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ABSTRACT I

Abstract

The one-dimensional Bose-Hubbard model is a model which is suited for the description of opti-
cal lattices whereby properties of solids can be investigated experimentally in an idealized form.
After a quantum quench, which is a fast change of the parameters of the Hamiltonian, the sys-
tem is not in an eigen state and thus relaxes temporally into an equilibrium state. The observed
quench is characterized by a change of the attractive interaction parameter J between lattice
sites from a vanishing value up to a small but finite value. The repulsive interaction parameter
U between particles on one site is chosen sufficiently large so that U � J . This quench can be
experimentally realized by variaton of the optical lattice’s potential depth. As a result of the
quench quasi-particles are formed, i.e. excitations which are caused by particles hopping from
one site to another, whose dynamics afterwards can be simulated regarding a semi-classical de-
scription [1]. In this case quasi-particles collide ballistically with respect to energy conservation
and restricted momentum conservation, i.e. modulo 2π, which rules famously in lattices. In [2]
this model has been investigated in the case of closed systems and with one particle per site
and it emerged that the temporal behavior of two quantities, namely the energy correlations
〈eiei+n〉 of quasi-particles at sites i and i + n and 〈cos(2q)〉, a quantity that is closely related
to the shape of the momentum distribution, can be especially well described by hydrodynamics
for long times. Thereby particularly in one dimension pronounced long-time tails develop, i.e.
∼ t−1/2. In [3] the model has been investigated for open sytems by exchanging particles at a
given rate.
In this thesis the number of particles per site previous to the quench is increased so that even-
tually the masses of the created quasi-particles approach each other and therefore the system
approaches an integrable point. It will also be simulated the case with truely same masses.
It will be shown that long-time tails in their pure form do not occur until bigger times. While
it is sufficient to correct the tails for one particle per site and mid-level times with t−3/4, it will
be necessary to consider further corrections when using more particles per place. Furthermore
it will be shown that it would be expected that the energy correlation pursues zero exponen-
tially regarding same masses but numerically a slower progression is observed. The momentum
distribution relaxes at first with e−Γt and Γ ∼ N−1.75. For same masses there is no relaxation
of this quantity. At long last prefactors near equilibrium are compared for constant mass ratios.
In chapter 1 it will be dwelled on the theoretical foundations such as thermalization, integra-
bility and second quantization. In chapter 2 the theoretical results from [2] will be reproduced
and finally in chapter 3 the results are presented.



II KURZFASSUNG

Kurzfassung

Das eindimensionale Bose-Hubbard Modell ist ein Modell, welches sich für eine einfache Beschrei-
bung optischer Gitter eignet, mithilfe derer sich Eigenschaften von Festkörpern in idealisierter
Form experimentell untersuchen lassen. Nach einem Quanten Quench (das ist eine schnelle
Änderung eines Parameters im Hamilton-Operator) befindet sich das System nicht in einem
Eigenzustand und relaxiert folglich zeitlich in den Gleichgewichtszustand. Der betrachtete
Quench im Bose-Hubbard Modell zeichnet sich durch Änderung des attraktiven Wechselwirkungspa-
rameters J zwischen Gitterplätzen von verschwindenem Wert hin zu einem kleinen aber endlichen
Wert aus. Die repulsive Wechselwirkung U auf Gitterplätzen wird so groß gewählt, dass sie
gegenber der attraktiven dominiert. Dieser Quench kann experimentell durch Variation der Po-
tentialtiefe des optischen Gitters realisiert werden. Bei dem Quench bilden sich Quasi-Teilchen,
also Anregungen, bedingt durch Hüpfen eines Teilchens auf einen benachbarten Platz, deren Dy-
namik darauffolgend mit einer semi-klassischen Beschreibung simuliert werden kann [1]. Hierbei
stoßen die Quasi-Teilchen ballistisch unter Beachtung von Energieerhaltung und eingeschränkter
Impulserhaltung, welche bekanntlich in Gittern vorherrscht. In [2] wurde dieses Modell bere-
its für abgeschlossene Systeme allgemein mit einem Teilchen pro Gitterplatz behandelt und es
stellte sich heraus, dass die zeitliche Entwicklung zweier Größen, namentlich die Energiekorrela-
tionen 〈eiei+n〉 von Quasi-Teilchen auf Plätzen i und i+n und 〈cos(2q)〉, eine Größe, die mit der
Breite der Impulsverteilung korrespondiert, für große Zeiten besonders gut durch Hydrodynamik
beschrieben werden können . Dabei entwickeln sich besonders in einer Dimension ausgeprägte
long-time tails, dies bedeutet eine zeitliche Entwicklung ∼ t−1/2. In [3] wurde das Modell für
offene Systeme untersucht, wobei Teilchen mit einer bestimmten Rate ausgetauscht wurden.
In dieser Arbeit soll es darum gehen, die Anzahl der Teilchen, welche sich vor dem Quench
auf einem Gitterplatz befinden, zu erhöhen, sodass sich schließlich die Massen der erzeugten
Quasiteilchen einander annähern und sich das System einem integrablen Punkt nähert. Es wird
auch der Fall genau gleicher Massen simuliert werden.
Man wird sehen, dass long-time tails in reiner Form erst für größere Zeiten auftreten. Während
es für ein Teilchen pro Gitterplatz genügt, die tails für mittlere Zeiten mit t−3/4 zu korrigieren,
werden bei mehreren Teilchen pro Platz weitere Korrekturen notwendig. Weiterhin wird sich
zeigen, dass zu erwarten wäre, dass die Energiekorrelation für gleiche Massen exponentiell gegen
Null strebt, sich numerisch aber ein langsamerer Verlauf ergibt. Die Impulsverteilung relaxiert
zunächst mit e−Γt mit Γ ∼ N−1.75. Bei gleichen Massen der Quasi-Teilchen ergibt sich hier
keine Relaxation. Zu guter Letzt werden Vorfaktoren nahe des Gleichgewichts für konstantes
Massenverhältnis verglichen.
In Kapitel 1 der Arbeit wird auf theoretische Grundlagen, wie beispielsweise Thermalisierung,
Integrabilität und die zweite Quantisierung eingegangen. In Kapitel 2 werden dann die analytis-
chen Ergebnisse aus [2] für den betrachteten Quench reproduziert. Schließlich werden in Kapitel
3 die Ergebnisse präsentiert.
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1 Theoretical Foundations

1.1 Optical Lattices

Figure 1: Schematic image of a
bosonic gas in a two-
dimensional optical lattice

Optical lattices nowadays represent a powerful instru-

ment for the investigation of idealized solid state quan-

tum models. The possibility of modulating various pa-

rameters as the potential height or the geometry of

the lattice and the good environmental screening count

among their biggest advantages. For all real solids are

susceptible to unwanted outside influences and corre-

lations in between the solid optical lattices establish a

new world of experimental possibilities and allow to fo-

cus on certain problems of systems in purity. Mostly

dilute, ultra cold fermionic or bosonic gases of neutral

atoms are studied by the use of optical lattices. One

theoretical quantum model well suited for experimental

studies with optical lattices is the Bose-Hubbard model

which will be investigated numerically in this thesis.

An optical lattice is produced by interfering laser beams which form a periodic potential. The

potential results from interaction between the periodic oscillating electric field of the laser and

the induced oscillating dipole moment in the atom [4]

V (~r) = −~d · ~E(~r) ∼ α(ωL)| ~E(~r)|2 . (1.1)

In this case α denotes the atoms polarizability. As the lasers intensity I(~r) is proportional to

| ~E(~r)|2 the potential height can be directly manipulated by changing the light intensity. The

reason for the dipole-field coupling leading to a potential is the AC-Stark effect which leads to

an energy-splitting when coupling an dipole to an oscillating field.

To avoid spontaneous emission or absorption one adjusts the lasers frequency ωL so that ωL �
ωresonance (which yields to a repulsive potential as the atoms are located at the potential hills)

or ωL � ωresonance (which yields to an attractive potential as the atoms are located at the

potential valleys). Optical lattices are usually cooled so that losses of particles become very

rare. Nevertheless particle losses can never be excluded completely. For a study on such losses

see [3].

In one dimension two opposing laser beams form a standing wave. The resulting potential’s

period is given by half the laser’s wavelength. One can also obtain two-dimensional lattices by

using perpendicular stationary waves that allow movement along a one-dimensional tube. Those

tubes then build up a two-dimensional array. A three-dimensional lattice is achieved by three

perpendicular standing waves.
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One can change the lattice’s geometry from an rectangular geometry to many fancy ones by

using laser beams which are not quite collinear for interference.

1.2 Second Quantization

1.2.1 From First to Second Quantization

Let us briefly recapitulate the basics of quantum mechanics and then introduce the formalism

of second quantization which is way more proper for the description of many-particle quantum

systems than the formalism of basic single-particle quantum mechanics.

In single-particle quantum mechanics one works in the complete and separable Hilbert space

H in which a single-particle quantum state is represented by a ray, i.e the one-dimensional lin-

ear combination of a vector. Two choices of a special vector space are mostly used, i.e. the

Schrödinger picture and the Heisenberg picture. The big difference lies in the time-dependency

of states and operators. While in Schrödinger picture the states themselves are time-dependent

and operators can carry maximally an explicit time dependency, the states in the Heisenberg pic-

ture are time-independent whereas operators carry a time-dependency (which can be implicit).

Operators can be transformed from one into the other picture by considering the time-dependent

Schrö dinger equation and an invariant expectation value

Ĥ|Ψ〉t = i~∂t|Ψ〉t (1.2)

⇔ |Ψ〉t = e−
i
~ Ĥt|Ψ0〉

!⇒ t〈Ψ|Ôschr|Ψ〉t = 〈Ψ|Ôheis(t)|Ψ〉

⇒ Ôheis(t) = e
i
~ ĤtÔschre

− i
~ Ĥt . (1.3)

Hereafter we will always refer to the Schrödinger picture. In this case the norm |Ψ(x)|2 repre-

sents the probability density of finding the particle in state Ψ at place x.

Every physical transformation T̂ has to be unitary in order to preserve the quantum state’s

norm. If an operator Ô corresponds to a real physical observable it has to be self-adjoint so that

the expectation value 〈Ψ|Ô|Ψ〉 is a real number.

In general a quantum state can be a linear combination of eigenstates |n〉 of the Hamilton

operator Ĥ

|Ψ〉 =
∑
n

cn|n〉 . (1.4)

When the energy is measured the state collapses and transitions into the eigenstate |n〉 with

probability |cn|2. In real experiments it is nearly impossible to measure energies directly, espe-

cially concerning many-particle systems. It is usual to measure expectation values instead.



THEORETICAL FOUNDATIONS 3

To describe two-particle systems one introduces the two particle state

〈x1, x2|Ψ1,2〉 = 〈x1|λ1〉 ⊗ 〈x2|λ2〉 with normalized energy eigenstates λ1 and λ2. For identical

particles it is a fundamental assumption that they are indistinguishable. Regarding the permu-

tation operator P̂ this means P̂ 2 = 1 and so its eigenvalues are ±1. Therefore a many particle

state can either be symmetric (bosons) or antisymmetric (fermions). (Indeed in two dimensions

quasi-particles, namely anyons, that are neither symmetric nor antisymmetric exist.[5]) For an

N-particle system with normalized eigenstates λi, i = 1, . . . , N and ξB/F := ±1 the resulting

state with respect to normalization is [6]

|λ1,...,N 〉 =
1√

N !
∏∞
λ=0 nλ!

∑
σ

ξ(1−sign(σ))/2|λσ(1)〉 ⊗ · · · ⊗ |λσ(N)〉 (1.5)

where the summation runs over all permutations σ and nλ denotes the number of particles in

state λ. This state lives in the new Hilbert space

FN = HN = H⊗ . . .⊗H︸ ︷︷ ︸
N times

. (1.6)

One can easily imagine that for the most systems it seems nearly impossible to find all eigenstates

and construct a state as given in (1.5). That is where second quantization comes in and simplifies

the work.

1.2.2 Fock Space, Annihilation and Creation Operators

From now on we discard the thought of working with all the individual wave functions and

introduce the description by occupation numbers. When looking at a many-particle state the

main information one receives is how many particles occupy each basis state, which does not

have to be an energy eigenstate. Eigenstates of various operators can be used. In this form one

can write the basis states of the newly formed Hilbert space FN as |n1, n2, . . .〉. There is no

more need for restricting the particle number to a fixed N . So one introduces the final Hilbert

space which is known as the Fock space

F =

∞⊕
N=0

FN (1.7)

with the vacuum space F0 of vacuum states. Every state in F can now be written as a linear

combination of basis states

|Ψ〉 =
∑

n1,n2,...

cn1,n2,...|n1, n2, . . .〉 . (1.8)

From now on, for simplicity, we will focus on bosons because they are the particles of interest

in the Bose-Hubbard model.

It appears to be expedient to introduce a linear operator acting on Fock space and its Hermitian
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adjoint, namely the (bosonic) creation and annihilation operator

creation operator: â†i |n1, . . . , ni, . . .〉 :=
√
ni + 1|n1, . . . , ni + 1, . . .〉 (1.9)

annihilation operator: âi|n1, . . . , ni, . . .〉 :=
√
ni|n1, . . . , ni − 1, . . .〉. (1.10)

Their names are very suggestive for they create/annihilate a particle at state |ni〉. One may

recognize these from the algebraical solution of the harmonic oscillator. While there they were

introduced only for algebraical reasons they now receive a more fundamental meaning. From

the definition (1.9) one can easily confirm that

|n1, n2, . . .〉 =
∏
i

(â†i )
ni

√
ni!
|0〉 (1.11)

with the single vacuum state |0〉. This way the basis of the Fock space can easily build up by

frequent use of the creation operator on the vacuum state. Using the annihilation operator on

this state gives 0.

Both operators satisfy the following commutation relations

[âi, â
†
j ] = δij , [âi, âj ] = 0 = [â†i , â

†
j ] . (1.12)

At last we introduce the occupation number operatorn̂i := â†i âi

n̂i|n1, . . . , ni, . . .〉 = ni|n1, . . . , ni, . . .〉
(1.13)

which counts the number of particles occupying the ith state.

We now consider two different one-particle bases |i〉 and |j〉 and based on eq. (1.11) we write

|i〉 ≡ â†i |0〉i. As the Hilbert space per definition is complete one can write the relation of

completeness as

1 =
∑
i

|i〉〈i| . (1.14)

By adapting the unity operator on a basis state |j〉 one can write this state as

|j〉 =
∑
i

〈i|j〉|i〉 . (1.15)
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This allows us to transform the annihilation and creation operators given in the basis |i〉 such

that they are given by |j〉

â†j |0〉j = |j〉 (1.14)
=

∑
i

〈i|j〉|i〉

=
∑
i

〈i|j〉â†i |0〉i .

Since there exists only one single vacuum state one can set |0〉i ≡ |0〉j which leads to the both

operators’ new expressions

â†j =
∑
i

〈i|j〉â†i (1.16)

âj =
∑
i

〈j|i〉
(
â†i

)†
=
∑
i

〈j|i〉âi (1.17)

1.2.3 One- and Two-Particle Operators

The last step of this section is the representation of one- and two-particle operators with the

new language of second quantization. We will see that a single-particle operator can be written

as a sum over creation and annihilation operators weighted with a coefficient. As we showed

how to transform those in the last section we may first focus on a one-particle operator that is

diagonal in a certain basis |i〉 and transform to an arbitrary basis later on. Let the operator be

called Û1 and as it is assumed to be diagonal one can write it as

Û1 =
∑
i

〈i|û|i〉|i〉〈i| =:
∑
i

ui|i〉〈i| (1.18)

where ûi acts just on the ith particle. With the Notation |n〉 ≡ |n1, n2, . . .〉 this yields to

〈n̄|Û1|n〉 =
∑
i

uini〈n̄|n〉

= 〈n̄|
∑
i

uin̂i|n〉

and since the choice of |n̄〉 and |n〉 is absolutely free it follows that

Û1 =
∑
i

uin̂i =
∑
i

〈i|û|i〉â†i âi . (1.19)

Recalling eq. (1.16) one can easily transform to an arbitrary non-diagonal basis and achieve the

most general second quantized representation of the one-particle operator

Û1 =
∑
ij

〈i|û|j〉â†i âj . (1.20)
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It turns out that a two-particle operator can be written very similar

Û2 =
∑
i,j,l,k

〈i, j|û2|l, k〉â†i â
†
j âkâl . (1.21)

1.3 Thermalization

This section is based on [7].

In classical mechanics thermalization is closely related to the concept of ergodicity. An er-

godic Hamiltonian offers the system the possibility of thermalization. Let us consider a d-

dimensional system with N degrees of freedom, so that the system at a certain time t can be

described as a point in the 2dN -dimensional phase space P = {(p, q)}, i.e. the space of general-

ized coordinates, which in the simplest case is isomorphic to RdN × RdN . Energy conservation

H(p(t), q(t)) = E(t) ≡ E0 ∀t > 0 restricts the system to a (dN − 1)-dimensional sub-manifold

of P which means to a hyperplane. Starting with an initial condition (p0, q0) and energy con-

servation, the Hamiltonian is said to be ergodic when the solutions of the Hamilton equations

uniformly cover every single point in this hyperplane.

If this prerequisite is fulfilled one can define thermalization of an observable O, which means

that its long time average equals the micro canonic expectation value

〈O〉lt = lim
T→∞

1

T

∫ T

0
dtO(p(t), q(t))

= 〈O〉micro =

∫
dqdNdpdN O(p, q)δ(H(p, q)−H(p0, q0))∫

dqdNdpdN δ(H(p, q)−H(p0, q0))
.

(1.22)

In the thermalized state the system is temporally stationary on a macroscopical level, i.e. con-

sidering expectation values. It can be described by few macroscopic thermodynamic variables

such as volume, pressure, entropy, etc. Well known statistical mechanics are appropriate to

describe those stationary states. It can be shown that all thermodynamic ensembles describe

the thermalized system equally except for fluctuations.

The definition for quantum system looks quite similar. Local operators thermalize if the long-

time average of their expectation values converge to a (micro/macro-)canonical one

〈Ô〉lt = lim
T→∞

1

T

∫ T

0
dt 〈Ψ(t)|Ô(x)|Ψ(t)〉 → 〈O(x)〉can =

Tr
[
e−βHÔ(x)

]
Z

(1.23)

with the partition function Z = Tr
[
e−βH

]
. In this case β can be determined using

E(t) ≡ E0 =
Tr
[
e−βHH

]
Z

∀t > 0
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where E(t) denotes the Hamilton operator’s expectation value.

Quantum ergodicity is a difficult topic and strict ergodicity almost never is reached. However,

the Eigenstate Thermalization Hypothesis (ETH) implies that in most quantum systems ob-

servable operators should thermalize. The main idea is the following:

Let the initial quantum state be given by a linear combination of energy eigenstates |φ〉

|Ψ(0)〉 =
∑
n

cn|φn〉 .

The state temporally evolves into the new state

|Ψ(t)〉 =
∑
n

cne
−itEn/~|φn〉 .

Now consider an operator Ô and write its matrix element as 〈φm|Ô|φn〉 =: Omn . Its expectation

value is therefore given by (supposing non-degeneracy)

〈Ô(t)〉 =
∑
n

|cn|2Onn +
∑
m 6=n

c̄mcne
i(Em−En)t/~Omn . (1.24)

The long-time average (1.23) becomes

〈Ô〉lt =
∑
n

|cn|2Onn .

The second term in (1.24) vanishes because |e−i(Em−En)t/~|C = 1 ∀t and therefore it is

limT→∞
|e−i(Em−En)T/~−1|

T = 0. Now consider a small energy shell S = [E,E + ∆E). The main

prediction of the ETH is the approximate constancy of Onn ≈ OS for En ∈ S. In closed systems

energy is conserved and therefore |cn| ≈ 0 for En /∈ S. Supposing the constancy prediction is

true it leads to

〈Ô〉lt,S ≈
∑
S
|cn|2OS = OS

∑
S
|cn|2 = OS

=
1

N
∑
S
OS ≈

1

N
∑
S
Onn

= 〈Ô〉micro

(1.25)

where N denotes the number of energy eigenstates in S. So the quintessence is: observables’

expectation values with respect to a single energy eigenstate are predicted to be approximately

the microcanonic expectation value and as a consequence the expectation value with respect to

any initial state becomes the microcanic one for long times.

There is no analytical proof for the ETH but it has been investigated numerical several times

and been proven for many systems, e.g. in [8]. A system needs to be non-integrable and the

observables need to have a thermodynamical limit in order to be supposed to satisfy the ETH.
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It has to be said that the thermalization of an operator does not imply the thermalization

of other operators of the same system. So which operators can thermalize ? This leads us again

to quantum ergodicity and the von Neumann ergodic theorem. The main statement is that

considering a finite family of coarse grained (i.e. just a small subset of all possible operators)

commuting operators Ml representing macroscopic observables those operators will thermalize

for the most times and the most choices of {Ml} where ”most” regarding unitary operators

means that the so called Haar measure µ satisfies the relation µ({Ml}) ≥ 1 − δ with a certain

0 < δ � 1 and regarding time that the following relation is satisfied :

lim
T→∞

inf
1

T
λ ({0 < t < T |thermalization relation is satisfied at time t}) ≥ 1− δ

where λ denotes the Lebesgue measure on the relevant subset of R. For a far more detailed

discussion see [9].

1.4 Quantum Quenches

Figure 2: Ground state |Ω0〉 of Hamiltonian H0 , ground state |Ω〉 of H1 and excited state
|Ψ〉 = |Ψ〉ini , taken from [10]

Quantum quenches are probably the easiest way of preparing a many-body quantum system in an

out of equilibrium state and investigate the time evolution towards a thermalized state or in case

of e.g. integrable systems observe if certain quantities reach a thermalized state. They are often

applied to experiments on ultra cold atoms in optical lattices which minimizes environmental

coupling and therefore avoids large decoherence or dissipation. A quantum quench is defined as

a change of certain parameters of the Hamilton operator, i.e. a weak or strong perturbation,

H(α)→ H(α̃ 6= α) (1.26)
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or in some cases equivalently

H0 → H1 = H0 + λW (1.27)

which can be done ”instantaneously” (in reality one can only do it very fast) or slowly (mostly

slow quenches are not referred to as quenches). Normally the system before the quench is

prepared in the ground state of H0. Therefore slowly changing parameters are usually not of

interest as the system can follow this change and stays in the ground state. After the quench

the system is situated in an excited state |Ψ〉ini which is a linear combination of eigenstates of

H1 and evolves unitarily in time with the time evolution operator build by the new Hamiltonian

H1. Usually one studies closed systems and following energy conservation the system cannot

relax towards the ground state of H1. So after |Ψ〉ini has built up after a very short time the

next step is to generate quasi-particles which will interact later on. Those interactions, mostly

scattering, can lead to global thermalization. Transport quantities often relax quite slowly for

conserved quantities as energy density have to be transported over partly large distances since

spatial fluctuations are often pronounced directly after the quench.

1.5 Integrability

1.5.1 Classical Definition

In classical physics integrability is a well known and understood concept. Let a classical system

with f degrees of freedom be given and use the Hamilton formalism. The Poisson brackets of

two functions F,G : P → R are defined by

{F,G} =

f∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)
. (1.28)

For G ≡ H, concerning the Hamilton equations, this becomes

{F,H} =
dF

dt
.

Thus a quantity I is temporally conserved if {I,H} = 0 and is called a constant of motion. If

there exist f of those constants that are functionally independent, i.e. their gradients are linearly

independent, and satisfy {Ii, Ij} = 0 one can now find new generalized momenta {pi} , i =

1, . . . , f which are as well constants of motion since

dpi
dt

=

f∑
j=1

∂pj
∂Ij
İj = 0 .
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Therefore the to {pi} corresponding generalized coordinates have to be cyclic. Cyclic coordinates

allow us to easily solve the Hamilton equations

qi = ait+ bit , pi = ai ⇐


ṗi = −∂H

∂qi
= 0

q̇i =
∂H
∂pi

= ai = const

. (1.29)

A system with such f constants of motion is called integrable. The trajectories of this system

evolve on a f -dimensional torus.

Very simple examples for integrable classical systems are (coupled) harmonical oscillators or the

central force problem.

1.5.2 Quantum Integrability

In quantum mechanics it is way more difficult to define integrability. In [11] the most common

definitions of quantum integrability have been summarized and sceptically examined. Those

are:

1. One can approach quantum integrability simple-hearted and replace both the phase space

functions Ii by quantum mechanical operators and the classical Poisson bracket by the

commutator i[, ]/~ and subsequently apply the classical definition. This appears to be

insufficient as the family of operators {|ψα〉〈ψα〉}α with non-degenerate energy eigenstates

|ψα〉 is a family of commuting constants of motion with the same dimension as the Hilbert

space and thus every quantum system seems to be integrable. (Indeed there exist excep-

tions. In [7] it has been shown that ”for relativistic field theory in 1+1 dimension [...]

quantum integrability is implied by the existence of (countable) infinite many local con-

served quantities”). Furthermore it is not clear at all what the degrees of freedom exactly

are.

2. To fix the problem from 1. one can define relevant and irrelevant constants of motion.

Those constants are supposed to be relevant which in the classical limit have an associated

classical constant. This definition does not hold as well because classical limits are not

always distinct and not every system can be given a classical limit.

3. Quantum Integrability can also be defined through scattering. If the outgoing scattered

state is non-diffractive the system is called integrable. The problem is obviously that this

definition is depending on properties of a wave function and thus not really general.

4. Systems are quantum integrable if they can be solved with the Bethe Ansatz. It is sug-

gestive that a definition which is introduced by a solution attempt cannot be general and

one for sure would like to have a general definition.

5. Poissonian energy level statistics can be used for the definition of quantum integrability

but again this definition is not general.
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6. Another non-general definition would be to define quantum integrability through energy

level crossings.

7. Exactly solvable quantum systems are integrable.

The result of this list is that the topic of quantum integrability still needs to be investigated

more closely. Definition seven seems to be suited as it is general and there are no problems

regarding consistency but philosophically one could argue that this definition is just of technical

meaning and does not contain any real physical meaning. Fortunately this problem will not

show up with the quench investigated later in this thesis for the dynamics can be described

quasi classically in most aspects and thus we will rely on definition 1.

1.5.3 Integrability vs. Thermalization

The connection between integrability and thermalization has gained lots of interest in the past

ten years since Kinoshita et al. conducted an experiment where a nearly integrable system,

known as the Newton’s cradle, did not tend to thermalize.[12] They prepared a bose gas such

that two groups of atoms with opposite initial momenta were formed which afterwards oscillated

in a strict one-dimensional tube and could scatter with each other. They showed that even weak

non-integrable elements apparently do not lead to thermalization on the time scale tracked by

the experiment.

In general it is assumed that integrability prevents thermalization. Regarding classical mechan-

ics integrability restricts trajectories to a smaller area in phase space due to various conserved

quantities and hence the system cannot be ergodic any longer. For that reason classical inte-

grability and thermalization legitimately are intimately interconnected. However, the difficulty

of defining quantum integrability opens this topic in terms of quantum mechanics for intense

research.

In [11] the driven Rabi model was investigated and it was shown that it would widely be rated

as non-quantum integrable. As a result Larson found out that this model does not thermalize

despite its non-integrability. Following this result the question if non-integrability and thermal-

ization go hand in hand should be raised.

In this thesis it will be investigated how two different quantities of the one-dimensional Bose-

Hubbard model behave temporally after a quantum quench while the system approaches an

integrable point, realized by bringing the masses of two quasi-particle species closer to each

other.
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1.6 The Bose-Hubbard Model

The Bose-Hubbard model is an approximating theoretical second quantized model for bosonic

interactions in lattices. The Hamiltonian for a one-dimensional lattice with L sites is given by

H = −J
L/L−1∑
i=1

(â†i+1âi + â†i âi+1) +
U

2

L∑
i=1

n̂i(n̂i − 1)− µ
L∑
i=1

n̂i (1.30)

with the bosonic creation and annihilation operators âi and â†i operating on site i as well as

the occupation number operator n̂i for site i and the sums run over all sites. The upper bound

of the first sum depends on the boundary conditions. For fixed boundary conditions (i.e. the

particles are arranged in a linear array and at the ends there are non-interacting walls) the sum

runs to L− 1 because in this case âL+1 has no meaning. The other possible boundary condition

(i.e. the particles are arranged in a circle where the (L + 1)th site is associated with the first

site) is a periodic one where the sum runs to L. µ in the third term is referred to as the chemical

potential which is used for a grand-canonical description. J is a measure for the energy gained

when particles hop from one site to another, thus it is often referred to as hopping energy or

in some sense hopping rate (but with caution as it has the dimension of energy). It can be

manipulated experimentally by adjusting the dipole potential’s height (see fig.3). U describes

the repulsive interaction between particles on one site. In more than one dimension the sum in

the first term runs over all neighbors 〈i, j〉.

Figure 3: Schematic image of a bose gas in a one-dimensional optical lattice described by the
Bose-Hubbard Hamiltonian. The periodic potential is plotted for three different mag-
nitudes of the hopping rate J. As the potential increases J decreases.

As there is equivalence between the dimension of the Hilbert space H of a one-dimensional

lattice with size L and particle number n and the number of possibilities of choosing n not

necessarily different elements from a set with L different elements with disregard to the order a

combinatorical calculation provides us with the dimension

dim H =

(
L+ n− 1

n

)
. (1.31)

Neglecting the third term the model effectively contains just one parameter J/U (or U/J) as
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one can measure energies in units of J or U

HJ =

(
−

L∑
i=1

(âiâ
†
i+1 + â†i âi+1) +

U

2J

L∑
i=1

n̂i(n̂i − 1)

)
J

HU =

(
− J
U

L∑
i=1

(âiâ
†
i+1 + â†i âi+1) +

1

2

L∑
i=1

n̂i(n̂i − 1)

)
U . (1.32)

There are two limiting cases:

1. J/U � 1: Mott insulator—characterized by strong coupling and weak hopping rate.

2. J/U � 1: Super-fluid phase—characterized by weak coupling and extensive hopping.

Both limits are worth to be investigated. Albeit this thesis will merely deal with case one.

The derivation of the Bose-Hubbard Hamiltonian uses Bloch- as well as Wannier-States and

assumes small overlap of neighboring wave functions. It will not be done here, for a complete

derivation see for example [13].
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2 Weak Quantum Quench in the one-dimensional Bose-Hubbard

Model

2.1 Introduction

We want to study a weak quantum quench in the one-dimensional Bose-Hubbard model with

energy conservation and momentum conservation modulo 2π where we start with U � 1, J = 0

and then set J up to an finite value with J/U � 1 (or equivalently do a quench from U = ∞
to a finite U with J/U � 1). Let us exclude the chemical potential so that in (1.30) the third

term vanishes. The lattice constant will be set to a = 1 so that the spatial position of the

sites can be associated with integers from 1 to L. We use fixed boundary conditions but as in

our simulation later on the lattice length will be set to a hugely high magnitude of O(108) the

boundary conditions will not effect our results. The quench equation then reads

t < 0 : H0 = HB−H(J = 0) =
U

2

L∑
i=1

n̂i(n̂i − 1)

(t = 0− → t = 0+) : ↓

t ≥ 0 : H = H0 − J
L−1∑
i=1

(â†i+1âi + â†i âi+1) = HB−H(J 6= 0, J/U � 1) .

(2.1)

Let the number of particles be n = N · L with an for now unspecified integer N . For J is equal

to zero and U attains an infinitely high value all sites will be equally occupied by N particles at

t < 0 due to minimization of potential energy given by eigenvalues of H0. Other configurations

are suppressed due to the large value of U . Directly after the quench the only thing that can

happen is the formation of quasi particles by hopping of real particles. Since J/U is very small

excitations with less than N−1 or more than N+1 particles per site have a very low probability

and will be ignored furthermore. This gives us two species of excitations or quasi-particles, those

with N + 1 particles per site and those with N − 1. We first want to investigate the properties

of these excitations, namely properties of the starting configuration (t = 0+), the momentum

distribution and the excitation energy. Hereof mainly the kinetic energy (given by the J-term)

will be of interest for the simple reason that for a given number (which will be determined by

a certain probability and weakly fluctuate around an expectation value) of quasi-particles the

potential energy (U -term) is constant all the time.

2.2 Properties at t = 0+

2.2.1 Formation of quasi-particles

For comfortability the excitation with (N − 1) particles per site will be furthermore referred

to as ”heavyon” and the one with (N + 1) particles per site as ”lighton”. The reason for this
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naming will become clearer in chapter 3. For N = 1 they are known as ”doublons” (for lightons)

and ”holons” (for heavyons).[2]

We first consider a single heavyon-lighton excitation at t = 0+. As there are at all only three

different occupation numbers one can easily replace the description via occupation numbers by

the description via positions

|xh, xl〉 := |N, . . . , N + 1︸ ︷︷ ︸
(xl)th site

, . . . , N − 1︸ ︷︷ ︸
(xh)th site

, . . . , N〉 , xh 6= xl (2.2)

and momenta |qh, ql〉. If we define the above mentioned state at t = 0− as |N〉 = |N, . . . , N〉
then

{|N〉, {|xh, xl〉}xh,xl=1,2,...,L,xh 6=xl}

span the space of possible states at t = 0. These basis states can be chosen orthonormal for

tunneling is suppressed by (J/U)2 ([2]) and thereby will be neglected. Introducing centre-of-mass

coordinates simplifies the following work, so we define

X :=
xh + xl

2
, x := xh − xl

K := qh + ql , q :=
qh − ql

2
.

(2.3)

By making use of discrete Fourier transform one can switch between spatial representation and

representation by momentum:{
|K, .〉 =

1√
L

∑
X

eiKX |X, .〉 , |., q〉 =
1√
L

∑
x

eiqx|., x〉

}

⇒ |K, q〉 =
1

L

∑
X

∑
x

ei(KX+qx)|X,x〉 . (2.4)

In fact |., q〉 has to be written as 1√
L
|., q〉 =

∑
x sin(q|x|)|., x〉 since |., x = 0〉 can not contribute

to |., q〉 as it is equivalent to |N〉. When calculating the kinetic energies later on we will mix up

sin and e to keep the calculation as simple as possible. Nevertheless the results will be the same

as by using sin permanently.

Applying the new Hamilton operator H on |N〉 and using |X,x〉 yields to

H|N〉 = c|N〉 − J

(∑
i

â†i+1âi + â†i âi+1

)
|N〉

= c|N〉 − d
∑
X

(|X, 1〉+ |X,−1〉)

= c|N〉 − d
∑
X

eiX·0 (|X, 1〉+ |X,−1〉)

FT
= c|N〉 − d (|K = 0, 1〉+ |K = 0,−1〉)
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with constants c and d that are not of interest for now. Using the previous calculation the

transition rate becomes

〈K,x|H|N〉 ortho
= c 〈K,x|N〉︸ ︷︷ ︸

=0

−d (〈K,x|K = 0, 1〉+ 〈K,x|K = 0,−1〉)

= −d(δK,0δx,1‖|0, 1〉‖2 + δK,0δx,−1‖|0,−1〉‖2)

= −dδK,0δ|x|,1(‖|0, 1〉‖2 + ‖|0,−1〉‖2) .

This means

〈K,x|H|N〉 ∼ δK,0δ|x|,1 , (2.5)

thus heavyon-lighton pairs always arise at neighbored sites with total momentum K = 0 and

therefore with opposite single momenta

xh = xl ± 1

qh = −ql .
(2.6)

2.2.2 Kinetic Energy

The observed quench uses J/U � 1 and regarding eq.(1.32) it seems to be opportune to use

J/U as a small perturbation parameter to calculate the kinetic energies of heavyons and lightons

through perturbation theory of first order in J/U

H̃0 −→ H̃ = H̃0 − λH̃1 , λ = (J/U)

H̃0 :=
1

U
H0 , H̃1 :=

∑
i

â†i+1âi + â†i âi+1 .
(2.7)

As we factored out U here it has to been multiplicated with the results later.

Fortunately we have already calculated that K = 0 and so the most suited representation to

work with is |K, q〉 with K = 0. The first ordered energies can be calculated as

E
(1)
N = −λU〈N | H̃1|N︸ ︷︷ ︸

6=a|N〉

〉 ortho= 0

E(1)
q = −λU〈0, q|H̃1|0, q〉 = Ekin,hl

Etot,hl = Epot,hl + Ekin,hl .
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To calculate E
(1)
q we apply H̃1 on |0, q〉

H̃1|0, q〉 = H̃1

(
1

L

∑
X

∑
x

eiqx|X,x〉

)
(∗)
=

1

L

(∑
X

∑
x

eiqx
(
N
(∣∣∣X + 1/2, x+ 1

〉
+
∣∣∣X − 1/2, x− 1

〉)
+ (N + 1)

(∣∣∣X + 1/2, x− 1
〉

+
∣∣∣X − 1/2, x+ 1

〉)))
+

1

L

∑
X

√
N(N + 1)

(
sin(q|1|) + sin(q| − 1|)

)
|N〉

(∗∗)
≈ 2

L

(∑
X

∑
x̃

eiqx̃
(
N cos(q) + (N + 1) cos(q)|X, x̃〉

))
+ 2
√
N(N + 1) sin(q)|N〉

= 2(N + (N + 1)) cos(q)|0, q〉+ 2
√
N(N + 1) sin(q)|N〉

For the understanding of step (∗) it is useful to consider fig.4. The first four summands in

the first term are displayed and one can see which prefactors âiâ
†
i produces in each of those

cases. Recombination leads to the second term. In the first term the exponential representation

of |., q〉 was used for simplicity in the second it was necessary to use sine. Step (∗) uses the

transformations x 7→ x̃ = x ± 1 as well as cos(q) = 1
2

(
eiq + e−iq

)
and

∑
X

∣∣∣X + 1/2, x
〉
≈∑

X

∣∣∣X − 1/2, x
〉
≈
∑

X |X,x〉 for large L.

Figure 4: There are five possible ways H̃1 can act on a heavyon-lighton excitation, four are
shown for N = 1 and the fifth is recombination with gives a factor

√
N(N + 1) :

a) X 7→ X + 1
2 , x 7→ x+ 1 , c) X 7→ X + 1

2 , x 7→ x− 1
b) X 7→ X − 1

2 , x 7→ x+ 1 , d) X 7→ X − 1
2 , x 7→ x− 1
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As the previous calculation has shown the total kinetic energy of a heavyon-lighton excitation

is

E(q) = Ekin,hl ≈ −2J(N + (N + 1)) cos(q) . (2.8)

Heavyons contribute to hopping with N and lightons with N + 1, thus the single energies are

εh(q) ≈ −2NJ cos(q) , εl(q) ≈ −2(N + 1)J cos(q) . (2.9)

where K = 0 results in q = ±ql/h. Velocities are given by the energy derivatives v = ∂ε
∂q ∼

+ sin(q).

2.2.3 Quasi-Particle Density

Denoting the initial state directly after the quench with |Ψ〉ini the the quasi-particle density in

dependency of q at t = 0+ is given by

nq(0
+) = |〈0, q|Ψ〉ini|2 .

Following perturbation theory |Ψ〉ini is calculated in first order as

|Ψ〉ini = |N〉(0) − λ
(
|Ñ〉(1) + |0, q̃〉(1)

)
· U

with

|Ñ〉(1) =
∑
q

|0, q〉(0)
(0)〈0, q|H̃1|N〉(0)

E
(0)
N − E

(0)
q

|0, q̃〉(1) =
∑
q′ 6=q
|0, q′〉(0)

(0)〈0, q′|H̃1|0, q〉(0)

E
(0)
q − E(0)

q′︸ ︷︷ ︸
=0

+|N〉(0)
(0)〈N |H̃1|0, q〉(0)

E
(0)
q − E(0)

0

where

E
(0)
N =

U

2
LN(N − 1)

E(0)
q =

U

2
((L− 2)N(N − 1) + (N + 1)N + (N − 1)(N − 2)) = E

(0)
N − U

and (0)〈0, q|H̃1| has already been calculated. The final result for |ψ〉ini eventually is

|Ψ〉ini =

(
1−

2J
√
N(N + 1)

U
sin(q)

)
|N〉 −

2J
√
N(N + 1)

U

∑
q

sin(q)|0, q〉

and thus one obtains the particle distribution

nq(0
+) =

4(N + 1)NJ2

U2
sin2(q) . (2.10)
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From this one both the momentum distribution and the mean quasi-particle density can be

extracted

n(0+)
conserved

= n =
2(N + 1)NJ2

U2

p(q) ∼ sin2(q) .

(2.11)

2.3 Hydrodynamics (Theoretical Long-Time Behavior)

The long-time behavior of energy correlations after the mentioned quench can be described

by hydrodynamic long-time tails. After a quench the pattern of energy fluctuation changes and

afterwards energy has to be transported over large distances in order to build up the equilibrium

pattern of fluctuations and by association built up global equilibrium . As energy is conserved

the relaxation proceeds very slowly, i.e. ∼ t−
1
2 for long times and not ∼ e−t as predicted by

Boltzmann equation. The aim of this section is to reproduce the analytic result from [2]. The

calculation will be restricted to the relevant one-dimensional case which spares us the notation

of vectors.

A conserved quantity can often be described by a continuity equation which is well known e.g.

from classical electrodynamics where the continuity equation regarding charge is a cornerstone

of the theory. Thus energy conversation is described by

∂te+ ∂xje = 0 (2.12)

with the energy density e , [e] = E
L and the energy current density je. In approximation one

can express je as

je = −D(ω,N)e∂xe− f

where f , [f ] = E
LT denotes a noise term caused by thermal fluctuations and D(ω)e, ,

[D] = L2

T a diffusion constant depending on frequency and N from the previous sections,

i.e. particles per site. The purpose lies on observations of long times and thus ω ≈ 0, so the

notation will be D(0, N)e ≡ De as the N -dependency is not relevant with regard to the following

calculations. Inserting it into (2.12) yields to the diffusion equation

∂te−De∂
2
xe = ∂xf . (2.13)

Solving this equation requires the Green’s function G which satisfies

∂tG(x, x′, t, t′)−De∂
2
xG(x, x′, t, t′) = δ(x− x′)δ(t− t′) . (2.14)

Translational invariance of (2.13) allows to replace G(x, x′, t, t′) 7→ G(x− x′, t− t′). By setting

x′ = 0 , t′ = 0 and mount it at the end will spare a bit of paperwork. If G(x, t) is known the
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energy density can be calculated by integrating (noted e(x, 0) = e0(x))

e(x, t) =

∫
R

dx′ eo(x̃)G(x− x′, t) +

∫
R

dx′
∫
R+
0

dt′G(x− x′, t− t′)∂x′f(x′, t′) . (2.15)

Performing a Fourier transform puts itself forward for calculating G(x, t). Hence we write

G(x, t) =
1

(2π)2

∫
R

dk

∫
R

dω eiwteikxĜ(k, ω) .

Under a Fourier transform the derivatives behave like ∂t 7→ iω , ∂x 7→ ik, the delta distribution

transforms to δ̂ω,k = 1
2π and thus the transformed Green’s function becomes

Ĝ(k, ω) =
1

4π2(iω +Dek2)
.

In order to do the back transformation we set Ĝk(ω) as a function of ω for constant k. Since

Ĝk(ω) has a single pole at ω = iDek
2 the residue theorem claims that for t > 0

Gk(t) =

∫
R

dω Ĝ(ω)eiωt = 2πiResiDek2
(
Ĝk(ω)eiωt

)
Resa(f(z)) = lim

z→a
(z − a)f(z)

⇓

Gk(t) =
2π

4π2
i lim
ω→iDek2

ω − iDek
2

iω +Dek2︸ ︷︷ ︸
=−i

eiωt

=
1

2π
e−Dek

2t , t > 0

=
1

2π
e−Dek

2tΘ(t)

Using the well-known Gaussian formula
∫
Rdx e−ax

2+bx =
√

π
ae

b2

4a one can easily calculate the

fully back-transformed Green’s function

G(x, t) =

∫
R

dk G(k, t)︸ ︷︷ ︸
Gk(t)

e+ikx

=
e−x

2/(4Det)

√
4πDet

Θ(t) .

(2.16)
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Using (2.15) and assuming 〈e0(x)∂x′f(x′, t)〉 = 0 the energy correlation at time t reads

〈e(x, t)e(x′, t)〉 =

∫
R

dx1

∫
R

dx2G(x− x1, t)G(x′ − x2, t)〈e0(x)e0(x′)〉

+

∫
R+
0

dt1

∫
R+
0

dt2

∫
R

dx1

∫
R

dx2

[
G(x− x1, t− t1)G(x′ − x2, t− t2)

〈∂x1f(x1, t1)∂x2f(x2, t2)〉
] (2.17)

The form of the noise correlation is derived by the well-known thermodynamical expression

for the energy fluctuation (〈e2〉 − 〈e〉2)eq = cV kBT
2, achieved by a grand-canonical calculation

which is usually done within a standard statistical physics lecture, with the specific heat cV .

The effective temperature of the equilibrium state after the observed quench is T =∞ because

, as we will see in later in chapter 3, the momentum distribution flattens and for t → ∞ all

momenta are equally probable. Thermodynamical this means e
− ε(q)
kBT = 1 and thus T = ∞.

Since 〈e0〉 =
∫
dq p0(q)e(q) = 0

energy conservation
= 〈e(t)〉 ∀t > 0 the spatial energy correlations can

approximately be expressed by

〈e(x)e(x′)〉eq = cV kBT
2δ(x− x′) (2.18)

where the approximation concerns the locality. Although the temperature is infinite, the equilib-

rium energy correlation is finite due to the fact that the heat capacity vanishes and the product

takes on a finite value. As hydrodynamics describe systems well for long time and length scales

this approximation will be sufficient in order to achieve suiting results. The spatial and tem-

poral correlation of a noise term should be zero since consecutive statistical fluctuations should

be widely independent. Eventually one approximates 〈f(x, t)f(x′, t′)〉 = Aδ(x − x′)δ(t − t′).

The prefactor A can partly be guessed by dimensional treatment or calculated using Fourier

transform, eq.(2.18) and eq.(2.17). It was done by [2] and the result is

〈f(x, t)f(x′, t′)〉 = 2kBT
2cVDeδ(x− x′)δ(t− t′) . (2.19)

With this result and G(x = ∞, t) = G(x = −∞, t) = 0 ∀t > 0 one can do a partial integration

of the second term in (2.17) three times (first two times to translate the derivatives from the

deltas to the Green’s functions) without receiving boundary terms and by making advantage of

the delta distributions property one gets for the second term

2kbcV T
2De

∫
R+
0

dt1

∫
R

dx1

(
∂x1G(x− x1, t− t1)

)(
∂x1G(x′ − x1, t− t1)

)
=− 2kBcV T

2De

∫
R+
0

dt1

∫
R

dx1G(x− x1, t− t1)
(
∂2
x1G(x′ − x1, t− t1)

)
.



22
WEAK QUANTUM QUENCH IN THE ONE-DIMENSIONAL

BOSE-HUBBARD MODEL

The partial integration from the first to the second step can be also be done otherwise such that

the term becomes

−2kBcV T
2De

∫
R+
0

dt1

∫
R

dx1

(
∂2
x1G(x− x1, t− t1)

)
G(x′ − x1, t− t1) .

Thus one can sum up both results and divide by 2 and receives :

− kBcV T 2De

∫
R+
0

dt1

∫
R

dx1

[
G(x− x1, t− t1)

(
∂2
x1G(x′ − x1, t− t1)

)
+
(
∂2
x1G(x− x1, t− t1)

)
G(x′ − x1, t− t1)

]
.

Reorganizing of eq.(2.14) provides an expression for ∂2
xG

∂2
x1G(x− x1, t− t1) =

1

De

(
∂tG(x− x1, t− t1)− δ(r − r1)δ(t− t1)

)
.

Inserting this into the above term, using G(x − x1, t − t1)∂tG(x′ − x1, t − t1) + G(x′ − x1, t −
t1)∂tG(x−x1, t− t1) = ∂t

(
G(x−x1, t− t1)G(x′−x1, t− t1)

)
, G(x−x1, 0) = 1

2δ(x−x1) (as it is

half a Dirac’s sequence), G(.,−∞) = 0 and
∫
Rdx1 δ(x− x1)δ(x′ − x1) = δ(x− x′), one receives

kBcV T
2

(
−
∫
R

dx1G(x− x1, t)G(x′ − x1, t) + δ(x− x′)
)

(2.18)
= −

∫
R

dx1

∫
R

dx2

(
G(x− x1, t)G

′(x− x2, t)〈e(x1)e(x2)〉eq
)

+ 〈e(x)e(x′)〉eq .

Now the first term of (2.17) can be added to this result to achieve an expression for the deviation

of the energy correlation at time t from the equilibrium correlation

〈e(x, t)e(x′, t)〉−〈e(x)e(x′)〉eq =∫
R

dx1

∫
R

dx2G(x− x1, t)G(x′ − x2, t)
[
〈e0(x1)e0(x2)〉 − 〈e(x1)e(x2)〉eq

]
In the investigated system energy correlations at t = 0+ are quite local, in fact the only non van-

ishing correlation is the next neighbor correlation. Concerning this it is a very good assumption

to say 〈e0(x)e0(x′)〉 ∼ δ(x−x′). One can also easily confirm that
∫
Rdx1G(x−x1, t)G(x′−x1, t) =

G2De(x− x′, t). Thus the final proportionality is

〈e(x, t)e(x′, t)〉 − 〈e(x)e(x′)〉eq ∼
1√
Det

e
−(x−x′)2

8Det

∼ 1√
t

t→∞ .

(2.20)

One can see that the system approaches equilibrium only algebraically for very long times but

still fast enough so that after a certain time the deviation numerically fluctuates around zero. In

an arbitrary dimension d the proportionality is ∼ t−d/2 which is an effect of the Gaussian integral
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when calculating G(x, t). The dimension does not make a difference in the rest of the calculation.

2.4 Numerical Method

Sachdev and Young introduced a semi-classical approach for relaxational dynamics in one-

dimensional quantum systems.[1] It has been applied to quantum quenches in [14] to study

finite transverse Ising chains and finite size effects as well as in [2] and [3] for the investigation

of the one-dimensional Bose-Hubbard model.

In this case for sufficiently small values of J/U the particles mean distance 〈d〉 = 1
n+
0

= U2

2N(N+1)J2

is much larger than their thermal De Broglie wavelength λ ∼
√

2mT
−1/2

. The quasi-particle

interaction than can be described in a ballistical model where a quasi-particle is associated with

a point mass which moves uniformly with velocity vh,l(q) = ∂qεh,l(q) after they have been cre-

ated with opposite momenta obeying the momentum distribution p0(q) = 2
π sin2(q) where the

prefactor takes into account the normalization∫ π

0
dq p0(q) = 1 (2.21)

as for a pair one has p0(qh) = p0(ql) and thus the probability of the right quasi-particle to have

a momentum between 0 and π must be one because in lattices the momentum is restricted to

the first Brillouin zone which in one dimension is |q| ≤ π
a and we set a = 1. Quasi-particles

can scatter i.e. collide ballistically if their distance is d = ∆tδv. The chance of tunneling will

be neglected, indeed in [2] a finite tunnel probability for N = 1 was included but did not have

an influence on the results. Neither recombination will be considered in this simulation for it is

rare. When scattering the particles must obey energy conservation and momentum conservation

modulo 2π

q1 + q2 = q′1 + q′2 + 2iπ i ∈ N}
⇒ e(q1) + e(q2) = e(q′1) + e(q1 + q2 − q′1)

e(q1) + e(q2) = e(q′1) + e(q′2) .

(2.22)

The energy is ∼ cos(q) and so the umklapp scattering 2iπ does not influence the energy conser-

vation relation. If two particles of the same species scatter their momenta are just exchanged

q′1 = q2 , q′2 = q1. In the other case if two different species participate in the scattering event

their new momenta can be calculated via

q′l = 2 arctan

(
N sin( ql2 + qh)− (N + 1) sin( ql2 )

N cos( ql2 + qh) + (N + 1) cos( ql2 )

)
∈ [−π, π]

q′h = (qh + ql − q′l) mod 2π .

(2.23)
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By measuring all times in units of the scattering time, which is the time it takes on average for

all particles to scatter ones,

tscat = τ =
simulated time

number of quasi-particles * number of scattering events
.

all results are independent of mean density. Therefore the mean density was permanently set to

4(J/U)2 = 0.0004 with J = 1 and U = 100.

Now the program which was used shall be explained. The most information is saved in a

vector and a multimap of two different structures. The first structure contains all information

about one quasi-particle (i.e index, position, momentum, velocity, time of last scattering event,

time next scattering event with left and right particle, species and prefactor or alternatively

”mass”) and is arranged in a vector organized by the index which means by the lattice site the

quasi-particle is situated at. Neglecting tunneling and using fixed boundary conditions guar-

antees the adherence of this order during the whole simulation. The second structure contains

all information about a single scattering event (i.e. time of the event, position where it takes

place and indices of the involved quasi-particles) which is arranged in a multimap organized by

the time of the event. The multimap takes into account equal times in the frame of a double’s

precision. The computer time is always set to the first element of the scattering list and is actu-

alized after every scattering event. After two quasi-particles have scattered their new scattering

events are sorted into the list and the old scattering event is erased. If there exist scattering

events of one of the two quasi-particles, that have scattered with their other neighbor, that

are obsolete because the new scattering event has been calculated, those events are searched

in an epsilon-environment of the predicted obsolete scattering time in the scattering list via

an iterator and erased. The environment is necessary regarding the uncertainty of doubles of

about 17 significant digits. At each time step quantities such as the energy correlation can be

extracted by accessing the particle list. Since the new momentum calculated via the arctan is

per definition restricted to the Brillouin zone and umklapp scattering can only appear for the

momentum of the other particle, the arctan has to be used once for heavyon (e.g. if the heavyon

is the right particle) and once for lighton (e.g. if the lighton is the left particle) in order to

guarantee symmetry and correct behavior.

The creation of quasi-particle pairs is simulated by creating two vector elements with positions

= indices = i an i+ 1 with probability 4(J/U)2 which is the quasi-particle density and running

over i from 1 to L − 1 where L denotes the lattice’s length. For that at every site i a random

number between 0 and 1 is created by the MT19937 generator of Makoto Matsumoto and Takuji

Nishimura provided by the GNU Scientific Library and compared with the probability. If this

number is smaller than the probability the particles are created. With probability 1
2 a heavyon

is created at i with momentum −q and a lighton at i+ 1 with momentum q and vice versa. To

receive a momentum distributed according to p0(q) the inverted function p−1
0 is calculated and

saved within a file for 1000 equally distanced numbers {X} (i.e. values of p) between 0 and 1.

Given a random number r the corresponding momentum is calculated by linear interpolation
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between the both values of p−1
0 (a), p−1

0 (b) (which are saved in the file) where a, b ∈ {X} and

a ≤ r ≤ b . After the initial state is saved the scattering list is filled for the first time.

It have been used about 105 quasi-particles and averaged over 10-1200 runs, depending on the

quantity to look at and the value of N . Each run was given an integer, starting with one,

that served as the seed for the random number generator. Unfortunately it has to be admitted

that the results are not fully reproducible with the old C++-standard although a determined

seed was given. It could be undefined behavior that has not been detected since the results are

reproducible with the C++0x-standard. Another problem emerging is that if two scattering

events really have the same scattering time then a non-involved event with scattering time next

to those both is erased without doing it by command (as far as recognized till now but not

utterly excluded). It again implies undefined and undetected behavior. It can indeed with great

certainty be ensured that it does not effect the results when the problematic runs are taken out.
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3 Approach to Integrability

3.1 The Method of Approaching

In this thesis we want to observe the temporal behavior after the quench in a crossing where we

approach integrability. To guarantee a smooth approach, comparability of the results and the

possibility to do simulations for the exact case of integrability avoiding infinities (anticipatory:

The limit is N →∞. In this case the energies would diverge.) we substitute the prefactors

N 7→ 1 , N + 1 7→ N + 1

N
. (3.1)

This substitution does not effect the temporal behavior of the observed quantities since all times

are measured in units of the scattering time which means effectively in numbers of scattering

events. Thus the changed velocities and mean density do not have an influence in this mea-

sure. Likewise the calculated new momentum after a scattering of two quasi-particles (2.23) is

invariant under this transformation. Only prefactors change which has to be respected in some

theoretical calculations.

In order to do the crossing let us first resolve what can be called the masses of the quasi-

particles. Considering small momenta first one can Taylor expand the dispersion relation in first

order with respect to the made substitution

εh(q) = −2J cos(q) ≈ −2J(1− 1

2
q2) = −2J + Jq2 =̂ ε0 + εcl(q)

εl(q) ≈ −2J
N + 1

N
+ J

(N + 1)

N
q2 .

(3.2)

As the classical kinetic energy is q2

2m one can associate the effective masses with

mh =
1

2J

ml =
N

2J(N + 1)
.

(3.3)

Alternatively one could just derive the dispersion relation twice and receive a momentum de-

pendent effective mass

m =
1

∂2E/∂q2

mh(q) =
1

2J cos(q)

ml(q) =
1

2J N+1
N cos(q)

.

(3.4)
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In both cases for constant q and N it is mh > mq whereby the reason for the naming of heavyons

and lightons should be clear by now. From now on when the terminus masses is used it will

always be meant in the sense of (3.3), i.e. non-q-depending.

The limit to take is N → ∞ such that the masses approach each other. For N = ∞ the

masses and dispersions are exactly the same. In this case particles just exchange momenta so

that the momentum distribution and the overall momentum are conserved. Regarding the over-

all momentum this is caused by prevented umklapp scattering (no umklapp scattering means no

convertion of particle momentum to lattice momentum). Actually there exists an infinite num-

ber of conserved quantities, e.g. Qn =
∑

q

(
qn
(
nhq + nlq

))
n ∈ N. This means that the number

of constants of motion is infinite and thus clearly exceeds the number of degrees of freedom.

That implies the system’s integrability. It has to be mentioned that the Bose-Hubbard model is

a model for dilute gases and thus by making the integrability approach one leaves the scope of

application, at least regarding experimental implementation. Preparing a nearly infinite number

of bosons in one lattice site on the one hand is a matter of impossibility and on the other hand

should clearly lead to further effects that are not covered by the Bose-Hubbard Model. Indeed

it is way easier to consider also the extreme case of same masses which can give some indication

of the behavior in between as it is done when studying e.g. phase transitions, too. It should

not be withhold that it is nevertheless possible to choose 1 � N . N = 7, for example, already

shows strong influences of the integrable case.

In the following we will consider two averaged quantities

〈eiei+1〉
numerics

=
1

L− 1

L−1∑
i=1

eiei+1

〈cos(2q)〉l,h
numerics

=
1

L

L∑
i=1

cos(2q)i;l,h .

(3.5)

We will see that the next neighbor energy correlation 〈eiei+1〉 tends to reach the thermalized

value even faster when approaching integrability. One should not be confused for it is not

really a matter of thermalization but a property of the special system. One could say the

energy correlation forgets its initial state faster by approaching the masses. The 〈cos(2q)〉l,h
is related to the momentum distribution at t = 0+ via cos(2q) = 1 − 2 sin2(q) of one quasi-

particle species and is a measure for the shape of the momentum distribution. As we will see

the momentum distribution flattens when thermalizing which prompts the 〈cos(2q)〉l,h to go to

zero. By approaching integrability the decay slows down until there is no decay left.

The next two sections cover a discussion of the thermalizing behavior of those two quantities

as well as the thermalization’s dependency on the masses. In the last section the quantities are

compared for a near-equilibrium state. When observing the long-time tails it is necessary to

perform a weighted temporal average on the numerical data because the long time regions of

both quantities tend to fluctuate around zero more and more by increasing N and thus without

temporal averaging it would be difficult to see if a fit-function fits to the data in a plot. To do
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the average an on the respective domain normalized Gaussian function was used. When this

averaging is used it will be recorded in the captions that it is used and over how many scattering

times the average is taken.

3.2 Energy Correlation - A ”Forgetful” Quantity

3.2.1 General Behavior

We first want to take a look at the general temporal behavior of the next neighbor energy

correlation’s expectation/mean value in this section before considering the case of same masses

in 3.2.2 and finally observe the long-time behavior in 3.2.3.

The correlations initial value is

〈eiei+1〉(0+) =
1

2

∫ π

0
dq εl(q)εh(q)p0(q)︸ ︷︷ ︸

created pairs

=
1

2

N + 1

N
=

1

2

mh

ml
(3.6)

where the 1
2 avoids the doubled counting of each pair. The correlation between particles that

were not created together vanishes since
∫ π

0 dq1

∫ 0
−πdq2 εh,l(q1)εh,l(q2)p0(q1)p0(q2) = 0. In a

thermalized state the correlation reaches zero as we will see later (eq.(3.16)). It appears that

even in the integrable case the correlation approaches zero. It will be explained in the next

section. What we focus on now is the sign change. For finite N the sign of the correlation

changes from + to -. This is an effect of the different decay of heavyon and lighton momentum

distributions. The momentum distribution flattens temporally until all momenta are equally

probable (sec.3.3). The zero (i.e. the change of sign) usually is located at a few scattering times

(for low N) and goes to infinity for N →∞. For small N the initial value is a further factor which

influences the time of the sign change (fig.6). In fig.5 the momentum distributions of heavyons

and lightons for N = 1 and few different small times overlaid with a cosine (∼ ε) are shown.

The critical time interval is the one from 0 to 1.6τ . The heavyon distribution flattens faster

than the lightons distribution. This results in an increased number of heavyon-lighton neighbors

εh > 0 and εl < 0. This contribution surpasses the contribution of neighbors with same-signed

energies and thus the correlation’s sign changes and for a small time interval afterwards the

absolute value increases again. This stops when the decay of heavyon and lighton distributions

take on the same temporal behavior. In fig.5 this can be seen between 1.6τ and 2τ where there

is no remarkable difference between both times despite similar flattening of both distributions.

Afterwards the temporal behavior is dominated by relaxation.
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Figure 5: Momentum distribution of heavyons (green) and lightons (blue) for N=1 and four
different small times. It is overlaid with a negative cosine (red) to demonstrate why
the sign of the energy correlation changes after few scattering times.

Figure 6: Energy correlation for various mass ratios and small times. The knees are caused by
coarse discretization.
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3.2.2 Same Masses

For small N the short time behavior is dominated by the sign change. It is now interesting

how the energy correlation behaves when the particles have the same masses. In order to try

to understand it a short calculation can be done and afterwards compared with the numerical

result.

Figure 7: World lines of quasi-particles for same masses starting at t=0. Quasi-particle are
created in pairs with opposite momenta. When quasi-particles scatter momenta are
just exchanged and therefore the lines do not show a kink. Correlation of two neighbors
are destroyed when different colors are neighbored.

At t = 0+ the only non-vanishing correlations are on average those of the pairs that have been

created together. Normally, if different masses and thus different species are involved, this

correlation changes a bit when one of the both particles scatter because the new momentum

depends on the old momentum but it is not destroyed. When particles with the same mass are

involved the new momentum does not depend on the previous momentum and thus this destroys

the correlation of the pair, at least on average. Thus one would expect that the temporal behavior

of the overall correlation’s expectation value depends on the probability that one particle of a

pair has scattered until a time t.

We first need the probability density for a distance d between two neighbored particles that are

not in a pair. The probability that a pair is created at sites i and i+ 1 was set to p = 0.0004 in

the simulation. The distance probability density thus reads

pd(d) = p(1− p)d−1 = ped ln(1−p) p�1
≈ pe−pd

where the finite size of the lattice was neglected which is a good approximation since the sim-

ulation uses L ≈ 3 · 108 and n ≈ 105. The probability that the right particle of a pair with

momentum q > 0 has scattered with its neighbor until time t can further be calculated through

Pr(q, t) =

∫ t

0
dτ

∫ 0

−π
dq̃

∫ ∞
0

dd p0(q̃)pd(d)δ

(
τ − d

∆v(q, q̃)

)
=

∫ t

0
dτ

∫ 0

−π
dq̃ p0(q̃)pd(τ∆v(q, q̃))∆v(q, q̃)

(3.7)

where ∆v denotes the difference of velocities ∆v = 2(sin(q) − sin(q̃)) > 0 with J set to 1. In
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order to scatter at time τ it is necessary that the distance equals τ∆v. It is furthermore used

that δ
(
x
a

)
= |a|δ(x). Actually the integral over τ runs from 1

4 to t as the distance is restricted

to d ≥ a = 1 and the difference of velocities is restricted to ∆v ≤ 4 but it shows that it does

not have a noticeable influence on the results.

The energy correlation can also be destroyed when the left particle scatters first. Attributable

to symmetry reasons this probability is the same as for the right particle Pl = Pr. Probability

theory tells us that the total probability is expressed by

Ptot = P(left ∨ right) = Pl + Pr − P(left ∧ right) = 2Pr − P2
r .

Eventually the time-dependent expectation value of the next neighbor energy correlation can be

calculated

〈eiei+1〉(t) =
1

2

∫ π

0
dq
(
1− Ptot(q, t)

)
p0(q)ε2(q)

= 〈eiei+1〉(0+)− 1

2

∫ π

0
dq Ptot(q, t)p0(q)ε2(q) .

(3.8)

Nevertheless it can happen that the left particle Cl of the pair C, which is second next in right

direction to the considered right particle Ar, scatters with the next pair B, which is situated

between A and C, and then the momentum of Bl changes to the momentum of Cl before Bl

scatters with Ar. Since all particles are indistinguishable it is equivalent to say that the first

scattering of Ar takes place with Cl. It is the same for the left particle and the left direction. So

let us consider the influence of second next neighbors (more precisely: particles in second next

pairs and with different sign of the momentum) in our calculations. The probability density for

the distance between second next neighbors is

pd2(d2) =

∫ ∞
0

dd

∫ ∞
0

dd′ pd(d)pd(d
′)δ(d2 − (d+ d′))

=

∫ d2

0
dd p(d)pd(d2 − d)

= p2de−pd .

By analogy with (3.7) one can calculate the probability Ppre
r,2 that the right particle has scattered

with the second next neighbor by time t by replacing pd with pd2 . We now need the probability

that either next or second next neighbors have scattered. Since the events

1. Ar scatters first with Bl

2. Ar scatters first with Cl ⇔ Ar scatters with Cl and does not scatter with Bl

exclude each other the wanted probability reads

Pfinal
r,2 = Ppre

r,2 + (1− Pr)Ppre
r,2 .
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Similar to the calculation with next neighbor influence the final probability regarding next and

second next neighbor influence is

Ptot,2 = 2Pfinal
r,2 −

(
Pfinal
r,2

)2
.

The energy correlation is calculated exactly like in (3.8) using Ptot,2 instead of Ptot.
Eventually it could be interesting which difference it makes if one works with an averaged energy

instead of weighting the probability with the energy such that

〈eiei+1〉(t) = 〈eiei+1〉(0+)
(
1− P(t)

)
. (3.9)

All mentioned equations have been solved numerically and plotted in units of the scattering

time.

Figure 8: Comparison of the theoretical results in a log-plot. The curves are: blue - next neighbor
influence , cyan - next neighbor influence with averaged energy, black - next and second
next neighbor influence, gray - next and second next neighbor influence with averaged
energy.

Figure 9: Comparison of the theoretical curves including both next neighbor influence and next
plus second next neighbor influence for the calculation with energy-weighting the prob-
ability and the curve received by simulating the system shown in a linear plot (left) and
a log-plot (right).
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Figure 10: After a collision neighbors with very low velocities build up their correlation again
after a small time∆t . It is limv→0(∆t)(v) = 0 . This is the possible reason for the
relaxation of the averaged correlation.

In fig.8 the theoretical results are compared. One can clearly see that already after a short time

next neighbors contribute to the decay in a way such that they cannot be ignored. Using an

averaged energy the decay is a little faster than by weighting the probability. This shows up

because by proceeding in time the velocity of particles that have not scattered by then becomes

smaller. Admittedly the energy increases when the velocity decreases and thus contributes more

to the decay but small velocities in turn are very rare. That means that the number of particles

that have not scattered decreases very fast. It seems that the effect of decreasing number of left

particles exceeds the effect of a higher contribution by their energy resulting in the faster decay

by averaging the energy.

In fig.9 the theoretical results are compared to the result received by the simulation. One notices

bewilderingly that the simulated energy correlation does not decay exponentially, at least after

a very small time a considerable proportion of the exponential decay decreases. One could

argue that there is a statistical chance that correlations are built up again but this effect should

average to zero. However for particles with v ∼ 0 the correlation is only destroyed for a very

short time ∆t after a collision and then built up again (see fig.10). It could be assumed that

this effect leads to a relaxation of the averaged correlation’s decay. Long-time tails should not

contribute to the temporal behavior for they describe thermalization which is excluded in an

integrable system. Finally one can say that the calculation which has been made is not sufficient

to explain the behavior but provides an approximate description and leastwise explains why the

correlation approaches zero although the momentum distribution does not change all the time.

3.2.3 Long-Time Tails

In the following we consider the long-time behavior which is theoretically given by eq.(2.20).

It appears that by increasing N (respectively decreasing the mass ratio) the coefficient of the

power-law decreases at such a rate and the decay for lower times occurs faster than expected,

so that, with respect to the statistical fluctuations of the simulation, the correlation tends to
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fluctuate around zero very soon. Therefore it has been possible to extract power laws only for

N = 1, 2, 3 and only with deployment of temporal averaging.

In fig.12 the received data is plotted in log-log plots and fitted in two different regions. Let

us first take a view on the region with t > 200τ . In this long-time region long-time tails as

calculated in eq.(2.20) are pronounced. In [2] it has been shown that subleading corrections of

t−3/4 have to be included using a scaling reflection which takes into account a certain scaling

invariance of the diffusion equation. Minding corrections to the energy current like α∂x(e∂xe),

α′∂x(n∂xe) and β∂4
xe leads to corrections

〈e(x, t)e(x′, t)〉 − 〈e(x)e(x′)〉eq ∼
1√
t
f

(
x√
t
, 1,

α

t1/4
,
α′

t1/4
,
β

t
, . . .

)
. (3.10)

It has been argued that the α term should vanish due to energy inversion symmetry.

The α′ correction is suppressed by t−1/4 and thus leads to a further summand t−3/4. It appears

for all three mass ratios for long times. For N = 1 the correction is nearly negligible for very long

times which could not be observed in [2] for the numerics have been improved in the meantime.

It could be explained by the fact that umklapp scattering becomes less important for longer

times since most momenta are very similar by then and thus only few momenta have to be

back-folded into the Brillouin zone. It can be seen that the correction becomes dominant for

higher N . A disappearance of this correction for lower mass ratios can not be excluded. It

would take better numerics and longer times to ascertain that.

In the region between 100τ and 200τ in all three cases a knee in the curve can be observed.

Starting from a quite low time until reaching this knee the data can be fitted by a power law

with way more deviation from t−1/2. This deviation increases when decreasing the mass ratio.

Thus it can not be explained by umklapp scattering as its effect should decrease (fig.11).

Figure 11: New momentum of the particle which can do umklapp scattering after a scattering
event in dependency of the both old momenta and before umklapp scattering has taken
place. Umklapp scattering can happen if the new momentum’s absolute value exceeds
π. The higher N the lower the effect of umklapp scattering gets.

It is indeed problematic to draw interferences from umklapp scattering to hydrodynamics.
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Figure 12: Long-time behavior of the energy correlation for N=1,2,3 and fits for both regions in
log-log plots. Averaged over 4, 16 and 20 scattering times. For every N the data is
averaged over 1200 runs.
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For N = 1 a more pronounced ∼ t−3/4 correction caused by the α′ term is sufficient. For

N = 1 and N = 2 this is not the case. It can be seen that a further correction ∼ t−1 needs

to be regarded. Following the scaling calculation this could be an effect of the β term. Still it

does not explain why this correction seems to vanish at about 100τ − 200τ . That could be an

interesting question for future investigations.

Finally we want to compare the prefactors for long times and the different mass ratios. Thus we

use the prefactors aN of the long-time t−1/2 fit and divide them. What we get is a1
12
≈ 5.27 ≈ 22.40

and a1
a3
≈ 13.40 ≈ 32.36. The accordance can be coincidental or not for it is not possible to

conclude something from two numbers. Later on the prefactors from cos(2q) long-time tails will

be compared, too.
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3.3 Momentum Distribution - A ”Remembering” Quantity

The second quantity observed is 〈cos(2q)〉 which can be associated with the shape of the mo-

mentum distribution. It starts from

〈cos(2q)〉(0) =
1

2

∫ π

−π
dq cos(2q)p0(q) = −1

2
(3.11)

and does not change its sign at any time. Concerning finite N this quantity relaxes to zero

(eq.(3.16)) due to umklapp scattering. For same masses umklapp scattering does not appear any

more for the momenta are just exchanged and thus the momentum distribution does not change.

This is the quantity in which integrability is pronounced, beacuse thermalization declines until

there is no thermalization left. In the following we will first observe the exponential decay which

governs the behavior for short times t < tc, where tc increases for larger N , and afterwards

investigate the long-time tails.

3.3.1 Exponential Decay

The exponential decay (see fig.13) can be described theoretically by the Boltzmann equation.

The Boltzmann quation is a transport equation for distribution densities in dilute kinetical gases.

We use the distribution functions of heavyons and lightons nhq and nlk with

nhq (0) = nlk(0) = n(0+) (3.12)

with n(0+) from 2.1.3. Concerning energy conservation as well as momentum conservation

modulo 2π, the inversion symmetry Wk,q,k′,q′ = Wk′,q′,k,q of the transition rate Wk,q,k′,q′ , which

describes the probability density per time unit that particles with momenta q and k change their

momenta by colliding to q′ and k′, and by making use of the Stoßzahlansatz the equations for

both species become [2]

∂tn
l
k =

1

(2π)3

∫ π

−π
dq

∫ π

−π
dq′

∫ π

−π
dk′Wk,q,k′,q′δ(ε

l
k + εhq − (εlk′ + εhq′))∑

n∈Z
δ(k + q − (k′ + q′) + 2πn)(nlk′n

h
q′ − nlknhq )

∂tn
h
q =

1

(2π)3

∫ π

−π
dk . . .

(3.13)

where the equation for the heavyon distribution is the same as for the lighton distribution

up to the change of integrals
∫ π
−πdq 7→

∫ π
−πdk . It is motivated by continuity of ∂n/∂t and

thus (∂tn)in = (∂tn)out As we have seen in 2.3 the product of both deltas is proportional to

δ(k′−kl)δ(q′− (k+q−kl)) with kl from eq.(2.23). Heuristically one can say that the probability

that two particles scatter after time ∆t is P ∼ |∆v|∆tL and thus dP/dt ∼ |∆v|. To guarantee the

symmetry and right dimension the transition rate has to be ∼ |∂kεlk − ∂qεhq ||∂k′εlk′ − ∂q′εhq′ |. The
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Figure 13: Exponential decay of −〈cos(2q)〉l for various mass ratios in a log-plot. For N=1
the long-time tail part can already be seen.

proportionality constant is (2π)2. Using the delta’s the transition rate becomes Wk,q,kl,q+k−ql .

The probability for this crossing is one. Thus one receives Wk,q where the q′, k′-part vanishes.

Noting ”k or q” as (k, q) in the equations the distributions read

∂tn
l,h
k,q =

1

2π

∫ π

−π
d(q, k) |∂kεlk − ∂qεhq |(nlkln

h
k+q−kl − n

l
kn

h
q ). (3.14)

As n is periodic in the momentum with periodicity 2π one can expand n into a Fourier series

nl,hk,q =
∑
m

cos(m(k, q))al,hm .

The coefficients am are given by

al,hm =
2

2π

∫ π

−π
d(k, q)nl,hk,q cos(m(k, q)) .

Inserting this into (3.14) yields to

∂ta
l,h
m =

1

π

∫ π

−π
d(k, q) |∂kεlk − ∂qεhq | cos(m(k, q))(nlkln

h
k+q−kl − n

l
kn

h
q )

Fourier
=

1

π2

∑
m′,m′′

al,hm′a
h,l
m′′

∫ π

−π
dk

∫ π

−π
dq

[
cos(m(k, q))∣∣∣∣N + 1

N
sin(k)− sin(q)

∣∣∣∣ ( cos(m′kl) cos(m′′(k + q − kl))− cos(m′k) cos(m′′(q)
)]

(3.15)

as already calculated in [2] for N = 1. It shows that all modes with odd m vanish. In order to

satisfy the initial condition (3.12) the m = 0 modes as well as minus the m = 2 modes are set

to the density at t = 0. All other modes are set to 0 for this time. The m = 0 mode is constant
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Figure 14: Theoretical N-dependency of the decay of the m=2 mode concerning m=(0,2) modes
(left) and m=(0,2,4) modes (right). (Boltzmann)

Figure 15: Time scale of decay 1
Γ as a function of N obtained from the simulation.

in time and all modes m >= 4 are very weak. Thus the m = 2 mode dominates the temporal

behavior of nk and therefore of 〈cos(2q)〉.
In the simulation the exponential parts of 〈cos(2q)〉l have been fitted with 0.5 · e−t/Γ for var-

ious N. The theoretical equation (3.15) for lightons has been solved numerically for N =

1, 2, 3, 4, 5, 10, 100 by only taking into account m = 0, 2 and for N = 1, 2, 3 by taking into account

also m = 4. The resulting curves for the m = 2 mode have been fitted with −0.0004 · e−t/Γ The

results can be seen in fig.14 and fig.15.

The y-intercept in the simulated data is not needed but it does not make a noticeable difference

if it is left out. One can see an general behaviour of ∼ N1.75. It does not fit very well for small

N (neither does it by setting Γ(0) = 0) but from N = 5 up to N = 1000 it really shows this

behavior. The half-analytical data’s behavior approaches that of the simulated by including

more modes to the calculation. Including even more modes and doing this calculation for more

values of N should lead to an improved agreement with the simulated data.
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3.3.2 Long-Time Tails

Long time tails do also appear in the 〈cos(2q)〉. Since this quantity falls exponentially without a

sign change before tails, they do fluctuate even faster around zero than the energy correlation.

Again N = 1, 2, 3 are concerned but already for N = 3 the fits cannot be called good anymore.

Prefactors can be compared but regarding the shape of the power-law it is already quite useless.

As we one can see in fig.16 the difference of heavyons and lightons is the prefactor of the tails

but the tails itself are quite parallel. Therefore only the curves of lightons will be shown. This

quantity relaxes really with t−1/2 and for higher N maybe with a correction t−3/4 (fig.17). For

N = 1 a small region could be associated with a further correction but as this does not repeat

for other N it seems unlikely. Ratios of prefactors are b1
b2
≈ 4.305 ≈ 22.11 and b1

b3
= 11.5 ≈ 32.22

which is comparable to the ratios from the energy correlation’s ratios. If one wants to extract

an exponent, then it seems definitely to be between 2 and 2.5.

Figure 16: 〈cos(2q)〉 for heavyons (green), lightons (blue) and N=1
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Figure 17: Long-time tails of −〈cos(2q)〉l for N=1,2,3 (from top to bottom). Averaged over 10,
36 and 40 scattering times. For every N the data is averaged over 1200 runs.
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3.4 Comparison Near Equilibrium

Near equilibrium relative prefactors of the observed quantities can be compared for constant

masses by doing a simple thermodynamical calculation. The total energy in the system vanishes

〈e〉 =
1

2

(∫ π

0
dq εl(q)p0(q)︸ ︷︷ ︸
∼sin(q) cos(q)

+

∫ π

0
dq εh(q)p0(q)︸ ︷︷ ︸
∼sin(q) cos(q)

)
= 0 .

Now one can use the thermodynamical definition of the energy’s expectation value

〈e〉(β, J, zh, zl, N) =
1

〈n〉

∫ π

−π
dq
(
εhzhe

−βεh + εlzle
−βεl

)
,

with the fugacities zh,l and the mean density

〈n〉(β, J, zh, zl, N) =

∫ π

−π
dq
(
zhe
−βεh + zle

−βεl
)

,

furthermore introduce

〈∆n〉(β, J, zh, zl, N) =

∫ π

−π
dq
(
zhe
−βεh − zle−βεl

)
and finally expand 〈n〉, 〈∆n〉 and 〈e〉 in powers of β. This is reasonable because the reached

equilibrium state has effective temperature T = ∞, hence β can be considered a very small

parameter near equilibrium.

Introducing the notation 〈n〉(β, J, zh, zl, N) =: ρ and taking advantage of the same mean densi-

ties of heavyons and lightons, i.e. 〈∆n〉 = 〈n〉h − 〈n〉l = 0, provides a system of two equations

which allows to express zh and zl in terms of ρ, β and N

zh(ρ, β, J,N) , zl(ρ, β, J,N) .

Inserting them into the energy yields to a dependency

〈e〉(ρ, β, J,N) = 〈e〉(β, J,N)

as it emerges that the ρ-dependency vanishes. By inverting 〈e〉 one receives

β(〈e〉, J,N)

and expand it in powers of 〈e〉.
The wanted observables then can be calculated as their thermodynamical expectation values
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and expanded in powers of 〈e〉 again

〈cos(2q)〉l,h(〈e〉, J,N) =
1

〈n〉l,h

∫ π

−π
dq cos(2q)zl,he

−βεl,h

〈eiei+1〉(〈e〉, J,N) =
1

8

(
1

〈n〉h

∫ π

−π
dq zhεhe

−βεh
)2

+
1

8

(
1

〈n〉l

∫ π

−π
dq zlεle

−βεl
)2

+

3

4

(
1

〈n〉h
1

〈n〉l

∫ π

−π
dq zhεhe

−βεh
∫ π

−π
dq zlεle

−βεl
)

.

The prefactors 1
8 , 1

8 and 3
4 arise from a combinatorical consideration. Heavyons and lightons are

always created together at neighbored sites with probability 1
2 in the order heavyon-lighton and

otherwise. The probability for the other neighbor to be one of the two species is 1
2 . Thus the

probability to find HL (heavyon-lighton pair in this order) is 1
2

(
1
2 + 1

4

)
= 3

8 and the probability

for LH is the same. Finally the probability for two neighbored particles to be different regarding

their species is 3
4 and to be the same 1

4 which is symmetric for HH and LL, thus 1
8 and 1

8 .

The results in second order of 〈e〉 are

〈cos(2q)〉l =
1

2

(
〈e〉
J

)2 N2(1 +N)2

(1 + 2N + 2N2)2

〈cos(2q)〉h =
1

2

(
〈e〉
J

)2 N4

(1 + 2N + 2N2)2

〈eiei+1〉 =
1

2

(
〈e〉
J

)2 8N4 + 16N3 + 12N2 + 4N + 1

(1 + 2N + 2N2)2
.

(3.16)

Thus the relative coefficients are

gN :=
〈cos(2q)〉l
〈cos(2q)〉h

=

(
N + 1

N

)2

=

(
mh

ml

)2

(3.17)

f lN :=
〈cos(2q)〉l
〈eiei+1〉

=
N2(1 +N)2

8N4 + 16N3 + 12N2 + 4N + 1
. (3.18)

It is mentionable that the only dependency of gN is that of the ratio of masses N+1
N . For

same masses gN becomes 1 which means that near equilibrium the momentum distributions

of heavyons and lightons are the same which does not surprise for they approach to become

same-massed quasi-particles. Since the initial value of 〈cos(2q)〉 does not depend on the masses

and thus giniN = 1 the momentum distributions of the two species are nearly the same over all

the time for a mass ratio near to 1.

The theoretical, relative coefficients can be compared to the simulation by considering the long-

time tails and fitting them constantly ∼ t−1/2. This is not always a strictly true fit but it is

sufficient in order to receive the approximate coefficients. Due to the statistical problems it is

just possible for N = 1, 2, 3 with the used number of particles and averaged ensembles. Noting

the relative deviation as ∆g :=
|gsimN −gtheoN |

gtheoN

and analogue for f lN the results read
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N gtheo
N gsim

N ∆g fl,theo
N fl,simN ∆f

1 4 3.8188 4.53 % 0.0976 0.0983 0.75 %

2 2.25 2.2914 1.84 % 0.1150 0.1202 4.50 %

3 1.7778 1.6249 8.03 % 0.1200 0.1155 3.66 %

which is an acceptable accordance. The large relative deviation of g3 is caused by the very low

values of 〈cos(2q)〉h which make it hard to fit a proper function to it.
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4 Conclusion

It has been seen that the energy correlation does not decay exponentially for same masses but

”relaxes” somehow more slowly. Some effect interferes with the correlation vanishing by a simple

collision. Long time tails need a further, by now not observed correction ∼ t−1 which vanishes

suddenly at a certain time.

Furthermore it has been observed that 〈cos(2q)〉l ∼ e−at/N
1.75

which is not very far from the

result of the Boltzmann equation regarding 0 to 4 modes. For same masses this quantity does

not relax at all which shows the system’s integrability. Relative prefactors of both quantities

have been compared for constant mass ratio nearby an equilibrium state and show accordance

with the numerical results within a relative deviation of 8 %.
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[10] M. Möckel. Real-time evolution of quenched quantum systems. PhD thesis, Ludwig-

Maximilians-Universität München, April 2009.

[11] J. Larson. Integrability vs Quantum Thermalization. J. Phys. B: At. Mol. Opt. Phys. 46

224016, November 2013.

[12] T. Kinoshita, T. Wenger, and D.S. Weiss. A quantum Newton’s cradle. Nature 440, 900-

903, April 2006.

[13] A. Hoffmann. Bosonen im optischen Gitter. Diplomarbeit, Freie Universität Berlin, 2007.

[14] H. Rieger and F. Iglói. Semi-classical theory for quantum quenches in finite transverse Ising

chains. Phys. Rev. B 84, 165117, October 2011.



APPENDIX A

Appendix

Figure 18: Data for −〈eiei+1〉 (left) and 〈cos(2q)〉l (right) for N=1,2,3 (from top to bottom) and
without time-averaging in log-log-plots. In the left plot a time average is taken.
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Figure 19: −〈eiei+1〉 for N = 1, 2, 3 raw (right) and multiplicated with a1
aN

(left) in linear plots.
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hat, den abknickenden Verlauf der Energiekorrelationen zu beobachten. Er half mir bei nu-

merischen Fragen immer weiter und ließ mich zu Beginn meiner Arbeit immer wieder an seinem

bereits erworbenen Erfahrungsschatz teilhaben. Auch für das Lesen eines Großteils meiner Ar-

beit bedanke ich mich.
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Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
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