and analytically.

The seventh Chapter presents an outlook to a quantum walk in 2 dimensions realised on a
square lattice [1]. Once again the existence of the surface states can be probed by numerical
calculations with a modified version of the split-step quantum walk. Similar to the 1D case
the surface states are non-accidental. It is of great interest to study their behaviour under
disorder.
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3. Introduction to Theoretical Concepts

3.1. Quantum Walk

In recent years, quantum walks have become increasingly important in the field of quantum
information science with regard to efficient quantum algorithms. One hopes that a quantum
computer can simulate a quantum walk to solve computational tasks more efficiently than
with a classical random walk (e.g. discovery of satisfying assignments for Boolean formulae
[9]).

The basic concept of a random walk is to shift the walker’s current position according to
the outcome of a (stochastic) coin-flip.

Classically, the walker’s state can be described by a probability distribution in position-
space. The random walk can be illustrated well by Galtons’ Board (Quincunx, Fig. 3.1).

Figure 3.1.: Quincunx: A ball drops through an array of equally spaced pins which are
arranged in rows and stuck in a board. At the bottom the balls are collected
in slots. If there are N rows, each falling ball is a Bernoulli trial that consists
of N steps. Because the ball is equally likely to bounce to the left or right,
after many steps the binomial distribution (distribution of heights in the slot)
converges to a Gaussian distribution with mean zero and variance σ2 = N .
Figure taken from [10]
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A quantum (random) walk is the quantum analogue to its classical counterpart and defined
as a sequence of unitary operations Ui, see Ref.[10]. In case of a discrete random walk
with N steps, it is defined as follows:

(U1 . . . Um)N = e−iHt, for t = ∆tN (3.1)

The operator H is the Hamiltonian of the system. The key idea is to iterate a sequence
of unitary operations Ui on an initial state |Ψ0〉 for a time t and measure the resulting
probability distribution over a d-dimensional lattice, see Ref. [9]. Quantum walks can
simulate the behaviour of other quantal systems, e.g. topologically distinct phases of a
topological insulator.
In order to implement a non-trivial quantum version of the random walk one needs two
degrees of freedom. The internal degree of freedom of the system can be realised by the
spin of a particle that takes the role of the coin. The external degree of freedom is the
particle’s position in space. In this Thesis the quantum walk will be defined on a line (1D)
and on a square-lattice (2D) with grid-length 1. In order to realise a discrete-time quantum
walk, the states of the total system are described in the Hilbert space H = HC⊗HP , where
HC = {|↑〉 , |↓〉} and HP = {|x〉 ;x ∈ Z}. The flipping of the coin can be implemented by
a unitary (coin) operator that acts only on the internal degree of freedom of the system.
The outcome of the operation determines the direction of the walker’s next step. This can
be achieved by introducing a spin-dependent unitary translation operator T that shifts
both spins into opposite directions. Here, the coin-operator corresponds to the rotation
matrix R(θ) of a spin-1

2 particle acting only in the Hilbert space of HC (a rotation about
the y-axis by an angle θ).

R(θ) = exp
(
i

2θσy
)

=
cos( θ2) − sin( θ2)

sin( θ2) cos( θ2)

 (3.2)

The shifting operator T is defined as follows:

T↑,↓ =
∑
x

|x+ 1〉 〈x| ⊗ |↑〉 〈↑|+ |x− 1〉 〈x| ⊗ |↓〉 〈↓| (3.3)

The quantum walk with N steps is defined by the sequence of unitary operations U acting
on the wave-function:

UN = (T ↑,↓· (R(θ)⊗ 1k))N (3.4)
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The operator U entangles both degrees of freedom of the system because the translation
T↑,↓ delocalises the particle over two lattice sites by bringing the system into a superposi-
tion of positions. This ultimately leads to the possibility of constructive and destructive
interference in subsequent steps, whereas in a classical random walk each path lives on
its own. This feature gives rise to a completely different behaviour of the quantum walk
compared to its classical counterpart. The probability distribution of a quantum walk does
not converge to a limiting distribution and, in general, is highly sensitive to the walker’s
initial state and the specific coin-operators. The quantum random walk is reversible and
therefore its initial state can be reconstructed by the application of U−1.
A modified version of a quantum walk, the split-step quantum walk, (discussed by Demler
et al. [1]) is used in this Thesis in order to realise a topological phase transition that
ultimately results in the presence of a bound state near the phase-transition point.

3.2. Trivial and Non-Trivial Topological Insulators

Trivial Topological Insulators

A trivial insulator does not conduct any electricity. It can be described within the general
framework of band theory of solids and is well understood. It has finite numbers of un-
occupied bands and no partially occupied bands. The conduction band is separated from
the valence band by a large energy gap.

Non-Trivial Topological Insulators

In the 1980’s the discovery of the integer quantum Hall effect gave rise to new organisational
principles of quantum matter. In the quantum Hall state, electrons confined to a 2D plane
and exposed to a strong magnetic field perpendicular to the electrons’ motion circulate
in quantised orbits with quantised levels of energy (Landau levels). Along the edges the
electrons form so-called ’skipping orbits’, where they circulate in one direction only, which
depends on the orientation of the applied magnetic field. This means that the electron
gas is insulating in its bulk (Landau levels), but conducts electricity at the edges. The
topological invariant is the quantized Hall conductance that counts the number of edge
states (σxy = n e

2

h
). The prominent feature of the edge states is, that they persist even

in the presence of impurities meaning that they are not accidental surface states. Their
presence is protected by the concepts of topology.
Actually, the existence of edge states does not necessarily depend on the presence of an
external magnetic field.
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Figure 3.2.: Top: Sketch of a trivial insulator. The electrons are well-localised in orbits.
An energy gap separates the conduction and the valence band.
Middle: The quantum Hall state as a non-trivial insulator. Due to the pres-
ence of an external magnetic field the electrons in the middle of the material
move in closed orbits. At the edges, the electrons bounce off the surface but
there is no possibility for a change in direction since it is determined by the
orientation of the magnetic field. The material will not conduct electricity in
its bulk but does so along the edges. Since charge flows in one direction only
(chiral edge states) and the edges of the sample are far apart, scattering pro-
cesses of the electrons are strongly suppressed. Quantum Hall states require
the presence of a magnetic field which breaks time-reversal symmetry. The
quantized Hall conductivity is an integer topological invariant.
Bottom: Quantum spin Hall effect. An energy-gap is present due to strong
spin-orbit coupling. Electricity is conducted through spin-polarized helical
edge states. Figure taken from [11]
Right: A quantized Hall conductance is observed in quantum Hall systems.
σxy = n e

2

h
(plateaus). The lower peaked curves represent the logitudinal resis-

tance ρxx that vanishes at each plateau. Figure taken from [12]

It turned out that spin-orbit coupling can be strong enough to take over the role of the exter-
nal magnetic field. The locking of the direction of the spin and its movement leads to spin-
polarised counter-propagating edge states (quantum spin Hall effect, see Ref. [7],[13],[14]).
These materials are now called topological insulators.
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Topological insulators are new states of condensed matter and can also be understood
within the framework of band theory of solids. A topological insulator is a material that
is insulating in its bulk but, in contrast to an ordinary insulator, has protected edge (2D)
or surface (3D) states. These surface states occur only at topological phase boundaries,
and therefore originate from topological invariants which do not change as long as the
material remains insulating in its bulk. This is often referred to as the bulk-boundary
correspondence, because the existence of surface or edge states follows from topological
properties of the bulk.

Usually, the explanation of phase transitions from disordered into ordered states of matter
is based on the Landau theory of second-order phase transitions, which characterises states
of condensed matter by different local order parameters. According to Landau theory, a
continuous phase transition is accompanied by a spontaneously broken symmetry as well
as a change in value of the local order parameters. For example, a crystal spontaneously
breaks translation and rotation symmetries of space, superconductors break U(1) gauge
symmetries for charged particles and are classified by their critical temperature TC as their
local order parameter. The concept of describing a topological phase transition with the
help of local order parameter fails, because symmetries are preserved.

A new classification of ordered states of condensed matter is based upon topological in-
variants of the examined system rather than on local order parameters. In Mathematics,
2D topological manifolds are, for example, characterised by an integer number that arises
as an integral of its closed surface (Gauss-Bonnet Theorem). The topological classification
is based upon the manifold’s genus (g), which counts the number of holes. Accordingly, a
torus is topologically different (g = 1) from a sphere (g = 0) (see Ref. [15]) The topolog-
ical character of a system remains unchanged under smooth or adiabatic deformations of
the manifold. A simple illustration for a changing (unchanging) topological notion can be
found in Fig. 3.3. A doughnut and a coffee cup belong to the same topological equivalence
class as they can be transformed into each other without cutting their surfaces. In physics,
smooth deformations are applied to the Hamiltonian and therefore affect its spectrum.
Topologically, semiconductors and trivial insulators are equivalent because one can trans-
form the one into the other by tuning the Hamiltonian so as to interpolate continuously
between the two without closing their energy gap (see Ref. [17] page 2). In their simplest
form, equivalence classes of Hamiltonians can be distinguished by a topological invariant
n ∈ Z, called Chern number (similar to the genus of the surface in mathematics).
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Physically, this invariant can be understood in terms of the Berry phase (see Ref. [18],
and Ref. [17] page 3). The Berry phase is a well defined irreducible, geometric phase in
quantum mechanics, which is obtained by the wave function on a closed loop in momentum
space given an adiabatic deformation of the Hamiltonian. Here ’adiabatic’ means that the
time evolution of an eigenstate of the system is only determined by a dynamical phase
and a geometrical phase (Berry phase), i.e. the system remains in its time-dependent
eigenstate without making transitions into different states. For example, a particle moving
in momentum space encircling the 1D Brillouin Zone picks up the Berry phase which can
be expressed in terms of the Bloch wave-functions |u(~k)〉 as:

nm = 1
2πi

∫
∂BZ

dk 〈um(~k)| ∇k |um(~k)〉 (3.5)

Using Stokes’ Theorem and A = −i 〈um(~k)| ∇k |um(~k)〉 this may also be expressed as a
surface integral:

nm = 1
2π

∫
BZ

d2k (∇k × A) (3.6)

∇×A is called the Berry curvature. Summing over all occupied bands m, one obtains the
total Chern number n as the topological invariant of the system, provided that there exists
an energy gap separating a finite number of occupied and unoccupied bands.

Figure 3.3.: (Left) The trefoil knot has got a different topological number than the closed
loop (Right).This is because neither of them can be transformed into the
other without having to cut the wire (Centre). Figure obtained from [16].
This is in contrast to the transformation of a doughnut into a coffee cup.
These manifolds are topologically equivalent because there exists a sequence
of transformations that transforms the one into the other without cutting their
surfaces.
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For a 2 × 2 Hamiltonian of the form H = ∑
k
E(~k)~n(~k) ·~σ (see Eq. 4.6), the topological

invariant can also be expressed as:

n = 1
4π

∫
BZ

d2k
(
~n· (∂kz~n× ∂ky~n)

)
(3.7)

, (see Ref. [17]). The Chern number n can geometrically be interpreted as the number of
times the unit vector ~n wraps around the unit sphere as ~k is taken through the Brillouin
zone (the closed loop in parameter space). The Berry flux is then related to the solid angle
enclosed by the unit vector ~n.

In other words, the Brillouin zone takes the role of the surface, and the Berry phase provides
its curvature. Hence, the the electron’s wave functions are in some way ’knotted’.

3.2.1. Topological Invariant in 2D Time-Reversal Invariant Systems

The quantum spin Hall state exhibits a different topological invariant than the quantum
Hall state. The Hall conductivity changes its sign under time-reversal, meaning that it is
always zero in the quantum spin Hall state. Nevertheless, there exists a different topological
invariant Z2 in systems with time-reversal symmetry that can only take two possible values
(ν = 0 and ν = 1). For inversion symmetric systems, for example, it can be determined
by the parity of the Bloch wave functions at special points in the Brillouin zone (see Ref.
Kane et al. [17]).
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3.3. Antiunitary Operators

The symmetries of the Hamiltonian discussed in Chapter 4.3.1 are defined by the existence
of antiunitary operators. Therefore it is necessary to define their properties.
An operator A is considered antiunitary if it satisfies the following relations:

A(α |Ψ〉+ β |Ψ〉) = α∗A |Ψ〉+ β∗A |Ψ〉 (3.8)
〈AΨ|AΦ〉 = 〈Ψ|Φ〉∗ = 〈Φ|Ψ〉 (3.9)

An antiunitary operator satisfies the equation AA† = 1. To see this note that:

|A |Ψ〉 |2 = 〈AΨ|AΨ〉 = (〈Ψ|A†A |Ψ〉)∗ != 〈Ψ|Ψ〉 (3.10)

And for 〈Φ|Ψ〉 = 0⇒ 〈Φ|A†A |Ψ〉 = 0.
The product of a unitary operator U and an antiuntiary operator A is also antiunitary.
This follows from Eq. (3.8) and Eq. (3.9):

UA(αΨ + βΨ) = U(α∗AΨ + β∗AΨ) = α∗UAΨ + β∗UAΨ (3.11)

〈UAΨ|UAΦ〉 = 〈AΨ|U †U |AΦ〉 = 〈AΨ|AΦ〉 (3.9)= 〈Φ|Ψ〉 (3.12)

The complex conjugate of an antiunitary operator that consists of a unitary and an antiu-
nitary operator is:

B = UA⇒ B† = (UA)† = A†U † (3.13)

This becomes evident from:

〈Ψ|UAΦ〉 =
〈
U †Ψ|AΦ

〉
=
(〈
AΦ|U †Ψ

〉)∗
= 〈Φ|A†U † |Ψ〉 (3.14)

〈Ψ|BΦ〉 =
〈
Φ|B†|Ψ

〉
(3.15)

⇒ B† = (UA)† = A†U † (3.16)

In particular, the complex conjugation K is antiunitary, because

K(α |Ψ〉+ β |Ψ〉) = α∗K |Ψ〉+ β∗K |Ψ〉 (3.17)
〈KΨ|KΦ〉 = 〈Ψ∗|Φ∗〉 =

∫
dx3ΨΦ∗ = 〈Φ|Ψ〉 (3.18)
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The time-reversal symmetry operator T is defined by the equation:

e−iHtT e−iHt |Ψ(0)〉 = T |Ψ(0)〉 (3.19)

At the time t a time-reversal operation is performed. The resulting state of the system is
further developed for a time period t. If the system at t = 0 is in its time-reversed state,
the Hamiltonian is considered invariant under the operations performed by T (see Ref.[19]
page 228).

After differentiating Eq.(3.19) at t = 0 it follows that:

T iH = −iHT (3.20)
⇒ [T ,H] = 0⇔ T HT −1 =H (3.21)
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4. Investigation of Topological Phases with a
Quantum Walk in 1D

4.1. The Split-Step Protocol

The one-dimensional discrete-time quantum protocol (DTQW) is given by the unitary
evolution operator U :

U = (T↑,↓· (R(θ)⊗ 1x)) (4.1)

R(θ) = exp
(
i

2θ·σy

)
=
cos( θ2) − sin( θ2)

sin( θ2) cos( θ2)

 (4.2)

T↑,↓ =
∑
x

|x+ 1〉 〈x| ⊗ |↑〉 〈↑|+ |x− 1〉 〈x| ⊗ |↓〉 〈↓| (4.3)

The rotation matrix R(θ) rotates the system around the y-axis by an angle θ. The transla-
tion operator T is a spin-dependent shift on a 1D line with integer grid-length. It delocalises
particles of opposite spin in different directions by one lattice site.

In order to observe a non-trivial topological character of the system, a split-step proto-
col (STQW) is introduced that enforces the system to undergo a phase transition which
manifests itself in the presence of a robust edge state at the phase boundary.

The split-step protocol defines a set of Hamiltonians Hss(θ1, θ2(x)) that only depends on
the particular choice of the pairs of rotation angles (θ1, θ2).

The split-step protocol is defined by:

U ss(θ1, θ2(x)) = T↓R(θ2(x))T↑R(θ1) (4.4)

The shift operator T has been altered in a way that it separately shifts the spin-up (spin-
down) component of the walker to the right (left) by one lattice site.

The dynamics of the system are governed by the sequence of unitary operationsUss(θ1, θ2(x)),
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which can be written in a more convenient way as:

Uss(θ1, θ2(x)) = exp (−iHss(θ1, θ2(x))δt) , ~ = 1 (4.5)

Hss(θ1, θ2(x)) =
π∫
−π

dk[Eθ(k)~nθ(k) · ~σ]⊗ |k〉 〈k| (4.6)

~σ = (σx,σy,σz) (4.7)

The STQW protocol is a discrete quantum walk, therefore the systems time-evolution is
limited to unit intervals δt. Consequently, the eigenvalues of the Hamiltonian ±E(θ1,θ2) are
only defined modulo 2π, resulting in a quasi-energy spectrum. The split-step protocol was
suggested and discussed by Demler et al. [1].

4.2. Energies and Eigenstates

By application of the Fourier transformation for the translation operator T↑,↓, one obtains
the following expression in the basis of Fourier modes:

T↑ =
∑
x

|x+ 1〉 〈x| ⊗ |↑〉 〈↑|+ |x〉 〈x| ⊗ |↓〉 〈↓| , with |x〉 =
∑
k

1√
2π
eikx |k〉

=
∑
k,k′




∑
x

1
2πe

i(k−k′)x

︸ ︷︷ ︸
δ(k−k′)

 |k〉 〈k′| eik ⊗ |↑〉 〈↑|+

∑
x

1
2πe

i(k−k′)x

︸ ︷︷ ︸
δ(k−k′)

 |k〉 〈k′| ⊗ |↓〉 〈↓|


=
∑
k

(
|k〉 〈k| eik ⊗ |↑〉 〈↑|+ |k〉 〈k| ⊗ |↓〉 〈↓|

)

=
∑
k

|k〉 〈k| ⊗

eik 0
0 1


chosen basis: {|↑〉 , |↓〉} =


1

0

 ,
0

1


After a similar procedure for T↓ the matrix representation of the DTQW protocol is

Uss(θ1, θ2(x)) =
∑
k

|k〉 〈k| ⊗ eik cos
(
θ1
2

)
cos

(
θ2
2

)
− sin

(
θ1
2

)
sin

(
θ2
2

)
−eik sin

(
θ1
2

)
cos

(
θ2
2

)
− sin

(
θ2
2

)
cos

(
θ1
2

)
cos

(
θ1
2

)
sin

(
θ2
2

)
+ e−ik sin

(
θ1
2

)
cos

(
θ2
2

)
− sin

(
θ1
2

)
sin

(
θ2
2

)
+ e−ik cos

(
θ1
2

)
cos

(
θ2
2

)

15



Writing the Hamiltonian in a convenient parametrization in momentum-space

H =
∑
k

~L(k, θ1, θ2) ·~σ (4.8)

where the eigenvalues are given by E(k) = ±|~L(k, θ1, θ2)|, one has to write Uss in terms of
the Pauli matrices:

Uss = c01+
3∑
i=1

ci ·σi

Ussσj = c01σj +
3∑
i=1

ci

(
δij1+ i

3∑
k=1

εijkσk

)

= c01σj + cj1+ i
3∑

k,i=1
εijkσk

⇒ cj = 1
2Tr(Ussσj)

{j = 0, 1, 2, 3 ,σ0 = 1 ,Tr(σj 6=0) = 0}

The explicit expression for the energies is obtained by comparing coefficients in the follow-
ing equation:

Uss = c01+ ~c·~σ
!= exp

(
−i
∑
k

~Rθ1,θ2(k) ·~σ ⊗ |k〉 〈k|
)

= exp
(
−i
∑
k

Eθ1,θ2(k)~nθ1,θ2(k) ·~σ ⊗ |k〉 〈k|
)

=
∑
k

cos(Eθ1,θ2(k))1− i sin(Eθ1,θ2(k))~n·~σ ⊗ |k〉 〈k|

⇒ ~n = i
1

sin(Eθ1,θ2(k))~c, cos(Eθ1,θ2(k)) = c0

16



The coefficients for the Hamiltonian are:

cos(Eθ1,θ2(k)) = cos (θ2/2) cos (θ1/2) cos (k)− sin (θ1/2) sin (θ2/2) (4.9)
(4.10)

nx(k) = cos (θ2/2) sin (θ1/2) sin (k)
sin(Eθ1,θ2(k))

ny(k) = cos (θ1/2) sin (θ2/2) + cos (k) cos (θ2/2) sin (θ1/2)
sin(Eθ1,θ2(k)) (4.11)

nz(k) = − cos (θ2/2) cos (θ1/2) sin (k)
sin(Eθ1,θ2(k)) (4.12)

The angle θ2 can be regarded as the tuning parameter for the energy spectrum when
keeping θ1 = −π

2 fixed. The resulting band structure is shown in Fig. 4.1. Note that there
is a gap closing for a value of θ2 = π

2 .

-p/2

p/2

-p -p/2 p/2 p

E(k)

k

Band structure of the STQW for different values of θ2

θ2=p/2
θ2=p/4
θ2=3p/4

Figure 4.1.: Band structure for the STQW for different values of θ2 (θ1 = −π/2). Note that
the gap closing at θ2 = π

2 marks the point of the topological phase transition
for the split-step-protocol at k = 0 in the phase space. In general, the energies
are only defined modulo 2π, and the gap closings always occur at k = 0,±nπ
with energies E = 0, nπ, n ∈ N.
Time-reversal symmetry and particle-hole symmetry of the split-step protocol
guarantee that the spectrum is symmetric with respect to the momentum and
energy axes.
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4.3. Topological Classification of the STQW

Figure 4.2.: Table of topological insulators in one (1D) and two (2D) dimensions. Time-
reversal symmetry (TRS) and particle-hole symmetry (PHS) are defined by
the existence of antiunitary operators T and P satisfying the equations
T 2 = ±1,P2 = ±1. In the absence of both TRS and PHS, a distinct chiral
symmetry with a unitary Γ satisfying equation may be found. In each case,
the symmetry-allowed phases are classified by an integer (Z) or binary (Z2)
topological invariant. Caption (adapted) and figure taken from [1].

The class of topological phases that can be realised is determined by two features of the
system. Firstly, by its dimensionality and, secondly, by the symmetries of the Hamiltonian,
(see Fig. 4.2). The classification is based upon the presence or absence of symmetry op-
erators. In two-dimensional systems, time-reversal symmetry and particle-hole symmetry
can be present with T 2 = P2 = ±1. Together with a chiral symmetry Γ one ends up with
10 possible symmetry classes in 2D, see Ref. [2],[13].

Since the relevant symmetry operators of the STQW both square to 1, T 2 = P2 = 1, the
symmetry class of the system is labelled "SSH" (Su-Shrieffer-Heger-Model, see Ref.[20]) by
Demler, Berg, Rudner, Kitagawa. The table for the classification of the topological phases
is shown in Fig. 4.2.
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4.3.1. Symmetries of the Hamiltonian

The Hamiltonian of the STQW has time-reversal symmetry (TRS), particle-hole symmetry
(PHS) and a chiral symmetry (CS). It thus satisfies:

T HssT −1 =Hss (TRS) (4.13)
PHssP−1 = −Hss (PHS) (4.14)

Γ−1
θ2 HssΓθ2 = −Hss (CS) (4.15)

Since symmetry operators have to be either unitary or antiunitary (Wigner’s Theorem)
there are no unitary operators that satisfy (TRS) and (PHS) for the STQW.

4.3.1.1. Particle-Hole Symmetry

PHS is satisfied by the antiunitary operator P = K, where K is the complex conjugation
operator. The Operator Uss of the STQW-protocol (see Eq. (4.4)) is real. Regarding Eq.
(4.5) this implies H∗ss = −Hss.

Since PH +HP = 0 for every energy eigenfunction |n〉 with H |n〉 = En |n〉 ,P |n〉 is a
valid solution with energy −En. As a consequence, eigenvalues En and −En always appear
in pairs for each k.

4.3.1.2. Chiral Symmetry

The chiral symmetry is given by an operator

Γ±1 = exp
(
∓iπ/2 ~Aθ1 · ~σ

)
= 1 cos (π/2)∓ i ~Aθ1 · ~σ sin (π/2) = ∓i ~Aθ1 · ~σ (4.16)

~Aθ1 = (cos (θ1/2) , 0, sin (θ1/2)) (4.17)

where ~Aθ1 is perpendicular to the vector ~n(k) for all k.
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The presence of chiral symmetry (Eq.(4.15)) under Γ and ~A can be verified:

Γ−1HssΓ =
π∫
−π

dkE(k)( ~Aθ1 · ~σ)(~n· ~σ)( ~Aθ1 · ~σ)⊗ |k〉 〈k| (4.18)

(4.19)= −i
π∫
−π

dkE(k)( ~Aθ1 · ~σ)( ~Aθ1 × ~n) · ~σ ⊗ |k〉 〈k|

(4.20)= −i
π∫
−π

dkE(k)( ~Aθ1 · ~σ)( ~Aθ1 ·~n)− i ~A2(~n· ~σ)⊗ |k〉 〈k|

= −
π∫
−π

dkE(k)(~n· ~σ)⊗ |k〉 〈k|

= −Hss

(~n· ~σ)( ~Aθ1 · ~σ) =
∑
ij

niAjσiσj =
∑
ij

niAj

(
δij1+ i

∑
k

εijkσk

)
(4.19)

=
∑

ij

niAjδij

 1− i∑
k

∑
ij

εjikAjni

σk
= 1

(
~Aθ1 ·~n

)
− i

(
~Aθ1 × ~n

)
· ~σ

~A⊥~n= −i
(
~Aθ1 × ~n

)
· ~σ

( ~Aθ1 · ~σ)( ~Aθ1 × ~n) · ~σ =
(∑

l

Alσl

)∑
k

∑
ij

εijkAinj

σk
 (4.20)

=
∑
lijk

εijkAlAinjσlσk =
∑
lijk

εijkAlAinj

(
δlk1+ i

∑
m

εlkmσm

)

= 1
∑
k

∑
ij

εijkAinj

Ak + i
∑
ijlm

(∑
k

εkijεkml

)
AlAinjσm

= 1( ~Aθ1 × ~n) · ~Aθ1 + i
∑
ijlm

δimδjlAlAinjσm − i
∑
ijlm

δilδjmAlAinjσm

~A⊥( ~A×~n)= i

(∑
i

Aiσi

)∑
j

Ajnj

− i(∑
i

AiAi

)∑
j

njσj


= i( ~Aθ1 · ~σ)( ~Aθ1 ·~n)− i ~A2(~n· ~σ)
~A⊥~n= −i(~n· ~σ)
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4.3.1.3. Time-Reversal Symmetry

TRS of Hss is guaranteed by the existence of chiral symmetry and PHS with T = ΓP
which is a antiunitary operator:

T HssT −1 = ΓPHssP−1Γ−1 =Hss (4.21)

If |Ψ(k)〉 is a solution to Schrödinger’s equation with energy E(k), its time-reversed state
T |Ψ(k)〉 is also a solution to Schrödinger’s equation with the same energy E(−k) = E(k).

Together TRS and PHS guarantee that the energy spectrum E(k) is symmetric with respect
to both the momentum axis and the energy axis (see Fig. 4.1).

4.3.2. Enforcing the Phase Transition – The Winding Number

As chiral symmetry forces ~nθ1,θ2(k) to lie in a plane perpendicular to ~Aθ1 , the corresponding
topological invariant is the number of times that ~nθ1,θ2(k) winds around the origin (see Fig.
4.3). The band structure is made of the energy eigenvalues E(k) which, in the case of the
STQW for a fixed θ1, depends only on θ2. One can interpret θ2 as the tuning parameter
for the Hamiltonian that interpolates continuously between the band structure without
closing the energy gap, i.e. without changing the topological character of the system (e.g.
the winding number). The split-step Hamiltonian Hss realises topological phases with
winding numbers Z = 0 and Z = 1. These phases are separated by phase transition lines,
where the energy gap of the system vanishes. In the STQW, this is the case for k = 0 with
θ1 = −π

2 and with θ2 = π
2 (see Fig. 4.1). In order to realize a surface state of a topological

insulator, an inhomogeneous system with Z = 0 on the left hand side and Z = 1 on the
right hand side is investigated. The spatial boundary between these two topological phases
is enforced by a site-dependent spin rotation matrix R(θ2(x)), where θ2(x) is chosen to be:

θ2(x) = 1
2(θ2− + θ2+) + 1

2(θ2+ − θ2−) tanh(x/3) (4.22)

θ2(x) =

θ2−, x� 0

θ2+, x� 0

If the rotation angles (θ2+, θ2−) are chosen with a fixed θ1 to realise distinct topological
phases in the asymptotic limit (x � 0 and x � 0), a bound state exists near the phase
boundary at x = 0. The existence of the bound state does not depend on the specific
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Figure 4.3.: The band structure is plotted for the 1D DTQW with θ1 = π
2 . The vector

~n(k) winds around the origin as k traverses the Brillouin zone from −π to π.
For the DTQW, the winding number is always 1. For the STQW, the winding
number depends on the particular choice of θ(x). ~Aθ is perpendicular to ~n(k)
for all k. Corresponding points in the figures are marked. Figure taken from
Ref.[1].

shape of the θ2(x)-function and is guaranteed by topology. In fact, the bound state is
stable against weak perturbations that do not change the systems topological character.

4.4. Determination of the Topological Phase-Diagram

In order to determine the phase-diagram for the STQW, one has to calculate the number
of times the vector ~n wraps around the unit sphere. If ~A is rotated in the direction of
the z-axis, ~n will lay in the xy-plane for all k. With ~̃n = Ry( θ1

2 )~n, the expression for the
winding number Z is given by a line integral of the form:

Z =
∮ x

r2dy −
y

r2dx (4.23)

Z = 1
2π

π∫
−π

1
~̃n2

(ñx∂kñy − ñy∂kñx) dk (4.24)

since the polar coordinate θ is related to the rectangular coordinates x, y as:

dθ = 1
r2 (xdy − ydx) with r2 = x2 + y2 (4.25)

A numerical evaluation of Eq. (4.24) for θ1, θ2 ∈ [−2π, 2π] gives the phase-diagram for the
STQW, that can be found in Fig. 4.4
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Phase-Diagram for the STQW

Figure 4.4.: Phase diagram for the STQW from numerical evaluation of Eq. (4.24), screened
with intervals of 0.1 width. Black regions correspond to winding number 1,
white regions correspond to winding number 0.
At the red (blue) lines, the energy-gap closes at an energy E = π (E = 0). The
dots in the panel correspond to the choices of θ2+ = 11π

8 (coral dot), θ2+ = π
4

(blue dot), θ2− = 3π
4 (white dot) with a fixed θ1 = −π

2 . The colors correspond
to Fig. 4.5.

4.5. The Bound State – Non-Trivial Topological Character of the
System

By placing the quantum walker directly onto one of the phase boundaries and iterating the
STQW protocol, the existence of the topologically protected bound state can be verified.
If the initial state has a non-zero overlap with the bound state, a part of the wave function
is expected to remain localized at x = 0. Numerical calculations are shown in Fig. 4.5.
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Figure 4.5.: The y-axes of the upper four pictures show the weight of the wave functions
|Ψ|2. Note that the specific shape of the probability functions highly depends
on the choice of the initial wave function (except for the presence or absence
of the bound state). In all figures the initial wave function is |Ψ〉0 = |0〉 ⊗ |↑〉.
The majority of the wave function is moving right.
Left: The existence of the bound state has been verified using the split-step
protocol with parametric values θ1 = −π

2 , θ2− = 3π
4 , θ2+ = π

4 .
Right: The probability for the walker to be located around x = 0 goes to zero
in subsequent steps if θ2+ = 11π

8 . In the absence of the phase boundary there
is no bound state.
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5. Exposing the Bound State to Disorder

5.1. Static Disorder (Energy Conservation)

The effect of static disorder on the bound state at the interface of topologically distinct
phases is examined. Theoretically, one expects the bound state to remain stable against
weak perturbations. A perturbation is considered as weak as long as it does not change
the topological character of the system, which in the 1D case of the split-step quantum
walk (STQW) means that the winding number is not altered. Because there are no nearby
states inside the bulk energy gap, the static disorder will conserve the energy of the system.
Furthermore, it is expected that the existence of the bound states is not sensitive to the
explicit details of the form of the boundary.

The θ2(x)-function (Eq. (4.22)), which enforces the closing of the gap in the system and
thereby guarantees the existence of the robust edge states, is slightly modified by another
function γ(x), which returns uncorrelated random numbers at each integer lattice site:

θ̃2(x) = θ(x)2 + δγ(x) (5.1)
γ(x) ∈ [−1, 1] (5.2)

δ corresponds to the strength of the disorder, γ(x) is a uniform random distribution. The
modified θ-function is shown in Fig. 5.1. Note that for each step of the STQW the same
disordered θ̃2-function is used. The localised state of the system is centred around x = 0,
which corresponds to θ2(0) = π

2 . The effect of static disorder on the bound state can be
seen in Fig. 5.2.

The bound state remains stable against the perturbation. This reveals the non-trivial
topological character of the system and shows that the surface state is not ’accidental’, but
guaranteed by the topological notion of the system.
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Figure 5.1.: One possible realisation of disorder with the help of uncorrelated uniformly
distributed random numbers (〈xixi+1〉 = 0). The strength of the disorder is
choosen to be δ = 0.05.
In the static case the disorder configuration is fixed whereas in the case of
dynamic disorder it changes within subsequent iterations of the split-step
protocol.

5.2. Dynamic Disorder (No Energy Conservation)

In an experimental setup (e.g. Quantum Walk in Position Space with Single Optically
Trapped Atoms Ref. [21], see also Ref. [22]), the sequence of unitary operations for a
quantum walk may not be realised perfectly. It is of great interest to investigate a system
in the presence of slight mistakes of the unitary operations, i.e. a system subject to time-
dependent noise.
The bound state localised at x = 0 with the split-step protocol and the state-dependent
rotation angle θ2(x) are topologically protected and expected to persist in the presence
of weak perturbations. The specific shape of the θ2(x) is unimportant for the presence
of the bound state as long as there is a phase transition. However, if the shape of the
θ2(x)-function is altered with the help of random numbers inducing a time-dependent
numerical noise (see Fig. 5.1), the Hamiltonian of the system becomes time-dependent.
As a result, there is no conservation of energy, and the bound state is expected to decay
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Figure 5.2.: The effect of static disorder on the bound state.
The bound sate remains stable against the perturbation, which is in agreement
with the theory. The error bars are included.

within subsequent iterations of the split-step protocol.

θ̃2(x, t) = θ2(x) + δγ(x, t) (5.3)
γ(x, t) ∈ [−1 : 1] randomly choosen

δ disorder parameter

The strength of the disorder is controlled by a parameter δ chosen between 0 (no disorder)
and 0.30 (strong disorder). γ(x, t) is a uniform time-dependent random distribution.

For the numerical analysis of the behaviour of the bound states subject to disorder, |Ψ|2 is
integrated over a small range (depending on the particular choice of θ2) around the phase-
transition point x = 0, for different values of the disorder strength δ and for each iteration
of the STQW protocol.

It is expected that in the presence of fluctuating disorder the bound states decay exponen-
tially. With increasing strength of the disorder parameter δ the behaviour of these curves
is dominated by stochastic noise. Therefore one has to take the average over multiple
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Figure 5.3.: The shape of the red curve is dominated by the effects of stochastic noise.
Averaging over N disorder configurations suppresses the noise by a factor of√
N . The plot includes errorbars.

realisations of disorder configurations for the θ2(x, t) function for each curve to get appro-
priate estimates for the decay functions. The number of disorder realisations that have
been chosen depend on the particular strength of disorder (see Table 5.1). The averaging
procedure is carried out every time a decay-function is fitted. The errorbars represent
the standard deviation. The noise can be suppressed by a factor of

√
N , where N is the

number of disorder configurations (Central Limit Theorem). This can be seen in Fig. 5.3.
As the bound states are expected to decay exponentially, the specific decay time constants
prove to be of particular interest. Therefore, the decay curves are fitted with a function
f(x) = ae−bx. In order to guarantee that only the decay of the non-vanishing overlap of
the initial wave function (|Ψ〉 = |0〉 ⊗ |↑〉) with the bound state is taken into account, the

δ Disorder Configurations
<0.04 10

(0.04-0.08) 50
>0.08 100

Table 5.1.: Disorder Realisations for various values of disorder δ.
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fitting process is started after 100 iterations of the STQW protocol, so that the unbound
part of the wave function traverses out of the area of integration (compare Fig. 4.5). In a
plot with logarithmic scale on the y-axis the decay curves are expected to be linear and of
the form log(f(x)) = log(a)− bx. In Fig. 5.5 it can be seen that the decay of the bound
state divides up into different parts. In a limited region (depending on the strength of the
disorder and the number of steps) the curves decay exponentially. For many iterations of
the STQW protocol, deviations from the exponential decay and the numerically calculated
results become visible. The behaviour of the bound state can then be described by laws of
diffusion. These regions are called ’diffusive tails’.

Figure 5.4.: Exposing the bound states to dynamic disorder
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Figure 5.5.: Integrated weight of the wave-function around the spatial boundary of topolog-
ically distinct phases at x = 0 for the STQW under the effect of dynamic disor-
der. The disorder parameters are chosen as follows: δ = 0.025, 0.05, 0.75, 0.10.
One can observe that the bound states only decay exponentially in a lim-
ited region. At some point, depending on the strength of the disorder δ, the
behaviour of the bound state is governed by diffusion processes. These are
referred to as ’diffusive tails’.
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After fitting the decay curves in the appropriate region for various strength of disorder,
one can plot the time constants b against the disorder parameter δ. One observes that
the time constants scale quadratically with δ, for small disorder parameter. For stronger
disorder, the bound states decay rapidly, and the dynamics of the system is governed by
diffusion rather than by an exponential decay.
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Figure 5.6.: Extracted time constants of the exponential decay of the bound states that
are subject to dynamic disorder.
For weak perturbations, the time constants of the exponential decay scale
quadratically with the disorder parameter.
In case of strong-disorder, deviations from the fitted curve (g(x) = ax2) become
visible. This is because the behaviour of the bound state is described by the
laws of diffusion rather than by an exponential decay.

For small disorder parameters the following equation for the time constants is obtained
numerically:

g(δ) = aδ2 with a = (0.0738± 0.0001) (5.4)

A list of all time constants can be found in table A.2.
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5.3. Dynamic Disorder (Correlation Lengths)

In the previous section, the perturbation configuration of the system changed at every
iteration of the split-step protocol. Therefore, every time a part of the wave function is
set free due to disorder, it can get recaptured in the next iteration of the STQW that
realises a different disorder configuration. This problem can be tackled by introducing a
spatial (ξ) and a temporal (w) correlation length for the system. After each change of
the disorder configuration, the disorder is kept unchanged for w iterations of the STQW
protocol. The spatial correlation length blurs the area, where the bound state is localized
if θ2(x, t) depends on ξ, with:

θ2(x, ξ, t) = 1
2(θ2− + θ2+) + 1

2(θ2+ − θ2−) tanh
(
x

ξ

)
+ δγ(x, t) (5.5)

θ2(x, ξ, t) =

θ2− + δγ(x, t), x� 0

θ2+ + δγ(x, t), x� 0
(5.6)

The asymptotic limit of the function, however, remains unchanged.

The decay curves are fitted for their effective step lengths only, meaning that only those
steps are considered, where the disorder actually changes (after every w-th step). Hence,
one has to calculate the decay coefficients for a larger set of parameters (w, ξ, δ).

δ ∈ [0.01, . . . , 0.2]
w ∈ [50, 75, 100]
ξ ∈ [1.5, 3, 4.5, 6]

This procedure is of particular importance because it allows comparison with the analytical
calculation for the decay coefficients done in the following chapter. Again, the fitting for
the exponential decay (fit-function f(x) = ae−bx) is limited to a specific region (depending
on the strength of the disorder δ and the waiting time w) because of the appearance of
diffusive tails, similar to those in Fig. 5.5. The time constants b are listed in Table 5.2.
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Time constants of the exponential decay with correlation lengths w and ξ
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Figure 5.7.: Time constants of the exponential decay with correlation lengths w and ξ.
One can see that the decay constants of the bound states scale quadratically
with the disorder parameters for small disorder strengths. For greater disorder
parameters, deviations from the quadratic curvature become visible. A list of
all fit-values can be found in Tables A.4, A.5, A.6

5.4. Diffusive Tails

In case of time-dependent disorder, the motion of the wave function (in the long-term,
after the bound states decayed) is described by the laws of diffusion. This is not the case
for static disorder. The diffusion equation for the system is:

∂

∂t
n(x, t) = D

∂2

∂x2n(x, t) (5.7)

n(x, t) = 1
2
√
πDt

exp
(
−x2

4Dt

)
(5.8)

32



w ξ b ∆b
50 0.330 0.001
75 1.5 0.290 0.001
100 0.333 0.001
1 0.0738 0.0001
50 0.305 0.004
75 3 0.402 0.014
100 0.454 0.009
50 0.533 0.005
75 4.5 0.414 0.003
100 0.286 0.006
50 0.404 0.008
75 6 0.407 0.005
100 0.508 0.008

Table 5.2.: Time constants of the exponential decay for various ξ and w.

n(x, t) is the probability-density and takes the form of a Gaussian distribution, with a
width ∆x ∝

√
Dt, where D is the diffusion coefficient.

In the long-time limit (t → ∞), the probability-density n decays slowly with n ∝ δ√
t
at

the origin.

lim
t→∞

a∫
−a

(
n(x, t)

1/
√
t

)
dx = lim

t→∞

(
erf
(

a

2
√
Dt

)√
t

)
= a
√
π
√
D

= 5.6419 1√
D
∝ 5.6419 · δ

(5.9)

, where the diffusion coefficient D scales with the disorder parameter δ as 1√
D
∝ δ(

D =
〈
v2
Driftτ

〉
∝ 1

δ2 , Fermi’s Golden Rule
)
. Here, a is chosen to be 10. The proportion-

ality constant can be calculated numerically by an investigation of the long-term behaviour
of the probability-density by fitting the diffusive tails with respect to A(δ) and B for a
range of large disorder parameters (δ ∈ [0.07, 0.30]). The fitting function is chosen as:

nδ(t) = A(δ) 1
tB

(5.10)

In a plot with a double logarithmic-scale this takes the form of a linear equation:

log(nδ(t)) = log (A(δ))−B· t (5.11)
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Analysis of the Diffusive Tails for the STQW with various δ
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Figure 5.8.: In a double-logarithmic scale the long term behaviour of the density, which
describes the diffusive tails mathematically, is of the form nδ(t) = A(δ)− Bt.
These coefficients are found through numeric fit for various disorder parame-
ters.
With increasing strength of the disorder δ, the crossover region between the
exponential decay and the diffusive tails becomes smaller.

The numerical evaluation of the coefficient A(δ) can be seen in Fig. 5.9. The fit-parameters
for each disorder-parameter δ can be found in Table A.1.

Theory Numerical Calculation
A(δ) 5.06 ± 0.03
B 0.5 0.503± 0.001

Table 5.3.: Theoretical predictions and numerical calculations for the exponent B
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Theoretical and numerical behaviour of the coefficient A(δ)
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Figure 5.9.: Numerical results for the coefficient A(δ) in the long-term behaviour of the
density nδ(x, t).

Therefore, the proportionality constant α,
(

1√
D

= αδ
)
is numerically determined to be:

α = 0.897± 0.005 (5.12)
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5.5. Analytical Investigation of the Decay for the Bound State

5.5.1. Calculation of the Bound State – The Bulk Hamiltonian

In order to find an analytical solution for the time-constants of the exponential decay of the
bound states that are subject to dynamic disorder one can calculate a bulk Hamiltonian
Hbulk out of the STQW by a series expansion around the phase-transition point, i.e. k = 0,
θ2 = π/2.

~nbulk = lim
θ1→−π/2

∑
n≥0

∂n

∂θn2n!

∑
l≥0

∂l

∂kll!~n(0, θ1, π/2)kl
 (θ2 − π/2)n

 (5.13)

nx(k,−
π

2 , θ2) = −1
2k −

1
8(π − 2θ2) +O(k2, θ2

2) (5.14)

ny(k,−
π

2 , θ2) = −π4 + θ2

2 +O(k2, θ2
2) (5.15)

nz(k,−
π

2 , θ2) = −1
2k −

1
8(π − 2θ2) +O(k2, θ2

2) (5.16)

The weak-dependence of nx, nz on θ2 is neglected by setting θ2 = π
2 . The wave function for

the bound state at x = 0 with energy E = 0 is obtained by solving the eigenvalue equation
HbulkΨ(x) = EΨ(x) that takes the form of a Dirac equation (boxed).

HbulkΨ(x) = ~nbulk ·~σ = EΨ(x) != 0 (5.17)(
i

2∂x(σx + σz) +
(
θ2

2 −
π

4

)
σy

)
Ψ(x) = 0 (5.18)

(
∂x1+ M

(−m(x))
2

)
Ψ(x) = 0 (5.19)

with M = −i2 · (σx + σz)−1σy =
 1 −1
−1 −1

 (5.20)

m(x) ≡
(
π

2 − θ2(x)
)

(5.21)

After making the ansatz ~ψ(x) = ~aeλ(x) we obtain the eigenvalue equation:

M~a =
(

2
m(x)

∂

∂x
λ(x)

)
≡ γ~a (5.22)
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The eigenvalues and eigenvectors of M are:

~a− =
√2− 1

1

 ~a+ =
−√2− 1

1

 (5.23)

γ− = −
√

2 γ+ =
√

2 (5.24)

Solving Eq. (5.22) for λ(x) one obtains

λ(x)± = ± 1√
2

x∫
0

m(x)dx+ λ(0) (5.25)

The general solution is:
~Ψ(x) = ~a−e

λ+(x) + ~a+e
λ−(x) (5.26)

with π

2 − θ2(x) = π

4 tanh(x3 ) = m(x)


> 0, x > 0

0, x = 0

< 0, x < 0

(5.27)

Due to the normalisation condition of the wave function, lim
x→±∞

|ψ(x)|2 < ∞, λ(x)+ is no
solution. The solution for the wave function therefore is:

~ψ(x) = ψ0

√2− 1
1

 e− 1√
2

x∫
0
m(x)dx

= 1
5.197023

√2− 1
1

 cosh
(
x

3

)− 3π
4
√

2 (5.28)

where λ(0) ≡ ψ0 = 1√
5.197023 has been evaluated numerically.

The plot of |~Ψ|2 = 0.225432 cosh(x3 )
−3π
2
√

2 can be seen in Fig. 5.10. In Fig. 5.12 it is shown
that the agreement gets better if θ2± is chosen closer to π

2 .
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Figure 5.10.: The bound state of the STQW obtained from the solution of Eq. (5.18).
The red boxes represent the average of the Bound State for 11851 iter-
ations of the STQW-Protocol, error bars included. The averaging started
after iteration 59. The continuum solution is plotted as a black line. The
analytical solution is axisymmetrical to the y-axis whereas the numerically
obtained solution seems to be shifted to the left. However, the full width at
half maximum and the sharp decline of the analytical and numerical solution
coincide.
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5.5.2. Calculation of the Decay Coefficients

The simplest way to obtain an analytical expression for the decay coefficients of the bound
states is to consider the overlap of two disturbed wave functions. For a fixed disorder
realization, the expression for the overlap becomes:

〈Ψi|Ψi+1〉√
〈Ψi|Ψi〉 〈Ψi+1|Ψi+1〉

(5.33)=

∞∫
−∞

f(x)exp
(
−1/
√

2
x∫
0

(δi(x′′) + δi+1(x′′)) dx′′
)
dx

∞∫
−∞

f(x)exp
(
−2√

2

x∫
0
δi(x′)dx′

)
dx

∞∫
−∞

f(x′′′)exp
(
−2√

2

x′′′∫
0
δi+1(x′′)dx′′

)
dx′′′

(5.34)
≈ 1− 1/

√
2 (〈∆i〉+ 〈∆i+1〉) + 1/4 〈(∆i + ∆i+1)〉√

1−
√

2 (〈∆i〉+ 〈∆i+1〉) + 2 〈∆i〉 〈∆i+1〉+ 〈∆2
i 〉+ 〈∆2

i+1〉
(5.35)
≈ 1 + 1

4
(
〈∆i〉2 −

〈
∆2
i

〉
+ 〈∆i+1〉2 −

〈
∆2
i+1

〉)
(5.29)

+ 1
2 (〈∆i∆i+1〉 − 〈∆i〉 〈∆i+1〉)

= 1− 1
4
(〈

(∆i −∆i+1)2
〉
− 〈(∆i −∆i+1)〉2

)
(5.30)

Now, we average over disorder realizations to obtain:
〈

〈Ψi|Ψi+1〉√
〈Ψi|Ψi〉 〈Ψi+1|Ψi+1〉

〉
= 1 + 1

2δ
2 (〈x〉 〈sgn(x)〉 − 〈|x|〉)

(5.36)= 1− 1
2δ

2 〈|x|〉 = 1− 1
6δ

2
i 〈|x|〉

≈ exp
(
−1

6δ
2
i 〈|x|〉

)

Based on the assumption that there are no other excited states left after a change in
disorder, the analytical solution for the decay of the bound-states after N steps is:

〈 〈Ψi|Ψi+1〉√
〈Ψi|Ψi〉 〈Ψi+1|Ψi+1〉

〉N ≈ exp
(
−N 1

6δ
2
i 〈|x|〉

)
(5.31)
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〈|x|〉 can be understood as the correlation length of the system, because it depends on the
particular choice of the width of the θ2w(x, ξ, t) function blurring the area where the bound
state is localized.

〈|x|〉 =

a∑
x=−a

|x|f(x)
a∑

x=−a
f(x)

=

b∑
x=−a

|x|ψ2
0~a

2
− cosh

(
x
w

)− 2wπ
4
√

2

a∑
x=−a

ψ2
0~a

2
−

2wπ
4
√

2 cosh
(
x
w

)− 2wπ
4
√

2
(5.32)

The area of integration (choice of a) depends on the choice of w.

In this calculation, all terms of third order have been omitted. If ∆i and ∆i+1 happen
to be the same disorder configuration, the overlap 〈Ψi|Ψi+1〉 is 1, see Eq. (5.30). This
is equivalent to the stationary disorder configuration, where the energy of the system
is conserved. Consequently, the numerical calculations from section 5.1 match with the
analytical calculations.

In the calculation of the overlap, the following abbreviations have been used.

f(x) = ψ2
0~a

2
−·exp

−2√
2

x∫
0

m(x′)dx′
 (5.33)

∆i(x) ≡
x∫

0

δi(x)dx, exp(x) = 1 + x+ 1
2x

2 +O(x3), 〈g(x)〉 ≡

∞∫
−∞

f(x)g(x)dx
∞∫
−∞

f(x)dx
(5.34)

1√
1 + x

= 1− 1
2x+ 3

8x
2 +O(x3) (5.35)
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Here, the ∆- terms can be evaluated in the following sense:

〈
∆2
i

〉
=
〈 x∫

0

dx′
x∫

0

dx′′δi(x′)δi(x′′)
〉

5.37= 1
3δ

2
i

〈 x∫
0

x∫
0

δ(x′ − x′′)dx′dx′′
〉

5.38= 1
3δ

2
i 〈|x|〉 (5.36)

〈δi(x′)δi(x′′)〉Dis ≡ δ2δdistr(x′ − x′′) =

δi∫
−δi

δ2
i
′dδ′i

δi∫
−δi

dδ′i

δ(x′ − x′′) = 1
3δ

2
i δ(x′ − x′′) (5.37)

x∫
0

δ(x′ − x′′)dx′ =

1 : x > 0 ∧ x′′ ∈ (0, x)

−1 : x < 0 ∧ x′′ ∈ (0, x)
(5.38)

After a similar procedure one obtains 〈∆i〉2 = 1
3δ

2
i 〈x〉 〈sgn(x)〉

, where the terms 〈∆i∆i+1〉 , 〈∆i〉 〈∆i+1〉 reduce to 0, because the disorder average of
〈∆i∆i+1〉Dis is zero.
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w ξ b ∆b Theory
50 0.330 0.001
75 1.5 0.290 0.001 0.185
100 0.333 0.001
1 0.0738 0.0001
50 0.305 0.004
75 3 0.402 0.014 0.241
100 0.454 0.009
50 0.533 0.005
75 4.5 0.414 0.003 0.286
100 0.286 0.006
50 0.404 0.008
75 6 0.407 0.005 0.325
100 0.508 0.008

Table 5.4.: Comparing time-constants of the exponential decay of the bound-states

5.6. Comparing Numerical Results with Theoretical Expectations

The analytical decay constants for the bound state
(
−1

6δ
2
i 〈|x|〉

)
have been evaluated using

Eq. (5.32) with the appropriate expressions for w. ξ determined the area of integration
(see section 5.3). These numerically obtained prefactors, denoted b in Table 5.4, are the
fit constants from Eq. (f(δi) = bδ2

i ), see Fig. 5.7.

Observation - Numerical Calculation

First, one observes that the numerically calculated values for b, do not scale appropriately
within each value for ξ. The expectation is that the decay factors b for each value of the
disorder change w remain unchanged. In all cases, ξ has been chosen much smaller than
the disorder change (ξ � w), with the intention that parts of the wave function, released
by a change in disorder (including excited states), move out of the area of integration,
preventing a recapture in the bound state.

Interpretation - Numerical Results

The discrepancy between the decay factors b within each region of ξ is not caused by
a finite size effect of the system (as discussed in section 6.1). The size of the system
scaled with the number of iterations of the split-step protocol, in order to avert boundary
effects. Furthermore, it could be observed that the decay of the bound states for the first
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effective steps (where ’first’ depends on the choice of ξ) is not exponential, in contrast to
assumptions, which is one reason for the deviations of the values for b for a fixed ξ. This
can be seen exemplary in Fig. 5.11. What is more, it has been shown in section 5.1 that
static disorder in one dimension leads to conservation of energy, meaning that the wave
function remains localized. In consequence, the assumption that has been made in section
5.3 proved to be wrong. It was assumed that parts of the wave function, that are set
free due to a disorder change, can be effectively transported out of the bound state, if the
disorder-configuration is kept unchanged for w steps. The behaviour of the bound state
was then investigated for an effective step length (every w-th-step). This was done in order
to be able to compare the numerical results with analytical calculations.

One suggestion for future investigations of the decay of the bound states is, to remove any
kind of disorder outside the bound state completely, so that during the waiting time w the
disorder is kept unchanged only inside the bound state.

Non-Exponential Decay of the Bound State for ξ=6, w=100
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Figure 5.11.: It can be observed, that for the first effective steps, the decay of the bound
state is not exponential, in contrast to assumptions.
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Analytical Procedure

During the analytical calculation for the wave function of the bound state, the assumption
was made that θ2(x, t, ξ) is always close to the value of π

2 in order to neglect the weak
dependence of nx (Eq. (5.14)) and nz (Eq. (5.16)) on θ2. This is only true in the vicinity
of the gap closing point as:

θ2(x) =


π
2 + π

4 , x� 0
π
2 −

π
4 , x� 0

However, the numerical calculations for the bound state are in good accordance with the
theoretically obtained wave function, see Fig. 5.10. Nevertheless, it is suggested to chose
θ2± close to π

2 as in Fig. 5.12. It can be observed that the numerically and analytically
obtained solution for the wave function of the bound state are in good accordance. The
constant shift between the continuum solution and the numerical solution for all θ2± is just
an effect of the box-distribution of the numerical solution on integer lattice sites.
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Comparing Numerics with Theoretical Predictions for different θ2±
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Figure 5.12.: Numerical and analytical solution of the bound state for θ2± close to π
2
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6. Programming the Quantum Walk

6.1. Improving the Runtime - Finite Size Effect

The Split-Step QuantumWalk (STQW) was programmed in C/C++. Its runtime is quadratic
in the number of steps:

N∑
n=0

(2n+ 1) ∈ O(N2) (6.1)

The reason is, that the number of steps scales with the size of the system. With each
iteration of the split step protocol the range of the walker can expand by one lattice site
in each direction. For N steps of the STQW-protocol one has to allocate memory for a
system that contains at least 2N + 1 slots.

For small disorder parameters it is necessary to iterate the split step-protocol many times
(N ≈ 105). The larger the disorder parameter, the less steps are needed to destroy the
bound state. At the same time, the number of disorder configurations has to be increased
to suppress the fluctuations in the decay curves.

As the focus lies on the behaviour of the bound state, the observation of a limited region
from x = −10 to x = 10 is sufficient. Therefore, the size of the system can be reduced to
improve the program’s runtime. This was implemented by using open boundary conditions.
The influence on the bound state was investigated by comparing the results of a system
with normal size (2N + 1) to a system with a size reduced by a factor of 10 by plotting
the difference of the probability of presence around the localized state. The results can be
seen in Fig. 6.1.

Apparently, while some part of the wave function vanishes as it reaches the boundary of
the system, the other part behaves as if it were reflected by a high potential. This can be
seen in Fig. 6.2. If the disorder parameter is non-zero, the effects on the difference in the
probability of presence from the bound state are worse.

The idea to reduce the size of the system to improve the runtime was cast away. It might
have been possible to implement a function in the region of the boundary that would
exponentially suppress the rate of reflection by slowly increasing the rate of elimination
∝ exp (−(x− x0)). The correct adjustment of the function would have been complicated.
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Analysis on reduced systems
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Figure 6.1.: Left: On the y-axis there is the difference of the weight of the bound state
between a wave-function with normal- and reduced system size. On the x-axis
there is the number of iterations of the STQW (Eq. 4.4).
Right: A part of the wave function of the system was reflected at the system’s
boundary and travelled back to the localised state.
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Figure 6.2.: Probability distribution of the split step quantum walk plotted for different
numbers of steps in a reduced system with open boundary conditions. It can
be observed that a part of the wave packet is reflected at the boundary of the
system and further traverses in the opposite direction, finally returning to the
localised state. 47



7. Outlook - Quantum Walk on a Square Lattice (2D)

Kitagawa, Rudner, Berg, and Demler showed, in analogy to the 1D split-step protocol,
that it is possible to manipulate the discrete-time-quantum walk in two dimensions in a
way that allows it to support distinct topological phases [1].

In their paper [1], they discussed the 2D quantum walk on a triangular lattice and suggested
an equivalent implementation on a square lattice as it might be easier to realize in an
experimental setting (e.g. cold atoms in optical lattices). It is then of particular importance
to know about the effects of time-dependent disorder (that occur in an experiment) on
the time-evolution of the system. Therefore one of the aims for future calculation (both
numerically and analytically) is the investigation of disordered systems in two dimensions
with both static and dynamic disorder.

The 2D quantum walk is determined by the sequence of unitary transformations:

U2D,ss = T3,↑,↓R(θ1)T2,↑,↓R(θ2)T1,↑,↓R(θ1) (7.1)

Ti,↑,↓ is a spin-dependent delocalisation of the particle that shifts spin-up (spin-down)
components in the direction of +(-) ~wi (see Fig. 7.1).

Translation-Vectors for the 2D Quantum Walk on a Square Lattice

Figure 7.1.: Translation vectors ~w1 = (1, 1) ~w2 = (0, 1) and ~w3 = (1, 0). Figure taken from
[1]
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The Hamiltonian of the system is of the same form as the Hamiltonian for the STQW in
1D, see Eq. (4.6).

H2D,ss =
∫∫
BZ

dkxdky Eθ1,θ2(kx, ky)~n(θ1, θ2, kx, ky) ·σ × |kx, ky〉 〈kx, ky| (7.2)

U2D,ss = exp (−iH2D,ss) ,~ = 1 (7.3)

The relation betweenU2D,ss andH2D,ss can be derived similarly to the 1D case. Therefore,
one obtains the following set of equations for the energy E and the unit vector ~n:

cos (Eθ1,θ2(kx, ky)) = cos (θ2/2) (cos(kx) cos(kx + 2ky) cos(θ1)− sin(kx) sin(kx + 2ky))
− cos2(kx) sin(θ1) sin(θ2/2)

sin (Eθ1,θ2(kx, ky))nx(θ1, θ2, kx, ky) = cos(kx + 2ky) cos (θ2/2) sin(kx) sin(θ1)
− sin(2kx) sin2 (θ1/2) sin (θ2/2)

sin (Eθ1,θ2(kx, ky))ny(θ1, θ2, kx, ky) = cos(kx) cos(kx + 2ky) cos (θ2/2) sin(θ1)
+
(
cos2(kx) cos(θ1) + sin2(kx)

)
sin (θ2/2)

sin (Eθ1,θ2(kx, ky))nz(θ1, θ2, kx, ky) = (cos(kx + 2ky) cos(θ1) sin(kx) + cos(kx) sin(kx + 2ky))
(− cos (θ2/2) cos(kx) sin(kx) sin(θ1) sin (θ2/2))

The topological invariant of the system is called the first Chern number. It counts the
number of times the unit vector ~n covers the unit sphere as kx, ky traverse the Brillouin
zone. For a 2× 2 Hamiltonian it is defined as:

C = 1
4π

∫
BZ

d2k
(
~n· (∂kz~n× ∂ky~n)

)
(7.4)

One can evaluate the first Chern number numerically for (θ1, θ2) ∈ {−2π, 2π}, Fig. 7.2.
The edge states can be probed by iterating Eq. (7.1) on a square lattice, Fig. 7.3.
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Phase-Diagram for the 2D split-step protocol

2π "

θ2"

-2π"
-2π" θ1" 2π"

Figure 7.2.: Left: Phase-diagram for the 2D split-step quantum walk from Eq. (7.1) ob-
tained through numerical evaluation of Eq. (7.4), screened with intervals of
0.2 width. White(red)(black) regions correspond to a Chern value of 0(−1)(1).
Right: Geometrical interpretation of the Chern number. It counts the num-
ber of times the unit vector ~n covers the unit sphere. Parametric plot for
~n(kx, ky, θ1, θ2) with (θ1, θ2) = (π, π2 ) corresponding to a Chern number of 0.
In fact, this geometrical object consists of two equal layers with opposite ori-
entation adding up two a winding number of 0.

The angles (θ1, θ2) are chosen to be site dependent with:

θ1(y) = θ2(y) =


3π
2 (C = −1), 25 ≤ y < 75

7π
6 (C = 1), else

(7.5)

Edge states can be seen best at an atomically sharp boundary.

θ1(y) = θ2(y) =


3π
2 (C = −1), y = 25 ∨ y = 75

7π
6 (C = 1), else

(7.6)

In Fig. 7.3 the presence of chiral edge modes and edge states at the spatial boundary of a
topological phase can be seen.
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Chiral Edge Modes - Quantum Walk on a Square Lattice
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Figure 7.3.: Quantum Walk on a square lattice (100×100) with grid-length 1 and periodic
boundary conditions
Left: Initial position of the walker, placed directly on the phase lines (black)
Right: Probability of presence for the walker after 20 iterations of the 2D
split-step protocol. Chiral edge states are propagating into different directions
independent of initial spin orientation.
Bottom: Two edge states appear at the phase lines (black). They are present
independently of the form of the boundary. They can be seen best with an
atomically sharp one, Eq. (7.6)
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δ A ∆A B ∆B
0.070 0.413 0.004 0.5167 0.0009
0.075 0.324 0.003 0.4872 0.0009
0.080 0.401 0.003 0.5012 0.0006
0.085 0.407 0.003 0.4965 0.0006
0.090 0.458 0.003 0.5019 0.0006
0.095 0.493 0.003 0.5044 0.0006
0.100 0.556 0.006 0.5122 0.0011
0.105 0.478 0.005 0.4915 0.0010
0.110 0.664 0.007 0.5213 0.0011
0.115 0.597 0.006 0.5049 0.0011
0.120 0.643 0.005 0.5080 0.0008
0.125 0.645 0.005 0.5046 0.0008
0.130 0.675 0.003 0.5044 0.0005
0.135 0.647 0.003 0.4965 0.0005
0.140 0.752 0.003 0.5080 0.0004
0.145 0.706 0.003 0.4977 0.0004
0.150 0.792 0.003 0.5067 0.0004
0.155 0.766 0.003 0.5002 0.0004
0.160 0.819 0.003 0.5036 0.0004
0.165 0.831 0.003 0.5018 0.0004
0.170 0.862 0.003 0.5030 0.0004
0.175 0.872 0.003 0.5009 0.0004
0.180 0.972 0.004 0.5098 0.0004
0.185 0.998 0.004 0.5097 0.0004
0.190 0.894 0.003 0.4942 0.0004
0.195 0.994 0.004 0.5031 0.0004
0.200 0.986 0.002 0.4994 0.0003
0.210 1.092 0.003 0.5057 0.0003
0.220 1.069 0.003 0.4976 0.0003
0.230 1.191 0.003 0.5050 0.0003
0.240 1.185 0.003 0.4998 0.0003
0.250 1.284 0.003 0.5041 0.0003
0.260 1.319 0.003 0.5029 0.0003
0.270 1.394 0.004 0.5045 0.0003
0.280 1.384 0.004 0.4996 0.0003
0.290 1.501 0.004 0.5046 0.0003
0.300 1.532 0.004 0.5029 0.0003

Mean Value 0.503 0.001

Table A.1.: Table of coefficients A(δ) and B for the fits of the diffusive tails nδ(t) = A(δ)t−B
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ξ = 3, w = 1 ξ = 3, w = 1
δ b[105] ∆b[105] δ b[105] ∆b[105]

0.010 0.73928 0.00001 0.130 105.56800 0.07071
0.015 1.67399 0.00002 0.135 111.92500 0.14480
0.020 2.94629 0.00005 0.140 117.86400 0.15600
0.025 4.57673 0.00011 0.145 126.93700 0.15000
0.030 6.49432 0.00035 0.150 132.47800 0.18130
0.035 8.89828 0.00039 0.155 153.03600 0.23310
0.040 11.53160 0.00084 0.160 160.30700 0.27470
0.045 14.31650 0.00138 0.165 171.86300 0.31190
0.050 17.53350 0.00224 0.170 187.14800 0.22930
0.055 21.16770 0.00260 0.175 188.93400 0.34760
0.060 24.92480 0.00480 0.180 195.62700 0.36100
0.065 29.15160 0.00801 0.185 194.29000 0.51680
0.070 33.35950 0.01076 0.195 209.33700 0.58750
0.075 37.80820 0.01310 0.200 218.34400 0.40660
0.080 43.27450 0.01778 0.210 231.24800 0.53000
0.085 48.79910 0.01950 0.220 237.00900 0.46000
0.090 54.28360 0.02429 0.230 267.52000 0.38940
0.095 60.84670 0.02781 0.240 300.11000 1.54000
0.100 65.79650 0.04117 0.250 305.76500 0.85680
0.105 72.97590 0.03679 0.260 342.93600 1.56300
0.110 78.88420 0.04071 0.270 322.11500 1.15400
0.115 86.59870 0.05013 0.280 342.77300 1.18800
0.120 91.12840 0.05169 0.290 357.13900 1.74100
0.125 98.65350 0.08441 0.300 353.32400 1.28400

Table A.2.: Time-constants for the exponential decay of the bound states subject to dy-
namic disorder with parametric values ξ = 3, w = 1.
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ξ = 1.5, w = 50 ξ = 1.5, w = 75 ξ = 1.5, w = 100
δ b[105] ∆b[105] b[105] ∆b[105] b ∆b[105]

0.010 3.362 0.001 2.823 0.001 3.364 0.001
0.015 7.523 0.003 6.460 0.002 7.640 0.002
0.020 13.408 0.004 11.393 0.003 13.386 0.004
0.025 20.952 0.004 18.122 0.006 21.106 0.005
0.030 29.773 0.007 25.845 0.006 30.223 0.009
0.035 40.751 0.009 35.782 0.012 42.255 0.014
0.040 52.442 0.019 46.187 0.012 53.993 0.020
0.045 66.535 0.019 58.628 0.022 68.990 0.020
0.050 82.660 0.021 71.854 0.020 84.536 0.017
0.055 99.266 0.033 89.022 0.027 100.263 0.023
0.060 120.078 0.052 103.951 0.038 121.285 0.023
0.065 138.827 0.046 123.755 0.026 142.308 0.029
0.070 161.749 0.096 142.597 0.046 160.968 0.059
0.075 184.619 0.074 162.826 0.049 181.917 0.065
0.080 207.512 0.118 185.522 0.036 210.524 0.083
0.085 234.170 0.101 209.722 0.066 233.667 0.093
0.090 257.177 0.125 233.365 0.095 260.345 0.108
0.095 291.635 0.107 260.618 0.171 295.246 0.082
0.100 321.196 0.236 295.754 0.181 324.939 0.150
0.105 354.529 0.217 323.837 0.112 356.361 0.276
0.110 383.928 0.337 356.662 0.220 386.130 0.212
0.115 420.208 0.362 386.090 0.309 419.662 0.138
0.120 452.743 0.328 414.959 0.232 457.238 0.290
0.125 493.670 0.472 458.972 0.327 476.481 0.362
0.130 527.789 0.657 492.745 0.286 525.191 0.357
0.135 585.085 0.593 525.676 0.618 584.950 1.158
0.140 613.960 1.035 568.927 0.457 634.598 1.423
0.145 658.327 1.284 625.248 0.546 677.436 1.289
0.150 732.057 2.688 658.188 0.989 716.064 1.412
0.160 830.451 3.784 753.188 1.154 811.334 1.408
0.170 916.307 3.503 842.187 1.325 894.940 2.709
0.180 987.350 4.678 926.749 1.045 987.476 2.196
0.190 1063.610 3.904 1044.940 2.841 1084.130 1.758
0.200 1188.910 5.619 1120.280 1.888 1170.430 2.945

Table A.3.: Time-constants for the exponential decay of the bound states subject to dy-
namic disorder with parametric values ξ = 1.5, w = 50, 75, 100.
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ξ = 3, w = 50 ξ = 3, w = 50 ξ = 3, w = 50
δ b[105] ∆b[105] b[105] ∆b[105] b ∆b[105]

0.010 5.99 0.01 6.68 0.004 5.37 0.01
0.015 11.65 0.02 12.58 0.021 12.22 0.01
0.020 18.50 0.04 20.38 0.030 22.73 0.02
0.025 24.34 0.04 29.89 0.056 32.11 0.04
0.030 32.74 0.08 39.28 0.104 44.21 0.10
0.035 39.18 0.05 50.76 0.080 62.59 0.09
0.040 49.78 0.05 70.64 0.134 79.88 0.21
0.045 62.42 0.05 75.15 0.066 91.57 0.15
0.050 78.07 0.06 94.79 0.091 120.22 0.18
0.055 92.51 0.03 120.70 0.163 145.09 0.45
0.060 108.68 0.03 142.04 0.234 165.61 0.28
0.065 128.50 0.05 160.73 0.428 191.30 0.18
0.070 152.16 0.15 190.92 0.282 206.00 0.35
0.075 174.42 0.18 202.51 0.366 237.45 0.36
0.080 191.20 0.09 230.92 0.232 285.95 0.48
0.085 214.11 0.15 270.35 0.381 313.09 0.54
0.090 243.34 0.07 291.81 0.241 337.45 0.52
0.095 284.10 0.38 325.07 0.470 396.07 0.38
0.100 305.45 0.32 378.63 1.367 427.27 0.64
0.105 336.61 0.43 399.72 0.963 456.15 0.60
0.110 376.12 0.49 439.50 1.564 507.15 1.39
0.115 396.26 0.77 472.59 1.518 563.64 0.61
0.120 424.30 0.82 504.42 1.446 597.56 1.13
0.125 474.26 0.81 592.64 3.649 654.74 1.59
0.130 505.30 1.11 622.61 4.257 671.07 1.39
0.135 547.91 1.08 695.19 5.408 786.17 2.78
0.140 581.20 1.24 728.83 5.102 823.25 1.64
0.145 603.47 2.82 805.48 6.897 852.75 2.21
0.150 647.90 1.70 840.54 6.093 945.50 4.38
0.160 790.06 1.96 908.30 5.367 988.69 2.64
0.170 868.25 3.54 990.54 6.855 1077.01 2.91
0.180 986.24 3.99 1068.72 7.639 1180.54 4.54
0.190 1065.80 3.88 1146.78 8.430 1281.02 5.32
0.200 1084.49 4.89 1255.21 9.614 1325.06 5.56

Table A.4.: Time-constants for the exponential decay of the bound states subjected to
dynamic disorder with parametric values ξ = 3, w = 50, 75, 100.
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ξ = 4.5, w = 50 ξ = 4.5, w = 75 ξ = 4.5, w = 100
δ b[105] ∆b[105] b[105] ∆b[105] b ∆b[105]

0.010 7.99 0.02 9.31 0.04 11.80 0.06
0.015 14.72 0.04 15.15 0.08 16.88 0.13
0.020 24.26 0.04 19.87 0.10 21.77 0.19
0.025 38.82 0.04 28.80 0.10 25.33 0.17
0.030 50.10 0.07 38.74 0.09 33.19 0.18
0.035 66.59 0.05 51.29 0.10 41.35 0.15
0.040 86.88 0.06 66.61 0.07 51.03 0.16
0.045 109.05 0.05 79.14 0.04 61.50 0.16
0.050 133.39 0.05 104.89 0.06 75.60 0.25
0.055 159.00 0.09 125.41 0.10 89.66 0.23
0.060 195.55 0.14 162.65 0.09 102.50 0.25
0.065 234.50 0.36 172.87 0.10 113.17 0.23
0.070 247.46 0.16 204.94 0.10 135.54 0.31
0.075 264.04 0.39 231.11 0.06 151.02 0.38
0.080 349.83 0.41 271.91 0.16 175.37 0.36
0.085 365.34 0.29 300.78 0.14 195.37 0.43
0.090 397.43 0.65 338.05 0.31 211.89 0.36
0.095 470.20 0.48 379.12 0.42 268.79 1.09
0.100 515.51 1.09 404.57 0.20 296.22 1.02
0.105 540.24 1.91 470.88 0.77 331.31 1.10
0.110 634.73 4.11 499.36 0.53 355.78 1.23
0.115 712.18 4.15 529.76 0.99 389.18 1.11
0.120 768.35 3.63 592.51 0.80 412.84 1.23
0.125 819.55 3.78 704.01 4.29 435.29 1.40
0.130 872.12 4.46 762.73 4.00 496.73 1.62
0.135 941.16 6.26 780.58 4.60 578.43 2.87
0.140 994.94 8.80 786.09 5.51 620.90 3.88
0.145 1021.38 10.07 867.72 4.99 658.77 3.52
0.150 1205.34 15.12 998.48 7.59 700.38 3.22
0.160 1324.28 16.89 1080.62 8.75 785.42 3.43
0.170 1352.51 16.87 1140.49 9.16 863.93 4.15
0.180 1538.51 24.45 1199.86 9.20 960.98 5.91
0.190 1608.95 20.23 1343.35 12.93 1034.98 6.10
0.200 1693.63 21.46 1377.57 13.08 1162.33 6.33

Table A.5.: Time-constants for the exponential decay of the bound states subjected to
dynamic disorder with parametric values ξ = 4.5, w = 50, 75, 100.
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ξ = 6, w = 50 ξ = 6, w = 75 ξ = 6, w = 100
δ b[105] ∆b[105] b[105] ∆b[105] b ∆b[105]

0.010 9.84 0.01 11.14 0.02 12.12 0.03
0.015 16.48 0.04 20.54 0.06 23.06 0.06
0.020 24.82 0.06 25.33 0.10 34.04 0.15
0.025 30.69 0.06 33.21 0.13 47.51 0.23
0.030 40.95 0.08 39.70 0.09 56.89 0.30
0.035 53.48 0.07 52.53 0.10 78.90 0.33
0.040 66.81 0.08 64.85 0.06 89.03 0.31
0.045 80.72 0.07 84.34 0.08 112.16 0.30
0.050 102.56 0.03 99.89 0.08 141.42 0.17
0.055 116.57 0.05 124.38 0.11 158.73 0.30
0.060 151.90 0.20 148.92 0.12 193.41 0.19
0.065 182.08 0.32 171.80 0.05 221.19 0.15
0.070 194.52 0.28 205.30 0.12 244.63 0.22
0.075 215.92 0.18 233.31 0.15 278.80 0.21
0.080 243.10 0.40 259.81 0.14 314.38 0.16
0.085 265.26 0.43 302.26 0.16 364.21 0.31
0.090 284.12 0.48 333.62 0.27 412.13 0.42
0.095 366.12 1.10 343.49 0.16 468.57 0.52
0.100 398.63 1.20 417.37 0.29 522.71 0.62
0.105 429.09 1.01 427.64 0.74 542.63 0.48
0.110 466.28 1.00 480.31 0.43 556.02 0.83
0.115 497.09 2.32 507.08 0.63 650.90 0.56
0.120 563.86 2.86 569.38 0.87 730.98 6.37
0.125 605.17 3.53 601.51 1.20 817.58 6.35
0.130 633.04 4.83 645.31 1.76 848.92 6.61
0.135 699.13 4.98 741.07 2.36 916.07 7.45
0.140 720.10 5.13 788.65 4.22 966.32 7.23
0.145 851.89 10.31 785.32 3.29 986.61 6.39
0.150 894.08 10.31 950.77 9.33 1083.21 9.07
0.160 977.36 24.87 1026.19 9.25 1182.81 9.57
0.170 1065.41 11.86 1113.24 9.32 1325.81 9.49
0.180 1108.39 29.02 1190.67 10.97 1380.75 9.76
0.190 1161.81 13.26 1235.15 9.88 1523.05 13.21
0.200 1240.19 14.65 1328.87 11.43 1602.22 14.44

Table A.6.: Time-constants for the exponential decay of the bound states subjected to
dynamic disorder with parametric values ξ = 6, w = 50, 75, 100.
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